1
|
Zhang Y, Li H, Wang J, Silvester DS, Warr GG, Atkin R. Potential-dependent superlubricity of stainless steel and Au(111) using a water-in-surface-active ionic liquid mixture. J Colloid Interface Sci 2025; 678:355-364. [PMID: 39208763 DOI: 10.1016/j.jcis.2024.08.187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 08/19/2024] [Accepted: 08/22/2024] [Indexed: 09/04/2024]
Abstract
HYPOTHESIS The friction and interfacial nanostructure of a water-in-surface-active ionic liquid mixture, 1.6 M 1-butyl-3-methylimidazolium 1,4-bis-2-ethylhexylsulfosuccinate ([BMIm][AOT]), can be tuned by applying potential on Au(111) and stainless steel. EXPERIMENTAL Atomic force microscopy (AFM) was used to examine the friction and interfacial nanostructure of 1.6 M [BMIm][AOT] on Au(111) and stainless steel at different potentials. FINDINGS Superlubricity (vanishing friction) is observed for both surfaces at OCP+1.0 V up to a surface-dependent critical normal force due to [AOT]- bilayers adsorbing strongly to the positively charged surface thus allowing AFM tip to slide over solution-facing hydrated anion charged groups. High-resolution AFM imaging reveals ripple-like features within near-surface layers, with the smallest amplitudes at OCP+1 V, indicating the highest structural stability and resistance to thermal fluctuations due to highly ordered boundary [AOT]- bilayers templating robust near-surface layers. Exceeding the critical normal force at OCP+1.0 V causes the AFM tip to penetrate the hydrated [AOT]- layer and slide over alkyl chains, increasing friction. At OCP and OCP-1.0 V, higher friction correlates with more pronounced ripples, attributed to the rougher templating [BMIm]+ boundary layer. Kinetic experiments show that switching from OCP-1.0 V to OCP+1.0 V achieves superlubricity within 15 s, enabling real-time friction control.
Collapse
Affiliation(s)
- Yunxiao Zhang
- School of Molecular Sciences, The University of Western Australia, Perth, Western Australia, Australia
| | - Hua Li
- School of Molecular Sciences, The University of Western Australia, Perth, Western Australia, Australia; Centre for Microscopy, Characterisation and Analysis, The University of Western Australia, Perth, Western Australia, Australia.
| | - Jianan Wang
- School of Molecular Sciences, The University of Western Australia, Perth, Western Australia, Australia
| | - Debbie S Silvester
- School of Molecular and Life Sciences, Curtin University, GPO Box U1987, Perth 6845, Western Australia, Australia
| | - Gregory G Warr
- School of Chemistry and Sydney Nano Institute, The University of Sydney, Sydney, New South Wales, Australia
| | - Rob Atkin
- School of Molecular Sciences, The University of Western Australia, Perth, Western Australia, Australia.
| |
Collapse
|
2
|
Fiuza T, Sarkar M, Riedl J, Cousin F, Demouchy G, Depeyrot J, Dubois E, Perzynski R, Peyre V. Dispersions of magnetic nanoparticles in water/ionic liquid mixtures. Faraday Discuss 2024; 253:441-457. [PMID: 39044685 DOI: 10.1039/d4fd00028e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/25/2024]
Abstract
Nanoparticles (NPs) of iron oxide are dispersed in mixtures of water and ionic liquid, here ethylammonium nitrate (EAN), and the NP/NP and NP/solvent interactions are studied. They are analysed via small-angle X-ray scattering and dynamic light scattering coupled to forced Rayleigh scattering, from 22 °C to 80 °C. The NPs are well-dispersed as individual objects in the whole range of compositions and temperatures thanks to sufficient repulsion due to the organization of the solvents at the interface. The surface changes from hydrophilic to hydrophobic around a proportion of 50 vol% water : 50 vol% EAN, following the evolution of the bulk mixtures, which remain heterogeneous in the whole range of compositions.
Collapse
Affiliation(s)
- T Fiuza
- PHENIX UMR CNRS 8234, Sorbonne Université, Paris, France.
- Grupo Fluidos Complexos, Inst. de Fisica, Univ. de Brasilia, Brasilia (DF), Brazil
| | - M Sarkar
- PHENIX UMR CNRS 8234, Sorbonne Université, Paris, France.
| | - J Riedl
- PHENIX UMR CNRS 8234, Sorbonne Université, Paris, France.
| | - F Cousin
- Lab. Léon Brillouin, UMR CNRS 12, CE Saclay, Gif sur Yvette, France
| | - G Demouchy
- PHENIX UMR CNRS 8234, Sorbonne Université, Paris, France.
- Dpt de Physique, Univ. de Cergy Pontoise, Cergy-Pontoise, France
| | - J Depeyrot
- Grupo Fluidos Complexos, Inst. de Fisica, Univ. de Brasilia, Brasilia (DF), Brazil
| | - E Dubois
- PHENIX UMR CNRS 8234, Sorbonne Université, Paris, France.
| | - R Perzynski
- PHENIX UMR CNRS 8234, Sorbonne Université, Paris, France.
| | - V Peyre
- PHENIX UMR CNRS 8234, Sorbonne Université, Paris, France.
| |
Collapse
|
3
|
Atkin R. Concluding remarks: Dense ionic fluids: because sometimes, more is more. Faraday Discuss 2024; 253:510-523. [PMID: 39350597 DOI: 10.1039/d4fd00150h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2024]
Abstract
It is a formidable challenge, and a distinct privilege, to provide the concluding remarks for this Faraday Discussion on Dense Ionic Fluids (DIFs). What follows is an inherently subjective distillation of the insights that have shaped our understanding of these complex systems over the last few days, with the goal of capturing the essence of the Discussion and providing suggestions for future investigations in this rapidly evolving field. DIFs are a fascinating class of electrolyte systems characterized by high ion concentrations in correlated domains. The multiscale nature of DIFs, and the challenges in connecting nanoscale phenomena to bulk properties, are discussed in the context of contemporary experimental and computational methods. Next, emerging trends are explored, and then the paper concludes by identifying promising future research directions.
Collapse
Affiliation(s)
- Rob Atkin
- School of Molecular Sciences, The University of Western Australia, Perth, WA, 6009, Australia.
| |
Collapse
|
4
|
Wang J, Li H, Warr GG, Chen F, Atkin R. Nanostructure and Dynamics of Aprotic Ionic Liquids at Graphite Electrodes as a Function of Potential. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2311353. [PMID: 38573945 DOI: 10.1002/smll.202311353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 03/05/2024] [Indexed: 04/06/2024]
Abstract
Atomic force microscope (AFM) videos reveal the near-surface nanostructure and dynamics of the ionic liquids (ILs) 1-butyl-3-methylimidazolium dicyanamide (BMIM DCA) and 1-hexyl-3-methylimidazolium dicyanamide (HMIM DCA) above highly oriented pyrolytic graphite (HOPG) electrodes as a function of surface potential. Molecular dynamics (MD) simulations reveal the molecular-level composition of the nanostructures. In combination, AFM and MD show that the near-surface aggregates form via solvophobic association of the cation alkyl chains at the electrode interface. The diffusion coefficients of interfacial nanostructures are ≈0.01 nm2 s-1 and vary with the cation alkyl chain length and the surface potential. For each IL, the nanostructure diffusion coefficients are similar at open-circuit potential (OCP) and OCP + 1V, but BMIM DCA moves about twice as fast as HMIM DCA. At negative potentials, the diffusion coefficient decreases for BMIM DCA and increases for HMIM DCA. When the surface potential is switched from negative to positive, a sudden change in the direction of the nanostructure motion is observed for both BMIM DCA and HMIM DCA. No transient dynamics are noted following other potential jumps. This study provides a new fundamental understanding regarding the dynamics of electrochemically stable ILs at electrodes vital for the rational development of IL-based electrochemical devices.
Collapse
Affiliation(s)
- Jianan Wang
- School of Molecular Sciences, The University of Western Australia, 35 Stirling Hwy, Perth, WA, 6009, Australia
| | - Hua Li
- School of Molecular Sciences, The University of Western Australia, 35 Stirling Hwy, Perth, WA, 6009, Australia
- Centre for Microscopy, Characterisation and Analysis, The University of Western Australia, 35 Stirling Hwy, Perth, WA, 6009, Australia
| | - Gregory G Warr
- School of Chemistry and Sydney Nano Institute, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Fangfang Chen
- Institute for Frontier Materials (IFM), Deakin University, Waurn Ponds, Geelong, VIC, 3216, Australia
| | - Rob Atkin
- School of Molecular Sciences, The University of Western Australia, 35 Stirling Hwy, Perth, WA, 6009, Australia
| |
Collapse
|
5
|
Clarke OJR, Rowley A, Fox RV, Burgess IJ, Atifi A. Nano-Plasticity of an Electrified Ionic Liquid/Electrode Interface: Uncovering Hard-Soft Structuring via Controlled Metal Fill Factor. ACS NANO 2024; 18:14716-14725. [PMID: 38774972 DOI: 10.1021/acsnano.4c03617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2024]
Abstract
Ionic liquids (ILs) nanostructuring at electrified interfaces is of both fundamental and practical interest as these materials are increasingly gaining prominence in energy storage and conversion processes. However, much remains unresolved about IL potential-controlled (re)organization under highly polarized interfaces, mostly due to the difficulty of selectively probing both the distal and proximal surface layers of adsorbed ions. In this work, the structural dynamics of the innermost layer (<10 nm from the surface) were independently interrogated from that of the ionic layers in the sub-surface region (>100 nm from the surface), using an infrared (IR) spectroscopy approach. By tuning the metal fill factor of gold films deposited on conductive metal oxide-modified IR internal reflection elements, the charge-driven (re)structuring of the inner and distal layers of 1-butyl-1-methylpyrrolidinium trifluoromethanesulfonate is unveiled. Within a relatively wide potential region (∼±1 V) bounding the potential of zero charges, the ionic liquid is shown to undergo a reversible (i.e., soft) reorganization whereby the innermost layer of anions (cations) is exchanged by a layer of cations (anions). Kinetically unhindered changes in the number density of constituent cations and anions largely follow electrostatic expectations in the subsurface region, whereas the innermost layer exhibits a pronounced hysteresis and very slow relaxation. Under larger negative potential bias, IL restructuring is characterized by a highly irreversible (i.e., hard) and intense interfacial densification of the BMPy+ cations, consistent with the formation of nanoscale segregated liquids. The outcomes of this work reveal a plastic IL nanostructuring under a strong electric field.
