1
|
Griffo A, Sparn C, Lolicato F, Nolle F, Khangholi N, Seemann R, Fleury JB, Brinkmann M, Nickel W, Hähl H. Mechanics of biomimetic free-standing lipid membranes: insights into the elasticity of complex lipid compositions. RSC Adv 2024; 14:13044-13052. [PMID: 38655466 PMCID: PMC11034475 DOI: 10.1039/d4ra00738g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 04/08/2024] [Indexed: 04/26/2024] Open
Abstract
The creation of free-standing lipid membranes has been so far of remarkable interest to investigate processes occurring in the cell membrane since its unsupported part enables studies in which it is important to maintain cell-like physicochemical properties of the lipid bilayer, that nonetheless depend on its molecular composition. In this study, we prepare pore-spanning membranes that mimic the composition of plasma membranes and perform force spectroscopy indentation measurements to unravel mechanistic insights depending on lipid composition. We show that this approach is highly effective for studying the mechanical properties of such membranes. Furthermore, we identify a direct influence of cholesterol and sphingomyelin on the elasticity of the bilayer and adhesion between the two leaflets. Eventually, we explore the possibilities of imaging in the unsupported membrane regions. For this purpose, we investigate the adsorption and movement of a peripheral protein, the fibroblast growth factor 2, on the complex membrane.
Collapse
Affiliation(s)
- Alessandra Griffo
- Center for Biophysics, Experimental Physics, Saarland University Saarbrücken Germany
- Department of Experimental Physics, Saarland University Saarbrücken Germany
- Biophysical Engineering Group, Max Planck Institute for Medical Research Heidelberg Germany
| | - Carola Sparn
- Heidelberg University Biochemistry Center Heidelberg Germany
| | - Fabio Lolicato
- Heidelberg University Biochemistry Center Heidelberg Germany
| | - Friederike Nolle
- Center for Biophysics, Experimental Physics, Saarland University Saarbrücken Germany
- Department of Experimental Physics, Saarland University Saarbrücken Germany
| | - Navid Khangholi
- Center for Biophysics, Experimental Physics, Saarland University Saarbrücken Germany
- Department of Experimental Physics, Saarland University Saarbrücken Germany
| | - Ralf Seemann
- Center for Biophysics, Experimental Physics, Saarland University Saarbrücken Germany
| | - Jean-Baptiste Fleury
- Center for Biophysics, Experimental Physics, Saarland University Saarbrücken Germany
- Department of Experimental Physics, Saarland University Saarbrücken Germany
| | - Martin Brinkmann
- Department of Experimental Physics, Saarland University Saarbrücken Germany
| | - Walter Nickel
- Heidelberg University Biochemistry Center Heidelberg Germany
| | - Hendrik Hähl
- Center for Biophysics, Experimental Physics, Saarland University Saarbrücken Germany
- Department of Experimental Physics, Saarland University Saarbrücken Germany
| |
Collapse
|
2
|
Hybrid bilayer membranes as platforms for biomimicry and catalysis. Nat Rev Chem 2022; 6:862-880. [PMID: 37117701 DOI: 10.1038/s41570-022-00433-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/20/2022] [Indexed: 11/08/2022]
Abstract
Hybrid bilayer membrane (HBM) platforms represent an emerging nanoscale bio-inspired interface that has broad implications in energy catalysis and smart molecular devices. An HBM contains multiple modular components that include an underlying inorganic surface with a biological layer appended on top. The inorganic interface serves as a support with robust mechanical properties that can also be decorated with functional moieties, sensing units and catalytic active sites. The biological layer contains lipids and membrane-bound entities that facilitate or alter the activity and selectivity of the embedded functional motifs. With their structural complexity and functional flexibility, HBMs have been demonstrated to enhance catalytic turnover frequency and regulate product selectivity of the O2 and CO2 reduction reactions, which have applications in fuel cells and electrolysers. HBMs can also steer the mechanistic pathways of proton-coupled electron transfer (PCET) reactions of quinones and metal complexes by tuning electron and proton delivery rates. Beyond energy catalysis, HBMs have been equipped with enzyme mimics and membrane-bound redox agents to recapitulate natural energy transport chains. With channels and carriers incorporated, HBM sensors can quantify transmembrane events. This Review serves to summarize the major accomplishments achieved using HBMs in the past decade.
