1
|
Todorova N, Bentvelzen A, Yarovsky I. Electromagnetic field modulates aggregation propensity of amyloid peptides. J Chem Phys 2020; 152:035104. [DOI: 10.1063/1.5126367] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Affiliation(s)
- N. Todorova
- School of Engineering, RMIT University, GPO Box 2476, Melbourne, Australia
- Australian Centre for Electromagnetic Bioeffects Research, Australia
| | - A. Bentvelzen
- School of Engineering, RMIT University, GPO Box 2476, Melbourne, Australia
- Australian Centre for Electromagnetic Bioeffects Research, Australia
| | - I. Yarovsky
- School of Engineering, RMIT University, GPO Box 2476, Melbourne, Australia
- Australian Centre for Electromagnetic Bioeffects Research, Australia
| |
Collapse
|
3
|
Todorova N, Bentvelzen A, English NJ, Yarovsky I. Electromagnetic-field effects on structure and dynamics of amyloidogenic peptides. J Chem Phys 2016; 144:085101. [PMID: 26931725 DOI: 10.1063/1.4941108] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Electromagnetic fields (EMFs) are ever-present, and so is the need to better understand their influence on human health and biological matter in general. The interaction between a molecular system and external EMF can alter the structure, and dynamical behaviour, and, hence, biological function of proteins with uncertain health consequences. This urges a detailed investigation of EMF-induced effects on basic protein biophysics. Here, we used all-atom non-equilibrium molecular dynamics simulations to understand and quantify the response mechanisms of the amyloidogenic apoC-II(60-70) peptides to non-ionising radiation by modelling their behaviour under external electromagnetic and electric fields of different strengths. Our simulations show high strength fields (>0.04 V/nm) cause structural changes in apoC-II(60-70) due to the peptide dipole alignment along the applied field direction, which disrupts the inherent β-hairpin conformation known to be the intermediate state for fibril formation. The intermediate field-strength range (0.04-0.004 V/nm) causes a significant acceleration in peptide dynamics, which leads to the increased population of structures with fibril-inhibiting characteristics, such as the separated N- and C-termini and colocation of the aromatic residues at the same peptide face. In contrast, lower field strengths (<0.004 V/nm) promote the formation of the amyloid-prone hairpin structures relative to the ambient conditions. These findings suggest that intermediate-strength electromagnetic fields could be considered for designing alternative treatments of amyloid diseases, while the very high and low field strengths could be employed for engineering well-ordered fibrillar aggregates for non-medicinal applications.
Collapse
Affiliation(s)
- Nevena Todorova
- School of Engineering, RMIT University, G.P.O. Box 2476, Melbourne, Australia
| | - Alan Bentvelzen
- School of Engineering, RMIT University, G.P.O. Box 2476, Melbourne, Australia
| | - Niall J English
- School of Chemical & Bioprocess Engineering, University College Dublin, Belfield, Dublin 4, Ireland
| | - Irene Yarovsky
- School of Engineering, RMIT University, G.P.O. Box 2476, Melbourne, Australia
| |
Collapse
|
4
|
Loughran SP, Al Hossain MS, Bentvelzen A, Elwood M, Finnie J, Horvat J, Iskra S, Ivanova EP, Manavis J, Mudiyanselage CK, Lajevardipour A, Martinac B, McIntosh R, McKenzie R, Mustapic M, Nakayama Y, Pirogova E, Rashid MH, Taylor NA, Todorova N, Wiedemann PM, Vink R, Wood A, Yarovsky I, Croft RJ. Bioelectromagnetics Research within an Australian Context: The Australian Centre for Electromagnetic Bioeffects Research (ACEBR). INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2016; 13:E967. [PMID: 27690076 PMCID: PMC5086706 DOI: 10.3390/ijerph13100967] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Revised: 08/26/2016] [Accepted: 09/19/2016] [Indexed: 11/16/2022]
Abstract
Mobile phone subscriptions continue to increase across the world, with the electromagnetic fields (EMF) emitted by these devices, as well as by related technologies such as Wi-Fi and smart meters, now ubiquitous. This increase in use and consequent exposure to mobile communication (MC)-related EMF has led to concern about possible health effects that could arise from this exposure. Although much research has been conducted since the introduction of these technologies, uncertainty about the impact on health remains. The Australian Centre for Electromagnetic Bioeffects Research (ACEBR) is a National Health and Medical Research Council Centre of Research Excellence that is undertaking research addressing the most important aspects of the MC-EMF health debate, with a strong focus on mechanisms, neurodegenerative diseases, cancer, and exposure dosimetry. This research takes as its starting point the current scientific status quo, but also addresses the adequacy of the evidence for the status quo. Risk communication research complements the above, and aims to ensure that whatever is found, it is communicated effectively and appropriately. This paper provides a summary of this ACEBR research (both completed and ongoing), and discusses the rationale for conducting it in light of the prevailing science.