Collapse
Affiliation(s)
- Osai J R Clarke
- Department of Chemistry, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5C9, Canada
| | - Annabel Rowley
- Department of Chemistry, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5C9, Canada
| | - Robert V Fox
- Chemical Systems Department, Idaho National Laboratory, Idaho Falls, Idaho 83415, United States
| | - Ian J Burgess
- Department of Chemistry, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5C9, Canada
| | - Abderrahman Atifi
- Chemical Systems Department, Idaho National Laboratory, Idaho Falls, Idaho 83415, United States
| |
Collapse
|
6
|
Wong LN, Brunner M, Imberti S, Warr GG, Atkin R. Bulk Nanostructure of Mixtures of Choline Arginate, Choline Lysinate, and Water. J Phys Chem B 2024. [PMID: 38691762 DOI: 10.1021/acs.jpcb.4c01482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2024]
Abstract
Neutron diffraction with empirical potential structure refinement was used to investigate the bulk liquid nanostructure of mixtures of choline arginate (Ch[Arg]), choline lysinate (Ch[Lys]), and water at mole ratios of 1Ch[Arg]:1Ch[Lys]:6H2O (balanced), 1Ch[Arg]:1Ch[Lys]:20H2O (balanced dilute), 3Ch[Arg]:1Ch[Lys]:12H2O (Arg- rich), and 1Ch[Arg]:3Ch[Lys]:12H2O (Lys- rich). The Arg- and Lys- anions tend not to associate due to electrostatic repulsion between charge groups and weak anion-anion attractions. This means that the local ion structures around the anions in these mixtures resemble the parent single-component systems. The bulk liquid nanostructure varies with the Arg-:Lys- ratio. In the Lys--rich mixture (1Ch[Arg]:3Ch[Lys]:12H2O), Lys- side chains cluster into a continuous apolar domain separated from a charged domain of polar groups. In the balanced mixture (1Ch[Arg]:1Ch[Lys]:6H2O), Lys- side chains form discrete apolar aggregates within a continuous polar domain of Arg-, Ch+, and water, and in the Arg--rich mixture (3Ch[Arg]:1Ch[Lys]:12H2O), the distribution of Lys- and Arg- is nearly homogeneous. Finally, in the balance dilute system (1Ch[Arg]:1Ch[Lys]:20H2O), a percolating water domain forms.
Collapse
Affiliation(s)
- Lucas N Wong
- School of Molecular Sciences, The University of Western Australia, Crawley, WA 6009, Australia
| | - Manuel Brunner
- School of Molecular Sciences, The University of Western Australia, Crawley, WA 6009, Australia
| | - Silvia Imberti
- UKRI, STFC, ISIS Neutron and Muon Source, Rutherford Appleton Laboratory, Didcot OX11 0QX, United Kingdom
| | - Gregory G Warr
- School of Chemistry and University of Sydney Nano Institute, The University of Sydney, Sydney, NSW 2006, Australia
| | - Rob Atkin
- School of Molecular Sciences, The University of Western Australia, Crawley, WA 6009, Australia
| |
Collapse
|
7
|
Li H, Wang J, Warr GG, Atkin R. Effect of Potential on the Nanostructure Dynamics of Ethylammonium Nitrate at a Graphite Electrode. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2306011. [PMID: 37806754 DOI: 10.1002/smll.202306011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 09/20/2023] [Indexed: 10/10/2023]
Abstract
Video-rate atomic force microscopy (AFM) is used to study the near-surface nanostructure dynamics of the ionic liquid ethylammonium nitrate (EAN) at a highly oriented pyrolytic graphite (HOPG) electrode as a function of potential in real-time for the first time. The effects of varying the surface potential and adding 10 wt% water on the nanostructure diffusion coefficient are probed. For both EAN and the 90 wt% EAN-water mixture, disk-like features ≈9 nm in diameter and 1 nm in height form above the Stern layer at all potentials. The nanostructure diffusion coefficient increases with potential (from OCP -0.5 V to OCP +0.5 V) and with added water. Nanostructure dynamics depends on both the magnitude and direction of the potential change. Upon switching the potential from OCP -0.5 V to OCP +0.5 V, a substantial increase in the diffusion coefficients is observed, likely due to the absence of solvophobic interactions between the nitrate (NO3 - ) anions and the ethylammonium (EA+ ) cations in the near-surface region. When the potential is reversed, EA+ is attracted to the Stern layer to replace NO3 - , but its movement is hindered by solvophobic attractions. The outcomes will aid applications, including electrochemical devices, catalysts, and lubricants.
Collapse
Affiliation(s)
- Hua Li
- School of Molecular Sciences, The University of Western Australia, Perth, Western Australia, 6009, Australia
- Centre for Microscopy, Characterisation and Analysis, The University of Western Australia, Perth, Western Australia, 6009, Australia
| | - Jianan Wang
- School of Molecular Sciences, The University of Western Australia, Perth, Western Australia, 6009, Australia
| | - Gregory G Warr
- School of Chemistry and Sydney Nano Institute, The University of Sydney, Sydney, New South Wales, 2006, Australia
| | - Rob Atkin
- School of Molecular Sciences, The University of Western Australia, Perth, Western Australia, 6009, Australia
| |
Collapse
|
8
|
Depew DD, Vaghjiani GL, Parmar SM, Wang JJ. Liquid Structure and Hydrogen Bonding in Aqueous Hydroxylammonium Nitrate. J Phys Chem B 2024; 128:824-840. [PMID: 38194505 DOI: 10.1021/acs.jpcb.3c05623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2024]
Abstract
Hydroxylammonium nitrate (HAN) has emerged as a promising component in ionic liquid-based spacecraft propellants. However, the physicochemical and structural properties of aqueous HAN have been largely overlooked. The purpose of this study is to investigate the hydrogen bonding in aqueous HAN and understand its implications on these properties and the proton transfer mechanism as a function of concentration. Classical polarizable molecular dynamics simulations have been employed with the APPLE&P force field to analyze the geometry of individual hydrogen bonds and the overall hydrogen-bonding network in various concentrations of aqueous HAN. Radial distribution functions (RDFs) and spatial distribution functions (SDFs) indicate the structural arrangement of the species and their hydrogen bonds. Projections of water density and the orientation of its electric dipole moment near the ions provide insight into the hydrogen-bonding network. The incorporation of water into the hydrogen-bonding network at high ion concentrations occurs via interstitial accommodation around the ions immediately outside the first solvation shell. While ion pairs are observed at all concentrations considered, the frequency of Ha···On hydrogen bonds increases substantially with the ion concentration. The findings contribute to a better fundamental understanding of HAN and the precursors of reactivity, crucial to the development of "green" spacecraft propellants.
Collapse
Affiliation(s)
- Daniel D Depew
- Department of Astronautical Engineering, University of Southern California, Los Angeles, California 90089, United States
| | - Ghanshyam L Vaghjiani
- Aerospace Systems Directorate, Air Force Research Laboratory, AFRL/RQRS, Edwards Air Force Base, California 93524, United States
| | - Shehan M Parmar
- Department of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Joseph J Wang
- Department of Astronautical Engineering, University of Southern California, Los Angeles, California 90089, United States
| |
Collapse
|
9
|
Hammond OS, Elstone NS, Doutch J, Li P, Edler KJ. Evidence for an L 3 phase in ternary deep eutectics: composition-induced L 3-to-L α transition of AOT. NANOSCALE 2023; 15:19314-19321. [PMID: 37997686 DOI: 10.1039/d3nr03689h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2023]
Abstract
Pure and hydrated deep eutectic solvents (DES) are proposed to form self-assembled nanostructures within the fluid bulk, similar to the bicontinuous L3 phase common for ionic liquids (ILs). Labelled choline chloride : urea : water DES were measured using small-angle neutron scattering (SANS), showing no long-range nanostructure. However, solutions of the surfactant AOT in this DES yielded scattering consistent with the L3 "sponge" phase, which was fitted using the Teubner-Strey model. A disclike model gave local structural information, namely, a linear increase in radius versus solvent water content (w = molar ratio of DES : water), eventually forming large, turbid lamellar phases at 10w; an L3-to-Lα transition was observed. Simultaneous multi-contrast SANS fits show the surfactant headgroup region is dominated by interactions with poorly-soluble Na+ at low water contents, and numerically-superior [cholinium]+ as water content increases. The modified interfacial Gaussian curvature from cation : anion volume matching stabilizes the lamellar morphology, allowing the bilayer aggregation number to increase.
Collapse
Affiliation(s)
- Oliver S Hammond
- Centre for Sustainable Chemical Technologies & Department of Chemistry, University of Bath, Claverton Down, Bath BA2 7AY, UK.
| | - Naomi S Elstone
- Centre for Sustainable Chemical Technologies & Department of Chemistry, University of Bath, Claverton Down, Bath BA2 7AY, UK.
| | - James Doutch
- ISIS Neutron & Muon Source, Science and Technology Facilities Council, Rutherford Appleton Laboratory, Harwell-Oxford OX11 0QX, UK
| | - Peixun Li
- ISIS Neutron & Muon Source, Science and Technology Facilities Council, Rutherford Appleton Laboratory, Harwell-Oxford OX11 0QX, UK
| | - Karen J Edler
- Centre for Sustainable Chemical Technologies & Department of Chemistry, University of Bath, Claverton Down, Bath BA2 7AY, UK.
