1
|
Magrì A, Tomasello B, Naletova I, Tabbì G, Cairns WRL, Greco V, Sciuto S, La Mendola D, Rizzarelli E. New BDNF and NT-3 Cyclic Mimetics Concur with Copper to Activate Trophic Signaling Pathways as Potential Molecular Entities to Protect Old Brains from Neurodegeneration. Biomolecules 2024; 14:1104. [PMID: 39334869 PMCID: PMC11430436 DOI: 10.3390/biom14091104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Accepted: 08/30/2024] [Indexed: 09/30/2024] Open
Abstract
A low level of Neurotrophins (NTs), their Tyrosine Kinase Receptors (Trks), Vascular Endothelial Growth Factors (VEGFs) and their receptors, mainly VEGFR1 and VEGFR2, characterizes AD brains. The use of NTs and VEGFs as drugs presents different issues due to their low permeability of the blood-brain barrier, the poor pharmacokinetic profile, and the relevant side effects. To overcome these issues, different functional and structural NT mimics have been employed. Being aware that the N-terminus domain as the key domain of NTs for the binding selectivity and activation of Trks and the need to avoid or delay proteolysis, we herein report on the mimicking ability of two cyclic peptide encompassing the N-terminus of Brain Derived Growth Factor (BDNF), (c-[HSDPARRGELSV-]), cBDNF(1-12) and of Neurotrophin3 (NT3), (c-[YAEHKSHRGEYSV-]), cNT3(1-13). The two cyclic peptide features were characterized by a combined thermodynamic and spectroscopic approach (potentiometry, NMR, UV-vis and CD) that was extended to their copper(II) ion complexes. SH-SY5Y cell assays show that the Cu2+ present at the sub-micromolar level in the complete culture media affects the treatments with the two peptides. cBDNF(1-12) and cNT3(1-13) act as ionophores, induce neuronal differentiation and promote Trks and CREB phosphorylation in a copper dependent manner. Consistently, both peptide and Cu2+ stimulate BDNF and VEGF expression as well as VEGF release; cBDNF(1-12) and cNT3(1-13) induce the expression of Trks and VEGFRs.
Collapse
Affiliation(s)
- Antonio Magrì
- Institute of Crystallography, National Council of Research (CNR), P. Gaifami 18, 95126 Catania, Italy; (A.M.); (I.N.); (G.T.)
| | - Barbara Tomasello
- Department of Drug and Health Sciences, University of Catania, Viale Andrea Doria 6, 95125 Catania, Italy;
| | - Irina Naletova
- Institute of Crystallography, National Council of Research (CNR), P. Gaifami 18, 95126 Catania, Italy; (A.M.); (I.N.); (G.T.)
| | - Giovanni Tabbì
- Institute of Crystallography, National Council of Research (CNR), P. Gaifami 18, 95126 Catania, Italy; (A.M.); (I.N.); (G.T.)
| | - Warren R. L. Cairns
- CNR-Institute of Polar Sciences (CNR-ISP), 155 Via Torino, 30172 Venice, Italy;
| | - Valentina Greco
- Department of Chemical Sciences, University of Catania, Viale Andrea Doria 6, 95125 Catania, Italy; (V.G.); (S.S.)
| | - Sebastiano Sciuto
- Department of Chemical Sciences, University of Catania, Viale Andrea Doria 6, 95125 Catania, Italy; (V.G.); (S.S.)
| | - Diego La Mendola
- Department of Pharmacy, University of Pisa, via Bonanno Pisano 6, 56126 Pisa, Italy;
| | - Enrico Rizzarelli
- Institute of Crystallography, National Council of Research (CNR), P. Gaifami 18, 95126 Catania, Italy; (A.M.); (I.N.); (G.T.)
- Department of Chemical Sciences, University of Catania, Viale Andrea Doria 6, 95125 Catania, Italy; (V.G.); (S.S.)
| |
Collapse
|
2
|
Tomasello B, Bellia F, Naletova I, Magrì A, Tabbì G, Attanasio F, Tomasello MF, Cairns WRL, Fortino M, Pietropaolo A, Greco V, La Mendola D, Sciuto S, Arena G, Rizzarelli E. BDNF- and VEGF-Responsive Stimulus to an NGF Mimic Cyclic Peptide with Copper Ionophore Capability and Ctr1/CCS-Driven Signaling. ACS Chem Neurosci 2024; 15:1755-1769. [PMID: 38602894 DOI: 10.1021/acschemneuro.3c00716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/13/2024] Open
Abstract
Neurotrophins are a family of growth factors that play a key role in the development and regulation of the functioning of the central nervous system. Their use as drugs is made difficult by their poor stability, cellular permeability, and side effects. Continuing our effort to use peptides that mimic the neurotrophic growth factor (NGF), the family model protein, and specifically the N-terminus of the protein, here we report on the spectroscopic characterization and resistance to hydrolysis of the 14-membered cyclic peptide reproducing the N-terminus sequence (SSSHPIFHRGEFSV (c-NGF(1-14)). Far-UV CD spectra and a computational study show that this peptide has a rigid conformation and left-handed chirality typical of polyproline II that favors its interaction with the D5 domain of the NGF receptor TrkA. c-NGF(1-14) is able to bind Cu2+ with good affinity; the resulting complexes have been characterized by potentiometric and spectroscopic measurements. Experiments on PC12 cells show that c-NGF(1-14) acts as an ionophore, influencing the degree and the localization of both the membrane transporter (Ctr1) and the copper intracellular transporter (CCS). c-NGF(1-14) induces PC12 differentiation, mimics the protein in TrkA phosphorylation, and activates the kinase cascade, inducing Erk1/2 phosphorylation. c-NGF(1-14) biological activities are enhanced when the peptide interacts with Cu2+ even with the submicromolar quantities present in the culture media as demonstrated by ICP-OES measurements. Finally, c-NGF(1-14) and Cu2+ concur to activate the cAMP response element-binding protein CREB that, in turn, induces the brain-derived neurotrophic factor (BDNF) and the vascular endothelial growth factor (VEGF) release.