Collapse
Affiliation(s)
- Sarah P Loughran
- Australian Centre for Electromagnetic Bioeffects Research, Wollongong 2522, Australia.
- School of Psychology and Illawarra Health & Medical Research Institute, University of Wollongong, Wollongong 2522, Australia.
| | - Md Shahriar Al Hossain
- Institute for Superconducting and Electronic Material (ISEM), University of Wollongong, Wollongong 2522, Australia.
| | - Alan Bentvelzen
- Australian Centre for Electromagnetic Bioeffects Research, Wollongong 2522, Australia.
- School of Engineering, RMIT University, Melbourne 3001, Australia.
| | - Mark Elwood
- Australian Centre for Electromagnetic Bioeffects Research, Wollongong 2522, Australia.
- School of Population Health, University of Auckland, Auckland 1072, New Zealand.
| | - John Finnie
- Australian Centre for Electromagnetic Bioeffects Research, Wollongong 2522, Australia.
- SA Pathology, Hanson Institute, Centre for Neurological Diseases, and School of Medicine, University of Adelaide, Adelaide 5000, Australia.
| | - Joseph Horvat
- Institute for Superconducting and Electronic Material (ISEM), University of Wollongong, Wollongong 2522, Australia.
| | - Steve Iskra
- Australian Centre for Electromagnetic Bioeffects Research, Wollongong 2522, Australia.
- Chief Technology Office, Telstra Corporation, Melbourne 3000, Australia.
- School of Health Sciences, Swinburne University of Technology, Melbourne 3122, Australia.
| | - Elena P Ivanova
- Australian Centre for Electromagnetic Bioeffects Research, Wollongong 2522, Australia.
- School of Science, Swinburne University of Technology, Melbourne 3122, Australia.
| | - Jim Manavis
- SA Pathology, Hanson Institute, Centre for Neurological Diseases, and School of Medicine, University of Adelaide, Adelaide 5000, Australia.
| | - Chathuranga Keerawella Mudiyanselage
- Australian Centre for Electromagnetic Bioeffects Research, Wollongong 2522, Australia.
- School of Health Sciences, Swinburne University of Technology, Melbourne 3122, Australia.
| | - Alireza Lajevardipour
- Australian Centre for Electromagnetic Bioeffects Research, Wollongong 2522, Australia.
- School of Health Sciences, Swinburne University of Technology, Melbourne 3122, Australia.
| | - Boris Martinac
- Australian Centre for Electromagnetic Bioeffects Research, Wollongong 2522, Australia.
- Victor Chang Cardiac Research Institute, Darlinghurst 2010, Australia.
| | - Robert McIntosh
- Australian Centre for Electromagnetic Bioeffects Research, Wollongong 2522, Australia.
- Chief Technology Office, Telstra Corporation, Melbourne 3000, Australia.
- School of Health Sciences, Swinburne University of Technology, Melbourne 3122, Australia.
| | - Raymond McKenzie
- Australian Centre for Electromagnetic Bioeffects Research, Wollongong 2522, Australia.
- Australian Mobile Telecommunications Association, Canberra 2603, Australia.
| | - Mislav Mustapic
- Institute for Superconducting and Electronic Material (ISEM), University of Wollongong, Wollongong 2522, Australia.
| | | | - Elena Pirogova
- Australian Centre for Electromagnetic Bioeffects Research, Wollongong 2522, Australia.
