1
|
Olave B. DNA nanotechnology in ionic liquids and deep eutectic solvents. Crit Rev Biotechnol 2024; 44:941-961. [PMID: 37518062 DOI: 10.1080/07388551.2023.2229950] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 04/28/2023] [Accepted: 06/01/2023] [Indexed: 08/01/2023]
Abstract
Nucleic acids have the ability to generate advanced nanostructures in a controlled manner and can interact with target sequences or molecules with high affinity and selectivity. For this reason, they have applications in a variety of nanotechnology applications, from highly specific sensors to smart nanomachines and even in other applications such as enantioselective catalysis or drug delivery systems. However, a common disadvantage is the use of water as the ubiquitous solvent. The use of nucleic acids in non-aqueous solvents offers the opportunity to create a completely new toolbox with unprecedented degrees of freedom. Ionic liquids (ILs) and deep eutectic solvents (DESs) are the most promising alternative solvents due to their unique electrolyte and solvent roles, as well as their ability to maintain the stability and functionality of nucleic acids. This review aims to be a comprehensive, critical, and accessible evaluation of how much this goal has been achieved and what are the most critical parameters for accomplishing a breakthrough.
Collapse
Affiliation(s)
- Beñat Olave
- University of the Basque Country (UPV/EHU), Donostia-San Sebastian, Spain
| |
Collapse
|
2
|
Knanghat R, Senapati S. Toward Greater DNA Stability by Leveraging the Proton-Donating Ability of Protic Ionic Liquids. J Phys Chem B 2024. [PMID: 38682809 DOI: 10.1021/acs.jpcb.3c08479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/01/2024]
Abstract
Deoxyribonucleic acid (DNA) stability is a prerequisite in many applications, ranging from DNA-based vaccines and data storage to gene therapy. However, the strategies to enhance DNA stability are limited, and the underlying mechanisms are poorly understood. Ionic liquids (ILs), molten salts of organic cations and organic/inorganic anions, are showing tremendous prospects in myriads of applications. With a judicious choice of constituent ions, the protic nature of ILs can be tuned. In this work, we investigate the relative stability of full-length genomic DNA in aqueous IL solutions of increasing protic nature. Our experimental measurements show that the protic ionic liquids (PILs) enhance the DNA melting temperature significantly while unaltering its native B-conformation. Molecular dynamics simulations and quantum mechanical calculation results suggest that the intramolecular Watson-Crick H-bonding in DNA remains unaffected and, in addition, the PILs induce stronger H-bonding networks in solution through their ability to make multiple intermolecular H-bonds with the nucleobases and among its constituent ions, thus aiding greater DNA stability. The detailed understanding obtained from this study could bring about the much-awaited breakthrough in improved DNA stability for its sustained use in the aforesaid applications!
Collapse
Affiliation(s)
- Rajani Knanghat
- Department of Biotechnology and BJM School of Biosciences, Indian Institute of Technology Madras, Chennai 600036, India
| | - Sanjib Senapati
- Department of Biotechnology and BJM School of Biosciences, Indian Institute of Technology Madras, Chennai 600036, India
| |
Collapse
|
3
|
Hu Y, Xing Y, Yue H, Chen T, Diao Y, Wei W, Zhang S. Ionic liquids revolutionizing biomedicine: recent advances and emerging opportunities. Chem Soc Rev 2023; 52:7262-7293. [PMID: 37751298 DOI: 10.1039/d3cs00510k] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/27/2023]
Abstract
Ionic liquids (ILs), due to their inherent structural tunability, outstanding miscibility behavior, and excellent electrochemical properties, have attracted significant research attention in the biomedical field. As the application of ILs in biomedicine is a rapidly emerging field, there is still a need for systematic analyses and summaries to further advance their development. This review presents a comprehensive survey on the utilization of ILs in the biomedical field. It specifically emphasizes the diverse structures and properties of ILs with their relevance in various biomedical applications. Subsequently, we summarize the mechanisms of ILs as potential drug candidates, exploring their effects on various organisms ranging from cell membranes to organelles, proteins, and nucleic acids. Furthermore, the application of ILs as extractants and catalysts in pharmaceutical engineering is introduced. In addition, we thoroughly review and analyze the applications of ILs in disease diagnosis and delivery systems. By offering an extensive analysis of recent research, our objective is to inspire new ideas and pathways for the design of innovative biomedical technologies based on ILs.
Collapse
Affiliation(s)
- Yanhui Hu
- Beijing Key Laboratory of Ionic Liquids Clean Process, CAS Key Laboratory of Green Process and Engineering, State Key Laboratory of Multiphase Complex Systems, State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China.
- Innovation Academy for Green Manufacture, Chinese Academy of Sciences, Beijing 100190, China
- College of Chemical and Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
- Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu 610041, China
| | - Yuyuan Xing
- Beijing Key Laboratory of Ionic Liquids Clean Process, CAS Key Laboratory of Green Process and Engineering, State Key Laboratory of Multiphase Complex Systems, State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China.
- Innovation Academy for Green Manufacture, Chinese Academy of Sciences, Beijing 100190, China
- College of Chemical and Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hua Yue
- Beijing Key Laboratory of Ionic Liquids Clean Process, CAS Key Laboratory of Green Process and Engineering, State Key Laboratory of Multiphase Complex Systems, State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China.
- College of Chemical and Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Tong Chen
- College of Chemical and Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
- Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu 610041, China
| | - Yanyan Diao
- Beijing Key Laboratory of Ionic Liquids Clean Process, CAS Key Laboratory of Green Process and Engineering, State Key Laboratory of Multiphase Complex Systems, State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China.