Collapse
Affiliation(s)
- Barbara Tomasello
- Department of Drug and Health Sciences, University of Catania, V.le Andrea Doria 6, Catania 95125, Italy
| | - Francesco Bellia
- Institute of Crystallography, CNR, P. Gaifami 18, Catania 95126, Italy
| | - Irina Naletova
- Institute of Crystallography, CNR, P. Gaifami 18, Catania 95126, Italy
| | - Antonio Magrì
- Institute of Crystallography, CNR, P. Gaifami 18, Catania 95126, Italy
| | - Giovanni Tabbì
- Institute of Crystallography, CNR, P. Gaifami 18, Catania 95126, Italy
| | | | | | - Warren R L Cairns
- Istituto di Scienze Polari (ISP), c/o Campus Scientifico, Università Ca' Foscari Venezia Via Torino, Venezia Mestre 155-30170, Italy
| | - Mariagrazia Fortino
- Dipartimento di Scienze della Salute, Università di Catanzaro, Viale Europa, Catanzaro 88100, Italy
| | - Adriana Pietropaolo
- Dipartimento di Scienze della Salute, Università di Catanzaro, Viale Europa, Catanzaro 88100, Italy
| | - Valentina Greco
- Department of Chemical Sciences, University of Catania, A. Doria 6, Catania 95125, Italy
| | - Diego La Mendola
- Department of Pharmaceutical Sciences, University of Pisa, Bonanno Pisano 12, Pisa 56126, Italy
| | - Sebastiano Sciuto
- Department of Chemical Sciences, University of Catania, A. Doria 6, Catania 95125, Italy
| | - Giuseppe Arena
- Department of Chemical Sciences, University of Catania, A. Doria 6, Catania 95125, Italy
| | - Enrico Rizzarelli
- Institute of Crystallography, CNR, P. Gaifami 18, Catania 95126, Italy
- Department of Chemical Sciences, University of Catania, A. Doria 6, Catania 95125, Italy
| |
Collapse
|
3
|
Dzyhovskyi V, Stokowa-Sołtys K. Divalent metal ion binding to Staphylococcus aureus FeoB transporter regions. J Inorg Biochem 2023; 244:112203. [PMID: 37018851 DOI: 10.1016/j.jinorgbio.2023.112203] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 03/21/2023] [Accepted: 03/27/2023] [Indexed: 03/31/2023]
Abstract
Transition metal ions such as iron, copper, zinc, manganese or, nickel are essential in many biological processes. Bacteria have developed a number of mechanisms for their acquisition and transport, in which numerous of proteins and smaller molecules are involved. One of the representatives of these proteins is FeoB, which belongs to the Feo (ferrous ion transporter) family. Although ferrous iron transport system is widespread among microorganisms, it is still poorly described in Gram-positive pathogens, such as Staphylococcus aureus. In this work, combined potentiometric and spectroscopic studies (UV-Vis, CD and EPR) were carried out to determine Cu(II), Fe(II) and Zn(II) binding modes to FeoB fragments (Ac-IDYHKLMK-NH2, Ac-ETSHDKY-NH2, and Ac-SFLHMVGS-NH2). For the first time iron(II) complexes with peptides were characterized by potentiometry. All studied ligands are able to form a variety of thermodynamically stable complexes with transition metal ions. It was concluded that among the studied systems, the most effective metal ion binding is observed for the Ac-ETSHDKY-NH2 peptide. Moreover, comparing preferences of all ligands towards different metal ions, copper(II) complexes are the most stable ones at physiological pH.
Collapse
|
4
|
Magrì A, Tabbì G, Naletova I, Attanasio F, Arena G, Rizzarelli E. A Deeper Insight in Metal Binding to the hCtr1 N-terminus Fragment: Affinity, Speciation and Binding Mode of Binuclear Cu 2+ and Mononuclear Ag + Complex Species. Int J Mol Sci 2022; 23:ijms23062929. [PMID: 35328348 PMCID: PMC8953729 DOI: 10.3390/ijms23062929] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Revised: 03/02/2022] [Accepted: 03/05/2022] [Indexed: 01/27/2023] Open
Abstract
Ctr1 regulates copper uptake and its intracellular distribution. The first 14 amino acid sequence of the Ctr1 ectodomain Ctr1(1-14) encompasses the characteristic Amino Terminal Cu2+ and Ni2+ binding motif (ATCUN) as well as the bis-His binding motif (His5 and His6). We report a combined thermodynamic and spectroscopic (UV-vis, CD, EPR) study dealing with the formation of Cu2+ homobinuclear complexes with Ctr1(1-14), the percentage of which is not negligible even in the presence of a small Cu2+ excess and clearly prevails at a M/L ratio of 1.9. Ascorbate fails to reduce Cu2+ when bound to the ATCUN motif, while it reduces Cu2+ when bound to the His5-His6 motif involved in the formation of binuclear species. The histidine diade characterizes the second binding site and is thought to be responsible for ascorbate oxidation. Binding constants and speciation of Ag+ complexes with Ctr1(1-14), which are assumed to mimic Cu+ interaction with N-terminus of Ctr1(1-14), were also determined. A preliminary immunoblot assay evidences that the anti-Ctr1 extracellular antibody recognizes Ctr1(1-14) in a different way from the longer Ctr1(1-25) that encompasses a second His and Met rich domain.
Collapse
Affiliation(s)
- Antonio Magrì
- Institute of Crystallography, National Council of Research, CNR, S.S. Catania, Via P. Gaifami 18, 95126 Catania, Italy; (A.M.); (G.T.); (I.N.)
| | - Giovanni Tabbì
- Institute of Crystallography, National Council of Research, CNR, S.S. Catania, Via P. Gaifami 18, 95126 Catania, Italy; (A.M.); (G.T.); (I.N.)
| | - Irina Naletova
- Institute of Crystallography, National Council of Research, CNR, S.S. Catania, Via P. Gaifami 18, 95126 Catania, Italy; (A.M.); (G.T.); (I.N.)
- Consorzio Interuniversitario per la Ricerca dei Metalli nei Sistemi Biologici, Via Ulpiani 27, 70126 Bari, Italy
| | - Francesco Attanasio
- Institute of Crystallography, National Council of Research, CNR, S.S. Catania, Via P. Gaifami 18, 95126 Catania, Italy; (A.M.); (G.T.); (I.N.)
- Correspondence: (F.A.); (E.R.); Tel.: +39-095-7385070 (E.R.)
| | - Giuseppe Arena
- Department of Chemical Sciences, University of Catania, Viale A. Doria 6, 95125 Catania, Italy;
| | - Enrico Rizzarelli
- Institute of Crystallography, National Council of Research, CNR, S.S. Catania, Via P. Gaifami 18, 95126 Catania, Italy; (A.M.); (G.T.); (I.N.)