Collapse
|
3
|
Han WB, Kang DH, Kim TS. 3D Artificial Cell Membranes as Versatile Platforms for Biological Applications. BIOCHIP JOURNAL 2022. [DOI: 10.1007/s13206-022-00066-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
4
|
Luchini A, Vitiello G. Mimicking the Mammalian Plasma Membrane: An Overview of Lipid Membrane Models for Biophysical Studies. Biomimetics (Basel) 2020; 6:biomimetics6010003. [PMID: 33396534 PMCID: PMC7838988 DOI: 10.3390/biomimetics6010003] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Revised: 12/23/2020] [Accepted: 12/28/2020] [Indexed: 02/07/2023] Open
Abstract
Cell membranes are very complex biological systems including a large variety of lipids and proteins. Therefore, they are difficult to extract and directly investigate with biophysical methods. For many decades, the characterization of simpler biomimetic lipid membranes, which contain only a few lipid species, provided important physico-chemical information on the most abundant lipid species in cell membranes. These studies described physical and chemical properties that are most likely similar to those of real cell membranes. Indeed, biomimetic lipid membranes can be easily prepared in the lab and are compatible with multiple biophysical techniques. Lipid phase transitions, the bilayer structure, the impact of cholesterol on the structure and dynamics of lipid bilayers, and the selective recognition of target lipids by proteins, peptides, and drugs are all examples of the detailed information about cell membranes obtained by the investigation of biomimetic lipid membranes. This review focuses specifically on the advances that were achieved during the last decade in the field of biomimetic lipid membranes mimicking the mammalian plasma membrane. In particular, we provide a description of the most common types of lipid membrane models used for biophysical characterization, i.e., lipid membranes in solution and on surfaces, as well as recent examples of their applications for the investigation of protein-lipid and drug-lipid interactions. Altogether, promising directions for future developments of biomimetic lipid membranes are the further implementation of natural lipid mixtures for the development of more biologically relevant lipid membranes, as well as the development of sample preparation protocols that enable the incorporation of membrane proteins in the biomimetic lipid membranes.
Collapse
Affiliation(s)
- Alessandra Luchini
- Niels Bohr Institute, University of Copenhagen, Universitetsparken 5, 2100 Copenhagen, Denmark;
| | - Giuseppe Vitiello
- Department of Chemical, Materials and Production Engineering, University of Naples Federico II, Piazzale Tecchio 80, 80125 Naples, Italy
- CSGI-Center for Colloid and Surface Science, via della Lastruccia 3, 50019 Sesto Fiorentino (Florence), Italy
- Correspondence:
| |
Collapse
|
5
|
Structure, Formation, and Biological Interactions of Supported Lipid Bilayers (SLB) Incorporating Lipopolysaccharide. COATINGS 2020. [DOI: 10.3390/coatings10100981] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Biomimetic membrane systems play a crucial role in the field of biosensor engineering. Over the years, significant progress has been achieved creating artificial membranes by various strategies from vesicle fusion to Langmuir transfer approaches to meet an ever-growing demand for supported lipid bilayers on various substrates such as glass, mica, gold, polymer cushions, and many more. This paper reviews the diversity seen in the preparation of biologically relevant model lipid membranes which includes monolayers and bilayers of phospholipid and other crucial components such as proteins, characterization techniques, changes in the physical properties of the membranes during molecular interactions and the dynamics of the lipid membrane with biologically active molecules with special emphasis on lipopolysaccharides (LPS).
