1
|
Batista L, Paul S, Molina-Jirón C, Jaén JA, Fensker D, Fuhr O, Ruben M, Wernsdorfer W, Moreno-Pineda E. Magnetic behaviour of a spin-canted asymmetric lanthanide quinolate trimer. Dalton Trans 2024; 53:12927-12935. [PMID: 39041069 DOI: 10.1039/d4dt01588f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/24/2024]
Abstract
An asymmetrical dysprosium trimer with a molecular formula of [Dy3(hq)7(hqH)(NO3)2(H2O)] was obtained through a reflux reaction employing as starting material Dy(NO3)3·nH2O and 8-quinolinoline as ligand. Magnetic susceptibility investigations show the system to be an SMM, which was corroborated by sub-Kelvin μSQUID studies. Upon cooling, the magnetic susceptibility also exhibits a decrease in the χMT product, which was confirmed to be due to intramolecular antiferromagnetic interactions. μSQUID measurements, moreover, reveal a marked magnetic behaviour in the angular dependence of the hysteresis loops. The latter is a direct consequence of the non-colinear spin arrangement of the anisotropy axes of each Dy(III) ion in [Dy3(hq)7(hqH)(NO3)2(H2O)] and the interaction between the ions, as also evidenced by CASSCF calculations. Our results evidence the effect of spin canting along with the intramolecular interactions, which can induce non-trivial magnetic behaviour in SMMs.
Collapse
Affiliation(s)
- Lester Batista
- Universidad de Panamá, Facultad de Ciencias Naturales, Exactas y Tecnología, Depto. Física, 0824, Panamá
| | - Sagar Paul
- Physikalisches Institut, Karlsruhe Institute of Technology, D-76131, Karlsruhe, Germany.
| | - Concepción Molina-Jirón
- Universidad de Panamá, Facultad de Ciencias Naturales, Exactas y Tecnología, Depto. de Bioquímica, 0824, Panamá.
- Institute of Quantum Materials and Technologies (IQMT), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany.
| | - Juan A Jaén
- Universidad de Panamá, Facultad de Ciencias Naturales, Exactas y Tecnología, Depto. de Química-Física, 0824, Panamá.
- Universidad de Panamá, Facultad de Ciencias Naturales, Exactas y Tecnología, Grupo de Investigación de Materiales, Panamá, 0824, Panamá
| | - Dieter Fensker
- Institute of Nanotechnology (INT), Karlsruhe Institute of Technology (KIT), Kaiserstraße 12, D-76131 Karlsruhe, Germany
| | - Olaf Fuhr
- Institute of Nanotechnology (INT), Karlsruhe Institute of Technology (KIT), Kaiserstraße 12, D-76131 Karlsruhe, Germany
- Karlsruhe Nano Micro Facility (KNMFi), Karlsruhe Institute of Technology (KIT), Kaiserstraße 12, D-76131 Karlsruhe, Germany
| | - Mario Ruben
- Institute of Quantum Materials and Technologies (IQMT), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany.
- Institute of Nanotechnology (INT), Karlsruhe Institute of Technology (KIT), Kaiserstraße 12, D-76131 Karlsruhe, Germany
- Centre Européen de Sciences Quantiques (CESQ), Institut de Science et d'Ingénierie Supramoléculaires (ISIS), 8 allée Gaspard Monge, BP 70028, 67083, Strasbourg Cedex, France
| | - Wolfgang Wernsdorfer
- Physikalisches Institut, Karlsruhe Institute of Technology, D-76131, Karlsruhe, Germany.
- Institute of Quantum Materials and Technologies (IQMT), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany.
| | - Eufemio Moreno-Pineda
- Physikalisches Institut, Karlsruhe Institute of Technology, D-76131, Karlsruhe, Germany.
- Universidad de Panamá, Facultad de Ciencias Naturales, Exactas y Tecnología, Depto. de Química-Física, 0824, Panamá.
- Universidad de Panamá, Facultad de Ciencias Naturales, Exactas y Tecnología, Grupo de Investigación de Materiales, Panamá, 0824, Panamá
| |
Collapse
|
2
|
Manvell AS, Pfleger R, Bonde NA, Briganti M, Mattei CA, Nannestad TB, Weihe H, Powell AK, Ollivier J, Bendix J, Perfetti M. LnDOTA puppeteering: removing the water molecule and imposing tetragonal symmetry. Chem Sci 2023; 15:113-123. [PMID: 38131074 PMCID: PMC10732010 DOI: 10.1039/d3sc03928e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Accepted: 10/25/2023] [Indexed: 12/23/2023] Open
Abstract
Complexes of lanthanide(iii) ions (Ln) with tetraazacyclododecane-N,N',N'',N'''-tetraacetate (DOTA) are a benchmark in the field of magnetism due to their well-investigated and sometimes surprising features. Ab initio calculations suggest that the ninth ligand, an axial water molecule, is key in defining the magnetic properties because it breaks the potential C4 symmetry of the resulting complexes. In this paper, we experimentally isolate the role of the water molecule by excluding it from the metal coordination sphere without altering the chemical structure of the ligand. Our complexes are therefore designed to be geometrically tetragonal and strict crystallographic symmetry is achieved by exploiting a combination of solution ionic strength and solid state packing effects. A thorough multitechnique approach has been used to unravel the electronic structure and magnetic anisotropy of the complexes. Moreover, the geometry enhancement allows us to predict, using only one angle obtained from the crystal structure, the ground state composition of all the studied derivatives (Ln = Tb to Yb). Therefore, these systems also provide an excellent platform to test the validity and limitations of the ab initio methods. Our combined experimental and theoretical investigation proves that the water molecule is indeed key in defining the magnetic anisotropy and the slow relaxation of these complexes.
Collapse
Affiliation(s)
- Anna Schannong Manvell
- Department of Chemistry, University of Copenhagen Universitetsparken 5 DK-2100 Copenhagen Denmark
| | - Rouven Pfleger
- Department of Chemistry, University of Copenhagen Universitetsparken 5 DK-2100 Copenhagen Denmark
- Institute of Inorganic Chemistry, Karlsruhe Institute of Technology Engesserstrasse 15 76131 Karlsruhe Germany
| | - Niels Andreas Bonde
- Department of Chemistry, University of Copenhagen Universitetsparken 5 DK-2100 Copenhagen Denmark
- Institut Laue-Langevin 71 avenue des Martyrs, CS 20156 38042 Grenoble Cedex 9 France
| | - Matteo Briganti
- Department of Chemistry U. Schiff Via della Lastruccia 3 50019 Sesto Fiorentino Italy
| | - Carlo Andrea Mattei
- Department of Chemistry U. Schiff Via della Lastruccia 3 50019 Sesto Fiorentino Italy
| | - Theis Brock Nannestad
- Department of Chemistry, University of Copenhagen Universitetsparken 5 DK-2100 Copenhagen Denmark
| | - Høgni Weihe
- Department of Chemistry, University of Copenhagen Universitetsparken 5 DK-2100 Copenhagen Denmark
| | - Annie K Powell
- Institute of Inorganic Chemistry, Karlsruhe Institute of Technology Engesserstrasse 15 76131 Karlsruhe Germany
| | - Jacques Ollivier
- Institut Laue-Langevin 71 avenue des Martyrs, CS 20156 38042 Grenoble Cedex 9 France
| | - Jesper Bendix
- Department of Chemistry, University of Copenhagen Universitetsparken 5 DK-2100 Copenhagen Denmark
| | - Mauro Perfetti
- Department of Chemistry U. Schiff Via della Lastruccia 3 50019 Sesto Fiorentino Italy
| |
Collapse
|
3
|
Chen CP, Wang YF, Qin P, Zou HH, Liang FP. A DyIII Single-Ion Magnet with D5h Configuration. Inorganica Chim Acta 2022. [DOI: 10.1016/j.ica.2022.121343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
4
|
Chiboub Fellah FZ, Pointillart F, Guizouarn T, Roisnel T, Dege N, Chiboub Fellah A, Hassaine R. Photophysical Properties and Single‐Molecule Magnet Behavior in Heterobimetallic 3d4 f Schiff Base Complexes. Eur J Inorg Chem 2022. [DOI: 10.1002/ejic.202200349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
| | - Fabrice Pointillart
- Univ Rennes CNRS ISCR (Institut des Sciences Chimiques de Rennes) - UMR 6226 35000 Rennes France
| | - Thierry Guizouarn
- Univ Rennes CNRS ISCR (Institut des Sciences Chimiques de Rennes) - UMR 6226 35000 Rennes France
| | - Thierry Roisnel
- Univ Rennes CNRS ISCR (Institut des Sciences Chimiques de Rennes) - UMR 6226 35000 Rennes France
| | - Necmi Dege
- Ondokuz Mayis University Faculty of Arts and Sciences Department of Physics 55200 Atakum Samsun Turkey
| | - Abdelghani Chiboub Fellah
- Laboratoire de Valorisation des Ressources en Eau Équipe de chimie de coordination Université de Tlemcen, BP 119 13000 Tlemcen Algeria
| | - Ridha Hassaine
- Laboratoire de Catalyse et Synthèse en Chimie Organique Université de Tlemcen, BP 119 13000 Tlemcen Algeria
- Centre de Recherche Scientifique et Technique en Analyses Physico – ChimiquesCRAPC, Bou-Ismail BP 384 42004 Tipaza Algeria
| |
Collapse
|
5
|
Song XJ, Jing Y, Feng X, Hu ZB, Kong M, Xue XM, Zhang YQ, Song Y. Single-molecule magnet behaviour in a centrosymmetric dinuclear dysprosium(III) complex: sequential differentiation of triple relaxation pathways. Dalton Trans 2022; 51:9233-9240. [PMID: 35642654 DOI: 10.1039/d2dt00684g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A dinuclear complex with the formula Dy2L2(H2L)Cl2(EtOH)2 (Dy2) has been synthesized by reacting DyCl3·H2O with a ligand H2L (H2L = N,N'-ethylenebis(salicylideneimine)) using ethanol as the solvent. Its crystal structure can be viewed as a dimer of two Dy(III) fragments, where each Dy(III) site shows a N2O6Cl coordination sphere with a pentagonal bipyramid geometry (D5h). Magnetic measurements reveal that Dy2 behaves as a single-ion magnet (SIM) under a zero field. When the field is applied, the ac magnetic susceptibilities show double and triple peaks under high (≥600 Oe) and low (<600 Oe) dc fields, respectively. In contrast to the common double relaxation pathways in SIMs, such multiple and intricate relaxation pathways have not been reported yet in the previous literature. In this work, by experimental analysis of the ac signals, we attribute the three slow relaxation pathways to quantum tunnelling of magnetization (QTM), intermolecular dipole-dipole interaction and spin reversal, respectively. In addition, ab initio calculations are used to elucidate the magnetic behaviours of Dy2. Overall, our work indicates that the interpretation of the relaxation process using double relaxation pathways is incomplete and difficult in previously reported literature.