- Consorzio Interuniversitario per la Ricerca dei Metalli nei Sistemi Biologici, Via Ulpiani 27, 70126 Bari, Italy
- Department of Chemical Sciences, University of Catania, Viale A. Doria 6, 95125 Catania, Italy;
- Correspondence: (F.A.); (E.R.); Tel.: +39-095-7385070 (E.R.)
| |
Collapse
|
5
|
Tabbì G, Cucci LM, Pinzino C, Munzone A, Marzo T, Pizzanelli S, Satriano C, Magrì A, La Mendola D. Peptides Derived from Angiogenin Regulate Cellular Copper Uptake. Int J Mol Sci 2021; 22:9530. [PMID: 34502439 PMCID: PMC8430698 DOI: 10.3390/ijms22179530] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 08/26/2021] [Accepted: 08/31/2021] [Indexed: 12/31/2022] Open
Abstract
The angiogenin protein (ANG) is one of the most potent endogenous angiogenic factors. In this work we characterized by means of potentiometric, spectroscopic and voltammetric techniques, the copper complex species formed with peptide fragments derived from the N-terminal domain of the protein, encompassing the sequence 1-17 and having free amino, Ang1-17, or acetylated N-terminus group, AcAng1-17, so to explore the role of amino group in metal binding and cellular copper uptake. The obtained data show that amino group is the main copper anchoring site for Ang1-17. The affinity constant values, metal coordination geometry and complexes redox-potentials strongly depend, for both peptides, on the number of copper equivalents added. Confocal laser scanning microscope analysis on neuroblastoma cells showed that in the presence of one equivalent of copper ion, the free amino Ang1-17 increases cellular copper uptake while the acetylated AcAng1-17 strongly decreases the intracellular metal level. The activity of peptides was also compared to that of the protein normally present in the plasma (wtANG) as well as to the recombinant form (rANG) most commonly used in literature experiments. The two protein isoforms bind copper ions but with a different coordination environment. Confocal laser scanning microscope data showed that the wtANG induces a strong increase in intracellular copper compared to control while the rANG decreases the copper signal inside cells. These data demonstrate the relevance of copper complexes' geometry to modulate peptides' activity and show that wtANG, normally present in the plasma, can affect cellular copper uptake.
Collapse
Affiliation(s)
- Giovanni Tabbì
- Institute of Crystallography—National Council of Research—CNR, via Paolo Gaifami 18, 95126 Catania, Italy;
| | - Lorena Maria Cucci
- Nano Hybrid BioInterfaces Lab (NHBIL), Department of Chemical Sciences, University of Catania, Viale Andrea Doria 6, 95125 Catania, Italy;
| | - Calogero Pinzino
- Institute for the Chemistry of OrganoMetallic Compounds (ICCOM), National Council of Research—CNR, via G. Moruzzi 1, 56124 Pisa, Italy;
| | - Alessia Munzone
- Aix-Marseille Univesité, 52 Avenue Escadrille Normandie Niemen, 13013 Marseille, France;
| | - Tiziano Marzo
- Department of Pharmacy, University of Pisa, via Bonanno Pisano 6, 56126 Pisa, Italy;
| | - Silvia Pizzanelli
- Institute for the Chemistry of OrganoMetallic Compounds (ICCOM), National Council of Research—CNR, via G. Moruzzi 1, 56124 Pisa, Italy;
| | - Cristina Satriano
- Nano Hybrid BioInterfaces Lab (NHBIL), Department of Chemical Sciences, University of Catania, Viale Andrea Doria 6, 95125 Catania, Italy;
| | - Antonio Magrì
- Institute of Crystallography—National Council of Research—CNR, via Paolo Gaifami 18, 95126 Catania, Italy;
| | - Diego La Mendola
- Department of Pharmacy, University of Pisa, via Bonanno Pisano 6, 56126 Pisa, Italy;
| |
Collapse
|
6
|
Cucci LM, Trapani G, Hansson Ö, La Mendola D, Satriano C. Gold Nanoparticles Functionalized with Angiogenin for Wound Care Application. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:201. [PMID: 33466813 PMCID: PMC7830515 DOI: 10.3390/nano11010201] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 01/05/2021] [Accepted: 01/11/2021] [Indexed: 12/16/2022]
Abstract
In this work, we aimed to develop a hybrid theranostic nano-formulation based on gold nanoparticles (AuNP)-having a known anti-angiogenic character-and the angiogenin (ANG), in order to tune the angiogenesis-related phases involved in the multifaceted process of the wound healing. To this purpose, spherical were surface "decorated" with three variants of the protein, namely, the recombinant (rANG), the wild-type, physiologically present in the human plasma (wtANG) and a new mutant with a cysteine substitution of the serine at the residue 28 (S28CANG). The hybrid biointerface between AuNP and ANG was scrutinized by a multi-technique approach based on dynamic light scattering, spectroscopic (UV-visible, circular dichroism) and microscopic (atomic force and laser scanning confocal) techniques. The analyses of optical features of plasmonic gold nanoparticles allowed for discrimination of different adsorption modes-i.e.; predominant physisorption and/or chemisorption-triggered by the ANG primary sequence. Biophysical experiments with supported lipid bilayers (SLB), an artificial model of cell membrane, were performed by means of quartz crystal microbalance with dissipation monitoring acoustic sensing technique. Cellular experiments on human umbilical vein endothelial cells (HUVEC), in the absence or presence of copper-another co-player of angiogenesis-were carried out to assay the nanotoxicity of the hybrid protein-gold nanoassemblies as well as their effect on cell migration and tubulogenesis. Results pointed to the promising potential of these nanoplatforms, especially the new hybrid Au-S28CANG obtained with the covalent grafting of the mutant on the gold surface, for the modulation of angiogenesis processes in wound care.