- Centre for Analysis and Synthesis, Department of Chemistry, Lund University, Lund 221 00, Sweden
| |
Collapse
|
10
|
Manasi I, Schweins R, Ma K, Edler KJ. Nanostructure in Amphiphile-Based Deep Eutectic Solvents. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:16776-16784. [PMID: 37965899 PMCID: PMC10688184 DOI: 10.1021/acs.langmuir.3c02105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 11/01/2023] [Accepted: 11/02/2023] [Indexed: 11/16/2023]
Abstract
Deep eutectic solvents (DESs) are an emerging class of modern, often "green" solvents with unique properties. Recently, a deep eutectic system based on amphiphilic surfactant N-alkyl-N,N-dimethyl-3-ammonio-1-propanesulfonate (C12 & C14 sulfobetaine) and (1S)-(+)-10-camphor-sulfonic acid in the molar ratio 1:1.5 has been reported. Nanostructuring can be expected in this DES due to the nature of the components. In this work, we have investigated the native nanostructure in the DES comprising C12-C18 alkyl chain sulfobetaines with camphor sulfonic acid and how it interacts with polar and nonpolar species, water and dodecane, respectively, using small angle neutron scattering. By using contrast variation to highlight the relative position of the solvent components and additives, we can resolve the structure of the solvent and how it changes upon interaction with water and dodecane. Scattering from the neat DES shows structures corresponding to the self-assembly of sulfobetaines; the size of the structure increases as the alkyl chain length of the sulfobetaines increases. Water and dodecane interact, respectively, with the hydrophilic and hydrophobic moieties in the DES structure, primarily the sulfobetaine, thereby swelling and solvating the entire structure. The extent of the shift of the peak position, and the swelling, depend on concentration of the additive. The solution phase organization and the interaction of polar and nonpolar species as observed here, have the potential to affect the ordering of inorganic or polymeric materials grown in such solvents, paving new avenues for templating applications.
Collapse
Affiliation(s)
- Iva Manasi
- Department
of Chemistry, University of Bath, Claverton Down, Bath BA2 7AX, U.K.
| | - Ralf Schweins
- Institut
Laue-Langevin, CS 20156, Grenoble Cedex 9 38042, France
| | - Kun Ma
- ISIS
Neutron and Muon Source, STFC, Rutherford
Appleton Laboratory, Didcot OX11 0QX, U.K.
| | - Karen J. Edler
- Department
of Chemistry, University of Bath, Claverton Down, Bath BA2 7AX, U.K.
- Department
of Chemistry, Centre for Analysis and Synthesis (CAS), Lund University, Lund 221 00, Sweden
| |
Collapse
|
11
|
Fiuza T, Sarkar M, Riedl JC, Beaughon M, Torres Bautista BE, Bhattacharya K, Cousin F, Barruet E, Demouchy G, Depeyrot J, Dubois E, Gélébart F, Geertsen V, Mériguet G, Michot L, Nakamae S, Perzynski R, Peyre V. Ion specific tuning of nanoparticle dispersion in an ionic liquid: a structural, thermoelectric and thermo-diffusive investigation. Phys Chem Chem Phys 2023; 25:28911-28924. [PMID: 37855156 DOI: 10.1039/d3cp02399k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2023]
Abstract
Dispersions of charged maghemite nanoparticles (NPs) in EAN (ethylammonium nitrate) a reference Ionic Liquid (IL) are studied here using a number of static and dynamical experimental techniques; small angle scattering (SAS) of X-rays and of neutrons, dynamical light scattering and forced Rayleigh scattering. Particular insight is provided regarding the importance of tuning the ionic species present at the NP/IL interface. In this work we compare the effect of Li+, Na+ or Rb+ ions. Here, the nature of these species has a clear influence on the short-range spatial organisation of the ions at the interface and thus on the colloidal stability of the dispersions, governing both the NP/NP and NP/IL interactions, which are both evaluated here. The overall NP/NP interaction is either attractive or repulsive. It is characterised by determining, thanks to the SAS techniques, the second virial coefficient A2, which is found to be independent of temperature. The NP/IL interaction is featured by the dynamical effective charge ξeff0 of the NPs and by their entropy of transfer ŜNP (or equivalently their heat of transport ) determined here thanks to thermoelectric and thermodiffusive measurements. For repulsive systems, an activated process rules the temperature dependence of these two latter quantities.
Collapse
Affiliation(s)
- T Fiuza
- Sorbonne Université, CNRS, Lab. PHENIX, 4 Place Jussieu, F-75005 Paris, France.
- Grupo de Fluidos Complexos, Inst. de Fisíca, Univ. de Brasília, Brasília (DF), Brazil
| | - M Sarkar
- Sorbonne Université, CNRS, Lab. PHENIX, 4 Place Jussieu, F-75005 Paris, France.
| | - J C Riedl
- Sorbonne Université, CNRS, Lab. PHENIX, 4 Place Jussieu, F-75005 Paris, France.
| | - M Beaughon
- Service de Physique de l'état condensé, SPEC, CEA, CNRS, Université Paris-Saclay, CEA Saclay, 91191 Gif sur Yvette, CEDEX, France
| | - B E Torres Bautista
- Service de Physique de l'état condensé, SPEC, CEA, CNRS, Université Paris-Saclay, CEA Saclay, 91191 Gif sur Yvette, CEDEX, France
| | - K Bhattacharya
- Service de Physique de l'état condensé, SPEC, CEA, CNRS, Université Paris-Saclay, CEA Saclay, 91191 Gif sur Yvette, CEDEX, France
| | - F Cousin
- Lab. Léon Brillouin-UMR 12 CNRS-CEA CEA-Saclay, 91191 Gif-sur-Yvette, France
| | - E Barruet
- Univ. Paris-Saclay, CEA, CNRS, NIMBE-LIONS, 91191 Gif sur Yvette, CEDEX, France
| | - G Demouchy
- Sorbonne Université, CNRS, Lab. PHENIX, 4 Place Jussieu, F-75005 Paris, France.
- Univ. de Cergy Pontoise-Dpt de physique, 33 Bd du Port, 95011 Cergy-Pontoise, France
| | - J Depeyrot
- Grupo de Fluidos Complexos, Inst. de Fisíca, Univ. de Brasília, Brasília (DF), Brazil
| | - E Dubois
- Sorbonne Université, CNRS, Lab. PHENIX, 4 Place Jussieu, F-75005 Paris, France.
| | - F Gélébart
- Sorbonne Université, CNRS, Lab. PHENIX, 4 Place Jussieu, F-75005 Paris, France.
| | - V Geertsen
- Univ. Paris-Saclay, CEA, CNRS, NIMBE-LIONS, 91191 Gif sur Yvette, CEDEX, France
| | - G Mériguet
- Sorbonne Université, CNRS, Lab. PHENIX, 4 Place Jussieu, F-75005 Paris, France.
| | - L Michot
- Sorbonne Université, CNRS, Lab. PHENIX, 4 Place Jussieu, F-75005 Paris, France.
| | - S Nakamae
- Service de Physique de l'état condensé, SPEC, CEA, CNRS, Université Paris-Saclay, CEA Saclay, 91191 Gif sur Yvette, CEDEX, France
| | - R Perzynski
- Sorbonne Université, CNRS, Lab. PHENIX, 4 Place Jussieu, F-75005 Paris, France.
| | - V Peyre
- Sorbonne Université, CNRS, Lab. PHENIX, 4 Place Jussieu, F-75005 Paris, France.
| |
Collapse
|
12
|
Azougagh O, Jilal I, Jabir L, El-Hammi H, Essayeh S, Mohammed N, Achalhi N, El Yousfi R, El Idrissi A, El Ouardi Y, Laatikainen K, Abou-Salama M, El Barkany S. Dissolution mechanism of cellulose in a benzyltriethylammonium/urea deep eutectic solvent (DES): DFT-quantum modeling, molecular dynamics and experimental investigation. Phys Chem Chem Phys 2023; 25:22870-22888. [PMID: 37587837 DOI: 10.1039/d3cp02335d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/18/2023]
Abstract
In this paper, a benzyltriethylammonium/urea DES was investigated as a new green and eco-friendly medium for the progress of organic chemical reactions, particularly the dissolution and the functionalization of cellulose. In this regard, the viscosity-average molecular weight of cellulose (M̄w) during the dissolution/regeneration process was investigated, showing no significant degradation of the polymer chains. Moreover, X-ray diffraction patterns indicated that the cellulose dissolution process in the BTEAB/urea DES decreased the crystallinity index from 87% to 75%, and there was no effect on type I cellulose polymorphism. However, a drastic impact of the cosolvents (water and DMSO) on the melting point of the DES was observed. Besides, to understand the evolution of cellulose-DES interactions, the formation mechanism of the system was studied in terms of H-bond density and radial distribution function (RDF) using molecular dynamics modeling. Furthermore, density functional theory (DFT) was used to evaluate the topological characteristics of the polymeric system such as potential energy density (PED), laplacian electron density (LED), energy density, and kinetic energy density (KED) at bond critical points (BCPs) between the cellulose and the DES. The quantum theory of atoms in molecules (AIM), Bader's quantum theory (BQT), and reduced density gradient (RDG) scatter plots have been exploited to estimate and locate non-covalent interactions (NCIs). The results revealed that the dissolution process is attributed to the physical interactions, mainly the strong H-bond interactions.
Collapse
Affiliation(s)
- Omar Azougagh
- Laboratory of Molecular Chemistry, Materials and Environment (LMCME), Department of Chemistry, Faculty Multidisciplinary Nador, Mohammed 1st University, P. B. 300, Nador 62700, Morocco.
| | - Issam Jilal
- LIMOME Laboratory, Dhar El Mehraz Faculty of Sciences, Sidi Mohamed Ben Abdellah University, B.P. 1796 Atlas, Fes 30000, Morocco
| | - Loubna Jabir
- Laboratory of Molecular Chemistry, Materials and Environment (LMCME), Department of Chemistry, Faculty Multidisciplinary Nador, Mohammed 1st University, P. B. 300, Nador 62700, Morocco.
| | - Hayat El-Hammi
- Laboratory of Molecular Chemistry, Materials and Environment (LMCME), Department of Chemistry, Faculty Multidisciplinary Nador, Mohammed 1st University, P. B. 300, Nador 62700, Morocco.
| | - Soumya Essayeh
- Laboratory of Molecular Chemistry, Materials and Environment (LMCME), Department of Chemistry, Faculty Multidisciplinary Nador, Mohammed 1st University, P. B. 300, Nador 62700, Morocco.
| | - Nor Mohammed
- Applied Chemistry Unit, Sciences and Technologies Faculty, Abdelmalek Essaadi University, 32 003 Al Hoceima, Morocco
| | - Nafea Achalhi
- Laboratory Applied Chemistry and Environmental (LCAE-URAC18), Faculty of Sciences of Oujda, Mohammed 1st University, 60000 Oujda, Morocco
| | - Ridouan El Yousfi
- Laboratory Applied Chemistry and Environmental (LCAE-URAC18), Faculty of Sciences of Oujda, Mohammed 1st University, 60000 Oujda, Morocco
| | - Abderrahmane El Idrissi
- Laboratory Applied Chemistry and Environmental (LCAE-URAC18), Faculty of Sciences of Oujda, Mohammed 1st University, 60000 Oujda, Morocco
| | - Youssef El Ouardi
- LIMOME Laboratory, Dhar El Mehraz Faculty of Sciences, Sidi Mohamed Ben Abdellah University, B.P. 1796 Atlas, Fes 30000, Morocco
- Laboratory of Separation Technology, Lappeenranta University of Technology, P.O. Box 20, FI-53851 Lappeenranta, Finland
| | - Katri Laatikainen
- Laboratory of Separation Technology, Lappeenranta University of Technology, P.O. Box 20, FI-53851 Lappeenranta, Finland
| | - Mohamed Abou-Salama
- Laboratory of Molecular Chemistry, Materials and Environment (LMCME), Department of Chemistry, Faculty Multidisciplinary Nador, Mohammed 1st University, P. B. 300, Nador 62700, Morocco.
| | - Soufian El Barkany
- Laboratory of Molecular Chemistry, Materials and Environment (LMCME), Department of Chemistry, Faculty Multidisciplinary Nador, Mohammed 1st University, P. B. 300, Nador 62700, Morocco.