Collapse
|
6
|
Antimicrobial Nanoplexes meet Model Bacterial Membranes: the key role of Cardiolipin. Sci Rep 2017; 7:41242. [PMID: 28120892 PMCID: PMC5264643 DOI: 10.1038/srep41242] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Accepted: 11/28/2016] [Indexed: 02/05/2023] Open
Abstract
Antimicrobial resistance to traditional antibiotics is a crucial challenge of medical research. Oligonucleotide therapeutics, such as antisense or Transcription Factor Decoys (TFDs), have the potential to circumvent current resistance mechanisms by acting on novel targets. However, their full translation into clinical application requires efficient delivery strategies and fundamental comprehension of their interaction with target bacterial cells. To address these points, we employed a novel cationic bolaamphiphile that binds TFDs with high affinity to form self-assembled complexes (nanoplexes). Confocal microscopy revealed that nanoplexes efficiently transfect bacterial cells, consistently with biological efficacy on animal models. To understand the factors affecting the delivery process, liposomes with varying compositions, taken as model synthetic bilayers, were challenged with nanoplexes and investigated with Scattering and Fluorescence techniques. Thanks to the combination of results on bacteria and synthetic membrane models we demonstrate for the first time that the prokaryotic-enriched anionic lipid Cardiolipin (CL) plays a key-role in the TFDs delivery to bacteria. Moreover, we can hypothesize an overall TFD delivery mechanism, where bacterial membrane reorganization with permeability increase and release of the TFD from the nanoplexes are the main factors. These results will be of great benefit to boost the development of oligonucleotides-based antimicrobials of superior efficacy.
Collapse
|
7
|
Hoyo J, Guaus E, Torrent-Burgués J. Influence of membrane galactolipids and surface pressure on plastoquinone behaviour. Bioelectrochemistry 2016; 111:123-30. [PMID: 27317998 DOI: 10.1016/j.bioelechem.2016.06.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Revised: 06/08/2016] [Accepted: 06/08/2016] [Indexed: 10/21/2022]
Abstract
In this work biomimetic monolayers of a MGDG, monogalactosyldiacylglycerol, and DGDG, digalactosyldiacylglycerol mixture (MD), in a ratio close to that of the thylakoid membranes of oxygenic photosynthetic organisms, have been prepared. The lipid mixture incorporates plastoquinone-9 (PQ), that is the electron and proton shuttle of the photosynthetic reaction centres. The MD:PQ mixtures have been firstly studied using surface pressure-area isotherms. Langmuir-Blodgett (LB) films of those mixtures have been transferred onto a substrate forming a monolayer that mimics one of the bilayer sides of the thylakoid membranes. These monolayers have been characterized topographically and electrochemically. The results show the influence of PQ in the MD matrix and its partial expulsion when increasing the surface pressure, obtaining two main PQ positions in the MD matrix. The calculated apparent electron transfer rate constants indicate a different kinetic control for the reduction and the oxidation of the PQ/PQH2 couple, being kRapp(I)=0.7·10(-6)s(-1), kRapp(II)=2.2·10(-9)s(-1), kOapp(I)=7.4·10(-4)s(-1) and kOapp(II)=5.2·10(-5)s(-1), respectively. The comparison of the different galactolipid:PQ systems that our group has studied is also presented, concluding that the PQ position in the galactolipid matrix can be tuned according to several controlled variables.
Collapse
Affiliation(s)
- Javier Hoyo
- Universitat Politècnica de Catalunya, Group of Molecular and Industrial Biotechnology, Dpt. Chemical Engineering, 08222 Terrassa, Barcelona, Spain
| | - Ester Guaus
- Universitat Politècnica de Catalunya, Group of Molecular and Industrial Biotechnology, Dpt. Chemical Engineering, 08222 Terrassa, Barcelona, Spain
| | - Juan Torrent-Burgués
- Universitat Politècnica de Catalunya, Group of Molecular and Industrial Biotechnology, Dpt. Chemical Engineering, 08222 Terrassa, Barcelona, Spain.