- School of Engineering, RMIT University, Melbourne 3001, Australia.
| | - M Harunur Rashid
- School of Engineering, RMIT University, Melbourne 3001, Australia.
| | - Nigel A Taylor
- Australian Centre for Electromagnetic Bioeffects Research, Wollongong 2522, Australia.
- Centre for Human and Applied Physiology, School of Medicine, University of Wollongong, Wollongong 2522, Australia.
| | - Nevena Todorova
- Australian Centre for Electromagnetic Bioeffects Research, Wollongong 2522, Australia.
- School of Engineering, RMIT University, Melbourne 3001, Australia.
| | - Peter M Wiedemann
- Australian Centre for Electromagnetic Bioeffects Research, Wollongong 2522, Australia.
| | - Robert Vink
- Australian Centre for Electromagnetic Bioeffects Research, Wollongong 2522, Australia.
- SA Pathology, Hanson Institute, Centre for Neurological Diseases, and School of Medicine, University of Adelaide, Adelaide 5000, Australia.
| | - Andrew Wood
- Australian Centre for Electromagnetic Bioeffects Research, Wollongong 2522, Australia.
- School of Health Sciences, Swinburne University of Technology, Melbourne 3122, Australia.
| | - Irene Yarovsky
- Australian Centre for Electromagnetic Bioeffects Research, Wollongong 2522, Australia.
- School of Engineering, RMIT University, Melbourne 3001, Australia.
| | - Rodney J Croft
- Australian Centre for Electromagnetic Bioeffects Research, Wollongong 2522, Australia.
- School of Psychology and Illawarra Health & Medical Research Institute, University of Wollongong, Wollongong 2522, Australia.
| |
Collapse
|
5
|
Nasr SH, Dasari S, Hasadsri L, Theis JD, Vrana JA, Gertz MA, Muppa P, Zimmermann MT, Grogg KL, Dispenzieri A, Sethi S, Highsmith WE, Merlini G, Leung N, Kurtin PJ. Novel Type of Renal Amyloidosis Derived from Apolipoprotein-CII. J Am Soc Nephrol 2016; 28:439-445. [PMID: 27297947 DOI: 10.1681/asn.2015111228] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Accepted: 04/09/2016] [Indexed: 11/03/2022] Open
Abstract
Amyloidosis is characterized by extracellular deposition of misfolded proteins as insoluble fibrils. Most renal amyloidosis cases are Ig light chain, AA, or leukocyte chemotactic factor 2 amyloidosis, but rare hereditary forms can also involve the kidneys. Here, we describe the case of a 61-year-old woman who presented with nephrotic syndrome and renal impairment. Examination of the renal biopsy specimen revealed amyloidosis with predominant involvement of glomeruli and medullary interstitium. Proteomic analysis of Congo red-positive deposits detected large amounts of the Apo-CII protein. DNA sequencing of the APOC2 gene in the patient and one of her children detected a heterozygous c.206A→T transition, causing an E69V missense mutation. We also detected the mutant peptide in the proband's renal amyloid deposits. Using proteomics, we identified seven additional elderly patients with Apo-CII-rich amyloid deposits, all of whom had kidney involvement and histologically exhibited nodular glomerular involvement. Although prior in vitro studies have shown that Apo-CII can form amyloid fibrils and that certain mutations in this protein promote amyloid fibrillogenesis, there are no reports of this type of amyloidosis in humans. We propose that this study reveals a new form of hereditary amyloidosis (AApoCII) that is derived from the Apo-CII protein and appears to manifest in the elderly and preferentially affect the kidneys.