- Applied Chemistry Unit, Sciences and Technologies Faculty, Abdelmalek Essaadi University, 32 003 Al Hoceima, Morocco
| |
Collapse
|
13
|
Salvati Manni L, Davies C, Wood K, Assenza S, Atkin R, Warr GG. Unusual phosphatidylcholine lipid phase behavior in the ionic liquid ethylammonium nitrate. J Colloid Interface Sci 2023; 643:276-281. [PMID: 37068361 DOI: 10.1016/j.jcis.2023.03.161] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 03/22/2023] [Accepted: 03/25/2023] [Indexed: 05/12/2023]
Abstract
HYPOTHESIS The forces that govern lipid self-assembly ionic liquids are similar to water, but their different balance can result in unexpected behaviour. EXPERIMENTS The self-assembly behaviour and phase equilibria of two phospholipids, 1,2-distearoyl-sn-glycero-3-phosphocholine (DSPC) and 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC), in the most common protic ionic liquid, ethylammonium nitrate (EAN) have been investigated as function of composition and temperature by small- and wide-angle X-ray scattering (SAXS/WAXS) and small-angle neutron scattering (SANS). FINDINGS Both lipids form unusual self-assembly structures and show complex and unexpected phase behaviour unlike that seen in water; DSPC undergoes a gel Lβ to crystalline Lc phase transition on warming, while POPC forms worm-like micelles L1 upon dilution. This surprising phase behaviour is attributed to the large size of the EAN ions that solvate the lipid headgroup compared to water changing amphiphile packing. Weaker H-bonding between EAN and lipid headgroups also contributes. These results provide new insight for the design of lipid based nanostructured materials in ionic liquids with atypical properties.
Collapse
Affiliation(s)
- Livia Salvati Manni
- School of Chemistry and University of Sydney Nano Institute, The University of Sydney, Sydney, NSW 2006, Australia; School of Environmental and Life Sciences, University of Newcastle, Callaghan 2308, NSW, Australia
| | - Caitlin Davies
- School of Chemistry and University of Sydney Nano Institute, The University of Sydney, Sydney, NSW 2006, Australia
| | - Kathleen Wood
- Australian Centre for Neutron Scattering, Australian Nuclear Science and Technology Organization, New Illawarra Road, Lucas Heights, NSW 2234, Australia
| | - Salvatore Assenza
- Departamento de Física Teórica de la Materia Condensada, Universidad Autónoma de Madrid, Madrid, Spain; Condensed Matter Physics Center (IFIMAC), Universidad Autónoma de Madrid, Madrid, Spain; Instituto Nicolás Cabrera, Universidad Autónoma de Madrid, Madrid, Spain
| | - Rob Atkin
- School of Molecular Sciences, The University of Western Australia, Perth, WA 6009, Australia
| | - Gregory G Warr
- School of Chemistry and University of Sydney Nano Institute, The University of Sydney, Sydney, NSW 2006, Australia.
| |
Collapse
|
14
|
McGrogan A, Byrne EL, Guiney R, Headen TF, Youngs TGA, Chrobok A, Holbrey JD, Swadźba-Kwaśny M. The structure of protic ionic liquids based on sulfuric acid, doped with excess of sulfuric acid or with water. Phys Chem Chem Phys 2023; 25:9785-9795. [PMID: 36647728 DOI: 10.1039/d2cp04292d] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Neutron scattering with isotopic substitution was used to study the structure of concentrated sulfuric acid, and two protic ionic liquids (PILs): a Brønsted-acidic PIL, synthesised using pyridine and excess of sulfuric acid, [Hpy][HSO4]·H2SO4, and a hydrated PIL, in which an equimolar mixture of sulfuric acid and pyridine has been doped with water, [Hpy][HSO4]·2H2O. Brønsted acidic PILs are excellent solvents/catalysts for esterifications, driving reaction to completion by phase-separating water and ester products. Water-doped PILs are efficient solvents/antisolvents in biomass fractionation. This study was carried out to provide an insight into the relationship between the performance of PILs in the two respective processes and their liquid structure. It was found that a persistent sulfate/sulfuric acid/water network structure was retained through the transition from sulfuric acid to PILs, even in the presence of 2 moles (∼17 wt%) of water. Hydrogen sulfate PILs have the propensity to incorporate water into hydrogen-bonded anionic chains, with strong and directional hydrogen bonds, which essentially form a new water-in-salt solvent system, with its own distinct structure and physico-chemical properties. It is the properties of this hydrated PIL that can be credited both for the good performance in esterification and beneficial solvent/antisolvent behaviour in biomass fractionation.
Collapse
Affiliation(s)
- Anne McGrogan
- The QUILL Research Centre, School of Chemistry and Chemical Engineering, Queen's University Belfast, Belfast, BT9 5AG, UK.
| | - Emily L Byrne
- The QUILL Research Centre, School of Chemistry and Chemical Engineering, Queen's University Belfast, Belfast, BT9 5AG, UK.
| | - Robert Guiney
- The QUILL Research Centre, School of Chemistry and Chemical Engineering, Queen's University Belfast, Belfast, BT9 5AG, UK.
| | - Thomas F Headen
- Rutherford Appleton Laboratory, Chilton, Didcot, OX11 0QX, UK
| | | | - Anna Chrobok
- Department of Chemical Organic Technology and Petrochemistry, Silesian University of Technology, Krzywoustego 4, 44-100, Gilwice, Poland
| | - John D Holbrey
- The QUILL Research Centre, School of Chemistry and Chemical Engineering, Queen's University Belfast, Belfast, BT9 5AG, UK.
| | - Małgorzata Swadźba-Kwaśny
- The QUILL Research Centre, School of Chemistry and Chemical Engineering, Queen's University Belfast, Belfast, BT9 5AG, UK.
| |
Collapse
|
15
|
Li H, Wang J, Warr GG, Atkin R. Extremely slow dynamics of ionic liquid self-assembled nanostructures near a solid surface. J Colloid Interface Sci 2023; 630:658-665. [DOI: 10.1016/j.jcis.2022.10.123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 09/20/2022] [Accepted: 10/23/2022] [Indexed: 11/06/2022]
|
16
|
Influence of Metal Salts Addition on Physical and Electrochemical Properties of Ethyl and Propylammonium Nitrate. Int J Mol Sci 2022; 23:ijms232416040. [PMID: 36555674 PMCID: PMC9781049 DOI: 10.3390/ijms232416040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 12/12/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022] Open
Abstract
In this work, we deepen in the characterization of two protic ionic liquids (PILs), ethylammonium nitrate (EAN) and propylammonium nitrate (PAN). With this aim, we determined the influence of inorganic nitrate salts addition on their physical properties and their electrochemical potential window (EPW). Thus, experimental measurements of electrical conductivity, density, viscosity, refractive index and surface tension of mixtures of {EAN or PAN + LiNO3, Ca(NO3)2, Mg(NO3)2 or Al(NO3)3} at a temperature range between 5 and 95 °C are presented first, except for the last two properties which were measured at 25 °C. In the second part, the corresponding EPWs were determined at 25 °C by linear sweep voltammetry using three different electrochemical cells. Effect of the salt addition was associated mainly with the metal cation characteristics, so, generally, LiNO3 showed the lower influence, followed by Ca(NO3)2, Mg(NO3)2 or Al(NO3)3. The results obtained for the EAN + LiNO3 mixtures, along with those from a previous work, allowed us to develop novel predictive equations for most of the presented physical properties as functions of the lithium salt concentration, the temperature and the water content. Electrochemical results showed that a general order of EPW can be established for both PILs, although exceptions related to measurement conditions and the properties of the mixtures were found.
Collapse
|
17
|
Singh M, Singh H, Sethi O, Kumar Sood A, Singh Kang T. Investigating the thermodynamic properties and interactional behaviour of a protic room temperature ionic liquid in binary mixtures with ethylene glycol derivatives at different temperatures. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.120410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
18
|
Sedov IA, Magsumov TI. Highlighting the difference in nanostructure between domain-forming and domainless protic ionic liquids. Phys Chem Chem Phys 2022; 24:21477-21494. [PMID: 36053503 DOI: 10.1039/d2cp02925a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Nanoheterogeneity in some ionic liquids is a known phenomenon, but quantifying or sometimes even identifying it is not a straightforward task. We compared several known and suggested some novel approaches to identify and characterize domain segregation using the results of atomistic simulations. 10 ammonium-based protic ionic liquids with different propensity to form segregated polar and apolar domains as suggested by experimental studies were considered. They include butyl-, propyl-, 2-methoxyethylammonium nitrate, butyl- and propylammonium hydrogen sulfate, butylammonium thiocyanate (domain-forming liquids), ethylammonium and pyrrolidinium nitrate (weakly pronounced segregation), methylammonium and 2-hydroxyethylammonium nitrate (domainless liquids). Molecular dynamics simulations were performed using models based on the OPLS-AA force field with scaled ion charges. Results show that domains can be recognized and the characteristic domain length scale can be determined from peaks of Ripley's functions, peaks and large-period oscillations of finite-volume radial distribution function integral, or difference of such integrals for polar and apolar atoms, and peaks of local atom density variance. These peaks disappear with increasing temperature due to the disruption of segregated domains. In domain-forming liquids, apolar atoms are more homogeneously distributed in space than polar atoms. In addition, the probability of molecular-sized cavity formation is significantly higher in apolar domains, which determines better solubility of apolar species in domain-forming ILs. The suggested approaches can be applied to various nanostructured liquids including both ionic and molecular solvents and mixtures, as well as other systems with mesoscale ordering.