Collapse
Affiliation(s)
- Xiao-Jiao Song
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China. .,Key Laboratory of National Forestry and Grassland Administration on Wildlife Evidence Technology, School of Criminal Science and Technology, Nanjing Forest Police College, Nanjing 210023, P. R. China
| | - Yu Jing
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China.
| | - Xin Feng
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China.
| | - Zhao-Bo Hu
- Chaotic Matter Science Research Center, Department of Materials, Metallurgy and Chemistry, Jiangxi University of Science and Technology, Ganzhou 341000, P. R. China.
| | - Ming Kong
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China.
| | - Xiao-Ming Xue
- Key Laboratory of National Forestry and Grassland Administration on Wildlife Evidence Technology, School of Criminal Science and Technology, Nanjing Forest Police College, Nanjing 210023, P. R. China
| | - Yi-Quan Zhang
- Jiangsu Key Lab for NSLSCS, School of Physical Science and Technology, Nanjing Normal University, Nanjing 210023, P. R. China.
| | - You Song
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China.
| |
Collapse
|
6
|
Chen C, Sommer C, Thisgaard H, McKee V, McKenzie CJ. Facile transmetallation of [Sb III(DOTA)] - renders it unsuitable for medical applications. RSC Adv 2022; 12:5772-5781. [PMID: 35424558 PMCID: PMC8981601 DOI: 10.1039/d2ra00642a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Accepted: 02/04/2022] [Indexed: 12/03/2022] Open
Abstract
The antimony(iii) complex of 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetate (DOTA) has been prepared and its exceptionally low stability observed. The Sb(iii) ion in Na[Sb(DOTA)]·4H2O shows an approximately square antiprismatic coordination geometry that is close to superimposable to the Bi(iii) geometry in [Bi(DOTA)]- in two phases containing this anion, Na[Bi(DOTA)]·4H2O, [H3O][Bi(DOTA)]·H2O for which structures are also described. Interestingly, DOTA itself in [(H6DOTA)]Cl2·4H2O·DMSO shows the same orientation of the N4O4 metal binding cavity reflecting the limited flexibility of DOTA in an octadentate coordination mode. In 8-coordinate complexes it can however accommodate M(iii) ions with r ion spanning a relatively wide range from 87 pm (Sc(iii)) to 117 pm (Bi(iii)). The larger Bi3+ ion appears to be the best metal-ligand size match since [Bi(DOTA)]- is associated with greater complex stability. In the solution state, [Sb(DOTA)]- is extremely susceptible to transmetallation by trivalent ions (Sc(iii), Y(iii), Bi(iii)) and, significantly, even by biologically important divalent metal ions (Mg(ii), Ca(ii), Zn(ii)). In all cases just one equivalent is enough to displace most of the Sb(iii). [Sb(DOTA)]- is resistant to hydrolysis; however, since biologically more abundant metal ions easily substitute the antimony, DOTA complexes will not be suitable for deployment for the delivery of the, so far unexploited, theranostic isotope pair 119Sb and 117Sb.
Collapse
Affiliation(s)
- Catherine Chen
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark Campusvej 55 5230 Odense M Denmark +45 6615 8760 +45 6550 2518
| | - Charlotte Sommer
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark Campusvej 55 5230 Odense M Denmark +45 6615 8760 +45 6550 2518
| | - Helge Thisgaard
- Department of Nuclear Medicine, Odense University Hospital Odense Denmark
- Department of Clinical Research, University of Southern Denmark Odense Denmark
| | - Vickie McKee
- School of Chemical Sciences, Dublin City University Glasnevin Dublin 9 Ireland
| | - Christine J McKenzie
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark Campusvej 55 5230 Odense M Denmark +45 6615 8760 +45 6550 2518
| |
Collapse
|
7
|
Borah A, Murugavel R. Magnetic relaxation in single-ion magnets formed by less-studied lanthanide ions Ce(III), Nd(III), Gd(III), Ho(III), Tm(II/III) and Yb(III). Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2021.214288] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
8
|
Kumar P, Flores Gonzalez J, Sahu PP, Ahmed N, Acharya J, Kumar V, Cador O, Pointillart F, Singh SK, Chandrasekhar V. Magnetocaloric effect and slow magnetic relaxation in peroxide-assisted tetranuclear lanthanide assemblies. Inorg Chem Front 2022. [DOI: 10.1039/d2qi01260j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Investigation of a series of rare peroxide-assisted tetranuclear lanthanide assemblies revealed both significant magnetocaloric effect and slow magnetic relaxation.
Collapse
Affiliation(s)
- Pawan Kumar
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur-208016, India
| | - Jessica Flores Gonzalez
- Univ Rennes, CNRS, ISCR (Institut des Sciences Chimiques de Rennes) – UMR 6226, 35000 Rennes, France
| | - Prem Prakash Sahu
- Department of Chemistry, Indian Institute of Technology Hyderabad, Kandi, Sangareddy, Telangana 502285, India
| | - Naushad Ahmed
- Tata Institute of Fundamental Research Hyderabad, Gopanpally, Hyderabad 500046, Telangana, India
| | - Joydev Acharya
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur-208016, India
| | - Vierandra Kumar
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur-208016, India
| | - Olivier Cador
- Univ Rennes, CNRS, ISCR (Institut des Sciences Chimiques de Rennes) – UMR 6226, 35000 Rennes, France
| | - Fabrice Pointillart
- Univ Rennes, CNRS, ISCR (Institut des Sciences Chimiques de Rennes) – UMR 6226, 35000 Rennes, France
| | - Saurabh Kumar Singh
- Department of Chemistry, Indian Institute of Technology Hyderabad, Kandi, Sangareddy, Telangana 502285, India
| | - Vadapalli Chandrasekhar
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur-208016, India
- Tata Institute of Fundamental Research Hyderabad, Gopanpally, Hyderabad 500046, Telangana, India
| |
Collapse
|
9
|
Kumar A, Geng H, Schelter EJ. Harnessing magnetic fields for rare-earth complex crystallization–separations in aqueous solutions. RSC Adv 2022; 12:27895-27898. [PMID: 36320235 PMCID: PMC9521326 DOI: 10.1039/d2ra04729b] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 09/19/2022] [Indexed: 12/02/2022] Open
Abstract
Magnetic field-directed crystallization separation of rare-earth (RE) metals is emerging as a new direction in the field of separation science, due to its simplicity, low energy input, and low cost of operation, as compared to traditional separation methods such as solvent extraction. Here, we report the use of Fe14Nd2B magnets for selective crystallization of paramagnetic Nd, Dy, Er, and Tm rare earth compounds from a mixture with diamagnetic La ones using the RE–DOTA complex system. All the separations were performed at milder temperatures of 3 °C to provide a thermal gradient, and the crystallizations were set up in aqueous solutions using the benign solvents water and acetone. A four-fold increase in the separation factor (41.4 ± 0.6) was observed for the Dy/La pair in the presence of a magnetic field as compared to the separation factor (10.5 ± 0.9) obtained without the application of the field. These results indicate that the use of the magnetic crystallization method for RE separations is effective in aqueous systems and can be a useful strategy for energy-efficient molecular separations of RE metals. Magnetic crystallization was used as an energy-efficient technique for selective separation of paramagnetic rare-earth ions from lanthanum ions. An air-stable and simple RE-DOTA complex system was used to achieve separation in aqueous conditions.![]()
Collapse
Affiliation(s)
- Amit Kumar
- P. Roy and Diana T. Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, 231 S. 34th St., Philadelphia, PA, 19104, USA
| | - Han Geng
- P. Roy and Diana T. Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, 231 S. 34th St., Philadelphia, PA, 19104, USA
| | - Eric J. Schelter
- P. Roy and Diana T. Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, 231 S. 34th St., Philadelphia, PA, 19104, USA
| |
Collapse
|
10
|
Counterintuitive Single-Molecule Magnet Behaviour in Two Polymorphs of One-Dimensional Compounds Involving Chiral BINOL-Derived Bisphosphate Ligands. MAGNETOCHEMISTRY 2021. [DOI: 10.3390/magnetochemistry7110150] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The coordination reaction of the [Dy(hfac)3(H2O)2] units (hfac− = 1,1,1,5,5,5-hexafluoroacetylacetonate) with the [8′-(Diphenoxylphosphinyl)[1,1′-binaphthalen]-8-yl]diphenoxylphosphine oxide ligand (L) followed by a crystallisation in a 1:3 CH2Cl2:n-hexane solvent mixture led to the isolation of a new polymorph of formula [(Dy(hfac)3((S)-L))3]n (1). The X-ray structure on single crystal of 1 revealed the formation of a mono-dimensional coordination polymer with three crystallographically independent DyIII centres, which crystallised in the polar chiral P21 space group. Ac magnetic measurements highlighted single-molecule magnet behaviour under both zero and 1000 Oe applied magnetic field with magnetic relaxation through quantum tunneling of the magnetisation (QTM, zero field only) and Raman processes. Despite the three crystallographically independent DyIII centres adopting a distorted D4d coordination environment, a single slow magnetic relaxation contribution was observed at a slower rate than its previously studied [(Dy(hfac)3((S)-L))]n (2) polymorph.
Collapse
|
11
|
Hu JJ, Peng Y, Liu SJ, Wen HR. Recent advances in lanthanide coordination polymers and clusters with magnetocaloric effect or single-molecule magnet behavior. Dalton Trans 2021; 50:15473-15487. [PMID: 34668916 DOI: 10.1039/d1dt02797b] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Molecular magnetorefrigerant materials for low-temperature magnetic refrigeration and single-molecule magnets for high-density information storage and quantum computing have received extensive attention from chemists and magnetic experts. Lanthanide ions with unique magnetic properties have always been considered as ideal candidates for the construction of such materials. This frontier article focuses on GdIII-based molecular magnetorefrigerants and lanthanide-based single-molecule magnets and highlights the most significant advances.
Collapse
Affiliation(s)
- Jun-Jie Hu
- School of Chemistry and Chemical Engineering, Jiangxi University of Science and Technology, Ganzhou 341000, Jiangxi Province, P.R. China.
| | - Yan Peng
- School of Chemistry and Chemical Engineering, Jiangxi University of Science and Technology, Ganzhou 341000, Jiangxi Province, P.R. China.
| | - Sui-Jun Liu
- School of Chemistry and Chemical Engineering, Jiangxi University of Science and Technology, Ganzhou 341000, Jiangxi Province, P.R. China.
| | - He-Rui Wen
- School of Chemistry and Chemical Engineering, Jiangxi University of Science and Technology, Ganzhou 341000, Jiangxi Province, P.R. China.
| |
Collapse
|
12
|
Novikov VV, Nelyubina YV. Modern physical methods for the molecular design of single-molecule magnets. RUSSIAN CHEMICAL REVIEWS 2021. [DOI: 10.1070/rcr5002] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Abstract
Many paramagnetic metal complexes have emerged as unique magnetic materials (single-molecule magnets), which behave as conventional magnets at the single-molecule level, thereby making it possible to use them in modern devices for data storage and processing. The rational design of these complexes, however, requires a deep understanding of the physical laws behind a single-molecule magnet behaviour, the mechanisms of magnetic relaxation that determines the magnetic properties and the relationship of these properties with the structure of single-molecule magnets. This review focuses on the physical methods providing such understanding, including different versions and various combinations of magnetometry, electron paramagnetic and nuclear magnetic resonance spectroscopy, optical spectroscopy and X-ray diffraction. Many of these methods are traditionally used to determine the composition and structure of new chemical compounds. However, they are rarely applied to study molecular magnetism.
The bibliography includes 224 references.
Collapse
|
13
|
Rodríguez-Barea B, Mayans J, Rabelo R, Sanchis-Perucho A, Moliner N, Martínez-Lillo J, Julve M, Lloret F, Ruiz-García R, Cano J. Holmium(III) Single-Ion Magnet for Cryomagnetic Refrigeration Based on an MRI Contrast Agent Derivative. Inorg Chem 2021; 60:12719-12723. [PMID: 34424680 PMCID: PMC8424628 DOI: 10.1021/acs.inorgchem.1c01905] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The coexistence of field-induced blockage of the magnetization and significant magnetocaloric effects in the low-temperature region occurs in a mononuclear holmium(III) diethylenetriamine-N,N,N',N″,N″-pentaacetate complex, whose gadolinium(III) analogue is a commercial MRI contrast agent. Both properties make it a suitable candidate for cryogenic magnetic refrigeration, thus enlarging the variety of applications of this simple class of multifunctional molecular nanomagnets.
