1
|
Nuytten G, De Geest BG, De Beer T. Relevance of controlled cooling and freezing phases in T-cell cryopreservation. Cryobiology 2024; 116:104907. [PMID: 38768801 DOI: 10.1016/j.cryobiol.2024.104907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 04/26/2024] [Accepted: 05/15/2024] [Indexed: 05/22/2024]
Abstract
When cells are cryopreserved, they go through a freezing process with several distinct phases (i.e., cooling until nucleation, ice nucleation, ice crystal growth and cooling to a final temperature). Conventional cell freezing approaches often employ a single cooling rate to describe and optimize the entire freezing process, which neglects its complexity and does not provide insight into the effects of the different freezing phases. The aim of this work was to elucidate the impact of each freezing phase by varying different process parameters per phase. Hereto, spin freezing was used to freeze Jurkat T cells in either a Me2SO-based or Me2SO-free formulation. The cooling rates before ice nucleation and after total ice crystallization impacted cell viability, resulting in viability ranging from 26.7% to 52.8% for the Me2SO-free formulation, and 22.5%-42.6% for the Me2SO-based formulation. Interestingly, the degree of supercooling upon nucleation did not exhibit a significant effect on cell viability in this work. However, the rate of ice crystal formation emerged as a crucial factor, with viability ranging from 2.4% to 53.2% for the Me2SO-free formulation, and 0.3%-53.2% for the Me2SO-based formulation, depending on the freezing rate. A morphological study of the cells post-cryopreservation was performed using confocal microscopy, and it was found that cytoskeleton integrity and cell volume were impacted, depending on the formulation-process parameter combination. These findings underscore the importance of scrutinizing all cooling and freezing phases, as each phase impacted post-thaw viability in a distinct way, depending of the specific formulation used.
Collapse
Affiliation(s)
- Gust Nuytten
- Department of Pharmaceutical Analysis, Ghent University, Ottergemsesteenweg 460, Ghent, 9000, Belgium.
| | - Bruno G De Geest
- Department of Pharmaceutics, Ghent University, Ottergemsesteenweg 460, Ghent, 9000, Belgium
| | - Thomas De Beer
- Department of Pharmaceutical Analysis, Ghent University, Ottergemsesteenweg 460, Ghent, 9000, Belgium.
| |
Collapse
|
2
|
Iorio A, Perin L, Gallo P. Structure and slow dynamics of protein hydration water with cryopreserving DMSO and trehalose upon cooling. J Chem Phys 2024; 160:244502. [PMID: 38912631 DOI: 10.1063/5.0205569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 06/05/2024] [Indexed: 06/25/2024] Open
Abstract
We study, through molecular dynamics simulations, three aqueous solutions with one lysozyme protein and three different concentrations of trehalose and dimethyl sulfoxide (DMSO). We analyze the structural and dynamical properties of the protein hydration water upon cooling. We find that trehalose plays a major role in modifying the structure of the network of HBs between water molecules in the hydration layer of the protein. The dynamics of hydration water presents, in addition to the α-relaxation, typical of glass formers, a slower long-time relaxation process, which greatly slows down the dynamics of water, particularly in the systems with trehalose, where it becomes dominant at low temperatures. In all the solutions, we observe, from the behavior of the α-relaxation times, a shift of the Mode Coupling Theory crossover temperature and the fragile-to-strong crossover temperature toward higher values with respect to bulk water. We also observe a strong-to-strong crossover from the temperature behavior of the long-relaxation times. In the aqueous solution with only DMSO, the transition shifts to a lower temperature than in the case with only lysozyme reported in the literature. We observe that the addition of trehalose to the mixture has the opposite effect of restoring the original location of the strong-to-strong crossover. In all the solutions analyzed in this work, the observed temperature of the protein dynamical transition is slightly shifted at lower temperatures than that of the strong-to-strong crossover, but their relative order is the same, showing a correlation between the motion of the protein and that of the hydration water.
Collapse
Affiliation(s)
- Antonio Iorio
- Dipartimento di Fisica, Università Roma Tre, Via della Vasca Navale 84, I-00146 Roma, Italy
| | - Leonardo Perin
- Dipartimento di Fisica, Università Roma Tre, Via della Vasca Navale 84, I-00146 Roma, Italy
| | - Paola Gallo
- Dipartimento di Fisica, Università Roma Tre, Via della Vasca Navale 84, I-00146 Roma, Italy
| |
Collapse
|
3
|
Yu M, Marquez-Curtis LA, Elliott JAW. Cryopreservation-induced delayed injury and cell-type-specific responses during the cryopreservation of endothelial cell monolayers. Cryobiology 2024; 115:104857. [PMID: 38350589 DOI: 10.1016/j.cryobiol.2024.104857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 01/26/2024] [Accepted: 02/01/2024] [Indexed: 02/15/2024]
Abstract
The cryopreservation of endothelial cell monolayers is an important step that bridges the cryopreservation of cells in suspension to that of tissues. Previous studies have identified clear distinctions in freezing mechanisms between cells in suspension and in monolayers, as well as developed novel protocols for monolayer cryopreservation. Recently, our group has shown that human umbilical vein endothelial cell (HUVEC) and porcine corneal endothelial cell (PCEC) monolayers grown on Rinzl plastic substrate can be cryopreserved in 5% dimethyl sulfoxide, 6% hydroxyethyl starch, and 2% chondroitin sulfate, following a slow-cooling protocol (-1 °C/min) with rapid plunge into liquid nitrogen from -40 °C. However, membrane integrity assessments were done immediately post thaw, which may result in an overestimation of cell viability due to possible delayed injury responses. Here, we show that for the optimal protocol condition of plunge at the -40 °C interrupt temperature, HUVEC and PCEC monolayers exhibited no significant immediate post-thaw injuries nor delayed injury responses during the 24-h post-thaw overnight culture period. HUVEC monolayers experienced no significant impact to their natural growth rate during the post-thaw culture, while PCEC monolayers experienced significantly higher growth than the unfrozen controls. The difference in the low-temperature responses between HUVEC and PCEC monolayers was further shown under high temperature plunge conditions. At these suboptimal plunge temperatures, HUVEC monolayers exhibited moderate immediate membrane injury but a pronounced delayed injury response during the 24-h post-thaw culture, while PCEC monolayers showed significant immediate membrane injury but no additional delayed injury response during the same period. Therefore, we provide further validation of our group's previously designed endothelial monolayer cryopreservation protocol for HUVEC and PCEC monolayers, and we identify several cell-type-specific responses to the freezing process.
Collapse
Affiliation(s)
- MingHan Yu
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, AB, T6G 1H9, Canada; Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, AB, T6G 1C9, Canada
| | - Leah A Marquez-Curtis
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, AB, T6G 1H9, Canada; Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, AB, T6G 1C9, Canada
| | - Janet A W Elliott
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, AB, T6G 1H9, Canada; Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, AB, T6G 1C9, Canada.
| |
Collapse
|
4
|
Liu D, Oldenhof H, Luo X, Braun T, Sieme H, Wolkers WF. Cooling dynamics of droplets exposed to solid surface freezing and vitrification. Cryobiology 2024; 115:104879. [PMID: 38447705 DOI: 10.1016/j.cryobiol.2024.104879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 02/14/2024] [Accepted: 02/29/2024] [Indexed: 03/08/2024]
Abstract
Solid surface freezing or vitrification (SSF/SSV) can be done by depositing droplets of a sample, e.g., cells in a preservation solution, onto a pre-cooled metal surface. It is used to achieve higher cooling rates and concomitant higher cryosurvival rates compared to immersion of samples into liquid nitrogen. In this study, numerical simulations of SSF/SSV were conducted by modeling the cooling dynamics of droplets of cryoprotective agent (CPA) solutions. It was assumed that deposited droplets attain a cylindrical bottom part and half-ellipsoidal shaped upper part. Material properties for heat transfer simulations including density, heat capacity and thermal conductivity were obtained from the literature and extrapolated using polynomial fitting. The impact of CPA type, i.e., glycerol (GLY) and dimethyl sulfoxide (DMSO), CPA concentration, and droplet size on the cooling dynamics was simulated at different CPA mass fractions at temperatures ranging from -196 to 25 °C. Simulations show that glycerol solutions cool faster compared to DMSO solutions, and cooling rates increase with decreasing CPA concentration. However, we note that material property data for GLY and DMSO solutions were obtained in different temperature and concentration ranges under different conditions, which complicated making an accurate comparison. Experimental studies show that samples that freeze have a delayed cooling response early on, whereas equilibration times are similar compared to samples that vitrify. Finally, as proof of concept, droplets of human red blood cells (RBCs) were cryopreserved using SSV/SSF comparing the effect of GLY and DMSO on cryopreservation outcome. At 20% (w/w), similar hemolysis rates were found for GLY and DMSO, whereas at 40%, GLY outperformed DMSO.
Collapse
Affiliation(s)
- Dejia Liu
- Biostabilization Laboratory - Lower Saxony Centre for Biomedical Engineering, Implant Research and Development, Hannover, Germany; Unit for Reproductive Medicine - Clinic for Horses, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Harriëtte Oldenhof
- Biostabilization Laboratory - Lower Saxony Centre for Biomedical Engineering, Implant Research and Development, Hannover, Germany; Unit for Reproductive Medicine - Clinic for Horses, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Xing Luo
- Institute of Thermodynamics, Leibniz University Hannover, Garbsen, Germany
| | - Tobias Braun
- Biostabilization Laboratory - Lower Saxony Centre for Biomedical Engineering, Implant Research and Development, Hannover, Germany; Unit for Reproductive Medicine - Clinic for Horses, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Harald Sieme
- Unit for Reproductive Medicine - Clinic for Horses, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Willem F Wolkers
- Biostabilization Laboratory - Lower Saxony Centre for Biomedical Engineering, Implant Research and Development, Hannover, Germany; Unit for Reproductive Medicine - Clinic for Horses, University of Veterinary Medicine Hannover, Hannover, Germany.
| |
Collapse
|
5
|
Spinelli C, Ghionzoli M, Sahli LI, Visintainer S, Guglielmo C, Cordola C, Lapi S, Biagi E, Pucci A, Morganti R, Ferrari SM, Antonelli A. Cryopreserved Thyroid Tissue Autotransplant in Pediatric Age Patients: A Feasibility Study and Literature Review. Cancers (Basel) 2024; 16:2112. [PMID: 38893231 PMCID: PMC11171235 DOI: 10.3390/cancers16112112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 05/23/2024] [Accepted: 05/29/2024] [Indexed: 06/21/2024] Open
Abstract
BACKGROUND AND AIMS This paper aims to study an alternative solution to hormonal replacement therapy in specific groups of patients who underwent thyroidectomy during childhood or adulthood. After cryopreservation, thyroid autotransplantation could be an alternative solution which would allow us to use the ability of the thyroid tissue of producing hormones according to the physiological needs of the body. MATERIALS AND METHODS A feasibility study about the effects of the most modern cryopreservation techniques on the structural and functional integrity of the follicular cells of the thyroid tissue has been carried out. Patients who could benefit from the treatment have been found for both autotransplant techniques. Additionally, a literature review has been conducted. RESULTS The histological analysis has shown that cryopreservation does not alter the original architecture, and the culture examination that cell viability is successfully preserved. Moreover, both thyroid autotransplantation studies on animals and those on humans that were found in the literature have shown good results regarding the viability and functionality of the transplant. CONCLUSIONS The viability of cryopreserved thyroid tissue found in this study is encouraging. Further studies to evaluate the levels of FT3, FT4 and thyroglobulin in thyroid tissue after cryopreservation are needed to verify that the secretory properties of the thyrocytes have been maintained intact. Furthermore, autotransplanted cases found in the literature do not have a long-term follow-up.