Collapse
Affiliation(s)
- Igor A Sedov
- Chemical Institute, Kazan Federal University, Kremlevskaya Str., 18, Kazan, 420008, Russian Federation.
| | - Timur I Magsumov
- Chemical Institute, Kazan Federal University, Kremlevskaya Str., 18, Kazan, 420008, Russian Federation.
| |
Collapse
|
19
|
Biological activity, solvation properties and microstructuring of protic imidazolium ionic liquids. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.120450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
20
|
Biswas A, Mallik BS. Multiple Ensembles of the Hydrogen-bonded Network in Ethylammonium Nitrate versus Water from Vibrational Spectral Dynamics of SCN- Probe. Chemphyschem 2022; 23:e202200497. [PMID: 35965410 DOI: 10.1002/cphc.202200497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 08/05/2022] [Indexed: 11/12/2022]
Abstract
We performed classical molecular dynamics simulations to monitor the structural interactions and ultrafast dynamical and spectral response in the protic ionic liquid, ethylammonium nitrate (EAN) and water using the nitrile stretching mode of thiocyanate ion (SCN-) as the vibrational probe. The normalized stretch frequency distribution of nitrile stretch of SCN- attains an asymmetric shape in EAN, indicating the existence of more than one hydrogen-bonding environment in EAN. We computed the 2D IR spectrum from classical trajectories, applying the response function formalism. Spectral diffusion dynamics in EAN undergo an initial rattling of the SCN - inside the local ion-cage occurring at a timescale of 0.10 ps, followed by the breakup of the ion-cage activating molecular diffusion at 7.86 ps timescale. In contrast, the dynamics of structural reorganization occur at a timescale of 0.58 ps in H 2 O. Hence, the time dependence of the frequency-frequency correlation function decay hints at the local molecular structure and ultrafast ion dynamics of the SCN - probe. The loss of frequency correlation read from the peak shape changes in the 2D correlation spectrum as a function of waiting time is faster in H 2 O than in EAN due to the enhanced structural ordering and higher viscosity of the latter. We provide an atomic-level interpretation of the solvation environment around SCN - in EAN and water, which indicates the multiple ensembles of the hydrogen bond network in EAN.
Collapse
Affiliation(s)
- Aritri Biswas
- IITH: Indian Institute of Technology Hyderabad, Chemistry, INDIA
| | - Bhabani S Mallik
- IITH: Indian Institute of Technology Hyderabad, Chemistry, Kandi, 502285, Sangareddy, INDIA
| |
Collapse
|
21
|
Parajó JJ, Otero-Mato JM, Lobo Ferreira AI, Varela LM, Santos LM. Enthalpy of solvation of alkali metal salts in a protic ionic liquid: Effect of cation charge and size. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.119228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
22
|
Computational approaches to structural properties investigation of triethylammonium- and triethanolammonium-based protic ionic liquids. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.119481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
23
|
Hammond OS, Atri R, Bowron DT, Edler KJ. Neutron Diffraction Study of Indole Solvation in Deep Eutectic Systems of Choline Chloride, Malic Acid, and Water. Chemistry 2022; 28:e202200566. [PMID: 35510678 PMCID: PMC9400976 DOI: 10.1002/chem.202200566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Indexed: 11/09/2022]
Abstract
Deep eutectic systems are currently under intense investigation to replace traditional organic solvents in a range of syntheses. Here, indole in choline chloride‐malic acid deep eutectic solvent (DES) was studied as a function of water content, to identify solute interactions with the DES which affect heterocycle reactivity and selectivity, and as a proxy for biomolecule solvation. Empirical Potential Structure Refinement models of neutron diffraction data showed [Cholinium]+ cations associate strongly with the indole π‐system due to electrostatics, whereas malic acid is only weakly associated. Trace water is sequestered into the DES and does not interact strongly with indole. When water is added to the DES, it does not interact with the indole π‐system but is exclusively in‐plane with the heterocyclic rings, forming strong H‐bonds with the ‐NH group, and also weak H‐bonds and thus prominent hydrophobic hydration of the indole aromatic region, which could direct selectivity in reactions.
Collapse
Affiliation(s)
- Oliver S. Hammond
- Centre for Sustainable Chemical Technologies and Department of Chemistry University of Bath Claverton Down Bath BA2 7AY U.K
- Current address: Department of Materials and Environmental Chemistry Stockholm University Stockholm Sweden
| | - Ria Atri
- Centre for Sustainable Chemical Technologies and Department of Chemical Engineering University of Bath Claverton Down Bath BA2 7AY U.K
| | - Daniel T. Bowron
- ISIS Neutron and Muon Source Science and Technology Facilities Council Rutherford Appleton Laboratory Didcot OX11 0QX U.K
| | - Karen J. Edler
- Centre for Sustainable Chemical Technologies and Department of Chemistry University of Bath Claverton Down Bath BA2 7AY U.K
| |
Collapse
|
24
|
Watanabe H, Arai N, Han J, Kawana Y, Tsuzuki S, Umebayashi Y. Tools for studying ion solvation and ion pair formation in ionic liquids: isotopic substitution Raman spectroscopy. ANAL SCI 2022; 38:1025-1031. [PMID: 35672500 DOI: 10.1007/s44211-022-00121-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 04/23/2022] [Indexed: 11/01/2022]
Abstract
Isotopic H/D or 6/7Li substitution Raman spectroscopy was applied to new kinds of ionic liquids; N-methylimidazole (C1Im) and acetic acid (CH3COOH) as the pseudo-protic ionic liquid (pPIL), and both of the neat and the 2,2,3,3-tetrafluoropropyl ether (HFE) diluted Li-glyme solvate ionic liquids (SIL) [Li(Gn)][TFSA] (Gn, glyme n = 3 or 4); TFSA, bis(trifluoromethanesulfonyl)amide) to clarify the proton transfer or the Li+ solvation/ion pair formation. The isotopic substitution Raman (ISR) spectra were obtained as the difference between the samples containing the same composition except the substituted isotope. The calculated and theoretical ISR spectra were also evaluated for comparison. With the C1Im-CH3COOH(D) pPIL, the Raman bands attributable to the C1Im/C1HIm+ gave signals of differential shape, and they were well reproduced with the curve fitting by taking the small amount of C1HIm+ and CH3COO- generation into consideration. The ISR spectra for the SIL were well explained by the formation of the Li-TFSA contact ion pair (CIP) and the solvent shared ion pair (SSIP) in the [Li(G3)][TFSA] SIL. In addition, the ISR spectra for the HFE-diluted [Li(G4)][TFSA] SIL clearly proved that the HFE hardly coordinates to the Li+ in the HFE-diluted SIL. Here, the ISR spectroscopy is proposed as a new tool for studying the ion solvation and the ion pair formation in ionic liquids.
Collapse
Affiliation(s)
- Hikari Watanabe
- Department of Pure and Applied Chemistry, Faculty of Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba, 278-8510, Japan
| | - Nana Arai
- Graduate School of Science and Technology, Niigata University, 8050 Ikarashi, 2-no-cho, Nishi-ku, Niigata City, 950-2181, Japan
| | - Jihae Han
- Graduate School of Science and Technology, Niigata University, 8050 Ikarashi, 2-no-cho, Nishi-ku, Niigata City, 950-2181, Japan
| | - Yui Kawana
- Graduate School of Science and Technology, Niigata University, 8050 Ikarashi, 2-no-cho, Nishi-ku, Niigata City, 950-2181, Japan
| | - Seiji Tsuzuki
- Japan Advanced Chemical Energy Research Center (ACERC), Institute of Advanced Science, Yokohama National University, 79-5 Tokiwadai, Hodogaya-ku, Yokohama, 240-8501, Japan
| | - Yasuhiro Umebayashi
- Graduate School of Science and Technology, Niigata University, 8050 Ikarashi, 2-no-cho, Nishi-ku, Niigata City, 950-2181, Japan.
| |
Collapse
|
25
|
Miao S, Hoffmann I, Gradzielski M, Warr GG. Lipid Membrane Flexibility in Protic Ionic Liquids. J Phys Chem Lett 2022; 13:5240-5245. [PMID: 35670673 DOI: 10.1021/acs.jpclett.2c00980] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Here, we determine by neutron spin echo spectrometry (NSE) how the flexibility of egg lecithin vesicles depends on solvent composition in two protic ionic liquids (PILs) and their aqueous mixtures. In combination with small-angle neutron scattering (SANS), dynamic light scattering (DLS), and fluorescent probe microscopy, we show that the bending modulus is up to an order of magnitude lower than in water but with no change in bilayer thickness or nonpolar chain composition. This effect is attributed to the dynamic association and exchange of the IL cation between the membrane and bulk liquid, which has the same origin as the underlying amphiphilic nanostructure of the IL solvent itself. This provides a new mechanism by which to tune and control lipid membrane behavior.