Collapse
Affiliation(s)
- Borja Rodríguez-Barea
- Instituto de Ciencia Molecular/Departament de Química Inorgànica, Facultat de Química, Universitat de València, Paterna, València 46980, Spain
| | - Júlia Mayans
- Instituto de Ciencia Molecular/Departament de Química Inorgànica, Facultat de Química, Universitat de València, Paterna, València 46980, Spain
| | - Renato Rabelo
- Instituto de Ciencia Molecular/Departament de Química Inorgànica, Facultat de Química, Universitat de València, Paterna, València 46980, Spain
| | - Adrián Sanchis-Perucho
- Instituto de Ciencia Molecular/Departament de Química Inorgànica, Facultat de Química, Universitat de València, Paterna, València 46980, Spain
| | - Nicolás Moliner
- Instituto de Ciencia Molecular/Departament de Química Inorgànica, Facultat de Química, Universitat de València, Paterna, València 46980, Spain
| | - José Martínez-Lillo
- Instituto de Ciencia Molecular/Departament de Química Inorgànica, Facultat de Química, Universitat de València, Paterna, València 46980, Spain
| | - Miguel Julve
- Instituto de Ciencia Molecular/Departament de Química Inorgànica, Facultat de Química, Universitat de València, Paterna, València 46980, Spain
| | - Francesc Lloret
- Instituto de Ciencia Molecular/Departament de Química Inorgànica, Facultat de Química, Universitat de València, Paterna, València 46980, Spain
| | - Rafael Ruiz-García
- Instituto de Ciencia Molecular/Departament de Química Inorgànica, Facultat de Química, Universitat de València, Paterna, València 46980, Spain
| | - Joan Cano
- Instituto de Ciencia Molecular/Departament de Química Inorgànica, Facultat de Química, Universitat de València, Paterna, València 46980, Spain
| |
Collapse
|
14
|
Abstract
Nuclear Magnetic Resonance is particularly sensitive to the electronic structure of matter and is thus a powerful tool to characterize in-depth the magnetic properties of a system. NMR is indeed increasingly recognized as an ideal tool to add precious structural information for the development of Single Ion Magnets, small complexes that are recently gaining much popularity due to their quantum computing and spintronics applications. In this review, we recall the theoretical principles of paramagnetic NMR, with particular attention to lanthanoids, and we give an overview of the recent advances in this field.
Collapse
|
15
|
Chiral or Luminescent Lanthanide Single-Molecule Magnets Involving Bridging Redox Active Triad Ligand. INORGANICS 2021. [DOI: 10.3390/inorganics9070050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The reactions between the bis(1,10-phenantro[5,6-b])tetrathiafulvalene triad (L) and the metallo-precursors Yb(hfac)3(H2O)2 (hfac− = 1,1,1,5,5,5-hexafluoroacetylacetonato anion) and Dy(facam)3 (facam− = 3-trifluoro-acetyl-(+)-camphorato anion) lead to the formation of two dinuclear complexes of formula [Yb2(hfac)6(L)]·2(C7H16) ((1)·2(C7H16)) and [Dy2((+)facam)6(L)]·2(C6H14) ((2)·2(C6H14)). The X-ray structures reveal that the L triad bridges two terminal Yb(hfac)3 or Dy(facam)3 units. (1)·2(C7H16) behaved as a near infrared YbIII centered emitter and a field-induced Single-Molecule Magnet (SMM) while (2)·2(C6H14) displayed SMM behavior in both zero- and in-dc field. The magnetization mainly relaxes through a Raman process for both complexes under an optimal applied magnetic field.
Collapse
|
16
|
Kumar P, Biswas S, Swain A, Acharya J, Kumar V, Kalita P, Gonzalez JF, Cador O, Pointillart F, Rajaraman G, Chandrasekhar V. Azide-Coordination in Homometallic Dinuclear Lanthanide(III) Complexes Containing Nonequivalent Lanthanide Metal Ions: Zero-Field SMM Behavior in the Dysprosium Analogue. Inorg Chem 2021; 60:8530-8545. [PMID: 34085810 DOI: 10.1021/acs.inorgchem.1c00249] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A series of homometallic dinuclear lanthanide complexes containing nonequivalent lanthanide metal centers [Ln2(LH2)(LH)(CH3OH)(N3)]·xMeOH·yH2O [1, Ln = DyIII, x = 0, y = 2; 2, Ln = TbIII, x = 1, y = 1] have been synthesized [LH4 = 6-((bis(2-hydroxyethyl)amino)-N'-(2-hydroxybenzylidene)picolinohydrazide] and characterized. The dinuclear assembly contains two different types of nine-coordinated lanthanide centers, because the nonequivalent binding of the azide co-ligand as well as the varying coordination of the deprotonated Schiff base ligand. Detailed magnetic studies have been performed on the complexes 1 and 2. Complex 1 and its diluted analogue (15%) are zero-field SMMs with effective energy barriers (Ueff) of magnetization reversal equal to 59(3) K and 66(3) K and relaxation times of τ0 = 10(4) × 10-6 s and 10(4) × 10-8 s, respectively. On the other hand, complex 2 shows a field-induced SMM behavior. Combined ab initio and density functional theory calculations were performed to explain the experimental findings and to unravel the nature of the magnetic anisotropy, exchange-coupled spectra, and magnetic exchange interactions between the two lanthanide centers.
Collapse
Affiliation(s)
- Pawan Kumar
- Department of Chemistry, Indian Institute of Technology-Kanpur, Kanpur-208016, India
| | - Sourav Biswas
- Department of Geo-Chemistry, Keshav Deva Malaviya Institute of Petroleum Exploration, Dehradun-248915, India
| | - Abinash Swain
- Department of Chemistry, Indian Institute of Technology-Bombay, Powai 400076, Mumbai
| | - Joydev Acharya
- Department of Chemistry, Indian Institute of Technology-Kanpur, Kanpur-208016, India
| | - Vierandra Kumar
- Department of Chemistry, Indian Institute of Technology-Kanpur, Kanpur-208016, India
| | - Pankaj Kalita
- Tata Institute of Fundamental Research, Gopanpally, Hyderabad-500107, India
| | - Jessica Flores Gonzalez
- Université de Rennes, CNRS, ISCR (Institut des Sciences Chimiques de Rennes)-UMR 6226, F-35000 Rennes, France
| | - Olivier Cador
- Université de Rennes, CNRS, ISCR (Institut des Sciences Chimiques de Rennes)-UMR 6226, F-35000 Rennes, France
| | - Fabrice Pointillart
- Université de Rennes, CNRS, ISCR (Institut des Sciences Chimiques de Rennes)-UMR 6226, F-35000 Rennes, France
| | - Gopalan Rajaraman
- Department of Chemistry, Indian Institute of Technology-Bombay, Powai 400076, Mumbai
| | - Vadapalli Chandrasekhar
- Department of Chemistry, Indian Institute of Technology-Kanpur, Kanpur-208016, India.,Tata Institute of Fundamental Research, Gopanpally, Hyderabad-500107, India
| |
Collapse
|
17
|
Briganti M, Lucaccini E, Chelazzi L, Ciattini S, Sorace L, Sessoli R, Totti F, Perfetti M. Magnetic Anisotropy Trends along a Full 4f-Series: The fn+7 Effect. J Am Chem Soc 2021; 143:8108-8115. [PMID: 34024105 PMCID: PMC8297734 DOI: 10.1021/jacs.1c02502] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Indexed: 12/12/2022]
Abstract
The combined experimental and computational study of the 13 magnetic complexes belonging to the Na[LnDOTA(H2O)] (H4DOTA = tetraazacyclododecane-N,N',N″,N‴-tetraacetic acid and Ln = Ce-Yb) family allowed us to identify a new trend: the orientation of the magnetic anisotropy tensors of derivatives differing by seven f electrons practically coincide. We name this trend the fn+7 effect. Experiments and theory fully agree on the match between the magnetic reference frames (e.g., the easy, intermediate, and hard direction). The shape of the magnetic anisotropy of some couples of ions differing by seven f electrons might seem instead different at first look, but our analysis explains a hidden similarity. We thus pave the way toward a reliable predictivity of the magnetic anisotropy of lanthanide complexes with a consequent reduced need of computational and synthetical efforts. We also offer a way to gain information on ions with a relatively small total angular momentum (i.e., Sm3+ and Eu3+) and on the radioactive Pm3+, which are difficult to investigate experimentally.
Collapse
Affiliation(s)
- Matteo Briganti
- Department
of Chemistry “U. Schiff”, University of Florence Via della Lastruccia 3-13, Sesto Fiorentino
(FI) 50019, Italy
| | - Eva Lucaccini
- Department
of Chemistry “U. Schiff”, University of Florence Via della Lastruccia 3-13, Sesto Fiorentino
(FI) 50019, Italy
| | - Laura Chelazzi
- Department
of Chemistry “U. Schiff”, University of Florence Via della Lastruccia 3-13, Sesto Fiorentino
(FI) 50019, Italy
- Center
of Crystallography, University of Florence, Via della Lastruccia 3, Sesto Fiorentino (FI) 50019, Italy
| | - Samuele Ciattini
- Department
of Chemistry “U. Schiff”, University of Florence Via della Lastruccia 3-13, Sesto Fiorentino
(FI) 50019, Italy
- Center
of Crystallography, University of Florence, Via della Lastruccia 3, Sesto Fiorentino (FI) 50019, Italy
| | - Lorenzo Sorace
- Department
of Chemistry “U. Schiff”, University of Florence Via della Lastruccia 3-13, Sesto Fiorentino
(FI) 50019, Italy
| | - Roberta Sessoli
- Department
of Chemistry “U. Schiff”, University of Florence Via della Lastruccia 3-13, Sesto Fiorentino
(FI) 50019, Italy
| | - Federico Totti
- Department
of Chemistry “U. Schiff”, University of Florence Via della Lastruccia 3-13, Sesto Fiorentino
(FI) 50019, Italy
| | - Mauro Perfetti
- Department
of Chemistry “U. Schiff”, University of Florence Via della Lastruccia 3-13, Sesto Fiorentino
(FI) 50019, Italy
| |
Collapse
|
18
|
Serrano G, Sorrentino AL, Poggini L, Cortigiani B, Goletti C, Sessoli R, Mannini M. Substrate mediated interaction of terbium(III) double-deckers with the TiO 2(110) surface. Phys Chem Chem Phys 2021; 23:12060-12067. [PMID: 34013308 DOI: 10.1039/d1cp00928a] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
A terbium(iii)-bis(phthalocyaninato) neutral complex was deposited on the rutile TiO2(110) surface, and their interaction was studied by Scanning Tunneling Microscopy (STM) and X-ray Photoelectron Spectroscopy (XPS). It was found that the TiO2 rutile surface favours the adsorption of isolated molecules adopting a lying down configuration with the phthalocyanine planes tilted by about 30° when they lie in the first layer. The electronic and chemical properties of the molecules on the surface were studied by XPS as a function of the TiO2(110) substrate preparation. This study evidences that strong molecule-substrate interactions are present and a charge transfer process occurs from the molecule to the surface.
Collapse
Affiliation(s)
- Giulia Serrano
- Department of Chemistry "U. Schiff" and INSTM Research Unit, University of Florence, Via della Lastruccia 3-13, 50019 Sesto Fiorentino (FI), Italy and Department of Industrial Engineering and INSTM Research Unit, University of Florence, Via Santa Marta 3, 50139 Florence (FI), Italy.
| | - Andrea Luigi Sorrentino
- Department of Chemistry "U. Schiff" and INSTM Research Unit, University of Florence, Via della Lastruccia 3-13, 50019 Sesto Fiorentino (FI), Italy and Department of Industrial Engineering and INSTM Research Unit, University of Florence, Via Santa Marta 3, 50139 Florence (FI), Italy.
| | - Lorenzo Poggini
- Department of Chemistry "U. Schiff" and INSTM Research Unit, University of Florence, Via della Lastruccia 3-13, 50019 Sesto Fiorentino (FI), Italy and Institute for Chemistry of OrganoMetallic Compounds (ICCOM-CNR), Via Madonna del Piano, 50019 Sesto Fiorentino (FI), Italy.
| | - Brunetto Cortigiani
- Department of Chemistry "U. Schiff" and INSTM Research Unit, University of Florence, Via della Lastruccia 3-13, 50019 Sesto Fiorentino (FI), Italy
| | - Claudio Goletti
- Dipartimento di Fisica, Università degli Studi di Roma "Tor Vergata", Via della Ricerca Scientifica 1, 00133, Rome, Italy
| | - Roberta Sessoli
- Department of Chemistry "U. Schiff" and INSTM Research Unit, University of Florence, Via della Lastruccia 3-13, 50019 Sesto Fiorentino (FI), Italy
| | - Matteo Mannini
- Department of Chemistry "U. Schiff" and INSTM Research Unit, University of Florence, Via della Lastruccia 3-13, 50019 Sesto Fiorentino (FI), Italy
| |
Collapse
|
19
|
Modak R, Sikdar Y, Gómez-García CJ, Benmansour S, Chatterjee S, Goswami S. Slow Magnetic Relaxation in a Co 2 Dy Trimer and a Co 2 Dy 2 Tetramer. Chem Asian J 2021; 16:666-677. [PMID: 33452757 DOI: 10.1002/asia.202001468] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 01/13/2021] [Indexed: 11/09/2022]
Abstract
The combination of Co(III) and Dy(III) with a compartmental Schiff base ligand (H3 L=3-[(2-Hydroxy-3-methoxy-benzylidene)-amino]-propane-1,2-diol), presenting three different coordinating pockets, has allowed the synthesis of two novel Co(III)-Dy(III) complexes: [Co2 Dy(HL)4 ]NO3 ⋅ 2CH3 CN (1), a rare example of trinuclear linear CoIII 2 DyIII complex (and the first with slow relaxation of magnetization in absence of a DC field) and [Co2 Dy2 (μ3 -OH)2 (HL)2 (OAc)6 ] ⋅ 4.6H2 O (2), the first tetranuclear CoIII 2 DyIII 2 cluster with a rhomb-like structure where the Co(III) ions are connected along the short diagonal of the rhomb. 1 presents two different relaxation processes: a fast relaxation dominated by Quantum tunnelling (QT) and a slow relaxation with an energy barrier of 40 K. 2 shows two close relaxation processes without applied DC fields that follow QT and Orbach mechanisms whereas for HDC =500 Oe, the QT is cancelled and a direct term appears. Here we present the synthesis, X-ray structure and magnetic characterization of these two Co(III)-Dy(III) single-ion/molecule magnets.