| |
Collapse
|
8
|
Hoyo J, Guaus E, Torrent-Burgués J. Monogalactosyldiacylglycerol and digalactosyldiacylglycerol role, physical states, applications and biomimetic monolayer films. THE EUROPEAN PHYSICAL JOURNAL. E, SOFT MATTER 2016; 39:39. [PMID: 27021656 DOI: 10.1140/epje/i2016-16039-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2015] [Accepted: 02/16/2016] [Indexed: 06/05/2023]
Abstract
The relevance of biomimetic membranes using galactolipids has not been expressed in any extensive experimental study of these lipids. Thus, on the one hand, we present an in-depth article about the presence and role of monogalactosyldiacylglycerol (MGDG) and digalactosyldiacylglycerol (DGDG) in thylakoid membranes, their physical states and their applications. On the other hand, we use the Langmuir and Langmuir-Blodgett (LB) techniques to prepare biomimetic monolayers of saturated galactolipids MGDG, DGDG and MGDG:DGDG 2:1 mixture (MD)--biological ratio--. These monolayers are studied using surface pressure-area isotherms and their data are processed to enlighten their physical states and mixing behaviour. These monolayers, once transferred to a solid substrate at several surface pressures are topographically studied on mica using atomic force microscopy (AFM) and using cyclic voltammetry for studying the electrochemical behaviour of the monolayers once transferred to indium-tin oxide (ITO), which has good optical and electrical properties. Moreover, MD presents other differences in comparison with its pure components that are explained by the presence of different kinds of galactosyl headgroups that restrict the optimal orientation of the MGDG headgroups.
Collapse
Affiliation(s)
- Javier Hoyo
- Group of Molecular and Industrial Biotechnology, Dpt. Chemical Engineering, Universitat Politècnica de Catalunya, 08222 Terrassa, Barcelona, Spain.
| | - Ester Guaus
- Group of Molecular and Industrial Biotechnology, Dpt. Chemical Engineering, Universitat Politècnica de Catalunya, 08222 Terrassa, Barcelona, Spain
| | - Juan Torrent-Burgués
- Group of Molecular and Industrial Biotechnology, Dpt. Chemical Engineering, Universitat Politècnica de Catalunya, 08222 Terrassa, Barcelona, Spain
| |
Collapse
|
9
|
Calver CF, Liu HW, Cosa G. Exploiting Conjugated Polyelectrolyte Photophysics toward Monitoring Real-Time Lipid Membrane-Surface Interaction Dynamics at the Single-Particle Level. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2015; 31:11842-11850. [PMID: 25955885 DOI: 10.1021/acs.langmuir.5b00979] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Herein we report the real-time observation of the interaction dynamics between cationic liposomes flowing in solution and a surface-immobilized charged scaffolding formed by the deposition of conjugated polyanion poly[5-methoxy-2-(3-sulfopropoxy)-1,4-phenylenevinylene (MPS-PPV) onto 100-nm-diameter SiO2 nanoparticles (NPs). Contact of the freely floating liposomes with the polymer-coated surfaces led to the formation of supported lipid bilayers (SLBs). The interaction of the incoming liposomes with MPS-PPV adsorbed on individual SiO2 nanoparticles promoted the deaggregation of the polymer conformation and led to large emission intensity enhancements. Single-particle total internal reflection fluorescence microscopy studies exploited this phenomenon as a way to monitor the deformation dynamics of liposomes on surface-immobilized NPs. The MPS-PPV emission enhancement (up to 25-fold) reflected on the extent of membrane contact with the surface of the NP and was correlated with the size of the incoming liposome. The time required for the MPS-PPV emission to reach a maximum (ranging from 400 to 1000 ms) revealed the dynamics of membrane deformation and was also correlated with the liposome size. Cryo-TEM experiments complemented these results by yielding a structural view of the process. Immediately following the mixing of liposomes and NPs the majority of NPs had one or more adsorbed liposomes, yet the presence of a fully formed SLB was rare. Prolonged incubation of liposomes and NPs showed completely formed SLBs on all of the NPs, confirming that the liposomes eventually ruptured to form SLBs. We foresee that the single-particle studies we report herein may be readily extended to study membrane dynamics of other lipids including cellular membranes in live cell studies and to monitor the formation of polymer-cushioned SLBs.