Collapse
Affiliation(s)
- Claudio Spinelli
- Pediatric Surgery Unit, Maternity and Children Department, University of Pisa, 56124 Pisa, Italy
| | - Marco Ghionzoli
- Pediatric Surgery Unit, Maternity and Children Department, University of Pisa, 56124 Pisa, Italy
| | - Linda Idrissi Sahli
- Pediatric Surgery Unit, Maternity and Children Department, University of Pisa, 56124 Pisa, Italy
| | - Silvia Visintainer
- Pediatric Surgery Unit, Maternity and Children Department, University of Pisa, 56124 Pisa, Italy
| | - Carla Guglielmo
- Pediatric Surgery Unit, Maternity and Children Department, University of Pisa, 56124 Pisa, Italy
| | - Chiara Cordola
- Pediatric Surgery Unit, Maternity and Children Department, University of Pisa, 56124 Pisa, Italy
| | - Simone Lapi
- Biobank Division, University Hospital of Pisa, 56124 Pisa, Italy
| | - Elisa Biagi
- Biobank Division, University Hospital of Pisa, 56124 Pisa, Italy
| | - Angela Pucci
- Department of Surgical, Medical and Molecular Pathology and Critical Area, University of Pisa, 56124 Pisa, Italy
| | - Riccardo Morganti
- Section of Statistics, University Hospital of Pisa, 56124 Pisa, Italy
| | | | - Alessandro Antonelli
- Department of Clinical and Experimental Medicine, University of Pisa, 56124 Pisa, Italy
| |
Collapse
|
6
|
Bennett B, Hanotaux J, Pasala AR, Hasan T, Hassan D, Shor R, Allan DS, Maganti HB. Impact of lower concentrations of dimethyl sulfoxide on cryopreservation of autologous hematopoietic stem cells: a systematic review and meta-analysis of controlled clinical studies. Cytotherapy 2024; 26:482-489. [PMID: 38416086 DOI: 10.1016/j.jcyt.2024.02.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 02/12/2024] [Accepted: 02/12/2024] [Indexed: 02/29/2024]
Abstract
BACKGROUND AIMS Cryopreservation of hematopoietic stem cells (HSCs) is crucial for autologous transplantation, cord blood banking and other special circumstances. Dimethyl sulfoxide (DMSO) is used most commonly for cryopreserving HSC products but can cause infusional toxicities and affect cell viability and engraftment after transplant. A systematic review of controlled studies using lower concentrations of DMSO to cryopreserve HSC products in clinical transplant studies is needed to determine the effect of reducing DMSO concentrations on post-thaw cell viability, initial engraftment and adverse effects on patient health. METHODS All studies identified in our systematic search (to July 11, 2023) examining the use of cryopreserved peripheral blood stem cells (PBSCs) for autologous stem cell transplantation (AHCT) were included. Meta-analysis was performed to determine how varying the concentration of DMSO during cryopreservation effects post-thaw cell viability, initial engraftment and adverse effects on patient health. RESULTS A total of 1547 studies were identified in our systematic search, with seven published articles meeting eligibility for inclusion in meta-analysis. All patients underwent AHCT using (PBSCs) to treat hematologic malignancies. The viability of CD34+ cells post thaw was greater when cryopreserved with 5% DMSO compared with 10% DMSO, with lower rates of adverse side effects in patients. DMSO concentration had minimal impact on rates of initial engraftment. Significant heterogeneity in outcome reporting was observed and the potential for bias was identified in all studies. CONCLUSIONS Reducing the concentration of DMSO from 10% to 5% during cryopreservation of autologous PBSCs may improve cell viability and reduce DMSO-associated adverse effects in patients undergoing AHCT. Data from more studies with similar patients and standard outcome reporting are needed to increase confidence in our initial observations. PROTOCOL REGISTRATION PROSPERO; registration number CRD42023476809 registered November 8, 2023.
Collapse
Affiliation(s)
- Bryenah Bennett
- Canadian Blood Services, Stem Cells and Centre for Innovation, Ottawa, Canada
| | - Justine Hanotaux
- Canadian Blood Services, Stem Cells and Centre for Innovation, Ottawa, Canada
| | - Ajay Ratan Pasala
- Canadian Blood Services, Stem Cells and Centre for Innovation, Ottawa, Canada; Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Canada
| | - Tanvir Hasan
- Canadian Blood Services, Stem Cells and Centre for Innovation, Ottawa, Canada
| | - Dhuha Hassan
- Canadian Blood Services, Stem Cells and Centre for Innovation, Ottawa, Canada
| | - Risa Shor
- Information Services, The Ottawa Hospital, Ottawa, Canada
| | - David S Allan
- Canadian Blood Services, Stem Cells and Centre for Innovation, Ottawa, Canada; Clinical Epidemiology & Regenerative Medicine, Ottawa Hospital Research Institute, Ottawa, Canada; Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Canada
| | - Harinad B Maganti
- Canadian Blood Services, Stem Cells and Centre for Innovation, Ottawa, Canada; Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Canada.
| |
Collapse
|
7
|
Mahanta DD, Brown DR, Webber T, Pezzotti S, Schwaab G, Han S, Shell MS, Havenith M. Bridging the Gap in Cryopreservation Mechanism: Unraveling the Interplay between Structure, Dynamics, and Thermodynamics in Cryoprotectant Aqueous Solutions. J Phys Chem B 2024; 128:3720-3731. [PMID: 38584393 DOI: 10.1021/acs.jpcb.4c00264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
Cryoprotectants play a crucial role in preserving biological material, ensuring their viability during storage and facilitating crucial applications such as the conservation of medical compounds, tissues, and organs for transplantation. However, the precise mechanism by which cryoprotectants modulate the thermodynamic properties of water to impede the formation and growth of ice crystals, thus preventing long-term damage, remains elusive. This is evident in the use of empirically optimized recipes for mixtures that typically contain DMSO, glycerol, and various sugar constituents. Here, we use terahertz calorimetry, Overhauser nuclear polarization, and molecular dynamics simulations to show that DMSO exhibits a robust structuring effect on water around its methyl groups, reaching a maximum at a DMSO mole fraction of XDMSO = 0.33. In contrast, glycerol exerts a smaller water-structuring effect, even at higher concentrations (Scheme 1). These results potentially suggest that the wrapped water around DMSO's methyl group, which can be evicted upon ligand binding, may render DMSO a more surface-active cryoprotectant than glycerol, while glycerol may participate more as a viscogen that acts on the entire sample. These findings shed light on the molecular intricacies of cryoprotectant solvation behavior and have potentially significant implications for optimizing cryopreservation protocols.
Collapse
Affiliation(s)
- Debasish Das Mahanta
- Lehrstuhl für Physikalische Chemie II, Ruhr-Universität Bochum, Bochum 44780, Germany
- Department of Physics, Technische Universität (TU) Dortmund, Dortmund 44227, Germany
| | - Dennis Robinson Brown
- Department of Chemical Engineering, University of California, Santa Barbara, California 93106-5080, United States
| | - Thomas Webber
- Department of Chemical Engineering, University of California, Santa Barbara, California 93106-5080, United States
| | - Simone Pezzotti
- Lehrstuhl für Physikalische Chemie II, Ruhr-Universität Bochum, Bochum 44780, Germany
| | - Gerhard Schwaab
- Lehrstuhl für Physikalische Chemie II, Ruhr-Universität Bochum, Bochum 44780, Germany
| | - Songi Han
- Department of Chemical Engineering, University of California, Santa Barbara, California 93106-5080, United States
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, California 93106-9510, United States
| | - M Scott Shell
- Department of Chemical Engineering, University of California, Santa Barbara, California 93106-5080, United States
| | - Martina Havenith
- Lehrstuhl für Physikalische Chemie II, Ruhr-Universität Bochum, Bochum 44780, Germany
- Department of Physics, Technische Universität (TU) Dortmund, Dortmund 44227, Germany
| |
Collapse
|
8
|
Das S, Niemeyer E, Leung ZA, Fritsch T, Matosevic S. Human Natural Killer Cells Cryopreserved without DMSO Sustain Robust Effector Responses. Mol Pharm 2024; 21:651-660. [PMID: 38230666 DOI: 10.1021/acs.molpharmaceut.3c00798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2024]
Abstract
Natural killer (NK) cell-based immunotherapy has benefitted from the multiple strengths that NK cells offer in adoptive transfer settings, not the least of which is their safety and potential for allogeneic use. Such use, however, necessitates the cryopreservation of NK cell-based therapy products to support logistical efforts in deploying these cells in different locations, decentralized from the point of collection or manufacturing. DMSO, the most commonly used cryoprotective agent (CPA), has been effective in protecting immune cells during freezing and thawing, but its ability to induce molecular and genetic changes to immune cells as well as its toxicity has stimulated interest in alternative CPAs. However, replacing DMSO's ability to act intracellularly has been difficult, and the sensitivity of human peripheral blood-derived NK cells to freezing and thawing-induced damage has meant that investigations into the potential of replacing DMSO are lacking. As a first step toward establishing the feasibility of cryopreserving human NK cells with CPAs' alternative to DMSO, we investigate the potential of using noncell-penetrating and cell-penetrating CPAs to recover NK cells post-thaw without DMSO. Here, we find that cryoprotection using cell-penetrating CPAs can retain the viability of human peripheral blood-derived NK cells to a comparable degree to DMSO. In addition, non-DMSO-cryopreserved human NK cells were as cytotoxic as those cryopreserved with DMSO and displayed a comparable level of surface markers of activation. In summary, we present the first example of the potential of developing non-DMSO CPA formulations that could be deployed in future cell therapy regimens.
Collapse
Affiliation(s)
- Soumyajit Das
- Department of Industrial and Molecular Pharmaceutics, Purdue University, West Lafayette, Indiana 47907, United States
| | - Emmett Niemeyer
- Department of Industrial and Molecular Pharmaceutics, Purdue University, West Lafayette, Indiana 47907, United States
| | - Zach A Leung
- Department of Industrial and Molecular Pharmaceutics, Purdue University, West Lafayette, Indiana 47907, United States
| | - Tyler Fritsch
- Department of Industrial and Molecular Pharmaceutics, Purdue University, West Lafayette, Indiana 47907, United States
| | - Sandro Matosevic
- Department of Industrial and Molecular Pharmaceutics, Purdue University, West Lafayette, Indiana 47907, United States
- Institute for Cancer Research, Purdue University, West Lafayette, Indiana 47907, United States
| |
Collapse
|
9
|
El-Darzi N, Mast N, Li Y, Pikuleva IA. APOB100 transgenic mice exemplify how the systemic circulation content may affect the retina without altering retinal cholesterol input. Cell Mol Life Sci 2024; 81:52. [PMID: 38253888 PMCID: PMC10803575 DOI: 10.1007/s00018-023-05056-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 10/24/2023] [Accepted: 11/17/2023] [Indexed: 01/24/2024]
Abstract
Apolipoprotein B (APOB) is a constituent of unique lipoprotein particles (LPPs) produced in the retinal pigment epithelium (RPE), which separates the neural retina from Bruch's membrane (BrM) and choroidal circulation. These LPPs accumulate with age in BrM and contribute to the development of age-related macular degeneration, a major blinding disease. The APOB100 transgenic expression in mice, which unlike humans lack the full-length APOB100, leads to lipid deposits in BrM. Herein, we further characterized APOB100 transgenic mice. We imaged mouse retina in vivo and assessed chorioretinal lipid distribution, retinal sterol levels, retinal cholesterol input, and serum content as well as tracked indocyanine green-bound LPPs in mouse plasma and retina after an intraperitoneal injection. Retinal function and differentially expressed proteins were also investigated. APOB100 transgenic mice had increased serum LDL content and an additional higher density HDL subpopulation; their retinal cholesterol levels (initially decreased) became normal with age. The LPP cycling between the RPE and choroidal circulation was increased. Yet, LPP trafficking from the RPE to the neural retina was limited, and total retinal cholesterol input did not change. There were lipid deposits in the RPE and BrM, and retinal function was impaired. Retinal proteomics provided mechanistic insights. Collectively, our data suggested that the serum LDL/HDL ratio may not affect retinal pathways of cholesterol input as serum LPP load is mainly handled by the RPE, which offloads LPP excess to the choroidal circulation rather than neural retina. Different HDL subpopulations should be considered in studies linking serum LPPs and age-related macular degeneration.
Collapse
Affiliation(s)
- Nicole El-Darzi
- Department of Ophthalmology and Visual Science, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Natalia Mast
- Department of Ophthalmology and Visual Science, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Yong Li
- Department of Ophthalmology and Visual Science, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Irina A Pikuleva
- Department of Ophthalmology and Visual Science, Case Western Reserve University, Cleveland, OH, 44106, USA.
| |
Collapse
|
10
|
Roesch A, Windisch R, Wichmann C, Wolkers WF, Kersten G, Menzen T. Osmotic properties of T cells determined by flow imaging microscopy in comparison to electrical sensing zone analysis. Cryobiology 2023; 113:104587. [PMID: 37783264 DOI: 10.1016/j.cryobiol.2023.104587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 09/20/2023] [Accepted: 09/24/2023] [Indexed: 10/04/2023]
Abstract
To develop cryopreservation methods for cell-based medicinal products it is important to understand osmotic responses of cells upon immersion into solutions with cryoprotective agents (CPAs) and during freezing. The aim of this study was to assess the osmotic response of T cells by using flow imaging microscopy (FIM) as a novel cell-sizing technique, and to corroborate the findings with electrical impedance measurements conducted on a Coulter counter. Jurkat cells were used as a potential model cell line for primary T cells. Cell volume responses were used to derive important cell parameters for cryopreservation such as the osmotically inactive cell volume Vb and the membrane permeability towards water and various CPAs. Unlike Coulter counter measurement, FIM, combined with Trypan blue staining can differentiate between viable and dead cells, which yields a more accurate estimation of Vb. Membrane permeabilities to water, dimethyl sulfoxide (Me2SO) and glycerol were measured for Jurkat cells at different temperatures. The permeation of Me2SO into the cells was faster in comparison to glycerol. CPA permeation decreased with decreasing temperature following Arrhenius behavior. Moreover, membrane permeability to water decreased in the presence of CPAs. Vb of Jurkat cells was found to be 49% of the isotonic volume and comparable to that of primary T cells. FIM proved to be a valuable tool to determine the membrane permeability parameters of mammalian cells to water and cryoprotective agents, which in turn can be used to rationally design CPA loading procedures for cryopreservation.