Collapse
Affiliation(s)
- Shurui Miao
- School of Chemistry and University of Sydney Nano Institute, The University of Sydney, Sydney, NSW 2006, Australia
| | - Ingo Hoffmann
- Institut Max von Laue-Paul Langevin (ILL), 71 avenue des Martyrs, CS 20156, Cedex 9, F-38042 Grenoble, France
| | - Michael Gradzielski
- Stranski-Laboratorium für Physikalische und Theoretische Chemie, Institut für Chemie, Technische Universität Berlin, Straße des 17. Juni 124, Sekr. TC7, D-10623 Berlin, Germany
| | - Gregory G Warr
- School of Chemistry and University of Sydney Nano Institute, The University of Sydney, Sydney, NSW 2006, Australia
| |
Collapse
|
26
|
Enthalpy profile of pH-induced flocculation and redispersion of polyacrylic acid-coated nanoparticles in protic ionic liquid, N,N-diethylethanolammonium trifluoromethanesulfonate. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2021.118146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
27
|
Zhang Y, Marlow JB, Millar W, Aman ZM, Silvester DS, Warr GG, Atkin R, Li H. Nanostructure, electrochemistry and potential-dependent lubricity of the catanionic surface-active ionic liquid [P 6,6,6,14] [AOT]. J Colloid Interface Sci 2022; 608:2120-2130. [PMID: 34752982 DOI: 10.1016/j.jcis.2021.10.120] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Revised: 10/14/2021] [Accepted: 10/20/2021] [Indexed: 10/20/2022]
Abstract
HYPOTHESIS A catanionic surface-active ionic liquid (SAIL) trihexyltetradecylphosphonium 1,4-bis(2-ethylhexoxy)-1,4-dioxobutane-2-sulfonate ([P6,6,6,14] [AOT]) is nanostructured in the bulk and at the interface. The interfacial nanostructure and lubricity may be changed by applying a potential. EXPERIMENTS The bulk structure and viscosity have been investigated using small angle X-ray scattering (SAXS) and rheometry. The interfacial structure and lubricity as a function of potential have been investigated using atomic force microscopy (AFM). The electrochemistry has been investigated using cyclic voltammetry. FINDINGS [P6,6,6,14] [AOT] shows sponge-like bulk nanostructure with distinct interdigitation of cation-anion alkyl chains. Shear-thinning occurs at 293 K and below, but becomes less obvious on heating up to 313 K. Voltammetric analysis reveals that the electrochemical window of [P6,6,6,14] [AOT] on a gold micro disk electrode exceeds the potential range of the AFM experiments and that negligible redox activity occurs in this range. The interfacial layered structure of [P6,6,6,14] [AOT] is weaker than conventional ILs and SAILs, whereas lubricity is better, confirming the inverse correlation between the near-surface structure and lubricity. The adhesive forces of [P6,6,6,14] [AOT] are lower at -1.0 V than at open circuit potential and +1.0 V, likely due to reduced electrostatic interactions caused by shielding of charge centres via long alkyl chains.
Collapse
Affiliation(s)
- Yunxiao Zhang
- School of Molecular Sciences, The University of Western Australia, Perth, Western Australia, Australia
| | - Joshua B Marlow
- School of Chemistry and Sydney Nano Institute, The University of Sydney, Sydney, NSW 2006, Australia
| | - Wade Millar
- School of Molecular and Life Sciences, Curtin University, GPO Box U1987, Perth 6845, Western Australia, Australia
| | - Zachary M Aman
- Fluid Science and Resources Division, School of Engineering, The University of Western Australia, Perth, Western Australia, Australia
| | - Debbie S Silvester
- School of Molecular and Life Sciences, Curtin University, GPO Box U1987, Perth 6845, Western Australia, Australia
| | - Gregory G Warr
- School of Chemistry and Sydney Nano Institute, The University of Sydney, Sydney, NSW 2006, Australia
| | - Rob Atkin
- School of Molecular Sciences, The University of Western Australia, Perth, Western Australia, Australia.
| | - Hua Li
- School of Molecular Sciences, The University of Western Australia, Perth, Western Australia, Australia; Centre for Microscopy, Characterisation and Analysis, The University of Western Australia, Perth, Western Australia, Australia.
| |
Collapse
|
28
|
EPR study of nanostructuring in protic ionic liquids [PriNH3]NO3 and [BuNH3]NO3. Russ Chem Bull 2022. [DOI: 10.1007/s11172-021-3353-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
29
|
Mudring AV, Hammond O. Ionic Liquids and Deep Eutectics as a Transformative Platform for the Synthesis of Nanomaterials. Chem Commun (Camb) 2022; 58:3865-3892. [DOI: 10.1039/d1cc06543b] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Ionic liquids (ILs) are becoming a revolutionary synthesis medium for inorganic nanomaterials, permitting more efficient, safer and environmentally benign preparation of high quality products. A smart combination of ILs and...
Collapse
|
30
|
Filippov A, Gnezdilov OI, Antzutkin ON. Dynamics of ethylammonium nitrate near PTFE surface. Magn Reson Imaging 2021; 85:102-107. [PMID: 34678437 DOI: 10.1016/j.mri.2021.10.022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 10/17/2021] [Accepted: 10/17/2021] [Indexed: 11/26/2022]
Abstract
Self-diffusion of ions in the protic ionic liquid ethylammonium nitrate (EAN) was studied by 1H NMR pulsed field gradient techniques between 294 and 393 K in the presence of a PTFE insert in a 5-mm NMR tube. At all temperatures, the bulk diffusion of ions (measured by 1H and 15N NMR) can be described by a unique diffusion coefficient. The presence of solid hydrophobic surfaces of PTFE induces regions of EAN in their vicinity, where diffusion of ions, both cations and anions, is reduced compared to the bulk values. An additional line-shape analysis in 1H NMR spectra showed that local mobility of ethylammonium cations in the surface layers near PTFE is also reduced.
Collapse
Affiliation(s)
- Andrei Filippov
- Chemistry of Interfaces, Luleå University of Technology, SE-97187 Luleå, Sweden; Medical and Biological Physics, Kazan State Medical University, 420012 Kazan, Russia.
| | - Oleg I Gnezdilov
- Institute of Physics, Kazan Federal University, 420008 Kazan, Russia
| | - Oleg N Antzutkin
- Chemistry of Interfaces, Luleå University of Technology, SE-97187 Luleå, Sweden
| |
Collapse
|
31
|
Filippov A, Alexandrov AS, Gimatdinov R, Ullah Shah F. Unusual ion transport behaviour of ethylammonium nitrate mixed with lithium nitrate. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.116841] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
32
|
|
33
|
Johnson CA, Parker AW, Donaldson PM, Garrett-Roe S. An ultrafast vibrational study of dynamical heterogeneity in the protic ionic liquid ethyl-ammonium nitrate. I. Room temperature dynamics. J Chem Phys 2021; 154:134502. [PMID: 33832238 DOI: 10.1063/5.0044822] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Using ultrafast two-dimensional infrared spectroscopy (2D-IR), a vibrational probe (thiocyanate, SCN-) was used to investigate the hydrogen bonding network of the protic ionic liquid ethyl-ammonium nitrate (EAN) in comparison to H2O. The 2D-IR experiments were performed in both parallel (⟨ZZZZ⟩) and perpendicular (⟨ZZXX⟩) polarizations at room temperature. In EAN, the non-Gaussian lineshape in the FTIR spectrum of SCN- suggests two sub-ensembles. Vibrational relaxation rates extracted from the 2D-IR spectra provide evidence of the dynamical differences between the two sub-ensembles. We support the interpretation of two sub-ensembles with response function simulations of two overlapping bands with different vibrational relaxation rates and, otherwise, similar dynamics. The measured rates for spectral diffusion depend on polarization, indicating reorientation-induced spectral diffusion (RISD). A model of restricted molecular rotation (wobbling in a cone) fully describes the observed spectral diffusion in EAN. In H2O, both RISD and structural spectral diffusion contribute with similar timescales. This complete characterization of the dynamics at room temperature provides the basis for the temperature-dependent measurements in Paper II of this series.
Collapse
Affiliation(s)
- Clinton A Johnson
- Department of Chemistry, University of Pittsburgh, 219 Parkman Avenue, Pittsburgh, Pennsylvania 15260, USA
| | - Anthony W Parker
- Central Laser Facility, STFC, Rutherford Appleton Laboratory, Harwell Campus, Didcot, United Kingdom
| | - Paul M Donaldson
- Central Laser Facility, STFC, Rutherford Appleton Laboratory, Harwell Campus, Didcot, United Kingdom
| | - Sean Garrett-Roe
- Department of Chemistry, University of Pittsburgh, 219 Parkman Avenue, Pittsburgh, Pennsylvania 15260, USA
| |
Collapse
|
34
|
Bryant SJ, Garcia A, Clarke RJ, Warr GG. Selective ion transport across a lipid bilayer in a protic ionic liquid. SOFT MATTER 2021; 17:2688-2694. [PMID: 33533359 DOI: 10.1039/d0sm02225j] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Ionic liquids (ILs) have exhibited enormous potential as electrolytes, designer solvents and reaction media, as well as being surprisingly effective platforms for amphiphile self-assembly and for preserving structure of complex biomolecules. This has led to their exploration as media for long-term biopreservation and in biosensors, for which their viability depends on their ability to sustain both structure and function within complex, multicomponent nanoscale compartments and assemblies. Here we show that a tethered lipid bilayer can be assembled directly in a purely IL environment that retains its structure upon exchange between IL and aqueous buffer, and that the membrane transporter valinomycin can be incorporated so as to retain its functionality and cation selectivity. This paves the way for the development of long-lived, non-aqueous microreactors and sensor assemblies, and demonstrates the potential for complex proteins to retain functionality in non-aqueous, ionic liquid solvents.
Collapse
Affiliation(s)
- Saffron J Bryant
- School of Chemistry, The University of Sydney, NSW 2006, Australia and School of Science, RMIT University, Melbourne, Victoria 3001, Australia.
| | - Alvaro Garcia
- School of Chemistry, The University of Sydney, NSW 2006, Australia and School of Life Sciences, University of Technology Sydney, NSW 2007, Australia
| | - Ronald J Clarke
- School of Chemistry, The University of Sydney, NSW 2006, Australia
| | - Gregory G Warr
- School of Chemistry, The University of Sydney, NSW 2006, Australia and University of Sydney Nano Institute, The University of Sydney, NSW 2006, Australia
| |
Collapse
|
35
|
Goloviznina K, Gong Z, Costa Gomes MF, Pádua AAH. Extension of the CL&Pol Polarizable Force Field to Electrolytes, Protic Ionic Liquids, and Deep Eutectic Solvents. J Chem Theory Comput 2021; 17:1606-1617. [PMID: 33555860 DOI: 10.1021/acs.jctc.0c01002] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The polarizable CL&Pol force field presented in our previous study, Transferable, Polarizable Force Field for Ionic Liquids (J. Chem. Theory Comput. 2019, 15, 5858, DOI: http://doi.org/10.1021/acs.jctc.9b0068910.1021/acs.jctc.9b00689), is extended to electrolytes, protic ionic liquids (PIL), deep eutectic solvents (DES), and glycols. These systems are problematic in polarizable simulations because they contain either small, highly charged ions or strong hydrogen bonds, which cause trajectory instabilities due to the pull exerted on the induced dipoles. We use a Tang-Toennies (TT) function to dampen, or smear, the interactions between charges and induced dipole at a short range involving small, highly charged atoms (such as hydrogen or lithium), thus preventing the "polarization catastrophe". The new force field gives stable trajectories and is validated through comparison with experimental data on density, viscosity, and ion diffusion coefficients of liquid systems of the above-mentioned classes. The results also shed light on the hydrogen-bonding pattern in ethylammonium nitrate, a PIL, for which the literature contains conflicting views. We describe the implementation of the TT damping function, of the temperature-grouped Nosé-Hoover thermostat for polarizable molecular dynamics (MD) and of the periodic perturbation method for viscosity evaluation from non-equilibrium trajectories in the LAMMPS MD code. The main result of this work is the wider applicability of the CL&Pol polarizable force field to new, important classes of fluids, achieving robust trajectories and a good description of equilibrium and transport properties in challenging systems. The fragment-based approach of CL&Pol will allow ready extension to a wide variety of PILs, DES, and electrolytes.