Collapse
Affiliation(s)
- Samih H Nasr
- Departments of Laboratory Medicine and Pathology
| | | | | | | | | | - Morie A Gertz
- Internal Medicine, Mayo Clinic, Rochester, Minnesota; and
| | | | | | | | - Angela Dispenzieri
- Departments of Laboratory Medicine and Pathology.,Internal Medicine, Mayo Clinic, Rochester, Minnesota; and
| | | | | | - Giampaolo Merlini
- Istituto di Ricovero e Cura a Carattere Scientifico Policlinico San Matteo and Department of Molecular Medicine, University of Pavia, Pavia, Italy
| | - Nelson Leung
- Internal Medicine, Mayo Clinic, Rochester, Minnesota; and
| | | |
Collapse
|
6
|
Todorova N, Makarucha AJ, Hine NDM, Mostofi AA, Yarovsky I. Dimensionality of carbon nanomaterials determines the binding and dynamics of amyloidogenic peptides: multiscale theoretical simulations. PLoS Comput Biol 2013; 9:e1003360. [PMID: 24339760 PMCID: PMC3854483 DOI: 10.1371/journal.pcbi.1003360] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2013] [Accepted: 10/09/2013] [Indexed: 12/22/2022] Open
Abstract
Experimental studies have demonstrated that nanoparticles can affect the rate of protein self-assembly, possibly interfering with the development of protein misfolding diseases such as Alzheimer's, Parkinson's and prion disease caused by aggregation and fibril formation of amyloid-prone proteins. We employ classical molecular dynamics simulations and large-scale density functional theory calculations to investigate the effects of nanomaterials on the structure, dynamics and binding of an amyloidogenic peptide apoC-II(60-70). We show that the binding affinity of this peptide to carbonaceous nanomaterials such as C60, nanotubes and graphene decreases with increasing nanoparticle curvature. Strong binding is facilitated by the large contact area available for π-stacking between the aromatic residues of the peptide and the extended surfaces of graphene and the nanotube. The highly curved fullerene surface exhibits reduced efficiency for π-stacking but promotes increased peptide dynamics. We postulate that the increase in conformational dynamics of the amyloid peptide can be unfavorable for the formation of fibril competent structures. In contrast, extended fibril forming peptide conformations are promoted by the nanotube and graphene surfaces which can provide a template for fibril-growth.
Collapse
Affiliation(s)
| | | | - Nicholas D. M. Hine
- Department of Materials and the Thomas Young Centre for Theory and Simulation of Materials, Imperial College London, London, United Kingdom
| | - Arash A. Mostofi
- Department of Materials and the Thomas Young Centre for Theory and Simulation of Materials, Imperial College London, London, United Kingdom
| | - Irene Yarovsky
- Health Innovations Research Institute, Melbourne, Australia
| |
Collapse
|
7
|
"Janus" cyclic peptides: a new approach to amyloid fibril inhibition? PLoS One 2013; 8:e57437. [PMID: 23437387 PMCID: PMC3577749 DOI: 10.1371/journal.pone.0057437] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2012] [Accepted: 01/22/2013] [Indexed: 11/19/2022] Open
Abstract
Cyclic peptides are increasingly being shown as powerful inhibitors of fibril formation, and have the potential to be therapeutic agents for combating many debilitating amyloid-related diseases. One such example is a cyclic peptide derivative from the human apolipoprotein C-II, which has the ability to inhibit fibril formation by the fibrillogenic peptide apoC-II(60–70). Using classical molecular dynamics and electronic structure calculations, we were able to provide insight into the interaction between the amyloidogenic peptide apoC-II(60–70) and its cyclic derivative, cyc(60–70). Our results showed that cyc(60–70) induced increased flexibility in apoC-II(60–70), suggesting that one mechanism by which cyc(60–70) inhibits fibrillisation is by destabilising apoC-II(60–70) structure, rendering it incapable of adopting fibril favouring conformations. In contrast, cyc(60–70) shows less flexibility upon binding to apoC-II(60–70), which is predominantly mediated by hydrophobic interactions between the aromatic rings of the peptides. This effectively creates a cap around the fibril-forming region of apoC-II(60–70) and generates an outer hydrophilic shell that discourages further apoC-II(60–70) peptide self-association. We showed that apoC-II(60–70) exhibited stronger binding affinity for the hydrophobic face of cyc(60–70) and weakest binding affinity for the hydrophilic side. This suggests that cyc(60–70) can be an effective fibril inhibitor due to its amphipathic character, like that of the "Janus"-type particles. This property can be exploited in the design of specific inhibitors of amyloid fibril formation.