Collapse
Affiliation(s)
- Christina F Calver
- Department of Chemistry and Centre for Self Assembled Chemical Structures (CSACS/CRMAA), McGill University , 801 Sherbrooke Street West, Montreal, QC H3A 0B8, Canada
| | - Hsiao-Wei Liu
- Department of Chemistry and Centre for Self Assembled Chemical Structures (CSACS/CRMAA), McGill University , 801 Sherbrooke Street West, Montreal, QC H3A 0B8, Canada
| | - Gonzalo Cosa
- Department of Chemistry and Centre for Self Assembled Chemical Structures (CSACS/CRMAA), McGill University , 801 Sherbrooke Street West, Montreal, QC H3A 0B8, Canada
| |
Collapse
|
10
|
Hoyo J, Guaus E, Torrent-Burgués J, Sanz F. Biomimetic Monolayer Films of Monogalactosyldiacylglycerol Incorporating Plastoquinone. J Phys Chem B 2015; 119:6170-8. [DOI: 10.1021/acs.jpcb.5b02196] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Javier Hoyo
- Department
of Chemical Engineering, Universitat Politècnica de Catalunya, 08222 Terrassa (Barcelona), Spain
- Institut de Bioenginyeria de Catalunya (IBEC), 08028 Barcelona, Spain
| | - Ester Guaus
- Department
of Chemical Engineering, Universitat Politècnica de Catalunya, 08222 Terrassa (Barcelona), Spain
| | - Juan Torrent-Burgués
- Department
of Chemical Engineering, Universitat Politècnica de Catalunya, 08222 Terrassa (Barcelona), Spain
- Institut de Bioenginyeria de Catalunya (IBEC), 08028 Barcelona, Spain
| | - Fausto Sanz
- Institut de Bioenginyeria de Catalunya (IBEC), 08028 Barcelona, Spain
- Department
of Physical Chemistry, Universitat de Barcelona, 08028 Barcelona, Spain
| |
Collapse
|
11
|
Hoyo J, Guaus E, Torrent-Burgués J, Sanz F. Biomimetic monolayer films of digalactosyldiacylglycerol incorporating plastoquinone. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2015; 1848:1341-51. [PMID: 25771450 DOI: 10.1016/j.bbamem.2015.03.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2014] [Revised: 02/27/2015] [Accepted: 03/04/2015] [Indexed: 10/23/2022]
Abstract
The photosynthesis is the process used by plants and bacteria cells to convert inorganic matter in organic thanks to the light energy. This process consist on several steps, being one of them the electronic transport from the photosystem II to the cytochrome thanks to plastoquinone-9 (PQ). Here we prepare membranes that mimic the characteristics and composition of natural photosynthetic cell membranes and we characterize them in order to obtain the PQ molecules position in the membrane and their electrochemical behaviour. The selected galactolipid is digalactosyldiacylglycerol (DGDG) that represents the 30% of the thylakoid membrane lipid content. The results obtained are worthful for several science fields due to the relevance of galactolipids as anti-algal, anti-viral, anti-tumor and anti-inflammatory agents and the antioxidant and free radical scavenger properties of prenylquinones. Both pure components (DGDG and PQ) and the DGDG:PQ mixtures have been studied using surface pressure-area isotherms. These isotherms give information about the film stability and indicate the thermodynamic behaviour of the mixture and their physical state. The Langmuir-Blodgett (LB) film has been transferred forming a monolayer that mimics the bottom layer of the biological membranes. This monolayer on mica has been topographically characterized using AFM and both the height and the physical state that they present have been obtained. Moreover, these monolayers have been transferred onto ITO that is a hydrophilic substrate with good optical and electrical features, so that, it is suitable for studying the electrochemical behaviour of these systems and it is a good candidate for energy producing devices.