Collapse
Affiliation(s)
- Ritwik Modak
- Department of Chemistry, University of Calcutta, 92, A. P. C. Road, Kolkata, 700009, India
| | - Yeasin Sikdar
- Department of Chemistry, University of Calcutta, 92, A. P. C. Road, Kolkata, 700009, India
| | - Carlos J Gómez-García
- Instituto de Ciencia Molecular (ICMol), Dpt. Química Inorgánica, Universidad de Valencia, C/Catedrático José Beltrán 2, 46980, Paterna, Spain
| | - Samia Benmansour
- Instituto de Ciencia Molecular (ICMol), Dpt. Química Inorgánica, Universidad de Valencia, C/Catedrático José Beltrán 2, 46980, Paterna, Spain
| | - Sudipta Chatterjee
- Department of Chemistry, Serampore College, Hoogly, Serampore, Pin 712 201, India
| | - Sanchita Goswami
- Department of Chemistry, University of Calcutta, 92, A. P. C. Road, Kolkata, 700009, India
| |
Collapse
|
20
|
Tm-DOTA as responsive relaxation and shift probe for NMR local temperature monitoring at high magnetic fields. Inorganica Chim Acta 2021. [DOI: 10.1016/j.ica.2020.120153] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
21
|
Zhang C, Cheng Z, Tan P, Lv W, Cui H, Chen L, Cai X, Zhao Y, Yuan A. Tuning the ligand field in seven-coordinate Dy( iii) complexes to perturb single-ion magnet behavior. NEW J CHEM 2021. [DOI: 10.1039/d1nj00734c] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Two mononuclear seven-coordinate Dy(iii) complexes with different strengths of ligand fields exhibit different slow magnetic relaxations.
Collapse
Affiliation(s)
- Chunyang Zhang
- School of Environmental and Chemical Engineering
- Jiangsu University of Science and Technology
- Zhenjiang 212003
- P. R. China
| | - Zhijie Cheng
- School of Environmental and Chemical Engineering
- Jiangsu University of Science and Technology
- Zhenjiang 212003
- P. R. China
| | - Pengfei Tan
- School of Environmental and Chemical Engineering
- Jiangsu University of Science and Technology
- Zhenjiang 212003
- P. R. China
| | - Wei Lv
- State Key Laboratory of Coordination Chemistry
- School of Chemistry and Chemical Engineering
- Nanjing University
- Nanjing 210093
- P. R. China
| | - Huihui Cui
- School of Chemistry and Chemical Engineering
- Nantong University
- Nantong 226019
- P. R. China
| | - Lei Chen
- School of Environmental and Chemical Engineering
- Jiangsu University of Science and Technology
- Zhenjiang 212003
- P. R. China
| | - Xingwei Cai
- School of Environmental and Chemical Engineering
- Jiangsu University of Science and Technology
- Zhenjiang 212003
- P. R. China
| | - Yuyuan Zhao
- School of Medical Technology
- Zhenjiang College
- Zhenjiang 212003
- P. R. China
| | - Aihua Yuan
- School of Environmental and Chemical Engineering
- Jiangsu University of Science and Technology
- Zhenjiang 212003
- P. R. China
| |
Collapse
|
22
|
Chen P, Sun X, Guo X, Liu D, Liu HT, Lu J, Tian H. A quasilinear hydrazone-based mononuclear dysprosium compound with C4v symmetry exhibiting field-induced complex magnetic relaxation. NEW J CHEM 2021. [DOI: 10.1039/d1nj04620a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A C4v symmetrical mononuclear dysprosium(iii) compound has been successfully isolated using a new quasilinear single pyrazinyl hydrazone ligand. Single-ion behavior and the short-range intermolecular magnetic dipolar interaction are essential to the complex magnetic relaxation.
Collapse
Affiliation(s)
- Peiqiong Chen
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252059, P. R. China
| | - Xiao Sun
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252059, P. R. China
| | - Xuefeng Guo
- Institute of Flexible Electronics, Northwestern Polytechnical University, 127 West Youyi Road, Xi’an, Shaanxi 710072, China
| | - Dan Liu
- Institute of Flexible Electronics, Northwestern Polytechnical University, 127 West Youyi Road, Xi’an, Shaanxi 710072, China
| | - Hou-Ting Liu
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252059, P. R. China
| | - Jing Lu
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252059, P. R. China
| | - Haiquan Tian
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252059, P. R. China
| |
Collapse
|
23
|
Su SD, Li JX, Xu F, Wang CX, Wang K, Li Y, Zhang SH, Zhang XQ, Zhang YQ, Liang FP. Dy III single-molecule magnets from ligands incorporating both amine and acylhydrazine Schiff base groups: the centrosymmetric {Dy 2} displaying dual magnetic relaxation behaviors. Dalton Trans 2020; 49:15739-15749. [PMID: 33146181 DOI: 10.1039/c9dt04434e] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The novel multidentate chelating ligands N'-(2-pyridylmethylidene)-2-(2-pyridylmethylideneamino)benzohydrazide (Hpphz) and N'-(2-salicylmethylidene)-2-(2-salicylmethylideneamino)benzohydrazide (H3sshz), which incorporate both amine and acylhydrazine Schiff base groups, were synthesized and investigated in DyIII coordination chemistry. The reactions of Hpphz and Dy(OAc)3·4H2O have yielded two {Dy2} featuring double OAc- bridges: [Dy2(H2aphz)2(OAc)4(ROH)2] [R = Me (1) and Et (2)], where the Hpphz ligands were in situ hydrolyzed into 2-amino-(2-pyridylmethylideneamino)benzohydrazide ions (H2aphz-). Besides, the reaction between H3sshz and Dy(NO)3·6H2O afforded a [Dy6(sshz)4(μ3-OH)4(μ4-O)(MeOH)4]2·17.5MeOH·2H2O cluster (3). This cluster contained two discrete {Dy6} cores, each of which consisted of a pair of {Dy3} triangular units. All the complexes displayed a single relaxation process of single-molecule magnet (SMM) behaviors under a zero dc field. Both 1 and 2 showed field-induced dual magnetic-relaxation behaviors. However, their diluted samples (1@Y and 2@Y) only showed one-step relaxation behaviors whether under a zero or applied dc field, indicating that the dual magnetic-relaxation behaviors of 1 and 2 were absent after the dilution. Combined with ab initio calculations, it could be infered that the dual magnetic-relaxation behaviors of 1 and 2 might be ascribled to the joint contributions of the single ion anisotropy and magnetic interactions. Examples of this type are rather rare in previous studies. Ab initio calculations also suggested that the discrepancy between the relaxation processes of 1 and 2 may be caused by the small difference between their magnetic interactions.
Collapse
Affiliation(s)
- Sen-Da Su
- Guangxi Key Laboratory of Electrochemical and Magnetochemical Functional Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin, 541004, China.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Goodwin CAP. Blocking like it's hot: a synthetic chemists' path to high-temperature lanthanide single molecule magnets. Dalton Trans 2020; 49:14320-14337. [PMID: 33030172 DOI: 10.1039/d0dt01904f] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Progress in the synthesis, design, and characterisation of single-molecule magnets (SMMs) has expanded dramatically from curiosity driven beginnings to molecules that retain magnetization above the boiling point of liquid nitrogen. This is in no small part due to the increasingly collaborative nature of this research where synthetic targets are guided by theoretical design criteria. This article aims to summarize these efforts and progress from the perspective of a synthetic chemist with a focus on how chemistry can modulate physical properties. A simple overview is presented of lanthanide electronic structure in order to contextualize the synthetic advances that have led to drastic improvements in the performance of lanthanide-based SMMs from the early 2000s to the late 2010s.
Collapse
|
25
|
Acharya J, Ahmed N, Flores Gonzalez J, Kumar P, Cador O, Singh SK, Pointillart F, Chandrasekhar V. Slow magnetic relaxation in a homo dinuclear Dy(iii) complex in a pentagonal bipyramidal geometry. Dalton Trans 2020; 49:13110-13122. [PMID: 32930277 DOI: 10.1039/d0dt02881a] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
We hereby report a dinuclear Dy(iii) complex, [Dy(LH3)Cl2]2·2Et2O (1) (LH4 = 2,3-dihydroxybenzylidene)-2-(hydroxyimino)propanehydrazide where both the metal centres are in a pentagonal bipyramidal (PBP) geometry with the axial positions being occupied by negatively charged Cl- ions. The complex as well as it's 10% diluted analogue (110) do not show zero-field SMM behaviour. However, in the presence of small optimum dc fields the slow relaxation of magnetization was displayed. The effective energy barrier for 110 at 800 Oe of applied field was extracted as 83(17) K with τ0 = 2(4) × 10-12 s. Through a combined experimental and ab initio electronic structure calculations studies we have thoroughly analysed the role of the ligand field around the Dy(iii), present in pentagonal bipyramidal geometry, in contributing to the slow relaxation of magnetization.
Collapse
Affiliation(s)
- Joydev Acharya
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur-208016, India.
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Pantelis KN, Perlepe PS, Grammatikopoulos S, Lampropoulos C, Tang J, Stamatatos TC. 4f-Metal Clusters Exhibiting Slow Relaxation of Magnetization: A {Dy 7} Complex with An Hourglass-like Metal Topology. Molecules 2020; 25:molecules25092191. [PMID: 32392886 PMCID: PMC7249001 DOI: 10.3390/molecules25092191] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 04/29/2020] [Accepted: 05/03/2020] [Indexed: 11/18/2022] Open
Abstract
The reaction between Dy(NO3)3∙6H2O and the bulky Schiff base ligand, N-naphthalidene-2-amino-5-chlorobenzoic acid (nacbH2), in the presence of the organic base NEt3 has led to crystallization and structural, spectroscopic and magnetic characterization of a new heptanuclear [Dy7(OH)6(OMe)2(NO3)1.5(nacb)2(nacbH)6(MeOH)(H2O)2](NO3)1.5 (1) compound in ~40% yield. Complex 1 has a unique hourglass-like metal topology, among all previously reported {Dy7} clusters, comprising two distorted {Dy4(μ3-OH)3(μ3-OMe)}8+ cubanes that share a common metal vertex (Dy2). Peripheral ligation about the metal core is provided by the carboxylate groups of four η1:η1:η1:μ single-deprotonated nacbH− and two η1:η1:η2:η1:μ3 fully-deprotonated nacb2− ligands. Complex 1 is the first structurally characterized 4f-metal complex bearing the chelating/bridging ligand nacbH2 at any protonation level. Magnetic susceptibility studies revealed that 1 exhibits slow relaxation of magnetization at a zero external dc field, albeit with a small energy barrier of ~5 K for the magnetization reversal, most likely due to the very fast quantum-tunneling process. The combined results are a promising start to further explore the reactivity of nacbH2 upon all lanthanide ions and the systematic use of this chelate ligand as a route to new 4f-metal cluster compounds with beautiful structures and interesting magnetic dynamics.