Collapse
Affiliation(s)
- Alexandra Roesch
- Coriolis Pharma, Fraunhoferstr. 18 b, 82152, Martinsried, Germany; Leiden Academic Centre for Drug Research (LACDR), Leiden University, PO Box 9502, 2300, RA, Leiden, the Netherlands
| | - Roland Windisch
- Division of Transfusion Medicine, Cell Therapeutics and Haemostaseology, University Hospital, LMU Munich, Munich, Germany
| | - Christian Wichmann
- Division of Transfusion Medicine, Cell Therapeutics and Haemostaseology, University Hospital, LMU Munich, Munich, Germany
| | - Willem F Wolkers
- Unit for Reproductive Medicine - Clinic for Horses, University of Veterinary Medicine Hannover, Hannover, Germany; Biostabilization Laboratory - Lower Saxony Centre for Biomedical Engineering, Implant Research and Development, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Gideon Kersten
- Coriolis Pharma, Fraunhoferstr. 18 b, 82152, Martinsried, Germany; Leiden Academic Centre for Drug Research (LACDR), Leiden University, PO Box 9502, 2300, RA, Leiden, the Netherlands
| | - Tim Menzen
- Coriolis Pharma, Fraunhoferstr. 18 b, 82152, Martinsried, Germany.
| |
Collapse
|
11
|
Wallace M, Abiama N, Chipembere M. Measurement of the p Ka Values of Organic Molecules in Aqueous-Organic Solvent Mixtures by 1H NMR without External Calibrants. Anal Chem 2023; 95:15628-15635. [PMID: 37830153 PMCID: PMC10603606 DOI: 10.1021/acs.analchem.3c02771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Accepted: 09/18/2023] [Indexed: 10/14/2023]
Abstract
Aqueous-organic solvent mixtures are commonly used for reactions or analyses, where the components of a system are insoluble in pure water. The acid dissociation constant is an important property to measure in these media as it determines the charge state, solubility, and reactivity of a molecule. While NMR spectroscopy is an established tool for the measurement of pKa in water, its use in aqueous-organic solvents is greatly hindered by the requirement for external calibrants on which a working pH scale is set. Such calibrants include buffer solutions, "anchor" molecules with known pKa values, and pH electrodes that have undergone lengthy calibration procedures in the solvent mixture of interest. However, such calibrations are often inconvenient to perform, while literature pKa data covering the required range may not be available at the solvent composition or the temperature of interest. Here, we present a method to determine pKa in aqueous-organic solvents directly by NMR. We first determine pKa of an organic acid such as 2,6-dihydroxybenzoic acid (2,6-DHB) by measuring its 1H chemical shift as a function of concentration along a concentration gradient using chemical shift imaging (CSI). Using 2,6-DHB as a reference, we then determine pKa of less acidic molecules in single CSI experiments via the variation of their 1H chemical shifts along pH gradients. As proof of concept, we determine the pKa values of organic acids and bases up to pKa 10 in 50% (v/v) 1-propanol/water, 50% (v/v) dimethyl sulfoxide/water, and 30% (v/v) acetonitrile/water and obtain good agreement with the literature values.
Collapse
Affiliation(s)
- Matthew Wallace
- School of Pharmacy, University
of East Anglia, Norwich Research Park, Norwich NR4 7TJ, U.K.
| | - Nduchi Abiama
- School of Pharmacy, University
of East Anglia, Norwich Research Park, Norwich NR4 7TJ, U.K.
| | - Miranda Chipembere
- School of Pharmacy, University
of East Anglia, Norwich Research Park, Norwich NR4 7TJ, U.K.
| |
Collapse
|
12
|
Lin MTY, Lee IXY, Chen WL, Chen MY, Mehta JS, Yam GHF, Peh GSL, Liu YC. Culture of Primary Neurons from Dissociated and Cryopreserved Mouse Trigeminal Ganglion. Tissue Eng Part C Methods 2023; 29:381-393. [PMID: 37212303 PMCID: PMC10442681 DOI: 10.1089/ten.tec.2023.0054] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 05/16/2023] [Indexed: 05/23/2023] Open
Abstract
Corneal nerves originate from the ophthalmic branch of the trigeminal nerve, which enters the cornea at the limbus radially from all directions toward the central cornea. The cell bodies of the sensory neurons of trigeminal nerve are located in the trigeminal ganglion (TG), while the axons are extended into the three divisions, including ophthalmic branch that supplies corneal nerves. Study of primary neuronal cultures established from the TG fibers can therefore provide a knowledge basis for corneal nerve biology and potentially be developed as an in vitro platform for drug testing. However, setting up primary neuron cultures from animal TG has been dubious with inconsistency among laboratories due to a lack of efficient isolation protocol, resulting in low yield and heterogenous cultures. In this study, we used a combined enzymatic digestion with collagenase and TrypLE to dissociate mouse TG while preserving nerve cell viability. A subsequent discontinuous Percoll density gradient followed by mitotic inhibitor treatment effectively diminished the contamination of non-neuronal cells. Using this method, we reproducibly generated high yield and homogenous primary TG neuron cultures. Similar efficiency of nerve cell isolation and culture was further obtained for TG tissue cryopreserved for short (1 week) and long duration (3 months), compared to freshly isolated tissues. In conclusion, this optimized protocol shows a promising potential to standardize TG nerve culture and generate a high-quality corneal nerve model for drug testing and neurotoxicity studies.
Collapse
Affiliation(s)
- Molly Tzu-Yu Lin
- Tissue Engineering and Cell Therapy Group, Singapore Eye Research Institute, Singapore, Singapore
| | - Isabelle Xin Yu Lee
- Tissue Engineering and Cell Therapy Group, Singapore Eye Research Institute, Singapore, Singapore
| | - Wei-Li Chen
- Department of Ophthalmology, National Taiwan University Hospital, Taipei, Taiwan
- Advanced Ocular Surface and Corneal Nerve Research Center, National Taiwan University, Taipei, Taiwan
- Department of Ophthalmology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Mei-Yun Chen
- Advanced Ocular Surface and Corneal Nerve Research Center, National Taiwan University, Taipei, Taiwan
| | - Jodhbir S. Mehta
- Tissue Engineering and Cell Therapy Group, Singapore Eye Research Institute, Singapore, Singapore
- Corneal and External Eye Disease Department, Singapore National Eye Centre, Singapore, Singapore
- Ophthalmology and Visual Sciences Academic Clinical Program, Duke-NUS Medical School, Singapore, Singapore
| | - Gary H. F. Yam
- Tissue Engineering and Cell Therapy Group, Singapore Eye Research Institute, Singapore, Singapore
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Gary S. L. Peh
- Tissue Engineering and Cell Therapy Group, Singapore Eye Research Institute, Singapore, Singapore
- Ophthalmology and Visual Sciences Academic Clinical Program, Duke-NUS Medical School, Singapore, Singapore
| | - Yu-Chi Liu
- Tissue Engineering and Cell Therapy Group, Singapore Eye Research Institute, Singapore, Singapore
- Department of Ophthalmology, National Taiwan University Hospital, Taipei, Taiwan
- Corneal and External Eye Disease Department, Singapore National Eye Centre, Singapore, Singapore
- Ophthalmology and Visual Sciences Academic Clinical Program, Duke-NUS Medical School, Singapore, Singapore
| |
Collapse
|
13
|
Ozimic S, Ban-Frangez H, Stimpfel M. Sperm Cryopreservation Today: Approaches, Efficiency, and Pitfalls. Curr Issues Mol Biol 2023; 45:4716-4734. [PMID: 37367049 DOI: 10.3390/cimb45060300] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 05/25/2023] [Accepted: 05/26/2023] [Indexed: 06/28/2023] Open
Abstract
The cryopreservation of human spermatozoa has been an option for patients undergoing chemo or radiotherapies since the late 1950s. Presently, there are different techniques for the cryopreservation of spermatozoa. The most commonly used techniques are programmable slow freezing and freezing on liquid nitrogen vapors, while the use of vitrification is still not accepted as clinically relevant. Although there have been many improvements, the ideal technique for achieving better post-thaw sperm quality continues to be a mystery. A major obstacle during cryopreservation is the formation of intracellular ice crystals. Cryodamage generated by cryopreservation causes structural and molecular alterations in spermatozoa. Injuries can happen because of oxidative stress, temperature stress, and osmotic stress, which then result in changes in the plasma membrane fluidity, motility, viability, and DNA integrity of the spermatozoa. To prevent cryodamage as much as possible, cryoprotectants are added, and in some clinical trial cases, even antioxidants that may improve post-thaw sperm quality are added. This review discusses cryopreservation techniques, cryodamage on molecular and structural levels, and cryoprotectants. It provides a comparison of cryopreservation techniques and describes recent advances in those techniques.
Collapse
Affiliation(s)
- Sanja Ozimic
- Department of Human Reproduction, Division of Obstetrics and Gynecology, University Medical Centre Ljubljana, 1000 Ljubljana, Slovenia
| | - Helena Ban-Frangez
- Department of Human Reproduction, Division of Obstetrics and Gynecology, University Medical Centre Ljubljana, 1000 Ljubljana, Slovenia
- Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Martin Stimpfel
- Department of Human Reproduction, Division of Obstetrics and Gynecology, University Medical Centre Ljubljana, 1000 Ljubljana, Slovenia
- Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia
| |
Collapse
|
14
|
Maulida S, Eriani K, Fadli N, Kocabaş FK, Siti-Azizah MN, Wilkes M, Muchlisin ZA. Effect of type and concentration of cryoprotectant on the motility, viability, and fertility of climbing perch Anabas testudineus Bloch, 1792 (Pisces: Anabantidae) sperm. Theriogenology 2023; 201:24-29. [PMID: 36822040 DOI: 10.1016/j.theriogenology.2023.02.014] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 02/07/2023] [Accepted: 02/12/2023] [Indexed: 02/17/2023]
Abstract
The climbing perch, Anabas testudineus is a freshwater fish that has economic value in Indonesia. It is cultured in the country, but the breeding technology, specifically sperm storage, is not well developed. Sperm cryopreservation is one of the preservation methods that need to be developed to support fish breeding technology. The type of cryoprotectants and its concentration are species-dependent and determines the success of this approach. Therefore, this study is aimed at determining the optimal type and concentration of cryoprotectant for sperm cryopreservation of A. testudineus. Four separate study series were performed, each of which evaluated one type of cryoprotectant at five concentration levels. The cryoprotectants used were DMSO, methanol, glycerol, and ethanol, and the tested concentrations were 0%, 5%, 10%, 15%, and 20%, which were combined with 5% egg yolks. Each treatment was conducted with three replications. The results showed that the type of cryoprotectant and its concentration significantly affected sperm motility, viability, and fertility of climbing perch (P < 0.05). The best outcome was obtained in DMSO, and methanol at a concentration of 10%, glycerol at 5%, and ethanol at 15%. However, the highest motility, viability, and fertility values were observed at 10% DMSO, indicating it is the best type and concentration for sperm cryopreservation of climbing perch A. testudineus.
Collapse
Affiliation(s)
- Siti Maulida
- Doctoral Program of Mathematics and Applied Sciences, Postgraduate School of Universitas Syiah Kuala, Banda Aceh, 23111, Indonesia; Department of Aquaculture, Faculty of Marine and Fisheries, Universitas Syiah Kuala, Banda Aceh, 23111, Indonesia
| | - Kartini Eriani
- Department of Biology, Faculty of Mathematics and Natural Sciences, Universitas Syiah Kuala, Banda Aceh, 23111, Indonesia
| | - Nur Fadli
- Department of Aquaculture, Faculty of Marine and Fisheries, Universitas Syiah Kuala, Banda Aceh, 23111, Indonesia
| | | | - Mohd Nor Siti-Azizah
- Institute of Marine Biotechnology, Universiti Malaysia Terengganu, Kuala Terengganu, Malaysia
| | - Martin Wilkes
- University of Essex, Colchester, CO4 3SQ, United Kingdom
| | - Zainal Abidin Muchlisin
- Doctoral Program of Mathematics and Applied Sciences, Postgraduate School of Universitas Syiah Kuala, Banda Aceh, 23111, Indonesia; Department of Aquaculture, Faculty of Marine and Fisheries, Universitas Syiah Kuala, Banda Aceh, 23111, Indonesia.
| |
Collapse
|
15
|
Cryoprotection in Human Mesenchymal Stromal/Stem Cells: Synergistic Impact of Urea and Glucose. J Pharm Sci 2023; 112:1681-1686. [PMID: 36754231 DOI: 10.1016/j.xphs.2023.02.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Revised: 02/01/2023] [Accepted: 02/01/2023] [Indexed: 02/10/2023]
Abstract
Standard freezing protocols of clinically relevant cell lines commonly employ agents such as fetal bovine serum and dimethyl sulfoxide, which are a potential concern from both a regulatory and a patient safety perspective. The aim of this work was to develop formulations with safe and well tolerated excipients for the (cryo-) preservation of cell therapy products. We evaluated the cryoprotective capabilities of urea and glucose through measurements of cell metabolic activity. Freezing of clinically relevant human mesenchymal stromal/stem cells and human dermal fibroblasts at ≤ - 65°C at equimolar ratios of urea and glucose resulted in comparable viabilities to established dimethyl sulfoxide. Pre-incubation of human mesenchymal stromal/stem cells in trehalose and addition of mannitol and sucrose to the formulation further enhanced cell viability after freeze-thaw stress. Other cell types assessed (A549 and SK-N-AS) could not satisfactorily be preserved with urea and glucose, highlighting the need for tailored formulations to sustain acceptable cryopreservation.