Collapse
Affiliation(s)
- Javier Hoyo
- Universitat Politècnica de Catalunya, Dpt. Chemical Engineering, 08222 Terrassa, Barcelona, Spain; Institut de Bioenginyeria de Catalunya (IBEC), 08028 Barcelona, Spain
| | - Ester Guaus
- Universitat Politècnica de Catalunya, Dpt. Chemical Engineering, 08222 Terrassa, Barcelona, Spain
| | - Juan Torrent-Burgués
- Universitat Politècnica de Catalunya, Dpt. Chemical Engineering, 08222 Terrassa, Barcelona, Spain; Institut de Bioenginyeria de Catalunya (IBEC), 08028 Barcelona, Spain.
| | - Fausto Sanz
- Institut de Bioenginyeria de Catalunya (IBEC), 08028 Barcelona, Spain; Universitat de Barcelona, Dpt. Physical-Chemistry, 08028 Barcelona, Spain
| |
Collapse
|
12
|
Evans KO, Laszlo JA, Compton DL. Hydroxytyrosol and tyrosol esters partitioning into, location within, and effect on DOPC liposome bilayer behavior. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2015; 1848:1175-82. [PMID: 25687972 DOI: 10.1016/j.bbamem.2015.02.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2014] [Revised: 02/02/2015] [Accepted: 02/06/2015] [Indexed: 10/24/2022]
Abstract
The phenols hydroxytyrosol and tyrosol made abundantly available through olive oil processing were enzymatically transesterified into effective lipophilic antioxidants with cuphea oil. The hydroxytyrosyl and tyrosyl esters made from cuphea oil were assessed for their ability to partition into, locate within and effect the bilayer behavior of 1,2-dioloeoylphosphatidylcholine liposomes and compared to their counterparts made from decanoic acid. Partitioning into liposomes was on the same scale for both hydroxytyrosyl derivatives and both tyrosyl derivatives. All were found to locate nearly at the same depth within the bilayer. Each was found to affect bilayer behavior in a distinct manner.
Collapse
Affiliation(s)
- Kervin O Evans
- Renewable Products Technology Research Unit, National Center of Agricultural Utilization Research Center, Agricultural Research Service, U.S. Department of Agriculture, 1815 N. University Street, Peoria, IL 61604, USA.
| | - Joseph A Laszlo
- Renewable Products Technology Research Unit, National Center of Agricultural Utilization Research Center, Agricultural Research Service, U.S. Department of Agriculture, 1815 N. University Street, Peoria, IL 61604, USA
| | - David L Compton
- Renewable Products Technology Research Unit, National Center of Agricultural Utilization Research Center, Agricultural Research Service, U.S. Department of Agriculture, 1815 N. University Street, Peoria, IL 61604, USA
| |
Collapse
|
13
|
Montis C, Maiolo D, Alessandri I, Bergese P, Berti D. Interaction of nanoparticles with lipid membranes: a multiscale perspective. NANOSCALE 2014; 6:6452-7. [PMID: 24807475 DOI: 10.1039/c4nr00838c] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Freestanding lipid bilayers were challenged with 15 nm Au nanospheres either coated by a citrate layer or passivated by a protein corona. The effect of Au nanospheres on the bilayer morphology, permeability and fluidity presents strong differences or similarities, depending on the observation length scale, from the colloidal to the molecular domains. These findings suggest that the interaction between nanoparticles and lipid membranes should be conveniently treated as a multiscale phenomenon.