Collapse
Affiliation(s)
| | - Panagiota S. Perlepe
- Chemistry Department, University of Patras, 265 04 Patras, Greece; (K.N.P.); (P.S.P.); (S.G.)
| | | | - Christos Lampropoulos
- Department of Chemistry, University of North Florida, 1 UNF Dr., Jacksonville, FL 32224, USA;
| | - Jinkui Tang
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China;
| | - Theocharis C. Stamatatos
- Chemistry Department, University of Patras, 265 04 Patras, Greece; (K.N.P.); (P.S.P.); (S.G.)
- Correspondence: ; Tel.: +30-2610-996008
| |
Collapse
|
27
|
Serrano G, Poggini L, Briganti M, Sorrentino AL, Cucinotta G, Malavolti L, Cortigiani B, Otero E, Sainctavit P, Loth S, Parenti F, Barra AL, Vindigni A, Cornia A, Totti F, Mannini M, Sessoli R. Quantum dynamics of a single molecule magnet on superconducting Pb(111). NATURE MATERIALS 2020; 19:546-551. [PMID: 32066930 DOI: 10.1038/s41563-020-0608-9] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2019] [Accepted: 01/07/2020] [Indexed: 06/10/2023]
Abstract
Magnetic materials interfaced with superconductors may reveal new physical phenomena with potential for quantum technologies. The use of molecules as magnetic components has already shown great promise, but the diversity of properties offered by the molecular realm remains largely unexplored. Here we investigate a submonolayer of tetrairon(III) propeller-shaped single molecule magnets deposited on a superconducting lead surface. This material combination reveals a strong influence of the superconductor on the spin dynamics of the single molecule magnet. It is shown that the superconducting transition to the condensate state switches the single molecule magnet from a blocked magnetization state to a resonant quantum tunnelling regime. Our results open perspectives to control single molecule magnetism via superconductors and to use single molecule magnets as local probes of the superconducting state.
Collapse
Affiliation(s)
- Giulia Serrano
- Department of Chemistry 'Ugo Schiff' and INSTM Research Unit, University of Florence, Sesto Fiorentino, Italy.
- Department of Industrial Engineering and INSTM Research Unit, University of Florence, Florence, Italy.
| | - Lorenzo Poggini
- Department of Chemistry 'Ugo Schiff' and INSTM Research Unit, University of Florence, Sesto Fiorentino, Italy
| | - Matteo Briganti
- Department of Chemistry 'Ugo Schiff' and INSTM Research Unit, University of Florence, Sesto Fiorentino, Italy
- Departamento de Química, Universidade Federal do Paraná, Curitiba, Brazil
| | - Andrea Luigi Sorrentino
- Department of Chemistry 'Ugo Schiff' and INSTM Research Unit, University of Florence, Sesto Fiorentino, Italy
- Department of Industrial Engineering and INSTM Research Unit, University of Florence, Florence, Italy
| | - Giuseppe Cucinotta
- Department of Chemistry 'Ugo Schiff' and INSTM Research Unit, University of Florence, Sesto Fiorentino, Italy
| | - Luigi Malavolti
- Institute FMQ, University of Stuttgart & Max Planck Institute for Solid State Research, Stuttgart, Germany
| | - Brunetto Cortigiani
- Department of Chemistry 'Ugo Schiff' and INSTM Research Unit, University of Florence, Sesto Fiorentino, Italy
| | - Edwige Otero
- Synchrotron SOLEIL, L'Orme des Merisiers, Saint Aubin, France
| | - Philippe Sainctavit
- Synchrotron SOLEIL, L'Orme des Merisiers, Saint Aubin, France
- IMPMC, UMR7590 CNRS, Sorbonne Université, MNHN, Paris, France
| | - Sebastian Loth
- Institute FMQ, University of Stuttgart & Max Planck Institute for Solid State Research, Stuttgart, Germany
| | - Francesca Parenti
- Department of Chemical and Geological Sciences and INSTM Research Unit, University of Modena and Reggio Emilia, Modena, Italy
| | | | | | - Andrea Cornia
- Department of Chemical and Geological Sciences and INSTM Research Unit, University of Modena and Reggio Emilia, Modena, Italy
| | - Federico Totti
- Department of Chemistry 'Ugo Schiff' and INSTM Research Unit, University of Florence, Sesto Fiorentino, Italy
| | - Matteo Mannini
- Department of Chemistry 'Ugo Schiff' and INSTM Research Unit, University of Florence, Sesto Fiorentino, Italy
| | - Roberta Sessoli
- Department of Chemistry 'Ugo Schiff' and INSTM Research Unit, University of Florence, Sesto Fiorentino, Italy.
| |
Collapse
|
28
|
Kazin PE, Zykin MA, Trusov LA, Vasiliev AV, Kremer RK, Dinnebier RE, Jansen M. Multiple slow relaxation of magnetization in Dy 3+ confined in the crystal matrix of rare-earth-calcium silicates with the apatite structure. Dalton Trans 2020; 49:2014-2023. [PMID: 31989121 DOI: 10.1039/c9dt04248b] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Apatite-type silicates Y7.75Dy0.25Ca2(SiO4)6O2 and Dy8Ca2(SiO4)6O2 were prepared by high-temperature solid state synthesis. In the crystal lattice, Dy3+ partially substitutes Ca2+, preferably at the 6h Ca2-site, and forms a short bond of 2.2 Å with the intra-channel O2-. The imposed strong ligand field anisotropy provides large magnetic anisotropy, which manifests itself as slow relaxation of magnetization at low temperatures. The magnetic dynamics is characterized by three or two characteristic values of relaxation time, respectively, which may be attributed to a single Dy3+ center. A phenomenological model is proposed which explains this response in terms of single paramagnetic center multiple relaxation.
Collapse
Affiliation(s)
- Pavel E Kazin
- Department of Chemistry, Lomonosov Moscow State University, 119991 Moscow, Russia.
| | | | | | | | | | | | | |
Collapse
|
29
|
Bonde NA, Petersen JB, Sørensen MA, Nielsen UG, Fåk B, Rols S, Ollivier J, Weihe H, Bendix J, Perfetti M. Importance of Axial Symmetry in Elucidating Lanthanide-Transition Metal Interactions. Inorg Chem 2020; 59:235-243. [PMID: 31825607 DOI: 10.1021/acs.inorgchem.9b02064] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
In this paper, we experimentally study and model the electron donating character of an axial diamagnetic Pd2+ ion in four metalloligated lanthanide complexes of formula [PPh4][Ln{Pd(SAc)4}2] (SAc- = thioacetate, Ln = Tb, Dy, Ho, and Er). A global model encompassing inelastic neutron scattering, torque magnetometry, and dc magnetometry allows to precisely determine the energy level structure of the complexes. Solid state nuclear magnetic resonance reveals a less donating character of Pd2+ compared to the previously reported isostructural Pt2+-based complexes. Consequently, all complexes invariably show a lower crystal field strength compared to their Pt2+-analogues. The dynamic properties show an enhanced single molecule magnet behavior due to the suppression of quantum tunneling, in agreement with our model.
Collapse
Affiliation(s)
- Niels A Bonde
- Department of Chemistry , University of Copenhagen , Universitetsparken 5 , DK-2100 Copenhagen , Denmark.,Institut Laue-Langevin , 71 avenue des Martyrs, CS 20156 , 38042 Grenoble Cedex 9 , France
| | - Jonatan B Petersen
- Department of Chemistry , University of Copenhagen , Universitetsparken 5 , DK-2100 Copenhagen , Denmark
| | - Mikkel A Sørensen
- Department of Chemistry , University of Copenhagen , Universitetsparken 5 , DK-2100 Copenhagen , Denmark
| | - Ulla G Nielsen
- Department of Physics, Chemistry and Pharmacy , University of Southern Denmark , Campusvej 55 , 5230 Odense M , Denmark
| | - Björn Fåk
- Institut Laue-Langevin , 71 avenue des Martyrs, CS 20156 , 38042 Grenoble Cedex 9 , France
| | - Stéphane Rols
- Institut Laue-Langevin , 71 avenue des Martyrs, CS 20156 , 38042 Grenoble Cedex 9 , France
| | - Jacques Ollivier
- Institut Laue-Langevin , 71 avenue des Martyrs, CS 20156 , 38042 Grenoble Cedex 9 , France
| | - Høgni Weihe
- Department of Chemistry , University of Copenhagen , Universitetsparken 5 , DK-2100 Copenhagen , Denmark
| | - Jesper Bendix
- Department of Chemistry , University of Copenhagen , Universitetsparken 5 , DK-2100 Copenhagen , Denmark
| | - Mauro Perfetti
- Department of Chemistry , University of Copenhagen , Universitetsparken 5 , DK-2100 Copenhagen , Denmark
| |
Collapse
|
30
|
Kobylarczyk J, Liberka M, Konieczny P, Baran S, Kubicki M, Korzeniak T, Podgajny R. Bulky ligands shape the separation between the large spin carriers to condition field-induced slow magnetic relaxation. Dalton Trans 2020; 49:300-311. [PMID: 31774091 DOI: 10.1039/c9dt03903a] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Crystal engineering of magnetic relaxation in supramolecular networks based on almost isotropic cyanido-bridged {Mn9[W(CN)8]6L8(solv)8} clusters decorated by bulky 4,4'-di-tert-butyl-2,2'-bipyridine (But2bpy) and 4,7-diphenyl-1,10-phenanthroline (Ph2phen) ligands is presented. The three new compounds {MnII9[WV(CN)8]6(But2bpy)8(MeOH)8}·Pri2O·13MeOH (1), {MnII9[WV(CN)8]6(But2bpy)8(MeOH)6(H2O)2}·4Pri2O·2H2O (1a), and {MnII9[WV(CN)8]6(Ph2phen)8(MeOH)8}·29MeOH·6H2O (2) were characterized structurally and magnetically. Compound 1 exhibits unequivocal domination of repulsive intercluster contacts operating between the side But groups leading to intercluster distances exceeding 10 Å in all three dimensions. Compound 1a reveals a 1-dimensional (1D) supramolecular chain structure with very close intercluster distances of 6.7 Å realized through the direct W-CNHO-Mn hydrogen bonds along the chain, further isolated by the above repulsive ButBut synthons. Compound 2 shows significant separation in all three directions with the intercluster distances close to 10, 12 and 13.5 Å. However, in contrast to 1, these separations are accompanied by indirect hydrogen bond arrays and local π-π interactions of potential to assist in the transfer of weak magnetic interactions. The dc magnetic data show the signature of S = 39/2 in the ground state, which is typical in this group of compounds. The high-spin clusters are accompanied by different intercluster interactions, illustrated by the effective zJ' values of +0.010 cm-1 (1), +0.008 cm-1 (1a) and +0.001 cm-1 (2). The low temperature ac susceptibility measurements revealed a temperature- and field-dependent magnetic relaxation time for all 1, 1a and 2 compounds (τ1, τ1a-fast, and τ2-fast in the range 10-3-10-4 s). In contrast and only in the case of 1a and 2, an additional temperature independent slow process was detected (τ1a-slow and τ2-slow located between 0.1 s and 1 s). The magnetic relaxations were correlated with the obtained supramolecular networks, indicating the significant role of dipolar fields, weak non-covalent interactions, hydrogen bonds and π-π interactions.
Collapse
Affiliation(s)
- Jedrzej Kobylarczyk
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Kraków, Poland.
| | | | | | | | | | | | | |
Collapse
|
31
|
Pointillart F, Flores Gonzalez J, Montigaud V, Tesi L, Cherkasov V, Le Guennic B, Cador O, Ouahab L, Sessoli R, Kuropatov V. Redox- and solvato-magnetic switching in a tetrathiafulvalene-based triad single-molecule magnet. Inorg Chem Front 2020. [DOI: 10.1039/d0qi00319k] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Simultaneous redox and solvato-magnetic switching was achieved for a dinuclear dysprosium single-molecule magnet involving an extended tetrathiafulvalene fused semiquinone based triad.