- Innovation Academy for Green Manufacture, Chinese Academy of Sciences, Beijing 100190, China
- College of Chemical and Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wei Wei
- Beijing Key Laboratory of Ionic Liquids Clean Process, CAS Key Laboratory of Green Process and Engineering, State Key Laboratory of Multiphase Complex Systems, State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China.
- College of Chemical and Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Suojiang Zhang
- Beijing Key Laboratory of Ionic Liquids Clean Process, CAS Key Laboratory of Green Process and Engineering, State Key Laboratory of Multiphase Complex Systems, State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China.
- Innovation Academy for Green Manufacture, Chinese Academy of Sciences, Beijing 100190, China
- College of Chemical and Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
4
|
Density Functional Method Study on the Cooperativity of Intermolecular H-bonding and π-π + Stacking Interactions in Thymine-[C nmim]Br ( n = 2, 4, 6, 8, 10) Microhydrates. Molecules 2022; 27:molecules27196242. [PMID: 36234781 PMCID: PMC9572290 DOI: 10.3390/molecules27196242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 09/12/2022] [Accepted: 09/16/2022] [Indexed: 11/17/2022] Open
Abstract
The exploration of the ionic liquids’ mechanism of action on nucleobase’s structure and properties is still limited. In this work, the binding model of the 1-alkyl-3-methylimidazolium bromide ([Cnmim]Br, n = 2, 4, 6, 8, 10) ionic liquids to the thymine (T) was studied in a water environment (PCM) and a microhydrated surroundings (PCM + wH2O). Geometries of the mono-, di-, tri-, and tetra-ionic thymine (T-wH2O-y[Cnmim]+-xBr−, w = 5~1 and x + y = 0~4) complexes were optimized at the M06-2X/6-311++G(2d, p) level. The IR and UV-Vis spectra, QTAIM, and NBO analysis for the most stable T-4H2O-Br−-1, T-3H2O-[Cnmim]+-Br−-1, T-2H2O-[Cnmim]+-2Br−-1, and T-1H2O-2[Cnmim]+-2Br−-1 hydrates were presented in great detail. The results show that the order of the arrangement stability of thymine with the cations (T-[Cnmim]+) by PCM is stacking > perpendicular > coplanar, and with the anion (T-Br−) is front > top. The stability order for the different microhydrates is following T-5H2O-1 < T-4H2O-Br−-1 < T-3H2O-[Cnmim]+-Br−-1 < T-2H2O-[Cnmim]+-2Br−-1 < T-1H2O-2[Cnmim]+-2Br−-1. A good linear relationship between binding EB values and the increasing number (x + y) of ions has been found, which indicates that the cooperativity of interactions for the H-bonding and π-π+ stacking is varying incrementally in the growing ionic clusters. The stacking model between thymine and [Cnmim]+ cations is accompanied by weaker hydrogen bonds which are always much less favorable than those in T-xBr− complexes; the same trend holds when the clusters in size grow and the length of alkyl chains in the imidazolium cations increase. QTAIM and NBO analytical methods support the existence of mutually reinforcing hydrogen bonds and π-π cooperativity in the systems.
Collapse
|
5
|
Yusof R, Jumbri K, Ahmad H, Abdulmalek E, Abdul Rahman MB. Binding of tetrabutylammonium bromide based deep eutectic solvent to DNA by spectroscopic analysis. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 253:119543. [PMID: 33636491 DOI: 10.1016/j.saa.2021.119543] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 01/24/2021] [Accepted: 01/24/2021] [Indexed: 06/12/2023]
Abstract
The binding characteristics of DNA in deep eutectic solvents (DESs), particularly the binding energy and interaction mechanism, are not widely known. In this study, the binding of tetrabutylammonium bromide (TBABr) based DES of different hydrogen bond donors (HBD), including ethylene glycol (EG), glycerol (Gly), 1,3-propanediol (1,3-PD) and 1,5-pentanediol (1,5-PD), to calf thymus DNA was investigated using fluorescence spectroscopy. It was found that the shorter the alkyl chain length (2 carbons) and higher EG ratios of TBABr:EG (1:5) increased the binding constant (Kb) between DES and DNA up to 5.75 × 105 kJ mol-1 and decreased the binding of Gibbs energy (ΔGo) to 32.86 kJ mol-1. Through displacement studies, all synthesised DESs have been shown to displace DAPI (4',6-diamidino-2-phenylindole) and were able to bind on the minor groove of Adenine-Thymine (AT)-rich DNA. A higher number of hydroxyl (OH) groups caused the TBABr:Gly to form more hydrogen bonds with DNA bases and had the highest ability to quench DAPI from DNA, with Stern-Volmer constants (Ksv) of 115.16 M-1. This study demonstrated that the synthesised DESs were strongly bound to DNA through a combination of electrostatic, hydrophobic, and groove binding. Hence, DES has the potential to solvate and stabilise nucleic acid structures.