Collapse
Affiliation(s)
- Costanza Montis
- Department of Chemistry "Ugo Schiff" and CSGI, University of Florence, via della Lastruccia 3, 50019 Sesto Fiorentino, Florence, Italy.
| | | | | | | | | |
Collapse
|
14
|
Ainla A, Gözen I, Hakonen B, Jesorka A. Lab on a Biomembrane: rapid prototyping and manipulation of 2D fluidic lipid bilayers circuits. Sci Rep 2013; 3:2743. [PMID: 24067786 PMCID: PMC3783038 DOI: 10.1038/srep02743] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2013] [Accepted: 08/28/2013] [Indexed: 11/11/2022] Open
Abstract
Lipid bilayer membranes are among the most ubiquitous structures in the living world, with intricate structural features and a multitude of biological functions. It is attractive to recreate these structures in the laboratory, as this allows mimicking and studying the properties of biomembranes and their constituents, and to specifically exploit the intrinsic two-dimensional fluidity. Even though diverse strategies for membrane fabrication have been reported, the development of related applications and technologies has been hindered by the unavailability of both versatile and simple methods. Here we report a rapid prototyping technology for two-dimensional fluidic devices, based on in-situ generated circuits of phospholipid films. In this "lab on a molecularly thin membrane", various chemical and physical operations, such as writing, erasing, functionalization, and molecular transport, can be applied to user-defined regions of a membrane circuit. This concept is an enabling technology for research on molecular membranes and their technological use.
Collapse
Affiliation(s)
- Alar Ainla
- Department of Chemical and Biological Engineering, Chalmers University of Technology, Kemivägen 10, 41296 Göteborg, Sweden
| | - Irep Gözen
- Department of Chemical and Biological Engineering, Chalmers University of Technology, Kemivägen 10, 41296 Göteborg, Sweden
- Current address: Bio-Acoustic-MEMS in Medicine (BAMM) Laboratory, Center for Bioengineering, Department of Medicine, Brigham and Women′s Hospital, Harvard Medical School, Boston, MA, USA
| | - Bodil Hakonen
- Department of Chemical and Biological Engineering, Chalmers University of Technology, Kemivägen 10, 41296 Göteborg, Sweden
| | - Aldo Jesorka
- Department of Chemical and Biological Engineering, Chalmers University of Technology, Kemivägen 10, 41296 Göteborg, Sweden
| |
Collapse
|
15
|
Paul BK, Ray D, Ganguly A, Guchhait N. Modulation in prototropism of the photosensitizer Harmane by host:guest interactions between β-cyclodextrin and surfactants. J Colloid Interface Sci 2013; 411:230-9. [PMID: 24060109 DOI: 10.1016/j.jcis.2013.08.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2013] [Revised: 08/01/2013] [Accepted: 08/02/2013] [Indexed: 11/25/2022]
Abstract
The present contribution demonstrates the photophysics of a prospective cancer cell photosensitizer Harmane (HM) belonging to the family of β-carboline in mixed microheterogeneous environments of β-cyclodextrin (β-CD) and surfactants having varying surface charges using steady-state and time-resolved fluorescence spectroscopic techniques. The remarkable modulations in prototropic activities of the micelle-bound drug in the presence of β-CD evinces for disruption of the micellar structural integrity by β-CD. The results are meticulously discussed in relevance to the effect of a potential drug delivery vehicle (CD) on the membrane-mimetic micellar system. Further, application of an extrinsic fluorescence probe for monitoring such interactions is fraught by the possibilities of no less than three equilibria that can operate simultaneously viz., (i) surfactant-cyclodextrin, (ii) surfactant-fluorophore and (iii) cyclodextrin-fluorophore. This aspect highlights the enormous importance of the issue of suitability of the fluorescence probe to study such complicated systems and interaction phenomena. Also the varying interaction scenario of β-CD with the nature of the surfactant highlights the importance of precise knowledge of the strength and locus of drug binding in delineating such complex interactions. The results of the present investigation advocate for the potential applicability of the drug (HM) itself as a fluorescence reporter in study of such complex microheterogeneous interactions.