Collapse
Affiliation(s)
- Fabrice Pointillart
- Univ Rennes
- CNRS
- ISCR (Institut des Sciences Chimiques de Rennes) - UMR 6226
- F-35000 Rennes
- France
| | - Jessica Flores Gonzalez
- Univ Rennes
- CNRS
- ISCR (Institut des Sciences Chimiques de Rennes) - UMR 6226
- F-35000 Rennes
- France
| | - Vincent Montigaud
- Univ Rennes
- CNRS
- ISCR (Institut des Sciences Chimiques de Rennes) - UMR 6226
- F-35000 Rennes
- France
| | - Lorenzo Tesi
- Dipartimento di Chimica “Ugo Schiff” & INSTM RU
- Università degli Studi di Firenze
- I50019 Sesto Fiorentino (Firenze)
- Italy
- Institute of Physical Chemistry
| | - Vladimir Cherkasov
- G. A. Razuvaev Institute of Organometallic Chemistry of Russian Academy of Sciences
- Nizhny Novgorod
- Russia
| | - Boris Le Guennic
- Univ Rennes
- CNRS
- ISCR (Institut des Sciences Chimiques de Rennes) - UMR 6226
- F-35000 Rennes
- France
| | - Olivier Cador
- Univ Rennes
- CNRS
- ISCR (Institut des Sciences Chimiques de Rennes) - UMR 6226
- F-35000 Rennes
- France
| | - Lahcène Ouahab
- Univ Rennes
- CNRS
- ISCR (Institut des Sciences Chimiques de Rennes) - UMR 6226
- F-35000 Rennes
- France
| | - Roberta Sessoli
- Dipartimento di Chimica “Ugo Schiff” & INSTM RU
- Università degli Studi di Firenze
- I50019 Sesto Fiorentino (Firenze)
- Italy
| | - Viacheslav Kuropatov
- G. A. Razuvaev Institute of Organometallic Chemistry of Russian Academy of Sciences
- Nizhny Novgorod
- Russia
| |
Collapse
|
32
|
Díaz-Ortega IF, Herrera JM, Dey S, Nojiri H, Rajaraman G, Colacio E. The effect of the electronic structure and flexibility of the counteranions on magnetization relaxation in [Dy(L)2(H2O)5]3+ (L = phosphine oxide derivative) pentagonal bipyramidal SIMs. Inorg Chem Front 2020. [DOI: 10.1039/c9qi01412h] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The effects of the electronic structure and flexibility of triflate anions in a new high-Ueff TBPY-7 SMM, [Dy(OPCy3)2(H2O)5](CF3SO3)3·2OPCy3, have been analyzed.
Collapse
Affiliation(s)
- Ismael F. Díaz-Ortega
- Departamento de Química Inorgánica
- Facultad de Ciencias
- Universidad de Granada
- Granada
- Spain
| | - Juan Manuel Herrera
- Departamento de Química Inorgánica
- Facultad de Ciencias
- Universidad de Granada
- Granada
- Spain
| | - Sourav Dey
- Department of Chemistry
- Indian Institute of Technology Bombay
- Mumbai 400076
- India
| | - Hiroyuki Nojiri
- Institute for Materials Research
- Tohoku University
- Sendai
- Japan
| | - Gopalan Rajaraman
- Department of Chemistry
- Indian Institute of Technology Bombay
- Mumbai 400076
- India
| | - Enrique Colacio
- Departamento de Química Inorgánica
- Facultad de Ciencias
- Universidad de Granada
- Granada
- Spain
| |
Collapse
|
33
|
Briganti M, Garcia GF, Jung J, Sessoli R, Le Guennic B, Totti F. Covalency and magnetic anisotropy in lanthanide single molecule magnets: the DyDOTA archetype. Chem Sci 2019; 10:7233-7245. [PMID: 31588292 PMCID: PMC6685353 DOI: 10.1039/c9sc01743g] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Accepted: 06/08/2019] [Indexed: 01/19/2023] Open
Abstract
Lanthanide ions when complexed by polyamino-polycarboxylate chelators form a class of compounds of paramount importance in several research and technological areas, particularly in the fields of magnetic resonance and molecular magnetism. Indeed, the gadolinium derivative is one of the most employed contrast agents for magnetic resonance imaging while the dysprosium one belongs to a new generation of contrast agents for T2-weighted MRI. In molecular magnetism, Single Molecule Magnets (SMMs) containing lanthanide ions have become readily popular in the chemistry and physics communities since record energy barriers to the reversal of magnetization were reported. The success of lanthanide complexes lies in their large anisotropy due to the contribution of the unquenched orbital angular momentum. However, only a few efforts have been made so far to understand how the f-orbitals can be influenced by the surrounding ligands. The outcomes have been rationalized using mere electrostatic perturbation models. In the archetype compound [Na{Dy(DOTA) (H2O)}]·4H2O (Na{DyDOTA}·4H2O) an unexpected easy axis of magnetization perpendicular to the pseudo-tetragonal axis of the molecule was found. Interestingly, a dependency of the orientation of the principal magnetization axis on the simple rotation of the coordinating apical water molecule (AWM) - highly relevant for MRI contrast - around the Dy-OAWM bond was predicted by ab initio calculations, too. However, such a behaviour has been contested in a subsequent paper justifying their conclusions on pure electrostatic assumptions. In this paper, we want to shed some light on the nature of the subtle effects induced by the water molecule on the magnetic properties of the DyDOTA archetype complex. Therefore, we have critically reviewed the structural models already published in the literature along with new ones, showing how the easy axis orientation can dangerously depend on the chosen model. The different computed behaviors of the orientation of the easy axis of magnetization have been rationalized as a function of the energy gap between the ground and the first excited doublet. Magneto-structural correlations together with a mapping of the electrostatic potential generated by the ligands around the Dy(iii) ion through a multipolar expansion have also been used to evidence and quantify the covalent contribution of the AWM orbitals.
Collapse
Affiliation(s)
- Matteo Briganti
- Dipartimento di Chimica "U. Schiff" and UdR INSTM , Università degli Studi di Firenze , Via della Lastruccia 3-13 , 50019 Sesto Fiorentino , Italy .
- Universidade Federal Fluminense , Instituto de Física , Niterói , Rio de Janeiro , Brazil
| | - Guglielmo Fernandez Garcia
- Dipartimento di Chimica "U. Schiff" and UdR INSTM , Università degli Studi di Firenze , Via della Lastruccia 3-13 , 50019 Sesto Fiorentino , Italy .
- Univ Rennes , CNRS , ISCR (Institut des Sciences Chimiques de Rennes) - UMR 6226 , F-35000 Rennes , France .
| | - Julie Jung
- Univ Rennes , CNRS , ISCR (Institut des Sciences Chimiques de Rennes) - UMR 6226 , F-35000 Rennes , France .
| | - Roberta Sessoli
- Dipartimento di Chimica "U. Schiff" and UdR INSTM , Università degli Studi di Firenze , Via della Lastruccia 3-13 , 50019 Sesto Fiorentino , Italy .
| | - Boris Le Guennic
- Univ Rennes , CNRS , ISCR (Institut des Sciences Chimiques de Rennes) - UMR 6226 , F-35000 Rennes , France .
| | - Federico Totti
- Dipartimento di Chimica "U. Schiff" and UdR INSTM , Università degli Studi di Firenze , Via della Lastruccia 3-13 , 50019 Sesto Fiorentino , Italy .
| |
Collapse
|
34
|
Roy S, Hari N, Mohanta S. Synthesis, Crystal Structures, Magnetic Properties, and Fluorescence of Two Heptanuclear Co
III
4
Ln
III
3
Compounds (Ln = Gd
III
, Dy
III
): Multiple Relaxation Dynamics in the Dy
III
Analogue. Eur J Inorg Chem 2019. [DOI: 10.1002/ejic.201900383] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Shuvayan Roy
- Department of Chemistry Inorganic Chemistry Section University of Calcutta 92 A. P. C Road 700 009 Kolkata India
| | - Nairita Hari
- Department of Chemistry Inorganic Chemistry Section University of Calcutta 92 A. P. C Road 700 009 Kolkata India
| | - Sasankasekhar Mohanta
- Department of Chemistry Inorganic Chemistry Section University of Calcutta 92 A. P. C Road 700 009 Kolkata India
| |
Collapse
|
35
|
Kazin PE, Zykin MA, Magdysyuk OV, Utochnikova VV, Gorbachev EA, Kremer RK, Schnelle W, Felser C, Jansen M. TbO + in a calcium apatite matrix featuring a triple trigger-type relaxation of magnetization. Dalton Trans 2019; 48:5299-5307. [PMID: 30933206 DOI: 10.1039/c9dt01120j] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Tb for Ca substituted hydroxyapatite ceramic samples with composition Ca10-xTbx(PO4)6(OH1-x/2-δ)2, where x = 0.1, 0.5, were synthesized by solid-state reaction at 1300 °C in air, and their crystal structure, vibrational spectra, luminescence, and magnetic properties were studied. Implanting Tb3+ into the calcium apatite crystal lattice results in formation of an effective TbO+ ion which displays a short terbium-oxygen bond of 2.15 Å and a stretching vibration at 534 cm-1. The Tb3+ electronic structure has been revealed by analyzing the luminescence spectra and dc/ac magnetization data. Accordingly, the ground state represents a pseudo doublet with MJ = ±6 and the first exited level is by 112 cm-1 higher in energy. The ion exhibits field induced magnetic bistability with the magnetization reversing over the first exited state. Three paths of magnetization relaxation with field-temperature controlled switching between the paths have been identified.
Collapse
Affiliation(s)
- Pavel E Kazin
- Department of Chemistry, Lomonosov Moscow State University, 119991 Moscow, Russia.
| | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Perfetti M, Gysler M, Rechkemmer-Patalen Y, Zhang P, Taştan H, Fischer F, Netz J, Frey W, Zimmermann LW, Schleid T, Hakl M, Orlita M, Ungur L, Chibotaru L, Brock-Nannestad T, Piligkos S, van Slageren J. Determination of the electronic structure of a dinuclear dysprosium single molecule magnet without symmetry idealization. Chem Sci 2019; 10:2101-2110. [PMID: 30842867 PMCID: PMC6375364 DOI: 10.1039/c8sc03170c] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Accepted: 12/12/2018] [Indexed: 11/29/2022] Open
Abstract
We present the in-depth determination of the magnetic properties and electronic structure of the luminescent and volatile dysprosium-based single molecule magnet [Dy2(bpm)(fod)6] (Hfod = 6,6,7,7,8,8,8-heptafluoro-2,2-dimethyl-3,5-octanedione, bpm = 2,2'-bipyrimidine). Ab initio calculations were used to obtain a global picture of the electronic structure and to predict possible single molecule magnet behaviour, confirmed by experiments. The orientation of the susceptibility tensor was determined by means of cantilever torque magnetometry. An experimental determination of the electronic structure of the lanthanide ion was obtained combining Luminescence, Far Infrared and Magnetic Circular Dichroism spectroscopies. Fitting these energies to the full single ion plus crystal field Hamiltonian allowed determination of the eigenstates and crystal field parameters of a lanthanide complex without symmetry idealization. We then discuss the impact of a stepwise symmetry idealization on the modelling of the experimental data. This result is particularly important in view of the misleading outcomes that are often obtained when the symmetry of lanthanide complexes is idealized.