Collapse
Affiliation(s)
- Lorena Maria Cucci
- Laboratory of Hybrid NanoBioInterfaces (NHBIL), Department of Chemical Sciences, University of Catania, 95125 Catania, Italy;
| | - Giuseppe Trapani
- Scuola Superiore di Catania, University of Catania, 95123 Catania, Italy;
| | - Örjan Hansson
- Department of Chemistry and Molecular Biology, University of Gothenburg, SE-40530 Göteborg, Sweden;
| | | | - Cristina Satriano
- Laboratory of Hybrid NanoBioInterfaces (NHBIL), Department of Chemical Sciences, University of Catania, 95125 Catania, Italy;
| |
Collapse
|
7
|
A Tunable Nanoplatform of Nanogold Functionalised with Angiogenin Peptides for Anti-Angiogenic Therapy of Brain Tumours. Cancers (Basel) 2019; 11:cancers11091322. [PMID: 31500197 PMCID: PMC6770958 DOI: 10.3390/cancers11091322] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Revised: 09/01/2019] [Accepted: 09/03/2019] [Indexed: 01/20/2023] Open
Abstract
Angiogenin (ANG), an endogenous protein that plays a key role in cell growth and survival, has been scrutinised here as promising nanomedicine tool for the modulation of pro-/anti-angiogenic processes in brain cancer therapy. Specifically, peptide fragments from the putative cell membrane binding domain (residues 60–68) of the protein were used in this study to obtain peptide-functionalised spherical gold nanoparticles (AuNPs) of about 10 nm and 30 nm in optical and hydrodynamic size, respectively. Different hybrid biointerfaces were fabricated by peptide physical adsorption (Ang60–68) or chemisorption (the cysteine analogous Ang60–68Cys) at the metal nanoparticle surface, and cellular assays were performed in the comparison with ANG-functionalised AuNPs. Cellular treatments were performed both in basal and in copper-supplemented cell culture medium, to scrutinise the synergic effect of the metal, which is another known angiogenic factor. Two brain cell lines were investigated in parallel, namely tumour glioblastoma (A172) and neuron-like differentiated neuroblastoma (d-SH-SY5Y). Results on cell viability/proliferation, cytoskeleton actin, angiogenin translocation and vascular endothelial growth factor (VEGF) release pointed to the promising potentialities of the developed systems as anti-angiogenic tunable nanoplaftforms in cancer cells treatment.
Collapse
|
8
|
Abstract
Despite improvements in the 5-year survival rate to over 80% in cancers, such as Hodgkin lymphoma and testicular cancer, more aggressive tumors including pancreatic and brain cancer still have extremely low survival rates. The establishment of chemoresistance, responsible for the reduction in treatment efficiency and cancer relapse, is one possible explanation for this setback. Metal-based compounds, a class of anticancer drugs, are largely used in the treatment of cancer. Herein, we will review the use of metal-based small molecules in chemotherapy, focusing on recent studies, and we will discuss how new nonplatinum-based agents are prompting scientists to increase drug specificity to overcome chemoresistance in cancer cells.
Collapse
|
9
|
Magrì A, Tabbì G, Breglia R, De Gioia L, Fantucci P, Bruschi M, Bonomo RP, La Mendola D. Copper ion interaction with the RNase catalytic site fragment of the angiogenin protein: an experimental and theoretical investigation. Dalton Trans 2018. [PMID: 28636006 DOI: 10.1039/c7dt01209h] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The angiogenin protein (Ang) is a member of the vertebrate-specific secreted ribonucleases and one of the most potent angiogenic factors known. Ang is a normal constituent of human plasma and its concentration increases under some physiological and pathological conditions to promote neovascularization. Ang was originally identified as an angiogenic tumour factor, but its biological activity has been found to extend from inducing angiogenesis to promoting cell survival in different neurodegenerative diseases. Ang exhibits weak ribonucleolytic activity, which is critical for its biological functions. The RNase catalytic sites are two histidine residues, His-13 and His-114, and the lysine Lys-40. Copper is also an essential cofactor in angiogenesis and influences angiogenin's biological properties. The main Cu(ii) anchoring site of Ang is His-114, where metal binding inhibits RNase activity of the protein. To reveal the Cu(ii) coordination environment in the C-terminal domain of the Ang protein, we report on the characterization, by means of potentiometric, voltammetric, and spectroscopic (CD, UV-Vis and EPR) methods and DFT calculations, of Cu(ii) complexes formed with a peptide fragment including the Ang sequence 112-117 (PVHLDQ). Potentiometric titrations indicated that [CuLH-2] is the predominant species at physiological pH. EPR, voltammetric data and DFT calculations are consistent with a CuN3O2 coordination mode in which a distorted square pyramidal arrangement of the peptide was observed with the equatorial positions occupied by the nitrogen atoms of the deprotonated amides of the Asp and Leu residues, the δ-N atom of histidine and the oxygen atom of the aspartic carboxylic group. Moreover, two analogous peptides encompassing the PVHLNQ and LVHLDQ sequences were also characterized by using thermodynamic, spectroscopic and DFT studies to reveal the role they play in Cu(ii) complex formation by the carboxylate side chain of the Asp and Pro residues, a known breaking-point in metal coordination.
Collapse
Affiliation(s)
- Antonio Magrì
- Consiglio Nazionale delle Ricerche, Istituto di Biostrutture e Bioimmagini (IBB-CNR), Via P. Gaifami 18, 95126 Catania, Italy
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Magrì A, Grasso G, Corti F, Finetti F, Greco V, Santoro AM, Sciuto S, La Mendola D, Morbidelli L, Rizzarelli E. Peptides derived from the histidine–proline rich glycoprotein bind copper ions and exhibit anti-angiogenic properties. Dalton Trans 2018; 47:9492-9503. [DOI: 10.1039/c8dt01560k] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
A peptide belonging to the histidine–proline rich glycoprotein binds copper(ii), inhibiting metal angiogenic responses in endothelial cells.