Collapse
Affiliation(s)
- Bijan K Paul
- Department of Chemistry, University of Calcutta, 92 A.P.C. Road, Calcutta 700 009, India
| | | | | | | |
Collapse
|
16
|
Pereira-Leite C, Nunes C, Reis S. Interaction of nonsteroidal anti-inflammatory drugs with membranes: in vitro assessment and relevance for their biological actions. Prog Lipid Res 2013; 52:571-84. [PMID: 23981364 DOI: 10.1016/j.plipres.2013.08.003] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2013] [Revised: 08/01/2013] [Accepted: 08/16/2013] [Indexed: 12/12/2022]
Abstract
Nonsteroidal anti-inflammatory drugs (NSAIDs) are among the most commonly used drugs in the world due to their anti-inflammatory, analgesic and antipyretic properties. Nevertheless, the consumption of these drugs is still associated with the occurrence of a wide spectrum of adverse effects. Regarding the major role of membranes in cellular events, the hypothesis that the biological actions of NSAIDs may be related to their effect at the membrane level has triggered the in vitro assessment of NSAIDs-membrane interactions. The use of membrane mimetic models, cell cultures, a wide range of experimental techniques and molecular dynamics simulations has been providing significant information about drugs partition and location within membranes and also about their effect on diverse membrane properties. These studies have indeed been providing evidences that the effect of NSAIDs at membrane level may be an additional mechanism of action and toxicity of NSAIDs. In fact, the pharmacokinetic properties of NSAIDs are closely related to the ability of these drugs to interact and overcome biological membranes. Moreover, the therapeutic actions of NSAIDs may also result from the indirect inhibition of cyclooxygenase due to the disturbing effect of NSAIDs on membrane properties. Furthermore, increasing evidences suggest that the disordering effects of these drugs on membranes may be in the basis of the NSAIDs-induced toxicity in diverse organ systems. Overall, the study of NSAIDs-membrane interactions has proved to be not only important for the better understanding of their pharmacological actions, but also for the rational development of new approaches to overcome NSAIDs adverse effects.
Collapse
Affiliation(s)
- Catarina Pereira-Leite
- REQUIMTE, Laboratório de Química Aplicada, Departamento de Ciências Químicas, Faculdade de Farmácia da Universidade do Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
| | | | | |
Collapse
|
17
|
Hoyo J, Guaus E, Oncins G, Torrent-Burgués J, Sanz F. Incorporation of ubiquinone in supported lipid bilayers on ITO. J Phys Chem B 2013; 117:7498-506. [PMID: 23725098 DOI: 10.1021/jp4004517] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Ubiquinone (UQ) is one of the main electron and proton shuttle molecules in biological systems, and dipalmitoylphosphatidylcholine (DPPC) is one of the most used model lipids. Supported planar bilayers (SPBs) are extensively accepted as biological model membranes. In this study, SPBs have been deposited on ITO, which is a semiconductor with good electrical and optical features. Specifically, topographic atomic force microscopy (AFM) images and force curves have been performed on SPBs with several DPPC:UQ ratios to study the location and the interaction of UQ in the SPB. Additionally, cyclic voltammetry has been used to understand the electrochemical behavior of DPPC:UQ SPBs. Obtained results show that, in our case, UQ is placed in two main different positions in SPBs. First, between the DPPC hydrophobic chains, fact that originates a decrease in the breakthrough force of the bilayer, and the second between the two leaflets that form the SPBs. This second position occurs when increasing the UQ content, fact that eventually forms UQ aggregates at high concentrations. The formation of aggregates produces an expansion of the SPB average height and a bimodal distribution of the breakthrough force. The voltammetric response of UQ depends on its position on the bilayer.
Collapse
Affiliation(s)
- Javier Hoyo
- Universitat Politècnica de Catalunya, Dpt. Enginyeria Química, 08222 Terrassa (Barcelona), Spain
| | | | | | | | | |
Collapse
|
18
|
Sarangi NK, Patnaik A. Structure-DirectingL-Tryptophan for Supported DPPC Helices and Fractals: An Alkyl-Chain Tilt-Angle Dependence. Chempluschem 2012. [DOI: 10.1002/cplu.201200075] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|