Collapse
Affiliation(s)
- Rizana Yusof
- Department of Chemistry, Faculty of Science, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia; Department of Chemistry, Faculty of Applied Sciences, Universiti Teknologi MARA, Perlis Branch, Arau Campus, 02600 Arau, Perlis, Malaysia
| | - Khairulazhar Jumbri
- Department of Chemistry, Faculty of Science, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia; Centre of Research in Ionic Liquids, Universiti Teknologi PETRONAS, 32610 Bandar Seri Iskandar, Perak, Malaysia
| | - Haslina Ahmad
- Department of Chemistry, Faculty of Science, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia; Integrated Chemical BioPhysics Research Centre, Faculty of Science, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - Emilia Abdulmalek
- Department of Chemistry, Faculty of Science, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia; Integrated Chemical BioPhysics Research Centre, Faculty of Science, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - Mohd Basyaruddin Abdul Rahman
- Department of Chemistry, Faculty of Science, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia; Integrated Chemical BioPhysics Research Centre, Faculty of Science, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia.
| |
Collapse
|
6
|
Sarkar S, Rajdev P, Singh PC. Hydrogen bonding of ionic liquids in the groove region of DNA controls the extent of its stabilization: synthesis, spectroscopic and simulation studies. Phys Chem Chem Phys 2020; 22:15582-15591. [PMID: 32613973 DOI: 10.1039/d0cp01548b] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Ionic liquids (ILs) have been extensively used for stabilization and long-term DNA storage. However, molecular level understanding of the role of the hydrogen bond of DNA with ILs in its stabilization is still inadequate. Two ILs, namely, 1,1,3,3-tetramethylguanidinium acetate (TMG) and 2,2-diethyl-1,1,3,3-tetramethylguanidinium acetate (DETMG), have been synthesized, of which TMG has a hydrogen bonding N-H group whereas DETMG does not contain any hydrogen bonding site. It has been found that both TMG and DETMG cations interact in the groove region of DNA; however, their mode of interaction is distinctly different, which causes the stabilization of DNA in the presence of TMG, whereas the effect is opposite in the case of DETMG. It is apparent from the data that only the accommodation of ILs in the groove region is not enough for the stabilization of DNA. MD simulation and spectroscopic studies combinedly indicate that the hydrogen bonding capability of the TMG cation enhances the hydrogen bonding between the Watson-Crick base pairs of DNA, resulting in its stabilization. In contrast, the bigger size as well as the absence of the hydrogen bonding site of the DETMG cation perturbs the minor groove width and base pair step parameters of DNA during its intrusion into the minor groove, which decreases the hydrogen bond between the Watson-Crick base pairs of DNA, leading to destabilization.
Collapse
Affiliation(s)
- Sunipa Sarkar
- School of Chemical Sciences, Indian Association for the Cultivation of Science, Kolkata 700032, India.
| | | | | |
Collapse
|
7
|
Fluorescence and Molecular Simulation Studies on the Interaction between Imidazolium-Based Ionic Liquids and Calf Thymus DNA. Processes (Basel) 2019. [DOI: 10.3390/pr8010013] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
This work presents a molecular level investigation on the nature and mode of binding between imidazolium-based ionic liquids (ILs) ([Cnbim]Br where n = 2, 4, 6) with calf thymus DNA. This investigation offers valuable insight into the mechanisms of interactions that can affect the structural features of DNA and possibly cause the alteration or inhibition of DNA function. To expedite analysis, the study resorted to using molecular docking and COnductor like Screening MOdel for Real Solvents (COSMO-RS) in conjunction with fluorescence spectroscopic data for confirmation and validation of computational results. Both the fluorescence and docking studies consistently revealed a weak interaction between the two molecules, which corresponded to the binding energy of a stable docking conformation in the range of −5.19 to −7.75 kcal mol−1. As predicted, the rod-like structure of imidazolium-based ILs prefers to bind to the double-helix DNA through a minor groove. Interestingly, the occurrence of T-shape π-π stacking was observed between the amine group in adenine that faces the aromatic ring of imidazole. In addition, data of COSMO-RS for the interaction of individual nucleic acid bases to imidazolium-based ILs affirmed that ILs showed a propensity to bind to different bases, the highest being guanine followed by cytosine, thymine, uracil, and adenine.
Collapse
|
8
|
Formulation induces direct DNA UVA photooxidation. Part I. Role of the formulating cationic surfactant. J Mol Liq 2019. [DOI: 10.1016/j.molliq.2019.111712] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
9
|
Sarkar S, Chowdhury A, Singh PC. Multimodal Interactions of Dopamine Hydrochloride with the Groove Region of DNA: A Key Factor in the Enhanced Stability of DNA. J Phys Chem B 2019; 123:10700-10708. [DOI: 10.1021/acs.jpcb.9b09254] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Affiliation(s)
- Sunipa Sarkar
- School of Chemical Sciences, Indian Association for the Cultivation of Science, Kolkata 700032, India
| | - Abhinanda Chowdhury
- School of Chemical Sciences, Indian Association for the Cultivation of Science, Kolkata 700032, India
| | - Prashant Chandra Singh
- School of Chemical Sciences, Indian Association for the Cultivation of Science, Kolkata 700032, India
| |
Collapse
|
10
|
Dasari S, Mallik BS. Association of Nucleobases in Hydrated Ionic Liquid from Biased Molecular Dynamics Simulations. J Phys Chem B 2018; 122:9635-9645. [PMID: 30260229 DOI: 10.1021/acs.jpcb.8b05778] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
We employed metadynamics-based classical molecular dynamics simulations to methylated adenine-thymine (mA-mT) and guanine-cytosine (mG-mC) base pairs to see favorable conformations in various concentrations of hydrated 1-ethyl, 3-methyl imidazolium acetate. We investigated various stacked and hydrogen-bonded conformations of association of base pairs through appropriately chosen collective variables. Stacked conformations more favored in water for both base pairs, whereas Watson-Crick (WC) hydrogen-bonding conformations are favored in pure and hydrated ionic liquids (ILs) except for 0.75 mol fraction IL. We observe that EMIm cations surround the base pairs in WC conformations creating a kind of hydrophobic cavity and protect the hydrogen bonds between base pairs. However, the five-membered heteroaromatic rings of cations stack with the nucleobases in the cation-base-cation (π-π-π) model, which resembles the base-base-base stacking in a DNA duplex. Interestingly, from additional simulations of 0.5 mol fraction hydrated choline dihydrogen phosphate IL, we observe that the stacked conformations become more favored than the WC conformation due to the absence of π-bonds in cations. The calculated values of relative solubility of base pairs in pure and hydrated ionic liquids compared to those in pure water correlate well with the free energy values of WC and stacked conformations.