Collapse
Affiliation(s)
- Antonio Magrì
- Istituto di Biostrutture eBioimmagini-CNR
- 95126 Catania
- Italy
| | - Giulia Grasso
- Istituto di Biostrutture eBioimmagini-CNR
- 95126 Catania
- Italy
| | - Federico Corti
- Yale Cardiovascular Research Center
- Yale University
- New Haven
- USA
| | - Federica Finetti
- Dipartimento di Biotecnologie
- Chimica e Farmacia
- Università di Siena
- 53100 Siena
- Italy
| | - Valentina Greco
- Dipartimento di Scienze Chimiche
- Università di Catania
- 95125 Catania
- Italy
| | | | - Sebastiano Sciuto
- Dipartimento di Scienze Chimiche
- Università di Catania
- 95125 Catania
- Italy
| | | | - Lucia Morbidelli
- Dipartimento di Scienze della Vita
- Università di Siena
- 53100 Siena
- Italy
| | - Enrico Rizzarelli
- Dipartimento di Scienze Chimiche
- Università di Catania
- 95125 Catania
- Italy
| |
Collapse
|
11
|
|
12
|
Magrì A, Pietropaolo A, Tabbì G, La Mendola D, Rizzarelli E. From Peptide Fragments to Whole Protein: Copper(II) Load and Coordination Features of IAPP. Chemistry 2017; 23:17898-17902. [PMID: 29111583 DOI: 10.1002/chem.201704910] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Indexed: 12/28/2022]
Abstract
The copper-binding features of rat islet amyloid polypeptide (r-IAPP) are herein disclosed through the determination of the stability constants and spectroscopic properties of its copper complex species. To mimic the metal binding sites of the human IAPP (h-IAPP), a soluble, single-point mutated variant of r-IAPP, having a histidine residue in place of Arg18, was synthesized, that is, r-IAPP(1-37; R18H). The peptide IAPP(1-8) was also characterized to have deeper insight into the N-terminus copper(II)-binding features of r-IAPP as well as of its mutated form. A combined experimental (thermodynamic and spectroscopic) and computational approach allowed us to assess the metal loading and the coordination features of the whole IAPP. At physiological pH, the N-terminal amino group is the Cu2+ main binding site both of entire r-IAPP and of its mutated form that mimics h-IAPP. The histidine residue present in this mutated polypeptide accounts for the second Cu2+ binding. We can speculate that the copper driven toxicity of h-IAPP in comparison to that of r-IAPP can be attributed to the different metal loading and the presence of a second metal anchoring site, the His18 , whose role is usually invoked in the process of h-IAPP aggregation.
Collapse
Affiliation(s)
- Antonio Magrì
- Istituto di Biostrutture e Bioimmagini-CNR, Via P. Gaifami 18, 95126, Catania, Italy
| | - Adriana Pietropaolo
- Dipartimento di Scienze della Salute, Università "Magna Graecia" di Catanzaro, Campus Universitario, Viale Europa, 88100, Catanzaro, Italy
| | - Giovanni Tabbì
- Istituto di Biostrutture e Bioimmagini-CNR, Via P. Gaifami 18, 95126, Catania, Italy
| | - Diego La Mendola
- Dipartimento di Farmacia, Università di Pisa, Via Bonanno Pisano 6, 56126, Pisa, Italy
| | - Enrico Rizzarelli
- Istituto di Biostrutture e Bioimmagini-CNR, Via P. Gaifami 18, 95126, Catania, Italy.,Dipartimento di Scienze Chimiche, Università di Catania, Viale A. Doria, 5, 95125, Catania, Italy
| |
Collapse
|
13
|
La Mendola D, Arnesano F, Hansson Ö, Giacomelli C, Calò V, Mangini V, Magrì A, Bellia F, Trincavelli ML, Martini C, Natile G, Rizzarelli E. Copper binding to naturally occurring, lactam form of angiogenin differs from that to recombinant protein, affecting their activity. Metallomics 2016; 8:118-24. [PMID: 26594037 DOI: 10.1039/c5mt00216h] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Angiogenin is a member of the ribonuclease family and a normal constituent of human plasma. It is one of the most potent angiogenic factors known and is overexpressed in different types of cancers. Copper is also an essential cofactor in angiogenesis and, during this process, it is mobilized from inside to outside of the cell. To date, contrasting results have been reported about copper(ii) influencing angiogenin activity. However, in these studies, the recombinant form of the protein was used. Unlike recombinant angiogenin, that contains an extra methionine with a free terminal amino group, the naturally occurring protein present in human plasma starts with a glutamine residue that spontaneously cyclizes to pyroglutamate, a lactam derivative. Herein, we report spectroscopic evidence indicating that copper(ii) experiences different coordination environments in the two protein isoforms, and affects their RNase and angiogenic activity differently. These results show how relatively small differences between recombinant and wild type proteins can result in markedly different behaviours.
Collapse
Affiliation(s)
- D La Mendola
- Department of Pharmacy, University of Pisa, via Bonanno Pisano 6, 56126, Pisa, Italy.
| | - F Arnesano
- Department of Chemistry, University of Bari "A. Moro", via E. Orabona 4, 70125 Bari, Italy.
| | - Ö Hansson
- Department of Chemistry and Molecular Biology, University of Gothenburg, Medicinaregatan 9C, PO Box 462, SE-40530 Göteborg, Sweden
| | - C Giacomelli
- Department of Pharmacy, University of Pisa, via Bonanno Pisano 6, 56126, Pisa, Italy.
| | - V Calò
- Department of Chemistry, University of Bari "A. Moro", via E. Orabona 4, 70125 Bari, Italy.
| | - V Mangini
- Department of Chemistry, University of Bari "A. Moro", via E. Orabona 4, 70125 Bari, Italy.
| | - A Magrì
- Institute of Biostructure and Bioimaging, CNR, via P. Gaifami 18, 95126 Catania, Italy
| | - F Bellia
- Institute of Biostructure and Bioimaging, CNR, via P. Gaifami 18, 95126 Catania, Italy
| | - M L Trincavelli
- Department of Pharmacy, University of Pisa, via Bonanno Pisano 6, 56126, Pisa, Italy.
| | - C Martini
- Department of Pharmacy, University of Pisa, via Bonanno Pisano 6, 56126, Pisa, Italy.
| | - G Natile
- Department of Chemistry, University of Bari "A. Moro", via E. Orabona 4, 70125 Bari, Italy.