Collapse
|
16
|
Liu M, Chen C, Yu J, Zhang H, Liang L, Guo B, Qiu Y, Yao F, Zhang H, Li J. The gelatin-based liquid marbles for cell cryopreservation. Mater Today Bio 2022; 17:100477. [DOI: 10.1016/j.mtbio.2022.100477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 10/23/2022] [Accepted: 10/26/2022] [Indexed: 11/06/2022] Open
|
17
|
Wilburn D, Fletcher E, Ismaeel A, Miserlis D, Zechmann B, Koutakis P. Chemical and cryo-collection of muscle samples for transmission electron microscopy using Methacarn and dimethyl sulfoxide ✰. Ultramicroscopy 2022; 241:113600. [PMID: 35988477 PMCID: PMC9511158 DOI: 10.1016/j.ultramic.2022.113600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 07/08/2022] [Accepted: 08/10/2022] [Indexed: 01/24/2023]
Abstract
Muscle samples are commonly chemically fixed or frozen immediately upon collection for biochemical and morphological analysis. Certain fixatives such as glutaraldehyde and osmium tetroxide are widely used for transmission electron microscopy (TEM) and lead to adequate preservation of muscle ultrastructure, but do not preserve the molecular features of samples. Methacarn is suggested to be a preferable chemical fixative for light microscopy because it maintains immunohistological features of samples. However, the efficacy of methacarn to preserve ultrastructural features as a primary chemical fixative for TEM is currently unclear. Additionally, cryo-preservation of samples for TEM analysis involves freezing processes such as plunge freezing, slam freezing, or high pressure freezing. High pressure freezing is the considered the gold standard but requires costly equipment and may not be a viable option for many labs collecting tissue samples from remote locations. Dimethyl sulfoxide (DMSO) is a commonly used cryoprotectant that may allow for better structural preservation of samples by impairing ice damage that occurs during plunge/snap freezing. We aimed to assess the effectiveness of methacarn as a primary chemical fixative and determine the effect of pre-coating samples with DMSO before plunge/snap freezing tissues to be prepared for TEM. The micrographs of the methcarn-fixed samples indicate a loss of Z-disk integrity, intermyofibrillar space, mitochondria structure, and lipids. Ultimately, methacarn is not a viable primary fixative for tissue sample preparation for TEM. Similarly, liquid nitrogen freezing of samples wrapped in aluminum foil produced non-uniform Z-disk alignments that appeared smeared with swollen mitochondria. DMSO coating before freezing appears to lessen the alterations to contractile and mitochondrial morphological structures. DMSO appears to be useful for preserving the ultrastructure of sarcomeres if samples are covered before freezing.
Collapse
Affiliation(s)
- Dylan Wilburn
- Department of Health, Human Performance, and Recreation, Baylor University, 254-710-2911, B.207 Baylor Science Building, One Bear Place #97388, 76798-7388, Waco, TX 76706, USA
| | - Emma Fletcher
- Department of Biology, Baylor University, Waco, TX 76706, USA
| | - Ahmed Ismaeel
- Department of Biology, Baylor University, Waco, TX 76706, USA
| | - Dimitrios Miserlis
- Department of Surgery, University of Texas Health Science Center San Antonio, San Antonio, TX, USA
| | - Bernd Zechmann
- Department of Biology, Baylor University, Waco, TX 76706, USA; Center for Microscopy and Imaging, Baylor University, Waco, Texas 76706, USA
| | | |
Collapse
|
18
|
Chen Y, Chen L, Zhou M, Yi S, Ran J, Long Y, Luo J, Tian K. Can delayed grafting of frozen teeth achieve periodontal ligament healing? Med Hypotheses 2022. [DOI: 10.1016/j.mehy.2022.110945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
19
|
S. Aljaser F. Cryopreservation Methods and Frontiers in the Art of Freezing Life in Animal Models. Vet Med Sci 2022. [DOI: 10.5772/intechopen.101750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
The development in cryobiology in animal breeding had revolutionized the field of reproductive medicine. The main objective to preserve animal germplasm stems from variety of reasons such as conservation of endangered animal species, animal diversity, and an increased demand of animal models and/or genetically modified animals for research involving animal and human diseases. Cryopreservation has emerged as promising technique for fertility preservation and assisted reproduction techniques (ART) for production of animal breeds and genetically engineered animal species for research. Slow rate freezing and rapid freezing/vitrification are the two main methods of cryopreservation. Slow freezing is characterized by the phase transition (liquid turning into solid) when reducing the temperature below freezing point. Vitrification, on the other hand, is a phenomenon in which liquid solidifies without the formation of ice crystals, thus the process is referred to as a glass transition or ice-free cryopreservation. The vitrification protocol applies high concentrations of cryoprotective agents (CPA) used to avoid cryoinjury. This chapter provides a brief overview of fundamentals of cryopreservation and established methods adopted in cryopreservation. Strategies involved in cryopreserving germ cells (sperm and egg freezing) are included in this chapter. Last section describes the frontiers and advancement of cryopreservation in some of the important animal models like rodents (mouse and rats) and in few large animals (sheep, cow etc).
Collapse
|
20
|
Malajczuk CJ, Stachura SS, Hendry JO, Mancera RL. Redefining the Molecular Interplay between Dimethyl Sulfoxide, Lipid Bilayers, and Dehydration. J Phys Chem B 2022; 126:2513-2529. [PMID: 35344357 DOI: 10.1021/acs.jpcb.2c00353] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The potentially damaging action of dimethyl sulfoxide (DMSO) on phospholipid bilayers remains a matter of controversy. We have conducted a series of long-scale molecular dynamics simulations of 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC) bilayers at various levels of hydration in the presence of variable quantities of DMSO. These simulations provide evidence for a non-destructive dehydrating mechanism of action for DMSO on DOPC bilayers across a wide concentration range and levels of hydration. Specifically, under full- and low-hydration conditions, the bilayer underwent a minor lateral contraction, coinciding with surface dehydration in the presence of dilute DMSO solutions (XDMSO < 0.3). At higher DMSO concentrations, this bilayer structure was retained despite a progressive deterioration of the hydration structure at the interface. A similar convergence of bilayer structural properties was observed under dehydration conditions for 0.3 < XDMSO < 0.7. Destabilization occurred for dehydrated bilayers in the presence of XDMSO ≥ 0.7, suggesting the existence of a DMSO concentration and/or dehydration threshold. However, such DMSO concentrations far exceed those established as toxic to other cellular components. Our findings represent a computational model for DMSO-DOPC interactions that is consistent with a range of experimental characterizations, offering new molecular insights into the cryoprotective mechanisms of action of DMSO.
Collapse
Affiliation(s)
- Chris J Malajczuk
- Curtin Medical School, Curtin Health Innovation Research Institute and Curtin Institute for Computation, Curtin University, GPO Box U1987, Perth, Western Australia 6845, Australia
| | - Sławomir S Stachura
- Curtin Medical School, Curtin Health Innovation Research Institute and Curtin Institute for Computation, Curtin University, GPO Box U1987, Perth, Western Australia 6845, Australia
| | - James O Hendry
- Curtin Medical School, Curtin Health Innovation Research Institute and Curtin Institute for Computation, Curtin University, GPO Box U1987, Perth, Western Australia 6845, Australia
| | - Ricardo L Mancera
- Curtin Medical School, Curtin Health Innovation Research Institute and Curtin Institute for Computation, Curtin University, GPO Box U1987, Perth, Western Australia 6845, Australia
| |
Collapse
|
21
|
Gore M, Narvekar A, Bhagwat A, Jain R, Dandekar P. Macromolecular cryoprotectants for the preservation of mammalian cell culture: lessons from crowding, overview and perspectives. J Mater Chem B 2021; 10:143-169. [PMID: 34913462 DOI: 10.1039/d1tb01449h] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Cryopreservation is a process used for the storage of mammalian cells at a very low temperature, in a state of 'suspended animation.' Highly effective and safe macromolecular cryoprotectants (CPAs) have gained significant attention as they obviate the toxicity of conventional CPAs like dimethyl sulfoxide (DMSO) and reduce the risks involved in the storage of cultures at liquid nitrogen temperatures. These agents provide cryoprotection through multiple mechanisms, involving extracellular and intracellular macromolecular crowding, thereby impacting the biophysical and biochemical dynamics of the freezing medium and the cryopreserved cells. These CPAs vary in their structures and physicochemical properties, which influence their cryoprotective activities. Moreover, the introduction of polymeric crowders in the cryopreservation media enables serum-free storage at low-DMSO concentrations and high-temperature vitrification of frozen cultures (-80 °C). This review highlights the need for macromolecular CPAs and describes their mechanisms of cryopreservation, by elucidating the role of crowding effects. It also classifies the macromolecules based on their chemistry and their structure-activity relationships. Furthermore, this article provides perspectives on the factors that may influence the outcomes of the cell freezing process or may help in designing and evaluating prospective macromolecules. This manuscript also includes case studies about cellular investigations that have been conducted to demonstrate the cryoprotective potential of macromolecular CPAs. Ultimately, this review provides essential directives that will further improve the cell cryopreservation process and may encourage the use of macromolecular CPAs to fortify basic, applied, and translational research.
Collapse
Affiliation(s)
- Manish Gore
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Mumbai, 400 019, India.
| | - Aditya Narvekar
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Mumbai, 400 019, India.
| | - Advait Bhagwat
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Mumbai, 400 019, India.
| | - Ratnesh Jain
- Department of Chemical Engineering, Institute of Chemical Technology, Mumbai, 400 019, India.
| | - Prajakta Dandekar
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Mumbai, 400 019, India.
| |
Collapse
|
22
|
Alkali metal chlorides in DMSO–methanol binary mixtures: insights into the structural properties through molecular dynamics simulations. Theor Chem Acc 2021. [DOI: 10.1007/s00214-021-02856-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
23
|
Li Y, Gao H, Qi Z, Huang Z, Ma L, Liu J. Freezing-Assisted Conjugation of Unmodified Diblock DNA to Hydrogel Nanoparticles and Monoliths for DNA and Hg 2+ Sensing. Angew Chem Int Ed Engl 2021; 60:12985-12991. [PMID: 33792133 DOI: 10.1002/anie.202102330] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 03/24/2021] [Indexed: 12/22/2022]
Abstract
Acrydite-modified DNA is the most frequently used reagent to prepare DNA-functionalized hydrogels. Herein, we show that unmodified penta-adenine (A5 ) can reach up to 75 % conjugation efficiency in 8 h under a freezing polymerization condition in polyacrylamide hydrogels. DNA incorporation efficiency was reduced by forming duplex or other folded structures and by removing the freezing condition. By designing diblock DNA containing an A5 block, various functional DNA sequences were attached. Such hydrogels were designed for ultrasensitive DNA hybridization and Hg2+ detection, with detection limits of 50 pM and 10 nM, respectively, demonstrating the feasibility of using unmodified DNA to replace acrydite-DNA. The same method worked for both gel nanoparticles and monoliths. This work revealed interesting reaction products by exploiting freezing and has provided a cost-effective way to attach DNA to hydrogels.