Collapse
|
11
|
Teoh CL, Griffin MDW, Howlett GJ. Apolipoproteins and amyloid fibril formation in atherosclerosis. Protein Cell 2011; 2:116-27. [PMID: 21400045 DOI: 10.1007/s13238-011-1013-6] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2011] [Accepted: 01/29/2011] [Indexed: 10/18/2022] Open
Abstract
Amyloid fibrils arise from the aggregation of misfolded proteins into highly-ordered structures. The accumulation of these fibrils along with some non-fibrillar constituents within amyloid plaques is associated with the pathogenesis of several human degenerative diseases. A number of plasma apolipoproteins, including apolipoprotein (apo) A-I, apoA-II, apoC-II and apoE are implicated in amyloid formation or influence amyloid formation by other proteins. We review present knowledge of amyloid formation by apolipoproteins in disease, with particular focus on atherosclerosis. Further insights into the molecular mechanisms underlying their amyloidogenic propensity are obtained from in vitro studies which describe factors affecting apolipoprotein amyloid fibril formation and interactions. Additionally, we outline the evidence that amyloid fibril formation by apolipoproteins might play a role in the development and progression of atherosclerosis, and highlight possible molecular mechanisms that could contribute to the pathogenesis of this disease.
Collapse
Affiliation(s)
- Chai Lean Teoh
- Department of Biochemistry and Molecular Biology, University of Melbourne, Parkville, Victoria 3010, Australia
| | | | | |
Collapse
|
12
|
Teoh CL, Pham CLL, Todorova N, Hung A, Lincoln CN, Lees E, Lam YH, Binger KJ, Thomson NH, Radford SE, Smith TA, Müller SA, Engel A, Griffin MDW, Yarovsky I, Gooley PR, Howlett GJ. A structural model for apolipoprotein C-II amyloid fibrils: experimental characterization and molecular dynamics simulations. J Mol Biol 2010; 405:1246-66. [PMID: 21146539 DOI: 10.1016/j.jmb.2010.12.006] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2010] [Revised: 12/02/2010] [Accepted: 12/03/2010] [Indexed: 10/18/2022]
Abstract
The self-assembly of specific proteins to form insoluble amyloid fibrils is a characteristic feature of a number of age-related and debilitating diseases. Lipid-free human apolipoprotein C-II (apoC-II) forms characteristic amyloid fibrils and is one of several apolipoproteins that accumulate in amyloid deposits located within atherosclerotic plaques. X-ray diffraction analysis of aligned apoC-II fibrils indicated a simple cross-β-structure composed of two parallel β-sheets. Examination of apoC-II fibrils using transmission electron microscopy, scanning transmission electron microscopy, and atomic force microscopy indicated that the fibrils are flat ribbons composed of one apoC-II molecule per 4.7-Å rise of the cross-β-structure. Cross-linking results using single-cysteine substitution mutants are consistent with a parallel in-register structural model for apoC-II fibrils. Fluorescence resonance energy transfer analysis of apoC-II fibrils labeled with specific fluorophores provided distance constraints for selected donor-acceptor pairs located within the fibrils. These findings were used to develop a simple 'letter-G-like' β-strand-loop-β-strand model for apoC-II fibrils. Fully solvated all-atom molecular dynamics (MD) simulations showed that the model contained a stable cross-β-core with a flexible connecting loop devoid of persistent secondary structure. The time course of the MD simulations revealed that charge clusters in the fibril rearrange to minimize the effects of same-charge interactions inherent in parallel in-register models. Our structural model for apoC-II fibrils suggests that apoC-II monomers fold and self-assemble to form a stable cross-β-scaffold containing relatively unstructured connecting loops.
Collapse
Affiliation(s)
- Chai Lean Teoh
- Department of Biochemistry and Molecular Biology, University of Melbourne, Parkville, Victoria 3010, Australia
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|