| | - E Rizzarelli
- Institute of Biostructure and Bioimaging, CNR, via P. Gaifami 18, 95126 Catania, Italy
| |
Collapse
|
14
|
Magrì A, Tabbì G, Giuffrida A, Pappalardo G, Satriano C, Naletova I, Nicoletti VG, Attanasio F. Influence of the N-terminus acetylation of Semax, a synthetic analog of ACTH(4-10), on copper(II) and zinc(II) coordination and biological properties. J Inorg Biochem 2016; 164:59-69. [PMID: 27586814 DOI: 10.1016/j.jinorgbio.2016.08.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Revised: 08/23/2016] [Accepted: 08/25/2016] [Indexed: 10/21/2022]
Abstract
Semax is a heptapeptide (Met-Glu-His-Phe-Pro-Gly-Pro) that encompasses the sequence 4-7 of N-terminal domain of the adrenocorticotropic hormone and a C-terminal Pro-Gly-Pro tripeptide. N-terminal amino group acetylation (Ac-Semax) modulates the chemical and biological properties of parental peptide, modifying the ability of Semax to form complex species with Cu(II) ion. At physiological pH, the main complex species formed by Ac-Semax, [CuLH-2]2-, consists in a distorted CuN3O chromophore with a weak apical interaction of the methionine sulphur. Such a complex differs from the Cu(II)-Semax complex system, which exhibits a CuN4 chromophore. The reduced ligand field affects the [CuLH-2]2- formal redox potential, which is more positive than that of Cu(II)-Semax corresponding species. In the amino-free form, the resulting complex species is redox-stable and unreactive against ascorbic acid, unlike the acetylated form. Semax acetylation did not protect from Cu(II) induced toxicity on a SH-SY5Y neuroblastoma cell line, thus demonstrating the crucial role played by the free NH2 terminus in the cell protection. Since several brain diseases are associated either to Cu(II) or Zn(II) dyshomeostasis, here we characterized also the complex species formed by Zn(II) with Semax and Ac-Semax. Both peptides were able to form Zn(II) complex species with comparable strength. Confocal microscopy imaging confirmed that peptide group acetylation does not affect the Zn(II) influx in neuroblastoma cells. Moreover, a punctuate distribution of Zn(II) within the cells suggests a preferred subcellular localization that might explain the zinc toxic effect. A future perspective can be the use of Ac-Semax as ionophore in antibody drug conjugates to produce a dysmetallostasis in tumor cells.
Collapse
Affiliation(s)
- Antonio Magrì
- Istituto di Biostrutture e Bioimmagini, Consiglio Nazionale delle Ricerche (CNR), Via P. Gaifami 18, 95126 Catania, Italy
| | - Giovanni Tabbì
- Istituto di Biostrutture e Bioimmagini, Consiglio Nazionale delle Ricerche (CNR), Via P. Gaifami 18, 95126 Catania, Italy.
| | - Alessandro Giuffrida
- Istituto di Biostrutture e Bioimmagini, Consiglio Nazionale delle Ricerche (CNR), Via P. Gaifami 18, 95126 Catania, Italy
| | - Giuseppe Pappalardo
- Istituto di Biostrutture e Bioimmagini, Consiglio Nazionale delle Ricerche (CNR), Via P. Gaifami 18, 95126 Catania, Italy
| | - Cristina Satriano
- Dipartimento di Scienze Chimiche, Università degli Studi di Catania, Viale A. Doria 6, 95125 Catania, Italy
| | - Irina Naletova
- Dipartimento di Scienze Biomediche, Università degli Studi di Catania, Viale A. Doria 6, 95125 Catania, Italy; Consorzio Interuniversitario C.I.R.C.S.M.B., Via C. Ulpiani 27, 70125 Bari, Italy
| | - Vincenzo G Nicoletti
- Dipartimento di Scienze Biomediche, Università degli Studi di Catania, Viale A. Doria 6, 95125 Catania, Italy
| | - Francesco Attanasio
- Istituto di Biostrutture e Bioimmagini, Consiglio Nazionale delle Ricerche (CNR), Via P. Gaifami 18, 95126 Catania, Italy.
| |
Collapse
|
15
|
Magrì A, La Mendola D, Nicoletti VG, Pappalardo G, Rizzarelli E. New Insight in Copper-Ion Binding to Human Islet Amyloid: The Contribution of Metal-Complex Speciation To Reveal the Polypeptide Toxicity. Chemistry 2016; 22:13287-300. [PMID: 27493030 DOI: 10.1002/chem.201602816] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Indexed: 01/05/2023]
Abstract
Type-2 diabetes (T2D) is considered to be a potential threat on a global level. Recently, T2D has been listed as a misfolding disease, such as Alzheimer's and Parkinson's diseases. Human islet amyloid polypeptide (hIAPP) is a molecule cosecreted in pancreatic β cells and represents the main constituent of an aggregated amyloid found in individuals affected by T2D. The trace-element serum level is significantly influenced during the development of diabetes. In particular, the dys-homeostasis of Cu(2+) ions may adversely affect the course of the disease. Conflicting results have been reported on the protective role played by complex species formed by Cu(2+) ions with hIAPP or its peptide fragments in vitro. The histidine (His) residue at position 18 represents the main binding site for the metal ion, but contrasting results have been reported on other residues involved in metal-ion coordination, in particular those toward the N or C terminus. Sequences that encompass regions 17-29 and 14-22 were used to discriminate between the two models of the hIAPP coordination mode. Due to poor solubility in water, poly(ethylene glycol) (PEG) derivatives were synthesized. A peptide fragment that encompasses the 17-29 region of rat amylin (rIAPP) in which the arginine residue at position 18 was substituted by a histidine residue was also obtained to assess that the PEG moiety does not alter the peptide secondary structure. The complex species formed by Cu(2+) ions with Ac-PEG-hIAPP(17-29)-NH2 , Ac-rIAPP(17-29)R18H-NH2 , and Ac-PEG-hIAPP(14-22)-NH2 were studied by using potentiometric titrations coupled with spectroscopic methods (UV/Vis, circular dichroism, and EPR). The combined thermodynamic and spectroscopic approach allowed us to demonstrate that hIAPP is able to bind Cu(2+) ions starting from the His18 imidazole nitrogen atom toward the N-terminus domain. The stability constants of copper(II) complexes with Ac-PEG-hIAPP(14-22)-NH2 were used to simulate the different experimental conditions under which aggregate formation and oxidative stress of hIAPP has been reported. Speciation unveils: 1) the protective role played by increased amounts of Cu(2+) ions on the hIAPP fibrillary aggregation, 2) the effect of adventitious trace amounts of Cu(2+) ions present in phosphate-buffered saline (PBS), and 3) a reducing fluorogenic probe on H2 O2 production attributed to the polypeptide alone.