Collapse
Affiliation(s)
- Yuqing Li
- Department of Chemistry, Waterloo Institute for Nanotechnology, University of Waterloo, 200 University Avenue West, Waterloo, Ontario, N2L 3G1, Canada
| | - Hang Gao
- Department of Chemistry, Waterloo Institute for Nanotechnology, University of Waterloo, 200 University Avenue West, Waterloo, Ontario, N2L 3G1, Canada
| | - Zengyao Qi
- Department of Chemistry, Waterloo Institute for Nanotechnology, University of Waterloo, 200 University Avenue West, Waterloo, Ontario, N2L 3G1, Canada
| | - Zhicheng Huang
- Department of Chemistry, Waterloo Institute for Nanotechnology, University of Waterloo, 200 University Avenue West, Waterloo, Ontario, N2L 3G1, Canada
| | - Lingzi Ma
- Department of Chemistry, Waterloo Institute for Nanotechnology, University of Waterloo, 200 University Avenue West, Waterloo, Ontario, N2L 3G1, Canada
| | - Juewen Liu
- Department of Chemistry, Waterloo Institute for Nanotechnology, University of Waterloo, 200 University Avenue West, Waterloo, Ontario, N2L 3G1, Canada.,Centre for Eye and Vision Research, 17W Hong Kong Science Park, Hong Kong, Hong Kong
| |
Collapse
|
24
|
Li Y, Gao H, Qi Z, Huang Z, Ma L, Liu J. Freezing‐Assisted Conjugation of Unmodified Diblock DNA to Hydrogel Nanoparticles and Monoliths for DNA and Hg
2+
Sensing. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202102330] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Yuqing Li
- Department of Chemistry Waterloo Institute for Nanotechnology University of Waterloo 200 University Avenue West Waterloo Ontario N2L 3G1 Canada
| | - Hang Gao
- Department of Chemistry Waterloo Institute for Nanotechnology University of Waterloo 200 University Avenue West Waterloo Ontario N2L 3G1 Canada
| | - Zengyao Qi
- Department of Chemistry Waterloo Institute for Nanotechnology University of Waterloo 200 University Avenue West Waterloo Ontario N2L 3G1 Canada
| | - Zhicheng Huang
- Department of Chemistry Waterloo Institute for Nanotechnology University of Waterloo 200 University Avenue West Waterloo Ontario N2L 3G1 Canada
| | - Lingzi Ma
- Department of Chemistry Waterloo Institute for Nanotechnology University of Waterloo 200 University Avenue West Waterloo Ontario N2L 3G1 Canada
| | - Juewen Liu
- Department of Chemistry Waterloo Institute for Nanotechnology University of Waterloo 200 University Avenue West Waterloo Ontario N2L 3G1 Canada
- Centre for Eye and Vision Research 17W Hong Kong Science Park Hong Kong Hong Kong
| |
Collapse
|
25
|
Rockinger U, Müller C, Bracher F, Funk M, Winter G. DMSO as new, counterintuitive excipient for freeze-drying human keratinocytes. Eur J Pharm Sci 2021; 160:105746. [PMID: 33561511 DOI: 10.1016/j.ejps.2021.105746] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 01/28/2021] [Accepted: 02/04/2021] [Indexed: 10/22/2022]
Abstract
DMSO is widely used as powerful cryoprotectant for the storage and transport of frozen cells. Beyond this established application of DMSO, we could now show that it has also promising lyoprotectant effects in the field of lyophilisation of therapeutic cells. Freeze-drying of HaCaT keratinocytes in 10% HES, 5% HE and in presence of DMSO led to an increase in cell membrane integrity from 25.3 ± 2.7 % without DMSO to 41.4 ± 4.3 % with 2% DMSO, as determined by trypan blue exclusion. Interruption of the lyophilisation cycle at different sampling points showed a rapid decrease of cell membrane integrity below a critical residual moisture content. DMSO was able to stabilise cell membranes below this moisture level up to a final residual moisture content of less than 1%. Furthermore, DMSO increased the total protein content of cells after freeze-drying and subsequent SDS PAGE analysis indicated that certain abundant proteins were better preserved with the use of DMSO. Owed to its low vapour pressure, a significant part of DMSO is not removed during freeze-drying and remains as plasticiser in the lyophilised cake. However, a Tg above 60°C for 2% DMSO indicates that samples can still be stored at temperatures of 2-8°C. Also, no macroscopic or microscopic collapse can be observed by SEM or BET measurements and DMSO addition leads even to more elegant cakes with reduced cake cracking. With a better preservation of cell membranes and cellular structures, DMSO can contribute to the still unsolved problem of freeze-drying cells of higher complexity.
Collapse
Affiliation(s)
- Ute Rockinger
- Ludwig-Maximilians-Universität München, Department of Pharmacy, Pharmaceutical Technology and Biopharmaceutics, Munich, Germany
| | - Christoph Müller
- Ludwig-Maximilians-University Munich, Department of Pharmacy, Center for Drug Research, Munich, Germany
| | - Franz Bracher
- Ludwig-Maximilians-University Munich, Department of Pharmacy, Center for Drug Research, Munich, Germany
| | - Martin Funk
- QRSKIN GmbH, Friedrich-Bergius-Ring 15, Würzburg, Germany
| | - Gerhard Winter
- Ludwig-Maximilians-Universität München, Department of Pharmacy, Pharmaceutical Technology and Biopharmaceutics, Munich, Germany
| |
Collapse
|
26
|
Burnham RE, Tope D, Branella G, Williams E, Doering CB, Spencer HT. Human serum albumin and chromatin condensation rescue ex vivo expanded γδ T cells from the effects of cryopreservation. Cryobiology 2021; 99:78-87. [PMID: 33485898 PMCID: PMC7941345 DOI: 10.1016/j.cryobiol.2021.01.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 01/12/2021] [Accepted: 01/14/2021] [Indexed: 01/10/2023]
Abstract
Clinical applications of gamma delta (γδ) T cells have advanced from initial interest in expanding γδ T cells in vivo to the development of a manufacturing process for the ex vivo expansion. To develop an "off-the-shelf" allogeneic γδ T cell product, the cell manufacturing process must be optimized to include cryopreservation. It is known that cryopreservation can dramatically reduce viability of primary cells and other cell types after thawing, although the exact effects of cryopreservation on γδ T cell health and functionality have not yet been characterized. Our aim was to characterize the effects of a freeze/thaw cycle on γδ T cells and to develop an optimized protocol for cryopreservation. γδ T cells were expanded under serum-free conditions, using a good manufacturing practice (GMP) compliant protocol developed by our lab. We observed that cryopreservation reduced cell survival and increased the percentage of apoptotic cells, two measures that could not be improved through the use of 5 GMP compliant freezing media. The choice of thawing medium, specifically human albumin (HSA), improved γδ T cell viability and in addition, chromatin condensation prior to freezing increased cell viability after thawing, which could not be further improved with the use of a general caspase inhibitor. Finally, we found that cryopreserved cells had depolarized mitochondrial membranes and reduced cytotoxicity when tested against a range of leukemia cell lines. These studies provide a detailed analysis of the effects of cryopreservation on γδ T cells and provide methods for improving viability in the post-thaw period.
Collapse
Affiliation(s)
- Rebecca E Burnham
- Aflac Cancer and Blood Disorders Center, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA; Molecular and Systems Pharmacology Program, Graduate Division of Biological and Biomedical Sciences, Emory University School of Medicine, Atlanta, GA, USA
| | - Donald Tope
- Aflac Cancer and Blood Disorders Center, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA
| | - Gianna Branella
- Aflac Cancer and Blood Disorders Center, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA; Cancer Biology Program, Graduate Division of Biological and Biomedical Sciences, Emory University School of Medicine, Atlanta, GA, USA
| | - Erich Williams
- Aflac Cancer and Blood Disorders Center, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA
| | - Christopher B Doering
- Aflac Cancer and Blood Disorders Center, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA
| | - H Trent Spencer
- Aflac Cancer and Blood Disorders Center, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA.
| |
Collapse
|
27
|
Kundu S, Malik S, Ghosh M, Nandi S, Pyne A, Debnath A, Sarkar N. A Comparative Study on DMSO-Induced Modulation of the Structural and Dynamical Properties of Model Bilayer Membranes. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:2065-2078. [PMID: 33529530 DOI: 10.1021/acs.langmuir.0c03037] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Modulating the structures and properties of biomembranes via permeation of small amphiphilic molecules is immensely important, having diverse applications in cell biology, biotechnology, and pharmaceuticals, because their physiochemical and biological interactions lead to new pathways for transdermal drug delivery and administration. In this work, we have elucidated the role of dimethyl sulfoxide (DMSO), broadly used as a penetration-enhancing agent and cryoprotective agent on model lipid membranes, using a combination of fluorescence microscopy and time-resolved fluorescence spectroscopy. Spatially resolved fluorescence lifetime imaging microscopy (FLIM) has been employed to unravel how the fluidity of the DMSO-induced bilayer regulates the structural alteration of the vesicles. Moreover, we have also shown that the dehydration effect of DMSO leads to weakening of the hydrogen bond between lipid headgroups and water molecules and results in faster solvation dynamics as demonstrated by femtosecond time-resolved fluorescence spectroscopy. It has been gleaned that the water dynamics becomes faster because bilayer rigidity decreases in the presence of DMSO, which is also supported by time-resolved rotational anisotropy measurements. The enhanced diffusivity and increased membrane fluidity in the presence of DMSO are further ratified at the single-molecule level through fluorescence correlation spectroscopy (FCS) measurements. Our results indicate that while the presence of DMSO significantly affects the 1,2-dimyristoyl-rac-glycero-3-phosphocholine (DMPC) and 1,2-dipalmitoyl-rac-glycero-3-phosphatidylcholine (DPPC) bilayers, it has a weak effect on 1,2-dimyristoyl-sn-glycero-3-phospho-rac-glycerol (DMPG) vesicles, which might explain the preferential interaction of DMSO with the positively charged choline group present in DMPC and DPPC vesicles. The experimental findings have also been further verified with molecular dynamics simulation studies. Moreover, it has been observed that DMSO is likely to have a differential effect on heterogeneous bilayer membranes depending on the structure and composition of their headgroups. Our results illuminate the importance of probing the lipid structure and composition of cellular membranes in determining the effects of cryoprotective agents.
Collapse
Affiliation(s)
- Sangita Kundu
- Department of Chemistry, Indian Institute of Technology, Kharagpur 721302, WB, India
| | - Sheeba Malik
- Department of Chemistry, Indian Institute of Technology Jodhpur, Jodhpur 342037, Rajasthan, India
| | - Meghna Ghosh
- Department of Chemistry, Indian Institute of Technology, Kharagpur 721302, WB, India
| | - Sourav Nandi
- Department of Chemistry, Indian Institute of Technology, Kharagpur 721302, WB, India
| | - Arghajit Pyne
- Department of Chemistry, Indian Institute of Technology, Kharagpur 721302, WB, India
| | - Ananya Debnath
- Department of Chemistry, Indian Institute of Technology Jodhpur, Jodhpur 342037, Rajasthan, India
| | - Nilmoni Sarkar
- Department of Chemistry, Indian Institute of Technology, Kharagpur 721302, WB, India
| |
Collapse
|
28
|
Millán de la Blanca MG, Martínez-Nevado E, Castaño C, García J, Bernal B, Toledano-Díaz A, Esteso MC, Bóveda P, Martínez-Fresneda L, López-Sebastián A, Santiago-Moreno J. Sperm Cryopreservation in American Flamingo ( Phoenicopterus Ruber): Influence of Cryoprotectants and Seminal Plasma Removal. Animals (Basel) 2021; 11:203. [PMID: 33467758 PMCID: PMC7829904 DOI: 10.3390/ani11010203] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 01/13/2021] [Accepted: 01/14/2021] [Indexed: 11/30/2022] Open
Abstract
The American flamingo is a useful model for the development of successful semen cryopreservation procedures to be applied to threatened related species from the family Phoenicopteridae, and to permit genetic material banking. Current study sought to develop effective sperm cryopreservation protocols through examining the influences of two permeating cryoprotectants and the seminal plasma removal. During two consecutive years (April), semen samples were collected and frozen from American flamingos. In the first year, the effect of two permeating cryoprotectants, DMA (dimethylacetamide) (6%) or Me2SO (dimethylsulphoxide) (8%), on frozen-thawed sperm variables were compared in 21 males. No differences were seen between DMA and Me2SO for sperm motility, sperm viability, and DNA fragmentation after thawing. In the second year, the role of seminal plasma on sperm cryoresistance was investigated in 31 flamingos. Sperm samples were cryopreserved with and without seminal plasma, using Me2SO (8%) as a cryoprotectant. The results showed that samples with seminal plasma had higher values than samples without seminal plasma for the following sperm variables: Straight line velocity (22.40 µm/s vs. 16.64 µm/s), wobble (75.83% vs. 69.40%), (p < 0.05), linearity (62.73% vs. 52.01%) and straightness (82.38% vs. 73.79%) (p < 0.01); but acrosome integrity was lower (55.56% vs. 66.88%) (p < 0.05). The cryoresistance ratio (CR) was greater in samples frozen with seminal plasma than without seminal plasma for CR-progressive motility (138.72 vs. 54.59), CR-curvilinear velocity (105.98 vs. 89.32), CR-straight line velocity (152.77 vs. 112.58), CR-average path velocity (122.48 vs. 98.12), CR-wobble (111.75 vs. 102.04) (p < 0.05), CR-linearity (139.41 vs. 113.18), and CR-straightness (124.02 vs. 109.97) (p < 0.01). This research demonstrated that there were not differences between Me2SO and DMA to successful freezing sperm of flamingos; seminal plasma removal did not provide a benefit for sperm cryopreservation.