Collapse
Affiliation(s)
- Kateryna Goloviznina
- Laboratoire de Chimie, École Normale Supérieure de Lyon & CNRS, 69364 Lyon, France
| | - Zheng Gong
- Laboratoire de Chimie, École Normale Supérieure de Lyon & CNRS, 69364 Lyon, France
| | | | - Agílio A H Pádua
- Laboratoire de Chimie, École Normale Supérieure de Lyon & CNRS, 69364 Lyon, France
| |
Collapse
|
36
|
Mariani A, Bonomo M, Gao X, Centrella B, Nucara A, Buscaino R, Barge A, Barbero N, Gontrani L, Passerini S. The unseen evidence of Reduced Ionicity: The elephant in (the) room temperature ionic liquids. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2020.115069] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
37
|
Kumari P, Pillai VVS, Gobbo D, Ballone P, Benedetto A. The transition from salt-in-water to water-in-salt nanostructures in water solutions of organic ionic liquids relevant for biological applications. Phys Chem Chem Phys 2021; 23:944-959. [DOI: 10.1039/d0cp04959j] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Computer simulations show how nano-structural motifs in organic salts/water solutions change with salt content increasing from dilute to highly concentrated.
Collapse
Affiliation(s)
- P. Kumari
- School of Physics
- University College
- Dublin
- Ireland
- Conway Institute for Biomolecular and Biomedical Research
| | - V. V. S. Pillai
- School of Physics
- University College
- Dublin
- Ireland
- Conway Institute for Biomolecular and Biomedical Research
| | - D. Gobbo
- Computational and Chemical Biology
- Fondazione Istituto Italiano di Tecnologia
- Genova
- Italy
| | - P. Ballone
- School of Physics
- University College
- Dublin
- Ireland
- Conway Institute for Biomolecular and Biomedical Research
| | - A. Benedetto
- School of Physics
- University College
- Dublin
- Ireland
- Conway Institute for Biomolecular and Biomedical Research
| |
Collapse
|
38
|
Miao S, Wood J, Jiang HJ, Imberti S, Atkin R, Warr G. Unusual origin of choline phenylalaninate ionic liquid nanostructure. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2020.114327] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
39
|
Chen Z, Tonouchi Y, Matsumoto K, Tsuzuki S, Nagata T, Katahira M, Hagiwara R. Structural evaluation and protium-deuterium exchange in 1-ethyl-3-methylimidazolium halide-ethylene glycol mixtures. J Fluor Chem 2020. [DOI: 10.1016/j.jfluchem.2020.109637] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
40
|
Koyama Y, Shimono S, Abe H, Matsuishi K. Crystal polymorphs in 1-alkyl-3-methylimidazolium perfluorobutanesulfonate ionic liquids. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2020.113908] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
41
|
Abe H, Koyama Y, Kishimura H, Matsuishi K. High-pressure crystal polymorph of the protic ionic liquid: Ethylammonium nitrate. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2020.113959] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
42
|
Brunner M, Imberti S, Warr GG, Atkin R. Liquid Structure of Single and Mixed Cation Alkylammonium Bromide Urea Deep Eutectic Solvents. J Phys Chem B 2020; 124:8651-8664. [PMID: 32845151 DOI: 10.1021/acs.jpcb.0c06380] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The liquid structures of three alkyl ammonium bromide and urea DESs, ethylammonium bromide:urea (1:1), butylammonium bromide:urea (1:1), and ethylammonium bromide/butylammonium bromide:urea (0.5:0.5:1), have been studied using small-angle neutron diffraction with H/D substituted sample contrasts. The diffraction data was fit using empirical potential structure refinement (EPSR). An amphiphilic nanostructure was found in all DESs due to cation alkyl chains being solvophobically excluded from charged domains, and due to clustering together. The polar domain was continuous in all three DESs, whereas the apolar domain was continuous for the butylammonium DES and in the mixed DES, but not the ethylammonium DES. This is attributed to solvophobic interactions being weaker for the short ethyl chain. Surprisingly, the urea also forms large clusters in all three DESs. In ethylammonium bromide:urea (1:1), urea-urea orientations are mainly perpendicular, but in butylammonium bromide:urea (1:1) and the mixed system in-plane and perpendicular arrangements are found. The liquid nanostructures found in this work, especially for the ethylammonium DES, are different from those found previously for the corresponding DESs formed using glycerol, revealing that the DES amphiphilic nanostructure is sensitive to the nature of the HBD (hydrogen bond donor).
Collapse
Affiliation(s)
- Manuel Brunner
- School of Molecular Sciences, The University of Western Australia, 35 Stirling Highway, Perth, Western Australia 6009, Australia
| | - Silvia Imberti
- STFC, Rutherford Appleton Laboratory, Didcot OX11 0QX, United Kingdom
| | - Gregory G Warr
- School of Chemistry and University of Sydney Nano Institute, The University of Sydney, Sydney, New South Wales 2006, Australia
| | - Rob Atkin
- School of Molecular Sciences, The University of Western Australia, 35 Stirling Highway, Perth, Western Australia 6009, Australia
| |
Collapse
|
43
|
López-Bueno C, Bittermann MR, Dacuña-Mariño B, Llamas-Saiz AL, Del Carmen Giménez-López M, Woutersen S, Rivadulla F. Low temperature glass/crystal transition in ionic liquids determined by H-bond vs. coulombic strength. Phys Chem Chem Phys 2020; 22:20524-20530. [PMID: 32966417 DOI: 10.1039/d0cp02633f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Self-assembled ionic liquid crystals are anisotropic ionic conductors, with potential applications in areas as important as solar cells, battery electrolytes and catalysis. However, many of these applications are still limited by the lack of precise control over the variety of phases that can be formed (nematic, smectic, or semi/fully crystalline), determined by a complex pattern of different intermolecular interactions. Here we report the results of a systematic study of crystallization of several imidazolium salts in which the relative contribution of isotropic coulombic and directional H-bond interactions is carefully tuned. Our results demonstrate that the relative strength of directional H-bonds with respect to the isotropic Coulomb interaction determines the formation of a crystalline, semi-crystalline or glassy phase at low temperature. The possibility of pinpointing H-bonding directionality in ionic liquids make them model systems to study the crystallization of an ionic solid under a perturbed Coulomb potential.
Collapse
Affiliation(s)
- Carlos López-Bueno
- CIQUS, Centro de Investigación en Química Biolóxica e Materiais Moleculares, Universidade de Santiago de Compostela, 15782-Santiago de Compostela, Spain.
| | - Marius R Bittermann
- Van't Hoff Institute for Molecular Sciences, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - Bruno Dacuña-Mariño
- X-Ray Unit, RIAIDT, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | | | - María Del Carmen Giménez-López
- CIQUS, Centro de Investigación en Química Biolóxica e Materiais Moleculares, Universidade de Santiago de Compostela, 15782-Santiago de Compostela, Spain. and Departamento de Química-Inorgánica, Universidade de Santiago de Compostela, 15782-Santiago de Compostela, Spain
| | - Sander Woutersen
- Van't Hoff Institute for Molecular Sciences, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - Francisco Rivadulla
- CIQUS, Centro de Investigación en Química Biolóxica e Materiais Moleculares, Universidade de Santiago de Compostela, 15782-Santiago de Compostela, Spain. and Departamento de Química-Física, Universidade de Santiago de Compostela, 15782-Santiago de Compostela, Spain
| |
Collapse
|
44
|
Bryant SJ, Atkin R, Gradzielski M, Warr GG. Catanionic Surfactant Self-Assembly in Protic Ionic Liquids. J Phys Chem Lett 2020; 11:5926-5931. [PMID: 32628489 DOI: 10.1021/acs.jpclett.0c01608] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Mixing of cationic and anionic surfactants in water can result in pseudo-double-tailed catanionic surfactant ion pairs that form lamellar phases or vesicles that are unstable toward electrolyte addition. Here we show that despite the very high ionic strengths, catanionic surfactants counterintuitively form a wider variety of self-assembled aggregates in pure ionic liquids (ILs, pure salts in a liquid phase) than in water, including micelles, vesicles, and lyotropic phases. Self-assembled structures only form when the IL is sufficiently polar to drive self-assembly through electrostatic interactions and/or H-bond networks, but the catanionic effect is manifested only when the IL does not itself exhibit pronounced amphiphilic nanostructure. This enables the type of catanionic aggregate formed to be designed by changing the hydrogen bonds between the ions through variation of the structures of the cation and anion. These results reveal an entirely new way of controlling catanionic surfactant self-assembly under nonaqueous and high-salt conditions.