Collapse
Affiliation(s)
- Antonio Magrì
- Consiglio Nazionale delle Ricerche, Istituto di Biostrutture e Bioimmagini, Via P. Gaifami 18, 95126, Catania, Italy.
| | - Diego La Mendola
- Dipartimento di Farmacia, Università di Pisa, Via Bonanno Pisano, 6, 56126, Pisa, Italy.
| | - Vincenzo Giuseppe Nicoletti
- Dipartimento di Scienze Biomediche e Biotecnologiche, Università degli Studi di Catania, Viale A. Doria 6, 95125, Catania, Italy
| | - Giuseppe Pappalardo
- Consiglio Nazionale delle Ricerche, Istituto di Biostrutture e Bioimmagini, Via P. Gaifami 18, 95126, Catania, Italy
| | - Enrico Rizzarelli
- Consiglio Nazionale delle Ricerche, Istituto di Biostrutture e Bioimmagini, Via P. Gaifami 18, 95126, Catania, Italy.,Dipartimento di Scienze Chimiche, Università degli Studi di Catania, Viale A. Doria 6, 95125, Catania, Italy
| |
Collapse
|
16
|
Magrì A, Munzone A, Peana M, Medici S, Zoroddu MA, Hansson O, Satriano C, Rizzarelli E, La Mendola D. Coordination Environment of Cu(II) Ions Bound to N-Terminal Peptide Fragments of Angiogenin Protein. Int J Mol Sci 2016; 17:ijms17081240. [PMID: 27490533 PMCID: PMC5000638 DOI: 10.3390/ijms17081240] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2016] [Revised: 07/21/2016] [Accepted: 07/22/2016] [Indexed: 12/11/2022] Open
Abstract
Angiogenin (Ang) is a potent angiogenic factor, strongly overexpressed in patients affected by different types of cancers. The specific Ang cellular receptors have not been identified, but it is known that Ang-actin interaction induces changes both in the cell cytoskeleton and in the extracellular matrix. Most in vitro studies use the recombinant form (r-Ang) instead of the form that is normally present in vivo ("wild-type", wt-Ang). The first residue of r-Ang is a methionine, with a free amino group, whereas wt-Ang has a glutamic acid, whose amino group spontaneously cyclizes in the pyro-glutamate form. The Ang biological activity is influenced by copper ions. To elucidate the role of such a free amino group on the protein-copper binding, we scrutinized the copper(II) complexes with the peptide fragments Ang(1-17) and AcAng(1-17), which encompass the sequence 1-17 of angiogenin (QDNSRYTHFLTQHYDAK-NH₂), with free amino and acetylated N-terminus, respectively. Potentiometric, ultraviolet-visible (UV-vis), nuclear magnetic resonance (NMR) and circular dichroism (CD) studies demonstrate that the two peptides show a different metal coordination environment. Confocal microscopy imaging of neuroblastoma cells with the actin staining supports the spectroscopic results, with the finding of different responses in the cytoskeleton organization upon the interaction, in the presence or not of copper ions, with the free amino and the acetylated N-terminus peptides.
Collapse
Affiliation(s)
- Antonio Magrì
- Institute of Biostructures and Bioimages, National Council of Research ( CNR), Via P. Gaifami 18, 95126 Catania, Italy.
| | - Alessia Munzone
- Department of Chemical Sciences, University of Catania, Viale A. Doria 6, 95125 Catania, Italy.
| | - Massimiliano Peana
- Department of Chemistry and Pharmacy, University of Sassari, Via Vienna 2, 07100 Sassari, Italy.
| | - Serenella Medici
- Department of Chemistry and Pharmacy, University of Sassari, Via Vienna 2, 07100 Sassari, Italy.
| | - Maria Antonietta Zoroddu
- Department of Chemistry and Pharmacy, University of Sassari, Via Vienna 2, 07100 Sassari, Italy.
| | - Orjan Hansson
- Department of Chemistry and Molecular Biology, University of Gothenburg, Medicinaregatan 9C, 41390 Göteborg, Sweden.
| | - Cristina Satriano
- Department of Chemical Sciences, University of Catania, Viale A. Doria 6, 95125 Catania, Italy.
| | - Enrico Rizzarelli
- Institute of Biostructures and Bioimages, National Council of Research ( CNR), Via P. Gaifami 18, 95126 Catania, Italy.
- Department of Chemical Sciences, University of Catania, Viale A. Doria 6, 95125 Catania, Italy.
| | - Diego La Mendola
- Department of Pharmacy, University of Pisa, Via Bonanno Pisano 6, 56126 Pisa, Italy.
| |
Collapse
|
17
|
Grasso G, Santoro AM, Magrì A, La Mendola D, Tomasello MF, Zimbone S, Rizzarelli E. The Inorganic Perspective of VEGF: Interactions of Cu2+ with Peptides Encompassing a Recognition Domain of the VEGF Receptor. J Inorg Biochem 2016; 159:149-58. [DOI: 10.1016/j.jinorgbio.2016.03.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2015] [Revised: 02/29/2016] [Accepted: 03/12/2016] [Indexed: 12/19/2022]
|
18
|
Pizzanelli S, Forte C, Pinzino C, Magrì A, La Mendola D. Copper(ii) complexes with peptides based on the second cell binding site of fibronectin: metal coordination and ligand exchange kinetics. Phys Chem Chem Phys 2016; 18:3982-94. [DOI: 10.1039/c5cp05798a] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Copper(ii) complexes with short peptides based on the second cell binding site of fibronectin, PHSFN and PHSEN, have been characterized by potentiometric, UV-vis, CD, EPR and NMR spectroscopic methods.
Collapse
Affiliation(s)
- Silvia Pizzanelli
- Istituto di Chimica dei Composti OrganoMetallici
- Consiglio Nazionale delle Ricerche-CNR
- 1, 56124 Pisa
- Italy
| | - Claudia Forte
- Istituto di Chimica dei Composti OrganoMetallici
- Consiglio Nazionale delle Ricerche-CNR
- 1, 56124 Pisa
- Italy
| | - Calogero Pinzino
- Istituto di Chimica dei Composti OrganoMetallici
- Consiglio Nazionale delle Ricerche-CNR
- 1, 56124 Pisa
- Italy
| | - Antonio Magrì
- Istituto di Biostrutture e Bioimmagini
- Consiglio Nazionale delle Ricerche-CNR
- 95126 Catania
- Italy
| | | |
Collapse
|
19
|
A copper(II) complex as selective turn-on fluorosensor for nitric oxide and its intracellular application. Inorganica Chim Acta 2015. [DOI: 10.1016/j.ica.2015.08.014] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
20
|
Giacomelli C, Trincavelli ML, Satriano C, Hansson Ö, La Mendola D, Rizzarelli E, Martini C. ♦Copper (II) ions modulate Angiogenin activity in human endothelial cells. Int J Biochem Cell Biol 2015; 60:185-96. [DOI: 10.1016/j.biocel.2015.01.005] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2014] [Revised: 11/27/2014] [Accepted: 01/07/2015] [Indexed: 12/30/2022]
|
21
|
Abstract
Copper(II) complex of 4-amino-3-hydroxy-1-sulphonic acid was synthesized and characterized. Upon addition of nitric oxide, the copper(II) center of the complex in methanol was found to undergo reduction through an unstable copper(II)-nitrosyl intermediate. The formation of the intermediate was confirmed by UV-visible and FT-IR spectroscopy. The reduction of the copper(II) center was accompanied with a simultaneous C-nitrosation of the aromatic ring of the ligand. The C-nitrosation product was isolated and characterized by various spectroscopic analyses.