Collapse
Affiliation(s)
- María Gemma Millán de la Blanca
- Department of Animal Reproduction, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), 28040 Madrid, Spain; (M.G.M.d.l.B.); (C.C.); (B.B.); (A.T.-D.); (M.C.E.); (P.B.); (L.M.-F.); (A.L.-S.)
| | | | - Cristina Castaño
- Department of Animal Reproduction, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), 28040 Madrid, Spain; (M.G.M.d.l.B.); (C.C.); (B.B.); (A.T.-D.); (M.C.E.); (P.B.); (L.M.-F.); (A.L.-S.)
| | - Juncal García
- Zoo-Aquarium Madrid, 28011 Madrid, Spain; (E.M.-N.); (J.G.)
| | - Berenice Bernal
- Department of Animal Reproduction, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), 28040 Madrid, Spain; (M.G.M.d.l.B.); (C.C.); (B.B.); (A.T.-D.); (M.C.E.); (P.B.); (L.M.-F.); (A.L.-S.)
| | - Adolfo Toledano-Díaz
- Department of Animal Reproduction, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), 28040 Madrid, Spain; (M.G.M.d.l.B.); (C.C.); (B.B.); (A.T.-D.); (M.C.E.); (P.B.); (L.M.-F.); (A.L.-S.)
| | - Milagros Cristina Esteso
- Department of Animal Reproduction, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), 28040 Madrid, Spain; (M.G.M.d.l.B.); (C.C.); (B.B.); (A.T.-D.); (M.C.E.); (P.B.); (L.M.-F.); (A.L.-S.)
| | - Paula Bóveda
- Department of Animal Reproduction, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), 28040 Madrid, Spain; (M.G.M.d.l.B.); (C.C.); (B.B.); (A.T.-D.); (M.C.E.); (P.B.); (L.M.-F.); (A.L.-S.)
| | - Lucía Martínez-Fresneda
- Department of Animal Reproduction, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), 28040 Madrid, Spain; (M.G.M.d.l.B.); (C.C.); (B.B.); (A.T.-D.); (M.C.E.); (P.B.); (L.M.-F.); (A.L.-S.)
| | - Antonio López-Sebastián
- Department of Animal Reproduction, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), 28040 Madrid, Spain; (M.G.M.d.l.B.); (C.C.); (B.B.); (A.T.-D.); (M.C.E.); (P.B.); (L.M.-F.); (A.L.-S.)
| | - Julián Santiago-Moreno
- Department of Animal Reproduction, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), 28040 Madrid, Spain; (M.G.M.d.l.B.); (C.C.); (B.B.); (A.T.-D.); (M.C.E.); (P.B.); (L.M.-F.); (A.L.-S.)
| |
Collapse
|
29
|
Whaley D, Damyar K, Witek RP, Mendoza A, Alexander M, Lakey JRT. Cryopreservation: An Overview of Principles and Cell-Specific Considerations. Cell Transplant 2021; 30:963689721999617. [PMID: 33757335 PMCID: PMC7995302 DOI: 10.1177/0963689721999617] [Citation(s) in RCA: 99] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 01/28/2021] [Accepted: 02/12/2021] [Indexed: 12/21/2022] Open
Abstract
The origins of low-temperature tissue storage research date back to the late 1800s. Over half a century later, osmotic stress was revealed to be a main contributor to cell death during cryopreservation. Consequently, the addition of cryoprotective agents (CPAs) such as dimethyl sulfoxide (DMSO), glycerol (GLY), ethylene glycol (EG), or propylene glycol (PG), although toxic to cells at high concentrations, was identified as a necessary step to protect against rampant cell death during cryopreservation. In addition to osmotic stress, cooling and thawing rates were also shown to have significant influence on cell survival during low temperature storage. In general, successful low-temperature cell preservation consists of the addition of a CPA (commonly 10% DMSO), alone or in combination with additional permeating or non-permeating agents, cooling rates of approximately 1ºC/min, and storage in either liquid or vapor phase nitrogen. In addition to general considerations, cell-specific recommendations for hepatocytes, pancreatic islets, sperm, oocytes, and stem cells should be observed to maximize yields. For example, rapid cooling is associated with better cryopreservation outcomes for oocytes, pancreatic islets, and embryonic stem cells while slow cooling is recommended for cryopreservation of hepatocytes, hematopoietic stem cells, and mesenchymal stem cells. Yields can be further maximized by implementing additional pre-cryo steps such as: pre-incubation with glucose and anti-oxidants, alginate encapsulation, and selecting cells within an optimal age range and functional ability. Finally, viability and functional assays are critical steps in determining the quality of the cells post-thaw and improving the efficiency of the current cryopreservation methods.
Collapse
Affiliation(s)
- David Whaley
- Department of Surgery, University of California Irvine, Orange, CA, USA
| | - Kimia Damyar
- Department of Surgery, University of California Irvine, Orange, CA, USA
| | | | | | - Michael Alexander
- Department of Surgery, University of California Irvine, Orange, CA, USA
| | - Jonathan RT Lakey
- Department of Surgery, University of California Irvine, Orange, CA, USA
- Department of Biomedical Engineering, University of California Irvine, Irvine, CA, USA
| |
Collapse
|
30
|
Ito A, Yoshioka K, Masumoto S, Sato K, Hatae Y, Nakai T, Yamazaki T, Takahashi M, Tanoue S, Horie M. Magnetic heating of nanoparticles as a scalable cryopreservation technology for human induced pluripotent stem cells. Sci Rep 2020; 10:13605. [PMID: 32788637 PMCID: PMC7423927 DOI: 10.1038/s41598-020-70707-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Accepted: 07/28/2020] [Indexed: 11/21/2022] Open
Abstract
Scale-up of production is needed for industrial applications and clinical translation of human induced pluripotent stem cells (hiPSCs). However, in cryopreservation of hiPSCs, successful rewarming of vitrified cells can only be achieved by convective warming of small volumes (generally 0.2 mL). Here, we present a scalable nano-warming technology for hiPSC cryopreservation employing inductive heating of magnetic nanoparticles under an alternating magnetic field. The conventional method by water bath heating at 37 °C resulted in a decrease of cell viability owing to devitrification caused by slow warming of samples with large volumes (≥ 20 mL). Nano-warming showed uniform and rapid rewarming of vitrified samples and improved viability of hiPSCs in the 20-mL system. In addition to single cells, hiPSC aggregates prepared using a bioreactor-based approach were successfully cryopreserved by the nano-warming technique. These results demonstrate that nano-warming is a promising methodology for cryopreservation in mass production of hiPSCs.
Collapse
Affiliation(s)
- Akira Ito
- Department of Chemical Systems Engineering, School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8603, Japan.
- Precursory Research for Embryonic Science and Technology (PRESTO), Japan Science and Technology Agency (JST), 4-1-8 Honcho, Kawacughi, Saitama, 332-0012, Japan.
| | - Kantaro Yoshioka
- Department of Chemical Engineering, Faculty of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan
| | - Shinya Masumoto
- Department of Chemical Engineering, Faculty of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan
| | - Keiichiro Sato
- Department of Chemical Engineering, Faculty of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan
| | - Yuki Hatae
- Department of Chemical Engineering, Faculty of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan
| | - Tomoki Nakai
- Department of Chemical Systems Engineering, School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8603, Japan
| | - Takashi Yamazaki
- Department of Chemical Systems Engineering, School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8603, Japan
| | - Masazumi Takahashi
- Technical Department, Dai-Ichi High Frequency Co., Ltd., 1-45 Mizue-cho, Kawasaki-ku, Kawasaki, 210-0866, Japan
| | - Shota Tanoue
- Technical Department, Dai-Ichi High Frequency Co., Ltd., 1-45 Mizue-cho, Kawasaki-ku, Kawasaki, 210-0866, Japan
| | - Masanobu Horie
- Division of Biochemical Engineering, Radioisotope Research Center, Kyoto University, Yoshida Konoe-cho, Sakyo-ku, Kyoto, 606-8501, Japan
| |
Collapse
|
31
|
Ishizuka Y, Bramham CR. A simple DMSO-based method for cryopreservation of primary hippocampal and cortical neurons. J Neurosci Methods 2020; 333:108578. [DOI: 10.1016/j.jneumeth.2019.108578] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 12/20/2019] [Accepted: 12/30/2019] [Indexed: 01/19/2023]
|
32
|
Liu M, Zhang X, Guo H, Zhu Y, Wen C, Sui X, Yang J, Zhang L. Dimethyl Sulfoxide-Free Cryopreservation of Chondrocytes Based on Zwitterionic Molecule and Polymers. Biomacromolecules 2019; 20:3980-3988. [PMID: 31490670 DOI: 10.1021/acs.biomac.9b01024] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Cartilage tissue engineering highly relies on the ability to store and transport chondrocytes in order to be clinically successful. Cryopreservation is a most reliable technology for chondrocyte storage, but it suffers from the intrinsic toxicity of current state-of-the-art cryoprotectant, dimethyl sulfoxide (DMSO). In this work, we used the first fully zwitterionic compound-based approach for effective chondrocyte cryopreservation. A zwitterionic molecule combined with zwitterionic polymers could balance intra/extracellular osmotic stress and prevent ice formation, which were the keys of successful cryopreservation. Moreover, this zwitterionic combination showed noncytotoxicity due to its high biocompatibility, superior to cytotoxic DMSO. On the basis of these performances, chondrocytes could be well cryopreserved (∼90% post-thaw survival efficiency) for a long time without any addition of DMSO, and the recovered cells could maintain their normal functionalities. In view of the association between polymer molecular weight and cryopreservation efficacy, further mechanism of cryoprotection provided by zwitterionic molecule/polymer was proposed. This work opens a new window of opportunity for DMSO-free cryopreservation using biocompatible zwitterionic materials.
Collapse
Affiliation(s)
- Min Liu
- Qingdao Institute for Marine Technology of Tianjin University , Qingdao 266235 , P.R. China
| | - Xiangyu Zhang
- Qingdao Institute for Marine Technology of Tianjin University , Qingdao 266235 , P.R. China
| | - Hongshuang Guo
- Qingdao Institute for Marine Technology of Tianjin University , Qingdao 266235 , P.R. China
| | - Yingnan Zhu
- Qingdao Institute for Marine Technology of Tianjin University , Qingdao 266235 , P.R. China
| | - Chiyu Wen
- Qingdao Institute for Marine Technology of Tianjin University , Qingdao 266235 , P.R. China
| | - Xiaojie Sui
- Qingdao Institute for Marine Technology of Tianjin University , Qingdao 266235 , P.R. China
| | - Jing Yang
- Qingdao Institute for Marine Technology of Tianjin University , Qingdao 266235 , P.R. China
| | - Lei Zhang
- Qingdao Institute for Marine Technology of Tianjin University , Qingdao 266235 , P.R. China
| |
Collapse
|
33
|
Bownik A. Effects of ectoine on behavioral, physiological and biochemical parameters of Daphnia magna exposed to dimethyl sulfoxide. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 683:193-201. [PMID: 31129327 DOI: 10.1016/j.scitotenv.2019.05.257] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 05/14/2019] [Accepted: 05/17/2019] [Indexed: 06/09/2023]
Abstract
DMSO is a very common solvent for hydrophobic chemicals that may pose a threat to aquatic organisms. Ectoine (ECT) is a protective amino acid produced by various strains of halophilic bacteria with high potential to alleviate detrimental effects induced by environmental stressors. This amino acid is used in many cosmetics and pharmaceuticals may enter aquatic ecosystems interacting with ions and macromolecules. Little is known on the effects of DMSO and its interaction with ECT on behavioral, physiological and biochemical endpoints of aquatic invertebrates. Therefore, the purpose of the present study was to determine protective effects of DMSO alone and in the combination with ECT on hopping frequency, swimming speed, heart rate, thoracic limb activity, catalase activity and NOx level in an animal model, Daphnia magna subjected to 0.1% and 1% DMSO alone and during combinatorial exposure to ECT (0-25 mg/L) and DMSO for 24 h and 48 h. The results showed that swimming speed, heart rate and thoracic limb activity were inhibited by both 0.1% and 1% DMSO alone however alleviating effects were observed in the combination DMSO + ECT. Thoracic limb activity was higher in the animals exposed to both solutions of DMSO alone, however the parameter was more stimulated at DMSO + ECT. The results suggest that DMSO alone may alter Daphnia behavior and physiological parameters, therefore use of the control group of non-treated animals with DMSO alone would be recommended to avoid data misinterpretation.