Collapse
Affiliation(s)
- Sathish Dasari
- Department of Chemistry , Indian Institute of Technology Hyderabad , Kandi , Sangareddy 502285 , Telangana , India
| | - Bhabani S Mallik
- Department of Chemistry , Indian Institute of Technology Hyderabad , Kandi , Sangareddy 502285 , Telangana , India
| |
Collapse
|
11
|
Xu J, Yi L, Mou Y, Cao J, Wang C. Effect of a molecule of imidazolium bromide ionic liquid on the structure and properties of cytosine by density functional theory. Chem Phys Lett 2018. [DOI: 10.1016/j.cplett.2018.08.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
12
|
Preconcentration of DNA using magnetic ionic liquids that are compatible with real-time PCR for rapid nucleic acid quantification. Anal Bioanal Chem 2018; 410:4135-4144. [PMID: 29704032 DOI: 10.1007/s00216-018-1092-9] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Revised: 04/10/2018] [Accepted: 04/16/2018] [Indexed: 12/19/2022]
Abstract
Nucleic acid extraction and purification represents a major bottleneck in DNA analysis. Traditional methods for DNA purification often require reagents that may inhibit quantitative polymerase chain reaction (qPCR) if not sufficiently removed from the sample. Approaches that employ magnetic beads may exhibit lower extraction efficiencies due to sedimentation and aggregation. In this study, four hydrophobic magnetic ionic liquids (MILs) were investigated as DNA extraction solvents with the goal of improving DNA enrichment factors and compatibility with downstream bioanalytical techniques. By designing custom qPCR buffers, we directly incorporated DNA-enriched MILs including trihexyl(tetradecyl)phosphonium tris(hexafluoroacetylaceto)nickelate(II) ([P6,6,6,14+][Ni(hfacac)3-]), [P6,6,6,14+] tris(hexafluoroacetylaceto)colbaltate(II) ([Co(hfacac)3-]), [P6,6,6,14+] tris(hexafluoroacetylaceto)manganate(II) ([Mn(hfacac)3-]), or [P6,6,6,14+] tetrakis(hexafluoroacetylaceto)dysprosate(III) ([Dy(hfacac)4-]) into reaction systems, thereby circumventing the need for time-consuming DNA recovery steps. Incorporating MILs into the reaction buffer did not significantly impact the amplification efficiency of the reaction (91.1%). High enrichment factors were achieved using the [P6,6,6,14+][Ni(hfacac)3-] MIL for the extraction of single-stranded and double-stranded DNA with extraction times as short as 2 min. When compared to a commercial magnetic bead-based platform, the [P6,6,6,14+][Ni(hfacac)3-] MIL was capable of producing higher enrichment factors for single-stranded DNA and similar enrichment factors for double-stranded DNA. The MIL-based method was applied for the extraction and direct qPCR amplification of mutation prone-KRAS oncogene fragment in plasma samples. Graphical abstract Magnetic ionic liquid solvents are shown to preconcentrate sufficient KRAS DNA template from an aqueous solution in as short as 2 min without using chaotropic salts or toxic organic solvents. By using custom-designed qPCR buffers, DNA can be directly amplified and quantified from four MILs examined in this study.
Collapse
|
13
|
Oprzeska-Zingrebe EA, Smiatek J. Aqueous ionic liquids in comparison with standard co-solutes : Differences and common principles in their interaction with protein and DNA structures. Biophys Rev 2018; 10:809-824. [PMID: 29611033 DOI: 10.1007/s12551-018-0414-7] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Accepted: 03/12/2018] [Indexed: 12/29/2022] Open
Abstract
Ionic liquids (ILs) are versatile solvents for a broad range of biotechnological applications. Recent experimental and simulation results highlight the potential benefits of dilute ILs in aqueous solution (aqueous ILs) in order to modify protein and DNA structures systematically. In contrast to a limited number of standard co-solutes like urea, ectoine, trimethylamine-N-oxide (TMAO), or guanidinium chloride, the large amount of possible cation and anion combinations in aqueous ILs can be used to develop tailor-made stabilizers or destabilizers for specific purposes. In this review article, we highlight common principles and differences between aqueous ILs and standard co-solutes with a specific focus on their underlying macromolecular stabilization or destabilization behavior. In combination with statistical thermodynamics theories, we present an efficient framework, which is used to classify structure modification effects consistently. The crucial importance of enthalpic and entropic contributions to the free energy change upon IL-assisted macromolecular unfolding in combination with a complex destabilization mechanism is described in detail. A special focus is also set on aqueous IL-DNA interactions, for which experimental and simulation outcomes are summarized and discussed in the context of previous findings.