Collapse
Affiliation(s)
- Mauro Perfetti
- Institut für Physikalische Chemie , Universität Stuttgart , Pfaffenwaldring 55 , D-70569 Stuttgart , Germany .
| | - Maren Gysler
- Institut für Physikalische Chemie , Universität Stuttgart , Pfaffenwaldring 55 , D-70569 Stuttgart , Germany .
| | - Yvonne Rechkemmer-Patalen
- Institut für Physikalische Chemie , Universität Stuttgart , Pfaffenwaldring 55 , D-70569 Stuttgart , Germany .
| | - Peng Zhang
- Institut für Physikalische Chemie , Universität Stuttgart , Pfaffenwaldring 55 , D-70569 Stuttgart , Germany .
| | - Hatice Taştan
- Institut für Physikalische Chemie , Universität Stuttgart , Pfaffenwaldring 55 , D-70569 Stuttgart , Germany .
| | - Florian Fischer
- Institut für Physikalische Chemie , Universität Stuttgart , Pfaffenwaldring 55 , D-70569 Stuttgart , Germany .
| | - Julia Netz
- Institut für Physikalische Chemie , Universität Stuttgart , Pfaffenwaldring 55 , D-70569 Stuttgart , Germany .
| | - Wolfgang Frey
- Institut für Organische Chemie , Universität Stuttgart , Pfaffenwaldring 55 , D-70569 Stuttgart , Germany
| | - Lucas W Zimmermann
- Institut für Anorganische Chemie , Universität Stuttgart , Pfaffenwaldring 55 , D-70569 Stuttgart , Germany
| | - Thomas Schleid
- Institut für Anorganische Chemie , Universität Stuttgart , Pfaffenwaldring 55 , D-70569 Stuttgart , Germany
| | - Michael Hakl
- Laboratoire National des Champs Magnétiques Intenses (LNCMI-EMFL) , CNRS , UGA , 38042 Grenoble , France
| | - Milan Orlita
- Laboratoire National des Champs Magnétiques Intenses (LNCMI-EMFL) , CNRS , UGA , 38042 Grenoble , France
- Institute of Physics , Charles University , Ke Karlovu 5 , 12116 Praja 2 , Czech Republic
| | - Liviu Ungur
- Theory of Nanomaterials Group , Katholieke Universiteit Leuven , Celestijnenlaan 220F , 3001 Leuven , Belgium
| | - Liviu Chibotaru
- Theory of Nanomaterials Group , Katholieke Universiteit Leuven , Celestijnenlaan 220F , 3001 Leuven , Belgium
| | - Theis Brock-Nannestad
- Department of Chemistry , University of Copenhagen , Universitetsparken 5 , 2100 , Denmark
| | - Stergios Piligkos
- Department of Chemistry , University of Copenhagen , Universitetsparken 5 , 2100 , Denmark
| | - Joris van Slageren
- Institut für Physikalische Chemie , Universität Stuttgart , Pfaffenwaldring 55 , D-70569 Stuttgart , Germany .
| |
Collapse
|
37
|
Jia JH, Li QW, Chen YC, Liu JL, Tong ML. Luminescent single-molecule magnets based on lanthanides: Design strategies, recent advances and magneto-luminescent studies. Coord Chem Rev 2019. [DOI: 10.1016/j.ccr.2017.11.012] [Citation(s) in RCA: 173] [Impact Index Per Article: 34.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
38
|
Ruiz C, García-Valdivia AA, Fernández B, Cepeda J, Oyarzabal I, Abas E, Laguna M, García JA, Fernández I, San Sebastian E, Rodríguez-Diéguez A. Multifunctional coordination compounds based on lanthanide ions and 5-bromonicotinic acid: magnetic, luminescence and anti-cancer properties. CrystEngComm 2019. [DOI: 10.1039/c9ce00292h] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Four novel coordination compounds based on 5-bromonicotinic acid and lanthanide(iii) ions with interesting magnetic and luminescence properties, and a complete absence of cytotoxicity.
Collapse
Affiliation(s)
- Cristina Ruiz
- Dept. of Inorganic Chemistry
- University of Granada
- Granada
- Spain
| | | | - Belén Fernández
- Institute of Parasitology and Biomedicine “López-Neyra”
- Consejo Superior de Investigaciones Científicas (CSIC)
- Granada
- Spain
| | - Javier Cepeda
- Department of Applied Chemistry
- Chemistry Faculty
- University of the Basque Country (UPV/EHU)
- 20018 San Sebastian
- Spain
| | - Itziar Oyarzabal
- Department of Applied Chemistry
- Chemistry Faculty
- University of the Basque Country (UPV/EHU)
- 20018 San Sebastian
- Spain
| | - Elisa Abas
- Dept. of Inorganic Chemistry
- University of Zaragoza
- Zaragoza
- Spain
| | - Mariano Laguna
- Dept. of Inorganic Chemistry
- University of Zaragoza
- Zaragoza
- Spain
| | - Jose Angel García
- Departamento de Física Aplicada II
- Facultad de Ciencia y Tecnología
- University of the Basque Country (UPV/EHU)
- 20018 San Sebastian
- Spain
| | - Ignacio Fernández
- Department of Chemistry and Physics
- Research Center for Agricultural and Food Biotechnology (BITAL)
- University of Almería
- 04120 Almería
- Spain
| | - Eider San Sebastian
- Department of Applied Chemistry
- Chemistry Faculty
- University of the Basque Country (UPV/EHU)
- 20018 San Sebastian
- Spain
| | | |
Collapse
|
39
|
Mayans J, Saez Q, Font-Bardia M, Escuer A. Enhancement of magnetic relaxation properties with 3d diamagnetic cations in [ZnIILnIII] and [NiIILnIII], LnIII= Kramers lanthanides. Dalton Trans 2019; 48:641-652. [DOI: 10.1039/c8dt03679a] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Comparison between two series of [NiIILnIII] and [ZnIILnIII] dimers reveals lower intermolecular interactions for the square-planar NiIIderivatives that favour an induced SIM response. Some unusual CeIII, NdIIIand YbIIISIMs are reported.
Collapse
Affiliation(s)
- Júlia Mayans
- Departament de Química Inorgànica i Orgànica
- Secció Inorgànica and Institute of Nanoscience (IN2UB) and Nanotechnology
- Universitat de Barcelona
- Barcelona-08028
- Spain
| | - Queralt Saez
- Departament de Química Inorgànica i Orgànica
- Secció Inorgànica and Institute of Nanoscience (IN2UB) and Nanotechnology
- Universitat de Barcelona
- Barcelona-08028
- Spain
| | - Mercè Font-Bardia
- Departament de Mineralogia
- Cristal·lografia i Dipòsits Minerals
- Universitat de Barcelona
- 08028 Barcelona
- Spain
| | - Albert Escuer
- Departament de Química Inorgànica i Orgànica
- Secció Inorgànica and Institute of Nanoscience (IN2UB) and Nanotechnology
- Universitat de Barcelona
- Barcelona-08028
- Spain
| |
Collapse
|
40
|
Rousset E, Piccardo M, Boulon M, Gable RW, Soncini A, Sorace L, Boskovic C. Slow Magnetic Relaxation in Lanthanoid Crown Ether Complexes: Interplay of Raman and Anomalous Phonon Bottleneck Processes. Chemistry 2018; 24:14768-14785. [DOI: 10.1002/chem.201802779] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Indexed: 11/12/2022]
Affiliation(s)
- Elodie Rousset
- School of Chemistry University of Melbourne Victoria 3010 Australia
| | - Matteo Piccardo
- School of Chemistry University of Melbourne Victoria 3010 Australia
| | - Marie‐Emmanuelle Boulon
- UdR INSTM and Department of Chemistry “U. Schiff” University of Florence 50019 Sesto Fiorentino (FI) Italy
| | - Robert W. Gable
- School of Chemistry University of Melbourne Victoria 3010 Australia
| | | | - Lorenzo Sorace
- UdR INSTM and Department of Chemistry “U. Schiff” University of Florence 50019 Sesto Fiorentino (FI) Italy
| | - Colette Boskovic
- School of Chemistry University of Melbourne Victoria 3010 Australia
| |
Collapse
|
41
|
Zhou J, Song J, Yuan A, Wang Z, Chen L, Ouyang ZW. Slow magnetic relaxation in two octahedral cobalt(II) complexes with positive axial anisotropy. Inorganica Chim Acta 2018. [DOI: 10.1016/j.ica.2018.04.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
42
|
Krylov DS, Liu F, Brandenburg A, Spree L, Bon V, Kaskel S, Wolter AUB, Büchner B, Avdoshenko SM, Popov AA. Magnetization relaxation in the single-ion magnet DySc 2N@C 80: quantum tunneling, magnetic dilution, and unconventional temperature dependence. Phys Chem Chem Phys 2018; 20:11656-11672. [PMID: 29671443 PMCID: PMC5933001 DOI: 10.1039/c8cp01608a] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Quantum tunneling and relaxation of magnetization in single molecule magnet DySc2N@C80 is thoroughly studied as a function of magnetic dilution, temperature, and magnetic field.
Relaxation of magnetization in endohedral metallofullerenes DySc2N@C80 is studied at different temperatures, in different magnetic fields, and in different molecular arrangements. Magnetization behavior and relaxation are analyzed for powder sample, and for DySc2N@C80 diluted in non-magnetic fullerene Lu3N@C80, adsorbed in voids of a metal–organic framework, and dispersed in a polymer. The magnetic field dependence and zero-field relaxation are also studied for single-crystals of DySc2N@C80 co-crystallized with Ni(ii) octaethylporphyrin, as well as for the single crystal diluted with Lu3N@C80. Landau–Zener theory is applied to analyze quantum tunneling of magnetization in the crystals. The field dependence of relaxation rates revealed a dramatic dependence of the zero-field tunneling resonance width on the dilution and is explained with the help of an analysis of dipolar field distributions. AC magnetometry is used then to get access to the relaxation of magnetization in a broader temperature range, from 2 to 87 K. Finally, a theoretical framework describing the spin dynamics with dissipation is proposed to study magnetization relaxation phenomena in single molecule magnets.
Collapse
Affiliation(s)
- D S Krylov
- Leibniz Institute for Solid State and Materials Research, 01069 Dresden, Germany.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Zhang P, Perfetti M, Kern M, Hallmen PP, Ungur L, Lenz S, Ringenberg MR, Frey W, Stoll H, Rauhut G, van Slageren J. Exchange coupling and single molecule magnetism in redox-active tetraoxolene-bridged dilanthanide complexes. Chem Sci 2018; 9:1221-1230. [PMID: 29675167 PMCID: PMC5885778 DOI: 10.1039/c7sc04873d] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Accepted: 12/07/2017] [Indexed: 12/22/2022] Open
Abstract
Tetraoxolene radical-bridged lanthanide SMM systems were prepared for the first time by reduction of the respective neutral compounds. Magnetic measurements reveal the profound influence of the radical center on magnetic behavior. Strong magnetic couplings are revealed in the radical species, which switch on SMM behavior under zero applied field for DyIII and TbIII compounds. HFEPR spectra unravel the contributions of the magnetic coupling and the magnetic anisotropy. For GdIII this results in much more accurate magnetic coupling parameters with respect to bulk magnetic measurements.
Collapse
Affiliation(s)
- Peng Zhang
- Institut für Physikalische Chemie , Universität Stuttgart , Pfaffenwaldring 55 , D-70569 , Stuttgart , Germany .
| | - Mauro Perfetti
- Institut für Physikalische Chemie , Universität Stuttgart , Pfaffenwaldring 55 , D-70569 , Stuttgart , Germany .
- Department of Chemistry , University of Copenhagen , Universitetparken 5 , 2100 Copenhagen , Denmark
| | - Michal Kern
- Institut für Physikalische Chemie , Universität Stuttgart , Pfaffenwaldring 55 , D-70569 , Stuttgart , Germany .
| | - Philipp P Hallmen
- Institut für Physikalische Chemie , Universität Stuttgart , Pfaffenwaldring 55 , D-70569 , Stuttgart , Germany .
| | - Liviu Ungur
- Theory of Nanomaterials Group , INPAC-Institute of Nanoscale Physics and Chemistry , Katholieke Universiteit Leuven , 3001 Leuven , Belgium
| | - Samuel Lenz
- Institut für Physikalische Chemie , Universität Stuttgart , Pfaffenwaldring 55 , D-70569 , Stuttgart , Germany .
| | - Mark R Ringenberg
- Institut für Anorganische Chemie , Universität Stuttgart , Pfaffenwaldring 55 , D-70569 Stuttgart , Germany
| | - Wolfgang Frey
- Institut für Organische Chemie , Universität Stuttgart , Pfaffenwaldring 55 , D-70569 Stuttgart , Germany
| | - Hermann Stoll
- Institut für Theoretische Chemie , Universität Stuttgart , Pfaffenwaldring 55 , D-70569 Stuttgart , Germany
| | - Guntram Rauhut
- Institut für Theoretische Chemie , Universität Stuttgart , Pfaffenwaldring 55 , D-70569 Stuttgart , Germany
| | - Joris van Slageren
- Institut für Physikalische Chemie , Universität Stuttgart , Pfaffenwaldring 55 , D-70569 , Stuttgart , Germany .
| |
Collapse
|
44
|
Li XL, Li J, Zhu C, Han B, Liu Y, Yin Z, Li F, Liu CM. An intense luminescent Dy(iii) single-ion magnet with the acylpyrazolonate ligand showing two slow magnetic relaxation processes. NEW J CHEM 2018. [DOI: 10.1039/c8nj03345e] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A new Dy(iii)-acylpyrazolonate complex displays both intense yellow-light emission and single-ion magnet behavior with two slow magnetic relaxation processes, acting as a potential bifunctional material.