Collapse
Affiliation(s)
- Adam Bownik
- Institute of Biological Basis of Animal Production, University of Life Sciences, 20-950 Lublin, Poland.
| |
Collapse
|
34
|
Her C, Yeh Y, Krishnan VV. The Ensemble of Conformations of Antifreeze Glycoproteins (AFGP8): A Study Using Nuclear Magnetic Resonance Spectroscopy. Biomolecules 2019; 9:biom9060235. [PMID: 31213033 PMCID: PMC6628104 DOI: 10.3390/biom9060235] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 05/28/2019] [Accepted: 05/30/2019] [Indexed: 12/13/2022] Open
Abstract
The primary sequence of antifreeze glycoproteins (AFGPs) is highly degenerate, consisting of multiple repeats of the same tripeptide, Ala–Ala–Thr*, in which Thr* is a glycosylated threonine with the disaccharide beta-d-galactosyl-(1,3)-alpha-N-acetyl-d-galactosamine. AFGPs seem to function as intrinsically disordered proteins, presenting challenges in determining their native structure. In this work, a different approach was used to elucidate the three-dimensional structure of AFGP8 from the Arctic cod Boreogadussaida and the Antarctic notothenioid Trematomusborchgrevinki. Dimethyl sulfoxide (DMSO), a non-native solvent, was used to make AFGP8 less dynamic in solution. Interestingly, DMSO induced a non-native structure, which could be determined via nuclear magnetic resonance (NMR) spectroscopy. The overall three-dimensional structures of the two AFGP8s from two different natural sources were different from a random coil ensemble, but their “compactness” was very similar, as deduced from NMR measurements. In addition to their similar compactness, the conserved motifs, Ala–Thr*–Pro–Ala and Ala–Thr*–Ala–Ala, present in both AFGP8s, seemed to have very similar three-dimensional structures, leading to a refined definition of local structural motifs. These local structural motifs allowed AFGPs to be considered functioning as effectors, making a transition from disordered to ordered upon binding to the ice surface. In addition, AFGPs could act as dynamic linkers, whereby a short segment folds into a structural motif, while the rest of the AFGPs could still be disordered, thus simultaneously interacting with bulk water molecules and the ice surface, preventing ice crystal growth.
Collapse
Affiliation(s)
- Cheenou Her
- Department of Chemistry, California State University, Fresno, CA 93740, USA.
| | - Yin Yeh
- Department of Applied Science, University of California, Davis, CA 95616, USA.
| | - Viswanathan V Krishnan
- Department of Chemistry, California State University, Fresno, CA 93740, USA.
- Department Medical Pathology and Laboratory Medicine, Davis School of Medicine, University of California, Davis, CA 95616, USA.
| |
Collapse
|
35
|
Čechová K, Maťko I, Rusnák J, Švajdlenková H, Klbik I, Lakota J, Šauša O. Microstructural free volume and dynamics of cryoprotective DMSO–water mixtures at low DMSO concentration. RSC Adv 2019; 9:34299-34310. [PMID: 35529958 PMCID: PMC9074111 DOI: 10.1039/c9ra06305f] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Accepted: 10/17/2019] [Indexed: 01/18/2023] Open
Abstract
This work investigates the free-volume properties of the dimethyl sulfoxide (DMSO)–water mixtures by positron annihilation lifetime spectroscopy over a wide temperature range of 20–320 K. The processes of melting and solidification of the water, DMSO and the DMSO–water mixtures at 1.8, 2.0 and 10% vol. DMSO respectively were studied. It was found that the recrystallization during heating of the water–DMSO cryoprotective mixtures above 160 K at low DMSO concentrations is affected by the amount of DMSO in the mixture. The amount of amorphous phase formed during cooling influences the hysteresis between cooling and heating cycles which could be crucial for cell survival. Experiments also show the time dependence of crystallization which indicates that rapid heating can suppress this secondary crystallization which is undesirable during the cell thawing process. Similar concentrations of DMSO (1.8% and 2% vol. DMSO in water) where a 2% vol. DMSO mixture secures cell survival but 1.8 vol% does not, showed differences in structural and dynamic properties that are key factors in cell survival. These results were supported by differential scanning calorimetry and low frequency dielectric spectroscopy measurements. The obtained data are in strong agreement with the observed cryoprotective efficacy of the DMSO–water mixtures on living cells. Positron annihilation lifetime spectroscopy reveals changes in the DMSO–water microstructure in low concentrations of DMSO (1.8%, 2.0% and 10% v/v) that have a great impact on the cryoprotective effect during the cryopreservation of cells.![]()
Collapse
Affiliation(s)
| | - Igor Maťko
- Institute of Physics SAS
- 845 11 Bratislava
- Slovak Republic
| | | | | | - Ivan Klbik
- Faculty of Mathematics, Physics and Informatics
- Comenius University in Bratislava
- 842 48 Bratislava
- Slovak Republic
| | - Ján Lakota
- Biomedical Research Center SAS
- 845 05 Bratislava
- Slovak Republic
- St. Elizabeth Cancer Institute
- 812 50 Bratislava
| | - Ondrej Šauša
- Institute of Physics SAS
- 845 11 Bratislava
- Slovak Republic
| |
Collapse
|
36
|
Weng L, Stott SL, Toner M. Exploring Dynamics and Structure of Biomolecules, Cryoprotectants, and Water Using Molecular Dynamics Simulations: Implications for Biostabilization and Biopreservation. Annu Rev Biomed Eng 2018; 21:1-31. [PMID: 30525930 DOI: 10.1146/annurev-bioeng-060418-052130] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Successful stabilization and preservation of biological materials often utilize low temperatures and dehydration to arrest molecular motion. Cryoprotectants are routinely employed to help the biological entities survive the physicochemical and mechanical stresses induced by cold or dryness. Molecular interactions between biomolecules, cryoprotectants, and water fundamentally determine the outcomes of preservation. The optimization of assays using the empirical approach is often limited in structural and temporal resolution, whereas classical molecular dynamics simulations can provide a cost-effective glimpse into the atomic-level structure and interaction of individual molecules that dictate macroscopic behavior. Computational research on biomolecules, cryoprotectants, and water has provided invaluable insights into the development of new cryoprotectants and the optimization of preservation methods. We describe the rapidly evolving state of the art of molecular simulations of these complex systems, summarize the molecular-scale protective and stabilizing mechanisms, and discuss the challenges that motivate continued innovation in this field.
Collapse
Affiliation(s)
- Lindong Weng
- Center for Engineering in Medicine and BioMEMS Resource Center, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts 02129, USA; , , .,Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02114, USA
| | - Shannon L Stott
- Center for Engineering in Medicine and BioMEMS Resource Center, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts 02129, USA; , , .,Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, Massachusetts 02129, USA.,Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02114, USA
| | - Mehmet Toner
- Center for Engineering in Medicine and BioMEMS Resource Center, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts 02129, USA; , , .,Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02114, USA.,Shriners Hospital for Children, Boston, Massachusetts 02114, USA
| |
Collapse
|
37
|
Duereh A, Sato Y, Smith RL, Inomata H. Correspondence between Spectral-Derived and Viscosity-Derived Local Composition in Binary Liquid Mixtures Having Specific Interactions with Preferential Solvation Theory. J Phys Chem B 2018; 122:10894-10906. [PMID: 30403857 DOI: 10.1021/acs.jpcb.8b09511] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Local interactions between unlike molecules (1-2) in solution are commonly measured with spectroscopy and used to estimate local composition. Herein, a viscosity model based on preferential solvation (PS) theory is developed for aqueous and nonaqueous binary liquid mixtures containing a dipolar aprotic solvent that provides local composition considering the hydration or solvation shell around complex (1-2) molecules. Spectral-derived and viscosity-derived local composition distributions showed similar trends with bulk composition, and their correspondence is attributed to characteristics of the hydration or solvation shell. Viscosity-derived local compositions were consistent with literature molecular simulations, whereas spectral-derived local composition distributions contained artifacts. The PS viscosity model is also applicable to nonpolar-polar mixtures for which self-association occurs, and it can be used to estimate solvent mixture dipolarity/polarizability. Since the PS viscosity model only requires bulk viscosity, it may provide a means to estimate microviscosity or the solvent environment around biomolecules.
Collapse
|
38
|
Rakha B, Ansari M, Akhter S, Zafar Z, Naseer A, Hussain I, Blesbois E, Santiago-Moreno J. Use of dimethylsulfoxide for semen cryopreservation in Indian red jungle fowl (Gallus gallus murghi). Theriogenology 2018; 122:61-67. [DOI: 10.1016/j.theriogenology.2018.09.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Revised: 09/03/2018] [Accepted: 09/05/2018] [Indexed: 10/28/2022]
|
39
|
Golan M, Pribyl J, Pesl M, Jelinkova S, Acimovic I, Jaros J, Rotrekl V, Falk M, Sefc L, Skladal P, Kratochvilova I. Cryopreserved Cells Regeneration Monitored by Atomic Force Microscopy and Correlated With State of Cytoskeleton and Nuclear Membrane. IEEE Trans Nanobioscience 2018; 17:485-497. [PMID: 30307873 DOI: 10.1109/tnb.2018.2873425] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Atomic force microscopy (AFM) helps to describe and explain the mechanobiological properties of living cells on the nanoscale level under physiological conditions. The stiffness of cells is an important parameter reflecting cell physiology. Here, we have provided the first study of the stiffness of cryopreserved cells during post-thawing regeneration using AFM combined with confocal fluorescence microscopy. We demonstrated that the nonfrozen cell stiffness decreased proportionally to the cryoprotectant concentration in the medium. AFM allowed us to map cell surface reconstitution in real time after a freeze/thaw cycle and to monitor the regeneration processes at different depths of the cell and even different parts of the cell surface (nucleus and edge). Fluorescence microscopy showed that the cytoskeleton in fibroblasts, though damaged by the freeze/thaw cycle, is reconstructed after long-term plating. Confocal microscopy confirmed that structural changes affect the nuclear envelopes in cryopreserved cells. AFM nanoindentation analysis could be used as a noninvasive method to identify cells that have regenerated their surface mechanical properties with the proper dynamics and to a sufficient degree. This identification can be important particularly in the field of in vitro fertilization and in future cell-based regeneration strategies.
Collapse
|
40
|
Ghosh N, Roy S, Ahmed M, Mondal JA. Water in the hydration shell of cryoprotectants and their non-cryoprotecting structural analogues as observed by Raman-MCR spectroscopy. J Mol Liq 2018. [DOI: 10.1016/j.molliq.2018.06.073] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
41
|
Gantait S, El-Dawayati MM, Panigrahi J, Labrooy C, Verma SK. The retrospect and prospect of the applications of biotechnology in Phoenix dactylifera L. Appl Microbiol Biotechnol 2018; 102:8229-8259. [PMID: 30054703 DOI: 10.1007/s00253-018-9232-x] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Revised: 07/05/2018] [Accepted: 07/05/2018] [Indexed: 11/26/2022]
Abstract
Date palm (Phoenix dactylifera L.) is one of the most important fruit trees that contribute a major part to the economy of Middle East and North African countries. It is quintessentially called "tree of life" owing to its resilience to adverse climatic conditions, along with manifold nutritional-cum-medicinal attributes that comes from its fruits and other plant parts. Being a tree with such immense utility, it has gained substantial attention of tree breeders for its genetic advancement via in vitro biotechnological interventions. Herein, an extensive review of biotechnological research advances in date palm has been consolidated as one of the major research achievements during the past two decades. This article compares the different biotechnological techniques used in this species such as: tissue and organ culture, bioreactor-mediated large-scale propagation, cell suspension culture, embryogenic culture, protoplast culture, conservation (for short- and long-term) of germplasms, in vitro mutagenesis, in vitro selection against biotic and abiotic stresses, secondary metabolite production in vitro, and genetic transformation. This review provides an insight on crop improvement and breeding programs for improved yield and quality fruits; besides, it would undeniably facilitate the tissue culture-based research on date palm for accelerated propagation and enhanced production of quality planting materials, along with conservation and exchange of germplasms, and genetic engineering. In addition, the unexplored research methodologies and major bottlenecks identified in this review should be contemplated on in near future.
Collapse
Affiliation(s)
- Saikat Gantait
- Department of Genetics and Plant Breeding, Faculty of Agriculture, Bidhan Chandra Krishi Viswavidyalaya, Mohanpur, Nadia, West Bengal, 741252, India.
| | - Maiada M El-Dawayati
- The Central Laboratory of Date Palm Researches and Development, Agriculture Research Center, 9 Gamma street - Giza, Cairo, 12619, Egypt
| | - Jitendriya Panigrahi
- Department of Biotechnology, Shri A.N. Patel Post Graduate Institute of Science and Research, Anand, Gujarat, 388001, India
| | - Catherine Labrooy
- Department of Crop Science, Faculty of Agriculture, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
| | - Sandeep Kumar Verma
- Biotechnology Laboratory (TUBITAK Fellow), Department of Biology, Bolu Abant Izeet Baysal University, 14030, Bolu, Turkey
| |
Collapse
|
42
|
Sydykov B, Oldenhof H, Sieme H, Wolkers WF. Storage stability of liposomes stored at elevated subzero temperatures in DMSO/sucrose mixtures. PLoS One 2018; 13:e0199867. [PMID: 29975741 PMCID: PMC6033440 DOI: 10.1371/journal.pone.0199867] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Accepted: 06/14/2018] [Indexed: 11/18/2022] Open
Abstract
Cryopreservation of biological materials is predominantly done using liquid nitrogen, and its application involves high maintenance costs and the need for periodical refilling of liquid nitrogen. Stable storage in mechanical freezers at −80°C would eliminate these issues and allow for shipment of frozen specimens using dry ice. In this work, the possibility of increasing the storage temperature of cryopreserved samples to −80°C by using combinations of DMSO and sucrose has been studied. Preservation efficacy was studied by measuring stability of liposomes encapsulated with carboxyfluorescein during storage at −150, −80 and −25°C for up to three months. Thermal and molecular mobility properties of the different DMSO-sucrose formulations were measured using differential scanning calorimetry, whereas hydrogen bonding interactions of the formulations were probed by Fourier transform infrared spectroscopy. It was found that addition of sucrose to DMSO solutions increases the Tg, and decreases molecular mobility in the glassy state at a particular temperature. Although it was expected that storage above or close to Tg at −80°C would affect liposome stability, stability was found to be similar compared to that of samples stored at −150°C. Higher molecular mobility in the glassy state could not be associated with faster CF-leakage rates. Distinct differences in storage stability at −25°C, far above Tg, were found among the sucrose/DMSO formulations, which were explained by the differences in permeability of sucrose and DMSO resulting in different levels of osmotic stress in the formulations.