Collapse
Affiliation(s)
| | - Jens Smiatek
- Institute for Computational Physics, University of Stuttgart, Allmandring 3, 70569, Stuttgart, Germany. .,Helmholtz Institute Münster: Ionics in Energy Storage (HI MS - IEK 12), Forschungszentrum Jülich GmbH, Corrensstrasse 46, 48149, Münster, Germany.
| |
Collapse
|
14
|
Chaudhuri T, Pan A, Das S, Moulik SP. Ratiometric Interactions of Anionic Surfactants with Calf Thymus DNA Bound Cationic Surfactants: Study II. J SURFACTANTS DETERG 2018. [DOI: 10.1002/jsde.12016] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Tandrima Chaudhuri
- Department of Chemistry; Dr. Bhupendranath Dutta Smriti Mahavidyalaya; Burdwan 713407 India
| | - Animesh Pan
- Centre for Surface Science, Department of Chemistry; Jadavpur University; Kolkata 700032 India
| | - Suman Das
- Centre for Surface Science, Department of Chemistry; Jadavpur University; Kolkata 700032 India
| | - Satya Priya Moulik
- Centre for Surface Science, Department of Chemistry; Jadavpur University; Kolkata 700032 India
| |
Collapse
|
15
|
Agatemor C, Ibsen KN, Tanner EEL, Mitragotri S. Ionic liquids for addressing unmet needs in healthcare. Bioeng Transl Med 2018; 3:7-25. [PMID: 29376130 PMCID: PMC5773981 DOI: 10.1002/btm2.10083] [Citation(s) in RCA: 107] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2017] [Revised: 12/05/2017] [Accepted: 12/07/2017] [Indexed: 12/13/2022] Open
Abstract
Advances in the field of ionic liquids have opened new applications beyond their traditional use as solvents into other fields especially healthcare. The broad chemical space, rich with structurally diverse ions, and coupled with the flexibility to form complementary ion pairs enables task-specific optimization at the molecular level to design ionic liquids for envisioned functions. Consequently, ionic liquids now are tailored as innovative solutions to address many problems in medicine. To date, ionic liquids have been designed to promote dissolution of poorly soluble drugs and disrupt physiological barriers to transport drugs to targeted sites. Also, their antimicrobial activity has been demonstrated and could be exploited to prevent and treat infectious diseases. Metal-containing ionic liquids have also been designed and offer unique features due to incorporation of metals. Here, we review application-driven investigations of ionic liquids in medicine with respect to current status and future potential.
Collapse
Affiliation(s)
- Christian Agatemor
- School of Engineering and Applied SciencesHarvard UniversityCambridgeMA02138
| | - Kelly N. Ibsen
- School of Engineering and Applied SciencesHarvard UniversityCambridgeMA02138
| | - Eden E. L. Tanner
- School of Engineering and Applied SciencesHarvard UniversityCambridgeMA02138
| | - Samir Mitragotri
- School of Engineering and Applied SciencesHarvard UniversityCambridgeMA02138
| |
Collapse
|
16
|
Xu K, Wang Y, Zhang H, Yang Q, Wei X, Xu P, Zhou Y. Solid-phase extraction of DNA by using a composite prepared from multiwalled carbon nanotubes, chitosan, Fe3O4 and a poly(ethylene glycol)-based deep eutectic solvent. Mikrochim Acta 2017. [DOI: 10.1007/s00604-017-2444-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
17
|
Haque A, Khan I, Hassan SI, Khan MS. Interaction studies of cholinium-based ionic liquids with calf thymus DNA: Spectrophotometric and computational methods. J Mol Liq 2017. [DOI: 10.1016/j.molliq.2017.04.068] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
18
|
Manna A, Park S, Lee T, Lim M. Photoexcitation Dynamics of Thymine in Acetonitrile and an Ionic Liquid Probed by Time-resolved Infrared Spectroscopy. B KOREAN CHEM SOC 2016. [DOI: 10.1002/bkcs.10825] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Arpan Manna
- Department of Chemistry and Chemistry Institute for Functional Materials; Pusan National University; Busan 46241 Korea
| | - Seongchul Park
- Department of Chemistry and Chemistry Institute for Functional Materials; Pusan National University; Busan 46241 Korea
| | - Taegon Lee
- Department of Chemistry and Chemistry Institute for Functional Materials; Pusan National University; Busan 46241 Korea
| | - Manho Lim
- Department of Chemistry and Chemistry Institute for Functional Materials; Pusan National University; Busan 46241 Korea
| |
Collapse
|
19
|
Fan B, Wei J, Ma X, Bu X, Xing N, Pan Y, Zheng L, Guan W. Synthesis of Lanthanide-Based Room Temperature Ionic Liquids with Strong Luminescence and Selective Sensing of Fe(III) over Mixed Metal Ions. Ind Eng Chem Res 2016. [DOI: 10.1021/acs.iecr.5b03947] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Benhan Fan
- College of Chemistry, Liaoning University, Shenyang 110036, P. R. China
| | - Jie Wei
- College of Chemistry, Liaoning University, Shenyang 110036, P. R. China
| | - Xiaoxue Ma
- College of Chemistry, Liaoning University, Shenyang 110036, P. R. China
| | - Xiaoxue Bu
- College of Chemistry, Liaoning University, Shenyang 110036, P. R. China
| | - Nannan Xing
- College of Chemistry, Liaoning University, Shenyang 110036, P. R. China
| | - Yi Pan
- College of Chemistry, Liaoning University, Shenyang 110036, P. R. China
| | - Ling Zheng
- College of Chemistry, Liaoning University, Shenyang 110036, P. R. China
| | - Wei Guan
- College of Chemistry, Liaoning University, Shenyang 110036, P. R. China
| |
Collapse
|
20
|
Mukherjee A, Chaudhuri T, Moulik SP, Banerjee M. Internal charge transfer based ratiometric interaction of anionic surfactant with calf thymus DNA bound cationic surfactant: Study I. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2016; 152:1-7. [PMID: 26183417 DOI: 10.1016/j.saa.2015.07.049] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2015] [Revised: 07/03/2015] [Accepted: 07/08/2015] [Indexed: 06/04/2023]
Abstract
Cetyl trimethyl ammonium bromide (CTAB) binds calf thymus (ct-) DNA like anionic biopolymers electrostatically and established equilibrium both in the ground as well as in excited state in aqueous medium at pH 7. Anionic sodium dodecyl sulfate (SDS) does not show even hydrophobic interaction with ct-DNA at low concentration. On contrary, SDS can establish well defined equilibrium with DNA bound CTAB in ground state where the same CTAB-DNA isosbestic point reappears. First report of internal charge transfer (ICT) based binding of CTAB with ct-DNA as well as ICT based interaction of anionic SDS with DNA bound CTAB that shows dynamic quenching contribution also. The reappearance of anodic peak and slight increase in cathodic peak current with increasing concentration (at lower range) of anionic SDS, possibly reflect the release of CTAB from DNA bound CTAB by SDS.