Collapse
Affiliation(s)
- Saffron J Bryant
- School of Chemistry and Sydney Nano Institute, The University of Sydney, Sydney, NSW 2006, Australia
| | - Rob Atkin
- School of Molecular Sciences, University of Western Australia, Crawley, WA 6009, Australia
| | - Michael Gradzielski
- Institute for Chemistry, Technische Universität Berlin, Strasse des 17 Juni 124, D-10623 Berlin, Germany
| | - Gregory G Warr
- School of Chemistry and Sydney Nano Institute, The University of Sydney, Sydney, NSW 2006, Australia
| |
Collapse
|
45
|
Wang YL, Li B, Sarman S, Mocci F, Lu ZY, Yuan J, Laaksonen A, Fayer MD. Microstructural and Dynamical Heterogeneities in Ionic Liquids. Chem Rev 2020; 120:5798-5877. [PMID: 32292036 PMCID: PMC7349628 DOI: 10.1021/acs.chemrev.9b00693] [Citation(s) in RCA: 200] [Impact Index Per Article: 50.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Indexed: 12/11/2022]
Abstract
Ionic liquids (ILs) are a special category of molten salts solely composed of ions with varied molecular symmetry and charge delocalization. The versatility in combining varied cation-anion moieties and in functionalizing ions with different atoms and molecular groups contributes to their peculiar interactions ranging from weak isotropic associations to strong, specific, and anisotropic forces. A delicate interplay among intra- and intermolecular interactions facilitates the formation of heterogeneous microstructures and liquid morphologies, which further contributes to their striking dynamical properties. Microstructural and dynamical heterogeneities of ILs lead to their multifaceted properties described by an inherent designer feature, which makes ILs important candidates for novel solvents, electrolytes, and functional materials in academia and industrial applications. Due to a massive number of combinations of ion pairs with ion species having distinct molecular structures and IL mixtures containing varied molecular solvents, a comprehensive understanding of their hierarchical structural and dynamical quantities is of great significance for a rational selection of ILs with appropriate properties and thereafter advancing their macroscopic functionalities in applications. In this review, we comprehensively trace recent advances in understanding delicate interplay of strong and weak interactions that underpin their complex phase behaviors with a particular emphasis on understanding heterogeneous microstructures and dynamics of ILs in bulk liquids, in mixtures with cosolvents, and in interfacial regions.
Collapse
Affiliation(s)
- Yong-Lei Wang
- Department
of Materials and Environmental Chemistry, Arrhenius Laboratory, Stockholm University, SE-106 91 Stockholm, Sweden
| | - Bin Li
- School
of Chemical Engineering and Technology, Sun Yat-sen University, Zhuhai 519082, P. R. China
| | - Sten Sarman
- Department
of Materials and Environmental Chemistry, Arrhenius Laboratory, Stockholm University, SE-106 91 Stockholm, Sweden
| | - Francesca Mocci
- Department
of Chemical and Geological Sciences, University
of Cagliari, I-09042 Monserrato, Italy
| | - Zhong-Yuan Lu
- State
Key Laboratory of Supramolecular Structure and Materials, Institute
of Theoretical Chemistry, Jilin University, Changchun 130021, P. R. China
| | - Jiayin Yuan
- Department
of Materials and Environmental Chemistry, Arrhenius Laboratory, Stockholm University, SE-106 91 Stockholm, Sweden
| | - Aatto Laaksonen
- Department
of Materials and Environmental Chemistry, Arrhenius Laboratory, Stockholm University, SE-106 91 Stockholm, Sweden
- State
Key Laboratory of Materials-Oriented and Chemical Engineering, Nanjing Tech University, Nanjing 210009, P. R. China
- Centre of
Advanced Research in Bionanoconjugates and Biopolymers, Petru Poni Institute of Macromolecular Chemistry Aleea Grigore Ghica-Voda, 41A, 700487 Iasi, Romania
- Department
of Engineering Sciences and Mathematics, Division of Energy Science, Luleå University of Technology, SE-97187 Luleå, Sweden
| | - Michael D. Fayer
- Department
of Chemistry, Stanford University, Stanford, California 94305, United States
| |
Collapse
|
46
|
Miao S, Atkin R, Warr GG. Amphiphilic nanostructure in choline carboxylate and amino acid ionic liquids and solutions. Phys Chem Chem Phys 2020; 22:3490-3498. [PMID: 31990285 DOI: 10.1039/c9cp06752c] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The liquid structures of six choline carboxylate/amino acid ionic liquids (bio-ILs) and their mixtures with water and various n-alkanols have been investigated by small-angle X-ray scattering (SAXS). The ILs exhibit long-range amphiphilic nanostructure comprised of polar and apolar domains that can be controlled by choice of anion, and which is tolerant to water dilution. Mixtures with n-alkanols can lead to marked changes in domain size and ordering. Utilising the Teubner-Strey model, we find amphiphilicity factors in many of these mixtures are comparable to those observed in conventional microemulsions, and that cooperative assembly in bio-IL/alkanol mixtures can enhance amphiphilicity, with potential to improve performance in a range of applications.
Collapse
Affiliation(s)
- Shurui Miao
- School of Chemistry and University of Sydney Nano Institute, The University of Sydney, NSW 2006, Australia.
| | - Rob Atkin
- School of Molecular Sciences, The University of Western Australia, WA 6009, Australia
| | - Gregory G Warr
- School of Chemistry and University of Sydney Nano Institute, The University of Sydney, NSW 2006, Australia.
| |
Collapse
|
47
|
Warr GG, Atkin R. Solvophobicity and amphiphilic self-assembly in neoteric and nanostructured solvents. Curr Opin Colloid Interface Sci 2020. [DOI: 10.1016/j.cocis.2019.12.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
48
|
Structural, Thermodiffusive and Thermoelectric Properties of Maghemite Nanoparticles Dispersed in Ethylammonium Nitrate. CHEMENGINEERING 2020. [DOI: 10.3390/chemengineering4010005] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Ethylammonium nitrate (ionic liquid) based ferrofluids with citrate-coated nanoparticles and Na + counterions were synthesized for a wide range of nanoparticle (NP) volume fractions ( Φ ) of up to 16%. Detailed structural analyses on these fluids were performed using magneto-optical birefringence and small angle X-ray scattering (SAXS) methods. Furthermore, the thermophoretic and thermodiffusive properties (Soret coefficient S T and diffusion coefficient D m ) were explored by forced Rayleigh scattering experiments as a function of T and Φ . They were compared to the thermoelectric potential (Seebeck coefficient, Se) properties induced in these fluids. The results were analyzed using a modified theoretical model on S T and Se adapted from an existing model developed for dispersions in more standard polar media which allows the determination of the Eastman entropy of transfer ( S ^ NP ) and the effective charge ( Z 0 e f f ) of the nanoparticles.
Collapse
|
49
|
Cai M, Yu Q, Liu W, Zhou F. Ionic liquid lubricants: when chemistry meets tribology. Chem Soc Rev 2020; 49:7753-7818. [PMID: 33135717 DOI: 10.1039/d0cs00126k] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Ionic liquids (ILs) have emerged as potential lubricants in 2001. Subsequently, there has been tremendous research interest in ILs from the tribology society since their discovery as novel synthetic lubricating materials. This also expands the research area of ILs. Consistent with the requirement of searching for alternative and eco-friendly lubricants, IL lubrication will experience further development in the coming years. Herein, we review the research progress of IL lubricants. Generally, the tribological properties of IL lubricants as lubricating oils, additives and thin films are reviewed in detail and their lubrication mechanisms discussed. Considering their actual applications, the flexible design of ILs allows the synthesis of task-specific and tribologically interesting ILs to overcome the drawbacks of the application of ILs, such as high cost, poor compatibility with traditional oils, thermal oxidization and corrosion. Nowadays, increasing research is focused on halogen-free ILs, green ILs, synthesis-free ILs and functional ILs. In addition to their macroscopic properties, the nanoscopic performance of ILs on a small scale and in small gaps is also important in revealing their tribological mechanisms. It has been shown that when sliding surfaces are compressed, in comparison with a less polar molecular lubricant, ion pairs resist "squeeze out" due to the strong interaction between the ions of ILs and oppositely charged surfaces, resulting in a film that remains in place at higher shear forces. Thus, the lubricity of ILs can be externally controlled in situ by applying electric potentials. In summary, ILs demonstrate sufficient design versatility as a type of model lubricant for meeting the requirements of mechanical engineering. Accordingly, their perspectives and future development are discussed in this review.
Collapse
Affiliation(s)
- Meirong Cai
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China.
| | - Qiangliang Yu
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China.
| | - Weimin Liu
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China. and State Key Laboratory of Solidification Processing, College of Materials Science and Technology, Northwestern Polytechnical University, 127 YouyiXi Road, Xi an 710072, China
| | - Feng Zhou
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China.
| |
Collapse
|
50
|
Chakraborty M, Ahmed T, Sarkar M. Understanding the Behavior of Monocationic and Dicationic Room-Temperature Ionic Liquids through Resonance Energy-Transfer Studies. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:16172-16184. [PMID: 31721590 DOI: 10.1021/acs.langmuir.9b02776] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The present work has been undertaken with an objective to understand the differences in the local structural organization of imidazolium-based monocationic ionic liquids (MILs) and dicationic ionic liquids (DILs) through resonance energy-transfer (RET) studies. In this study, a neat IL is used as a donor and a charged species rhodamine 6G (R6G) is used as an acceptor unit because of the fact that they satisfy the spectroscopic criteria that are needed for an RET event to take place. Additionally, R6G, being a charged species, is expected to facilitate the electrostatic interactions with the ILs which are also charged. Specifically, two imidazolium-based germinal DILs and their monocationic counterparts are used for the present investigations. Additionally, the studies are carried out in some selected MILs where the lengths of the alkyl side chains are kept unchanged for MILs and DILs. Interestingly, the present data reveal that the RET interaction is more favorable for DILs than for MILs, even though the DILs are relatively bulkier than their monocationic counterparts. More interestingly, the RET interaction is also found to be more favorable for DILs than for MILs, where the length of the alkyl group is kept fixed for MILs and DILs. The result of the present study delineates that the alkyl chain length on the cation is not the sole factor contributing to the RET outcomes for DILs and MILs but the local structure of DILs also contributes significantly to the same. The current investigation clearly indicates that DILs have a more compact local structure than that of MILs. Essentially, the current study highlights that a cost-effective, noninvasive technique such as RET is quite effective in capturing the differences in the nanostructural organization of MILs and DILs.
Collapse
Affiliation(s)
- Manjari Chakraborty
- School of Chemical Sciences , National Institute of Science Education and Research , HBNI, Bhimpur-Padanpur , Jatani, Khordha, 752050 Bhubaneswar , Odisha , India
| | - Tasnim Ahmed
- Department of Chemistry , University of Hyderabad , Hyderabad 500046 , India
| | - Moloy Sarkar
- School of Chemical Sciences , National Institute of Science Education and Research , HBNI, Bhimpur-Padanpur , Jatani, Khordha, 752050 Bhubaneswar , Odisha , India
| |
Collapse
|