Collapse
Affiliation(s)
- Xi-Li Li
- Henan Provincial Key Laboratory of Surface and Interface Science
- Zhengzhou University of Light Industry
- Zhengzhou
- P. R. China
| | - Junfeng Li
- Henan Provincial Key Laboratory of Surface and Interface Science
- Zhengzhou University of Light Industry
- Zhengzhou
- P. R. China
| | - Cancan Zhu
- Henan Provincial Key Laboratory of Surface and Interface Science
- Zhengzhou University of Light Industry
- Zhengzhou
- P. R. China
| | - Bing Han
- Henan Provincial Key Laboratory of Surface and Interface Science
- Zhengzhou University of Light Industry
- Zhengzhou
- P. R. China
| | - Yingfan Liu
- Henan Provincial Key Laboratory of Surface and Interface Science
- Zhengzhou University of Light Industry
- Zhengzhou
- P. R. China
| | - Zhigang Yin
- Henan Provincial Key Laboratory of Surface and Interface Science
- Zhengzhou University of Light Industry
- Zhengzhou
- P. R. China
| | - Fengcai Li
- Henan Provincial Key Laboratory of Surface and Interface Science
- Zhengzhou University of Light Industry
- Zhengzhou
- P. R. China
| | - Cai-Ming Liu
- Bejing National Laboratory for Molecular Sciences
- Institution of Chemistry
- Chinese Academy of Sciences
- Beijing 100190
- P. R. China
| |
Collapse
|
45
|
Canaj AB, Singh MK, Wilson C, Rajaraman G, Murrie M. Chemical and in silico tuning of the magnetisation reversal barrier in pentagonal bipyramidal Dy(iii) single-ion magnets. Chem Commun (Camb) 2018; 54:8273-8276. [DOI: 10.1039/c8cc03929a] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
New air-stable axial Dy(iii) complexes show magnetic hysteresis up to 10 K, while in silico generated model complexes reveal the importance of outer-sphere interactions in controlling the magnetisation reversal barrier.
Collapse
Affiliation(s)
- Angelos B. Canaj
- WestCHEM
- School of Chemistry
- University of Glasgow
- University Avenue
- Glasgow
| | | | - Claire Wilson
- WestCHEM
- School of Chemistry
- University of Glasgow
- University Avenue
- Glasgow
| | - Gopalan Rajaraman
- Department of Chemistry
- Indian Institute of Technology Bombay
- Mumbai
- India
| | - Mark Murrie
- WestCHEM
- School of Chemistry
- University of Glasgow
- University Avenue
- Glasgow
| |
Collapse
|
46
|
Zhang S, Mo W, Yin B, Zhang G, Yang D, Lü X, Chen S. The slow magnetic relaxation regulated by the coordination, configuration and intermolecular dipolar field in two mononuclear DyIII single-molecule magnets (SMMs). Dalton Trans 2018; 47:12393-12405. [DOI: 10.1039/c8dt02361a] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Tuning the magnetic dynamics of single-molecule magnets (SMMs) is a crucial challenge for chemists.
Collapse
Affiliation(s)
- Sheng Zhang
- College of Chemistry and Chemical Engineering
- Baoji University of Arts and Sciences
- Baoji 721013
- China
- School of Chemical Engineering
| | - Wenjiao Mo
- College of Chemistry and Chemical Engineering
- Baoji University of Arts and Sciences
- Baoji 721013
- China
| | - Bing Yin
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education
- College of Chemistry and Materials Science
- Northwest University
- Xi'an
- China
| | - Gaini Zhang
- College of Chemistry and Chemical Engineering
- Baoji University of Arts and Sciences
- Baoji 721013
- China
| | - Desuo Yang
- College of Chemistry and Chemical Engineering
- Baoji University of Arts and Sciences
- Baoji 721013
- China
| | - Xingqiang Lü
- School of Chemical Engineering
- Shaanxi Key Laboratory of Degradable Medical Material
- Northwest University
- Xi'an 710069
- China
| | - Sanping Chen
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education
- College of Chemistry and Materials Science
- Northwest University
- Xi'an
- China
| |
Collapse
|
47
|
Selvanathan P, Dorcet V, Roisnel T, Bernot K, Huang G, Le Guennic B, Norel L, Rigaut S. trans to cis photo-isomerization in merocyanine dysprosium and yttrium complexes. Dalton Trans 2018; 47:4139-4148. [DOI: 10.1039/c8dt00299a] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
A unique light-switching behavior is revealed in Yttrium(iii) and Dysprosium(iii) merocyanine complexes through NMR and AC magnetometry experiments. Its impact on slow relaxation of magnetization is described.
Collapse
Affiliation(s)
- Pramila Selvanathan
- Univ Rennes
- INSA Rennes
- CNRS
- ISCR (Institut des Sciences Chimiques de Rennes) – UMR 6226
- F-35000 Rennes
| | - Vincent Dorcet
- Univ Rennes
- INSA Rennes
- CNRS
- ISCR (Institut des Sciences Chimiques de Rennes) – UMR 6226
- F-35000 Rennes
| | - Thierry Roisnel
- Univ Rennes
- INSA Rennes
- CNRS
- ISCR (Institut des Sciences Chimiques de Rennes) – UMR 6226
- F-35000 Rennes
| | - Kévin Bernot
- Univ Rennes
- INSA Rennes
- CNRS
- ISCR (Institut des Sciences Chimiques de Rennes) – UMR 6226
- F-35000 Rennes
| | - Gang Huang
- Univ Rennes
- INSA Rennes
- CNRS
- ISCR (Institut des Sciences Chimiques de Rennes) – UMR 6226
- F-35000 Rennes
| | - Boris Le Guennic
- Univ Rennes
- INSA Rennes
- CNRS
- ISCR (Institut des Sciences Chimiques de Rennes) – UMR 6226
- F-35000 Rennes
| | - Lucie Norel
- Univ Rennes
- INSA Rennes
- CNRS
- ISCR (Institut des Sciences Chimiques de Rennes) – UMR 6226
- F-35000 Rennes
| | - Stéphane Rigaut
- Univ Rennes
- INSA Rennes
- CNRS
- ISCR (Institut des Sciences Chimiques de Rennes) – UMR 6226
- F-35000 Rennes
| |
Collapse
|
48
|
Bronova A, Bredow T, Glaum R, Riley MJ, Urland W. BonnMag: Computer program for ligand-field analysis off nsystems within the angular overlap model. J Comput Chem 2017; 39:176-186. [DOI: 10.1002/jcc.25096] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Revised: 10/12/2017] [Accepted: 10/16/2017] [Indexed: 01/20/2023]
Affiliation(s)
- Anna Bronova
- Institute of Inorganic Chemistry, Rheinische Friedrich-Wilhelms-Universität, Gerhard-Domagk-Straße 1; Bonn D-53121 Germany
| | - Thomas Bredow
- Mulliken Center for Theoretical Chemistry, Rheinische Friedrich-Wilhelms-Universität, Beringstr. 4; Bonn D-53121 Germany
| | - Robert Glaum
- Institute of Inorganic Chemistry, Rheinische Friedrich-Wilhelms-Universität, Gerhard-Domagk-Straße 1; Bonn D-53121 Germany
| | - Mark J. Riley
- School of Chemistry and Molecular Biosciences; University of Queensland, Brisbane St. Lucia; QLD 4072 Australia
| | - Werner Urland
- Private Institute of Theoretical Chemical Physics, Via Dr. A. Sciarone Nr. 2; Muralto CH-6600 Switzerland
| |
Collapse
|
49
|
Yang M, Xie J, Sun Z, Li L, Sutter JP. Slow Magnetic Relaxation in Ladder-Type and Single-Strand 2p-3d-4f Heterotrispin Chains. Inorg Chem 2017; 56:13482-13490. [PMID: 28990764 DOI: 10.1021/acs.inorgchem.7b02204] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Ladder-type and chain 2p-3d-4f complexes based on a bridging nitronyl nitroxide radical, namely, [LnCu(hfac)5(NIT-Ph-p-OCH2trz)]·0.5C6H14 [Ln = Y (1a), Dy (1b)] and [LnCu(hfac)5(NIT-Ph-p-OCH2trz)] [Ln = Y (2a), Dy (2b); NIT-Ph-p-OCH2trz = 2-[4-[(1H-1,2,4-triazol-1-yl)methoxy]phenyl]-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide; hfac = hexafluoroacetylacetonate) have been successfully achieved through a one-pot reaction of the NIT-Ph-p-OCH2trz radical with Cu(hfac)2 and Ln(hfac)3·2H2O. Complexes 1a and 1b feature a ladder-like structure, where the rails are made of Ln(III) and Cu(II) ions alternatively bridged by nitronyl nitroxide and the triazole units while the NIT-Ph-p-OCH2trz moieties act as the rungs of the ladder. Complexes 2a and 2b consist of one-dimensional nitronyl nitroxide bridged Ln coordination polymers with dangly Cu(II) units connected to the triazole moieties. All of compounds exhibit ferromagnetic NIT-Dy and/or NIT-Cu interactions. Both Dy derivatives (1b and 2b) show frequency-dependent out-of-phase magnetic susceptibility signals in a zero field indicating slow magnetic relaxation behavior.
Collapse
Affiliation(s)
- Meng Yang
- Department of Chemistry, Key Laboratory of Advanced Energy Materials Chemistry and Tianjin Key Laboratory of Metal and Molecule-based Material Chemistry, College of Chemistry, Nankai University , Tianjin 300071, China
| | - Jing Xie
- Department of Chemistry, Key Laboratory of Advanced Energy Materials Chemistry and Tianjin Key Laboratory of Metal and Molecule-based Material Chemistry, College of Chemistry, Nankai University , Tianjin 300071, China
| | - Zan Sun
- Department of Chemistry, Key Laboratory of Advanced Energy Materials Chemistry and Tianjin Key Laboratory of Metal and Molecule-based Material Chemistry, College of Chemistry, Nankai University , Tianjin 300071, China
| | - Licun Li
- Department of Chemistry, Key Laboratory of Advanced Energy Materials Chemistry and Tianjin Key Laboratory of Metal and Molecule-based Material Chemistry, College of Chemistry, Nankai University , Tianjin 300071, China
| | - Jean-Pascal Sutter
- Laboratoire de Chimie de Coordination (LCC), CNRS , 205 Route de Narbonne, F-31077 Toulouse, France.,LCC, Université de Toulouse, UPS, INPT , F-31077 Toulouse, France
| |
Collapse
|
50
|
Goura J, Colacio E, Herrera JM, Suturina EA, Kuprov I, Lan Y, Wernsdorfer W, Chandrasekhar V. Heterometallic Zn3
Ln3
Ensembles Containing (μ6
-CO3
) Ligand and Triangular Disposition of Ln3+
ions: Analysis of Single-Molecule Toroic (SMT) and Single-Molecule Magnet (SMM) Behavior. Chemistry 2017; 23:16621-16636. [DOI: 10.1002/chem.201703842] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Indexed: 02/03/2023]
Affiliation(s)
- Joydeb Goura
- Department of Chemistry; Indian Institute of Technology Kanpur; Kanpur 208016 India
| | - Enrique Colacio
- Departamento de Química Inorgánica, Facultad de Ciencias; Universidad de Granada; Avenida de Fuentenueva s/n 18071 Granada Spain
| | - Juan Manuel Herrera
- Departamento de Química Inorgánica, Facultad de Ciencias; Universidad de Granada; Avenida de Fuentenueva s/n 18071 Granada Spain
| | - Elizaveta A. Suturina
- School of Chemistry; University of Southampton; University Road Southampton SO17 1BJ UK
| | - Ilya Kuprov
- School of Chemistry; University of Southampton; University Road Southampton SO17 1BJ UK
| | - Yanhua Lan
- Institut Néel; CNRS & Université Grenoble Alpes; BP 166, 25 avenue des Martyrs 38042 Grenoble Cedex 9 France
| | | | - Vadapalli Chandrasekhar
- Department of Chemistry; Indian Institute of Technology Kanpur; Kanpur 208016 India
- Tata Institute of Fundamental Research Hyderabad; Gopanpally Hyderabad 500 107 India
| |
Collapse
|