Collapse
Affiliation(s)
- Abhijit Mukherjee
- Department of Chemistry, Dr. Bhupendranath Dutta Smriti Mahavidyalaya, Burdwan 713407, India
| | - Tandrima Chaudhuri
- Department of Chemistry, Dr. Bhupendranath Dutta Smriti Mahavidyalaya, Burdwan 713407, India.
| | - Satya Priya Moulik
- Centre for Surface Science, Department of Chemistry, Jadavpur University, Kolkata 700 032, India
| | - Manas Banerjee
- Department of Chemistry, University of Burdwan, Burdwan 713104, WB, India
| |
Collapse
|
21
|
Pabbathi A, Samanta A. Spectroscopic and Molecular Docking Study of the Interaction of DNA with a Morpholinium Ionic Liquid. J Phys Chem B 2015; 119:11099-105. [PMID: 26061788 DOI: 10.1021/acs.jpcb.5b02939] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The structural integrity of a nucleic acid under various conditions determines its utility in biocatalysis and biotechnology. Exploration of the ionic liquids (ILs) for extraction of DNA and other nucleic acid based applications requires an understanding of the nature of interaction between the IL and DNA. Considering these aspects, we have studied the interaction between calf-thymus DNA and a less toxic morpholinium IL, [Mor1,2][Br], employing fluorescence correlation spectroscopy (FCS), conventional steady state and time-resolved fluorescence, circular dichroism (CD) and molecular docking techniques. While the CD spectra indicate the stability of DNA and retention of its B-form in the presence of the morpholinium IL, the docking study reveals that [Mor1,2](+) binds to the minor groove of DNA with a binding energy of -4.57 kcal mol(-1). The groove binding of the cationic component of the IL is corroborated by the steady state fluorescence data, which indicated displacement of a known minor groove binder, DAPI, from its DNA-bound state on addition of [Mor1,2][Br]. The FCS measurements show that the hydrodynamic radius of DNA remains more or less constant in the presence of [Mor1,2][Br], thus suggesting that the structure of DNA is retained in the presence of the IL. DNA melting experiments show that the thermal stability of DNA is enhanced in the presence of morpholinium IL.
Collapse
Affiliation(s)
- Ashok Pabbathi
- School of Chemistry, University of Hyderabad , Hyderabad 500046, India
| | - Anunay Samanta
- School of Chemistry, University of Hyderabad , Hyderabad 500046, India
| |
Collapse
|
22
|
Chauhan V, Kamboj R, Singh Rana SP, Kaur T, Kaur G, Singh S, Kang TS. Aggregation behavior of non-cytotoxic ester functionalized morpholinium based ionic liquids in aqueous media. J Colloid Interface Sci 2015; 446:263-71. [DOI: 10.1016/j.jcis.2015.01.044] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2014] [Revised: 01/19/2015] [Accepted: 01/19/2015] [Indexed: 10/24/2022]
|
23
|
Clark KD, Nacham O, Yu H, Li T, Yamsek MM, Ronning DR, Anderson JL. Extraction of DNA by magnetic ionic liquids: tunable solvents for rapid and selective DNA analysis. Anal Chem 2015; 87:1552-9. [PMID: 25582771 DOI: 10.1021/ac504260t] [Citation(s) in RCA: 126] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
DNA extraction represents a significant bottleneck in nucleic acid analysis. In this study, hydrophobic magnetic ionic liquids (MILs) were synthesized and employed as solvents for the rapid and efficient extraction of DNA from aqueous solution. The DNA-enriched microdroplets were manipulated by application of a magnetic field. The three MILs examined in this study exhibited unique DNA extraction capabilities when applied toward a variety of DNA samples and matrices. High extraction efficiencies were obtained for smaller single-stranded and double-stranded DNA using the benzyltrioctylammonium bromotrichloroferrate(III) ([(C8)3BnN(+)][FeCl3Br(-)]) MIL, while the dicationic 1,12-di(3-hexadecylbenzimidazolium)dodecane bis[(trifluoromethyl)sulfonyl]imide bromotrichloroferrate(III) ([(C16BnIM)2C12(2+)][NTf2(-), FeCl3Br(-)]) MIL produced higher extraction efficiencies for larger DNA molecules. The MIL-based method was also employed for the extraction of DNA from a complex matrix containing albumin, revealing a competitive extraction behavior for the trihexyl(tetradecyl)phosphonium tetrachloroferrate(III) ([P6,6,6,14(+)][FeCl4(-)]) MIL in contrast to the [(C8)3BnN(+)][FeCl3Br(-)] MIL, which resulted in significantly less coextraction of albumin. The MIL-DNA method was employed for the extraction of plasmid DNA from bacterial cell lysate. DNA of sufficient quality and quantity for polymerase chain reaction (PCR) amplification was recovered from the MIL extraction phase, demonstrating the feasibility of MIL-based DNA sample preparation prior to downstream analysis.