Collapse
Affiliation(s)
- Bulat Sydykov
- Institute of Multiphase Processes, Leibniz Universität Hannover, Hannover, Germany
| | - Harriëtte Oldenhof
- Unit for Reproductive Medicine, Clinic for Horses, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Harald Sieme
- Unit for Reproductive Medicine, Clinic for Horses, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Willem F. Wolkers
- Institute of Multiphase Processes, Leibniz Universität Hannover, Hannover, Germany
- * E-mail:
| |
Collapse
|
43
|
Golan M, Jelinkova S, Kratochvílová I, Skládal P, Pešl M, Rotrekl V, Pribyl J. AFM Monitoring the Influence of Selected Cryoprotectants on Regeneration of Cryopreserved Cells Mechanical Properties. Front Physiol 2018; 9:804. [PMID: 30008675 PMCID: PMC6034176 DOI: 10.3389/fphys.2018.00804] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2018] [Accepted: 06/08/2018] [Indexed: 12/02/2022] Open
Abstract
Cryopreservation of cells (mouse embryonic fibroblasts) is a fundamental task for wide range of applications. In practice, cells are protected against damage during freezing by applications of specific cryoprotectants and freezing/melting protocols. In this study by using AFM and fluorescence microscopy we showed how selected cryoprotectants (dimethyl sulfoxide and polyethylene glycol) affected the cryopreserved cells mechanical properties (stiffness) and how these parameters are correlated with cytoskeleton damage and reconstruction. We showed how cryopreserved (frozen and thawed) cells' stiffness change according to type of applied cryoprotectant and its functionality in extracellular or intracellular space. We showed that AFM can be used as technique for investigation of cryopreserved cells surfaces state and development ex vivo. Our results offer a new perspective on the monitoring and characterization of frozen cells recovery by measuring changes in elastic properties by nanoindentation technique. This may lead to a new and detailed way of investigating the post-thaw development of cryopreserved cells which allows to distinguish between different cell parts.
Collapse
Affiliation(s)
- Martin Golan
- Department of Analysis of Functional Materials, Institute of Physics, Academy of Sciences Czech Republic, Prague, Czechia
| | - Sarka Jelinkova
- Department of Biology, Faculty of Medicine, Masaryk University, Brno, Czechia.,International Clinical Research Center, St. Anne's University Hospital, Brno, Czechia
| | - Irena Kratochvílová
- Department of Analysis of Functional Materials, Institute of Physics, Academy of Sciences Czech Republic, Prague, Czechia
| | - Petr Skládal
- Central European Institute of Technology, Masaryk University, Brno, Czechia
| | - Martin Pešl
- Department of Biology, Faculty of Medicine, Masaryk University, Brno, Czechia.,International Clinical Research Center, St. Anne's University Hospital, Brno, Czechia.,First Department of Internal Medicine/Cardioangiology, Masaryk University, Brno, Czechia
| | - Vladimír Rotrekl
- Department of Biology, Faculty of Medicine, Masaryk University, Brno, Czechia.,International Clinical Research Center, St. Anne's University Hospital, Brno, Czechia
| | - Jan Pribyl
- Central European Institute of Technology, Masaryk University, Brno, Czechia
| |
Collapse
|
44
|
Stachura SS, Malajczuk CJ, Mancera RL. Molecular dynamics simulations of a DMSO/water mixture using the AMBER force field. J Mol Model 2018; 24:174. [DOI: 10.1007/s00894-018-3720-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Accepted: 06/12/2018] [Indexed: 12/23/2022]
|
45
|
Perera A, Lovrinčević B. A comparative study of aqueous DMSO mixtures by computer simulations and integral equation theories. Mol Phys 2018. [DOI: 10.1080/00268976.2018.1483040] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Affiliation(s)
- Aurélien Perera
- Laboratoire de Physique Théorique de la Matiére Condensée (UMR CNRS 7600), Université Pierre et Marie Curie, Paris, France
| | | |
Collapse
|
46
|
Pischedda F, Montani C, Obergasteiger J, Frapporti G, Corti C, Rosato Siri M, Volta M, Piccoli G. Cryopreservation of Primary Mouse Neurons: The Benefit of Neurostore Cryoprotective Medium. Front Cell Neurosci 2018; 12:81. [PMID: 29623032 PMCID: PMC5874515 DOI: 10.3389/fncel.2018.00081] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Accepted: 03/08/2018] [Indexed: 01/05/2023] Open
Abstract
Primary neuronal culture from rodents is a well-established model to investigate cellular neurobiology in vitro. However, for this purpose cell cultures need to be generated expressly, requiring extensive animal handling. Furthermore, often the preparation of fresh culture generates an excess of cells that are ultimately wasted. Therefore the ability to successfully cryopreserve primary neural cells would represent an important resource for neuroscience research and would allow to significantly reduce the sacrifice of animals. We describe here a novel freezing medium that allows long-term cryopreservation of primary mouse neurons prepared from E15.5 embryos. Combining imaging, biochemical and electrophysiological analyses, we found that cryopreserved cultures are viable and mature regarding morphology and functionality. These findings suggest that cryopreserved neurons are a valuable alternative to acutely dissociated neural cultures.
Collapse
Affiliation(s)
| | - Caterina Montani
- CIBIO, Dulbecco Telethon Institute, University of Trento, Trento, Italy
| | - Julia Obergasteiger
- Institute for Biomedicine, EURAC Research, Affiliated Institute of the University of Lübeck, Bolzano, Italy
| | - Giulia Frapporti
- Institute for Biomedicine, EURAC Research, Affiliated Institute of the University of Lübeck, Bolzano, Italy
| | - Corrado Corti
- Institute for Biomedicine, EURAC Research, Affiliated Institute of the University of Lübeck, Bolzano, Italy
| | - Marcelo Rosato Siri
- Institute for Biomedicine, EURAC Research, Affiliated Institute of the University of Lübeck, Bolzano, Italy
| | - Mattia Volta
- Institute for Biomedicine, EURAC Research, Affiliated Institute of the University of Lübeck, Bolzano, Italy
| | - Giovanni Piccoli
- CIBIO, Dulbecco Telethon Institute, University of Trento, Trento, Italy
| |
Collapse
|
47
|
Viyakarn V, Chavanich S, Chong G, Tsai S, Lin C. Cryopreservation of sperm from the coral Acropora humilis. Cryobiology 2018; 80:130-138. [DOI: 10.1016/j.cryobiol.2017.10.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Revised: 10/02/2017] [Accepted: 10/27/2017] [Indexed: 12/29/2022]
|
48
|
Seidel L, Strathmann M, Nocker A. The feasibility of improved live-dead distinction in qPCR-based microbial source tracking. J Microbiol Methods 2017. [DOI: 10.1016/j.mimet.2017.06.013] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
49
|
In Vitro Conservation of Date Palm Tissue Cultures. Methods Mol Biol 2017. [PMID: 28755210 DOI: 10.1007/978-1-4939-7159-6_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
In vitro technology offers a potential solution for the conservation of date palm germplasm. Slow growth induced by low temperature allows storage from several months up to few years. Otherwise, cryopreservation is suitable for long-term in vitro conservation, at between -79 and -196 °C. This chapter describes a protocol for cold storage at 5 °C and cryopreservation of date palm tissue cultures. For cold storage, 70% of shoot buds remain healthy after storing for 12 months at 5 °C, and callus cultures remain fully viable after 12 months of storage. For cryopreservation of embryogenic cultures using dehydration by air, apparently, 20 min air drying is the best for cryopreservation. Among different types of sugars used as osmotic agents in pre-culture medium, 1 M sucrose is the best for the survival of cryopreserved cultures. However, exposure of embryogenic cultures to vitrification solution for 60 min at 0 °C gives the highest percentage of survival and conversion to plantlets.
Collapse
|
50
|
Kratochvílová I, Golan M, Pomeisl K, Richter J, Sedláková S, Šebera J, Mičová J, Falk M, Falková I, Řeha D, Elliott KW, Varga K, Follett SE, Šimek D. Theoretical and experimental study of the antifreeze protein AFP752, trehalose and dimethyl sulfoxide cryoprotection mechanism: correlation with cryopreserved cell viability. RSC Adv 2016; 7:352-360. [PMID: 28936355 PMCID: PMC5602551 DOI: 10.1039/c6ra25095e] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
In this work the physico-chemical properties of selected cryoprotectants (antifreeze protein TrxA-AFP752, trehalose and dimethyl sulfoxide) were correlated with their impact on the constitution of ice and influence on frozen/thawed cell viability. The freezing processes and states of investigated materials solutions were described and explained from a fundamental point of view using ab-initio modelling (molecular dynamics, DFT), Raman spectroscopy, Differential Scanning Calorimetry and X-Ray Diffraction. For the first time, in this work we correlated the microscopic view (modelling) with the description of the frozen solution states and put these results in the context of human skin fibroblast viability after freezing and thawing. DMSO and AFP had different impacts on their solution's freezing process but in both cases the ice crystallinity size was considerably reduced. DMSO and AFP treatment in different ways improved the viability of frozen/thawed cells.
Collapse
Affiliation(s)
- Irena Kratochvílová
- Institute of Physics, Academy of Sciences of the Czech Republic, v.v.i., Na Slovance 2, CZ-182 21, Prague 8, Czech Republic
| | - Martin Golan
- Institute of Physics, Academy of Sciences of the Czech Republic, v.v.i., Na Slovance 2, CZ-182 21, Prague 8, Czech Republic
- Faculty of Mathematics and Physics, Charles University in Prague, Ke Karlovu 5, CZ-121 16 Prague 2, Czech Republic
| | - Karel Pomeisl
- Institute of Physics, Academy of Sciences of the Czech Republic, v.v.i., Na Slovance 2, CZ-182 21, Prague 8, Czech Republic
| | - Jan Richter
- Institute of Physics, Academy of Sciences of the Czech Republic, v.v.i., Na Slovance 2, CZ-182 21, Prague 8, Czech Republic
| | - Silvia Sedláková
- Institute of Physics, Academy of Sciences of the Czech Republic, v.v.i., Na Slovance 2, CZ-182 21, Prague 8, Czech Republic
| | - Jakub Šebera
- Institute of Physics, Academy of Sciences of the Czech Republic, v.v.i., Na Slovance 2, CZ-182 21, Prague 8, Czech Republic
| | - Júlia Mičová
- Institute of Physics, Academy of Sciences of the Czech Republic, v.v.i., Na Slovance 2, CZ-182 21, Prague 8, Czech Republic
- Institute of Chemistry, Slovak Academy of Sciences, Dubravska cesta 9,845 38 Bratislava 4, Slovak Republic
| | - Martin Falk
- Institute of Biophysics, Academy of Sciences of the Czech Republic, v.v.i., Kralovopolska 135, CZ-612 65 Brno, Czech Republic
| | - Iva Falková
- Institute of Biophysics, Academy of Sciences of the Czech Republic, v.v.i., Kralovopolska 135, CZ-612 65 Brno, Czech Republic
| | - David Řeha
- Institute of Microbiology, Academy of Sciences of the Czech Republic, v.v.i., Zámek 136, CZ-373 33 Nové Hrady, Czech Republic
- Faculty of Sciences, University of South Bohemia in Ceske Budejovice, Zamek 136, 373 33 Nove Hrady, Czech Republic
| | - K Wade Elliott
- Deparment of Molecular, Cellular, and Biomedical Sciences, University of New Hampshire, 46 College Road, Durham, NH, 03824, USA
| | - Krisztina Varga
- Deparment of Molecular, Cellular, and Biomedical Sciences, University of New Hampshire, 46 College Road, Durham, NH, 03824, USA
| | - Shelby E Follett
- Department of Chemistry, University of Wyoming, 1000 E. University Ave, Laramie, WY, 82071, USA
| | - Daniel Šimek
- Institute of Physics, Academy of Sciences of the Czech Republic, v.v.i., Na Slovance 2, CZ-182 21, Prague 8, Czech Republic
| |
Collapse
|