Collapse
Affiliation(s)
- Kevin D Clark
- Department of Chemistry and Biochemistry, The University of Toledo , 2801 West Bancroft Street, MS 602, Toledo, Ohio 43606, United States
| | | | | | | | | | | | | |
Collapse
|
24
|
Zhao H. DNA Stability in Ionic Liquids and Deep Eutectic Solvents. JOURNAL OF CHEMICAL TECHNOLOGY AND BIOTECHNOLOGY (OXFORD, OXFORDSHIRE : 1986) 2015; 90:19-25. [PMID: 31929671 PMCID: PMC6953985 DOI: 10.1002/jctb.4511] [Citation(s) in RCA: 75] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
DNA molecules are known as the genetic information carriers. Recently, they are being explored as a new generation of biocatalysts or chiral scaffolds for metal catalysts. There is also a growing interest of finding alternative solvents for DNA preservation and stabilization, including two unique types of solvents: ionic liquids (ILs) and deep eutectic solvents (DES). Therefore, it is important to understand how DNA molecules interact with these novel ionic solvent systems (i.e. ILs and DES). It is well known that inorganic di- and monovalent ions preferentially bind with major and minor grooves of DNA structures. However, in the case of ILs and DES, organic cation may intrude into the DNA minor grooves; more importantly, electrostatic attraction between organic cations and the DNA phosphate backbone becomes a predominant interaction, accompanying by hydrophobic and polar interactions between ILs and DNA major and minor grooves. In addition, anions may form hydrogen-bonds with cytosine, adenine and guanine bases. Despites these strong interactions, DNA molecules maintain double helical structure in most ionic solvent systems, especially in aqueous IL solutions. Furthermore, the exciting advances of G-quadruplexe DNA structures in ILs and DES are discussed.
Collapse
Affiliation(s)
- Hua Zhao
- Department of Chemistry and Forensic Science, Savannah State University, Savannah, GA 31404, USA
| |
Collapse
|
25
|
Latep N, Liang X, Qin W. Ionic-liquid-assisted desorption of DNA from polyamidoamine-grafted silica nanoparticles surface by a low-salt solution. J Sep Sci 2014; 37:2069-76. [DOI: 10.1002/jssc.201400203] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2014] [Revised: 04/25/2014] [Accepted: 05/01/2014] [Indexed: 11/08/2022]
Affiliation(s)
- Nurgul Latep
- Key Laboratory of Theoretical and Computational Photochemistry; Ministry of Education, College of Chemistry, Beijing Normal University; Beijing China
| | - Xiao Liang
- Key Laboratory of Theoretical and Computational Photochemistry; Ministry of Education, College of Chemistry, Beijing Normal University; Beijing China
| | - Weidong Qin
- Key Laboratory of Theoretical and Computational Photochemistry; Ministry of Education, College of Chemistry, Beijing Normal University; Beijing China
| |
Collapse
|
26
|
Jumbri K, Abdul Rahman MB, Abdulmalek E, Ahmad H, Micaelo NM. An insight into structure and stability of DNA in ionic liquids from molecular dynamics simulation and experimental studies. Phys Chem Chem Phys 2014; 16:14036-46. [PMID: 24901033 DOI: 10.1039/c4cp01159g] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Molecular dynamics simulation and biophysical analysis were employed to reveal the characteristics and the influence of ionic liquids (ILs) on the structural properties of DNA. Both computational and experimental evidence indicate that DNA retains its native B-conformation in ILs. Simulation data show that the hydration shells around the DNA phosphate group were the main criteria for DNA stabilization in this ionic media. Stronger hydration shells reduce the binding ability of ILs' cations to the DNA phosphate group, thus destabilizing the DNA. The simulation results also indicated that the DNA structure maintains its duplex conformation when solvated by ILs at different temperatures up to 373.15 K. The result further suggests that the thermal stability of DNA at high temperatures is related to the solvent thermodynamics, especially entropy and enthalpy of water. All the molecular simulation results were consistent with the experimental findings. The understanding of the properties of IL-DNA could be used as a basis for future development of specific ILs for nucleic acid technology.
Collapse
Affiliation(s)
- K Jumbri
- Department of Chemistry, Faculty of Science, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | | | | | | | | |
Collapse
|
27
|
Fan Y, Zhang S, Wang Q, Li J, Fan H, Shan D. Investigation of the interaction of pepsin with ionic liquids by using fluorescence spectroscopy. APPLIED SPECTROSCOPY 2013; 67:648-655. [PMID: 23735250 DOI: 10.1366/12-06793] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
The molecular mechanism of the interaction between pepsin and two typical ionic liquids (ILs), 1-butyl-3-methylimidazolium chloride ([C4mim]Cl) and 1-octyl-3-methylimidazolium chloride ([C8mim]Cl), was investigated with fluorescence spectroscopy, ultraviolet absorption, and circular dichroism spectroscopy at a pH value of 1.6. The results suggest that ILs could quench the intrinsic fluorescence of pepsin, probably via a dynamic quenching mechanism. The fluorescence quenching constants were determined by employing the classic Stern-Volmer equation. The constant values are very small, indicating that only a very weak interaction between ILs and pepsin exists. The Gibbs free-energy change, enthalpy change (ΔH), and entropy change (ΔS) during the interaction of pepsin and ILs were estimated. Positive values of ΔH and ΔS indicate that the interaction between ILs and pepsin is mainly driven by hydrophobic interaction. Synchronous and three-dimensional fluorescence spectra demonstrate that the addition of ILs (0-0.20 mol L(-1) for each IL) does not bring apparent changes to the microenvironments of tyrosine and tryptophan residues. Activity experiments show that the activity of pepsin is concentration dependent; higher concentrations of ILs (>0.22 mol L(-1) for [C8mim]Cl and >0.30 mol L(-1) for [C4mim]Cl) cause the remarkable reduction of enzyme activity. The presence of ILs also does not improve the thermal stability of pepsin.
Collapse
Affiliation(s)
- Yunchang Fan
- College of Physics and Chemistry, Henan Polytechnic University, Jiaozuo 454003, China.
| | | | | | | | | | | |
Collapse
|
28
|
Khimji I, Doan K, Bruggeman K, Huang PJJ, Vajha P, Liu J. Extraction of DNA staining dyes from DNA using hydrophobic ionic liquids. Chem Commun (Camb) 2013; 49:4537-9. [DOI: 10.1039/c3cc41364k] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
29
|
Li T, Joshi MD, Ronning DR, Anderson JL. Ionic liquids as solvents for in situ dispersive liquid–liquid microextraction of DNA. J Chromatogr A 2013; 1272:8-14. [DOI: 10.1016/j.chroma.2012.11.055] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2012] [Revised: 11/19/2012] [Accepted: 11/20/2012] [Indexed: 11/29/2022]
|
30
|
Chandran A, Ghoshdastidar D, Senapati S. Groove binding mechanism of ionic liquids: a key factor in long-term stability of DNA in hydrated ionic liquids? J Am Chem Soc 2012. [PMID: 23181803 DOI: 10.1021/ja304519d] [Citation(s) in RCA: 130] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Nucleic acid sample storage is of paramount importance in biotechnology and forensic sciences. Very recently, hydrated ionic liquids (ILs) have been identified as ideal media for long-term DNA storage. Hence, understanding the binding characteristics and molecular mechanism of interactions of ILs with DNA is of both practical and fundamental interest. Here, we employ molecular dynamics simulations and spectroscopic experiments to unravel the key factors that stabilize DNA in hydrated ILs. Both simulation and experimental results show that DNA maintains the native B-conformation in ILs. Simulation results further suggest that, apart from the electrostatic association of IL cations with the DNA backbone, groove binding of IL cations through hydrophobic and polar interactions contributes significantly to DNA stability. Circular dichroism spectral measurements and fluorescent dye displacement assay confirm the intrusion of IL molecules into the DNA minor groove. Very interestingly, the IL ions were seen to disrupt the water cage around DNA, including the spine of hydration in the minor groove. This partial dehydration by ILs likely prevents the hydrolytic reactions that denature DNA and helps stabilize DNA for the long term. The detailed understanding of IL-DNA interactions provided here could guide the future development of novel ILs, specific for nucleic acid solutes.
Collapse
Affiliation(s)
- Aneesh Chandran
- Department of Biotechnology, Indian Institute of Technology Madras, Chennai 600036, India
| | | | | |
Collapse
|
31
|
He Y, Shang Y, Liu Z, Shao S, Liu H, Hu Y. Interactions between ionic liquid surfactant [C12mim]Br and DNA in dilute brine. Colloids Surf B Biointerfaces 2012; 101:398-404. [PMID: 23010047 DOI: 10.1016/j.colsurfb.2012.07.027] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2012] [Revised: 06/27/2012] [Accepted: 07/17/2012] [Indexed: 10/28/2022]
Abstract
Interactions between ionic liquid surfactant [C(12)mim]Br and DNA in dilute brine were investigated in terms of various experimental methods and molecular dynamics (MD) simulation. It was shown that the aggregation of [C(12)mim]Br on DNA chains is motivated not only by electrostatic attractions between DNA phosphate groups and [C(12)mim]Br headgroups but also by hydrophobic interactions among [C(12)mim]Br alkyl chains. Isothermal titration calorimetry analysis indicated that the [C(12)mim]Br aggregation in the presence and absence of DNA are both thermodynamically favored driven by enthalpy and entropy. DNA undergoes size transition and conformational change induced by [C(12)mim]Br, and the charges of DNA are neutralized by the added [C(12)mim]Br. Various microstructures were observed such as DNA with loose coil conformation in nature state, necklace-like structures, and compact spherical aggregates. MD simulation showed that the polyelectrolyte collapses upon the addition of oppositely charged surfactants and the aggregation of surfactants around the polyelectrolyte was reaffirmed. The simulation predicted the gradual neutralization of the negatively charged polyelectrolyte by the surfactant, consistent with the experimental results.
Collapse
Affiliation(s)
- Yunfei He
- Key Laboratory for Advanced Materials and Department of Chemistry, East China University of Science and Technology, Shanghai 200237, China
| | | | | | | | | | | |
Collapse
|
32
|
Fluorescence Spectroscopic Analysis of the Interaction of Papain with Ionic Liquids. Appl Biochem Biotechnol 2012; 168:592-603. [DOI: 10.1007/s12010-012-9801-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2012] [Accepted: 07/03/2012] [Indexed: 11/26/2022]
|
33
|
Zhao Y, Guo L, Sun X, Wang J. Ionic liquid assisted synthesis of flowerlike Cu2O micro-nanocrystals. Sci China Chem 2012. [DOI: 10.1007/s11426-012-4654-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
34
|
Menhaj AB, Smith BD, Liu J. Exploring the thermal stability of DNA-linked gold nanoparticles in ionic liquids and molecular solvents. Chem Sci 2012. [DOI: 10.1039/c2sc20565c] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
|
35
|
Wang H, Wang J, Fan M. Extraction of ionic liquids from aqueous solutions by humic acid: an environmentally benign, inexpensive and simple procedure. Chem Commun (Camb) 2012; 48:392-4. [DOI: 10.1039/c1cc15600d] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|