Collapse
Affiliation(s)
- Kanhu Charan Rout
- Department of Chemistry, Indian Institute of Technology, Guwahati, Assam 781039, India.
| | | |
Collapse
|
22
|
Santini C, Pellei M, Gandin V, Porchia M, Tisato F, Marzano C. Advances in Copper Complexes as Anticancer Agents. Chem Rev 2013; 114:815-62. [DOI: 10.1021/cr400135x] [Citation(s) in RCA: 1128] [Impact Index Per Article: 94.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Carlo Santini
- Scuola
di Scienze e Tecnologie−Sez. Chimica, Università di Camerino, via S. Agostino 1, 62032 Camerino, Macerata, Italy
| | - Maura Pellei
- Scuola
di Scienze e Tecnologie−Sez. Chimica, Università di Camerino, via S. Agostino 1, 62032 Camerino, Macerata, Italy
| | - Valentina Gandin
- Dipartimento
di Scienze del Farmaco, Università di Padova, via Marzolo
5, 35131 Padova, Italy
| | | | | | - Cristina Marzano
- Dipartimento
di Scienze del Farmaco, Università di Padova, via Marzolo
5, 35131 Padova, Italy
| |
Collapse
|
23
|
Abstract
Fouling of marine organisms on the hulls of ships is a severe problem for the shipping industry. Many antifouling agents are based on five-membered nitrogen heterocyclic compounds, in particular imidazoles and triazoles. Moreover, imidazole and triazoles are strong ligands for Cu2+and Cu+, which are both potent antifouling agents. In this review, we summarize a decade of work within our groups concerning imidazole and triazole coordination chemistry for antifouling applications with a particular focus on the very potent antifouling agentmedetomidine. The entry starts by providing a detailed theoretical description of the azole-metal coordination chemistry. Some attention will be given to ways to functionalize polymers with azole ligands. Then, the effect of metal coordination in azole-containing polymers with respect to material properties will be discussed. Our work concerning the controlled release of antifouling agents, in particular medetomidine, using azole coordination chemistry will be reviewed. Finally, an outlook will be given describing the potential for tailoring the azole ligand chemistry in polymers with respect to Cu2+adsorption and Cu2+→Cu+reduction for antifouling coatings without added biocides.
Collapse
|
24
|
Synthesis of konjac glucomannan phthalate as a new biosorbent for copper ion removal. JOURNAL OF POLYMER RESEARCH 2012. [DOI: 10.1007/s10965-012-0034-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
25
|
Travaglia A, La Mendola D, Magrì A, Nicoletti VG, Pietropaolo A, Rizzarelli E. Copper, BDNF and Its N-terminal Domain: Inorganic Features and Biological Perspectives. Chemistry 2012; 18:15618-31. [DOI: 10.1002/chem.201202775] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2012] [Indexed: 11/11/2022]
|
26
|
Magrì A, D'Alessandro F, Distefano DA, Campagna T, Pappalardo G, Impellizzeri G, La Mendola D. Copper(II) coordination properties of the integrin ligand sequence PHSRN and its new β-cyclodextrin conjugates. J Inorg Biochem 2012; 113:15-24. [DOI: 10.1016/j.jinorgbio.2012.04.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2012] [Revised: 03/30/2012] [Accepted: 04/02/2012] [Indexed: 01/05/2023]
|
27
|
La Mendola D, Magrì A, Santoro AM, Nicoletti VG, Rizzarelli E. Copper(II) interaction with peptide fragments of histidine–proline-rich glycoprotein: Speciation, stability and binding details. J Inorg Biochem 2012; 111:59-69. [DOI: 10.1016/j.jinorgbio.2012.02.027] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2011] [Revised: 02/17/2012] [Accepted: 02/20/2012] [Indexed: 12/23/2022]
|
28
|
Bertini L, Bruschi M, Romaniello M, Zampella G, Tiberti M, Barbieri V, Greco C, La Mendola D, Bonomo RP, Fantucci P, De Gioia L. Copper coordination to the putative cell binding site of angiogenin: a DFT investigation. Theor Chem Acc 2012. [DOI: 10.1007/s00214-012-1186-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
29
|
Shih YH, Chang KW, Chen MY, Yu CC, Lin DJ, Hsia SM, Huang HL, Shieh TM. Lysyl oxidase and enhancement of cell proliferation and angiogenesis in oral squamous cell carcinoma. Head Neck 2012; 35:250-6. [PMID: 22367676 DOI: 10.1002/hed.22959] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/01/2011] [Indexed: 01/25/2023] Open
Abstract
BACKGROUND Lysyl oxidase (LOX) is a copper-dependent enzyme that cross-links collagen and elastin in the extracellular matrix. LOX overexpressed in various tumors. The manner in which LOX affects tumor growth remains controversial. METHODS Chemical treatment and gene transfection were used to induce LOX overexpression or inhibition in cell lines SAS and SVEC4-10. LOX mRNA, protein, and activity were confirmed before tube formation assay and tumorigenesis. The microvessels in the tumor section were detected by immunostaining CD31-positive endothelial cells. RESULTS LOX overexpression and copper induction of LOX activity increased SVEC4-10 tube formation. LOX silencing and β-aminopropionitrile inhibition of LOX activity had opposite effects. LOX overexpression increased proliferation and proliferating cell nuclear antigen expression. High LOX expression clones increased tumor size in a tumorigenesis model. The microvascular numbers were higher in LOX overexpression tumors than in control tumors. CONCLUSION LOX can induce cell proliferation and angiogenesis in oral squamous cell carcinoma.
Collapse
Affiliation(s)
- Yin-Hua Shih
- Institute of Oral Biology, School of Dentistry, National Yang-Ming University, Taipei, Taiwan
| | | | | | | | | | | | | | | |
Collapse
|
30
|
La Mendola D, Farkas D, Bellia F, Magrì A, Travaglia A, Hansson Ö, Rizzarelli E. Probing the Copper(II) Binding Features of Angiogenin. Similarities and Differences between a N-Terminus Peptide Fragment and the Recombinant Human Protein. Inorg Chem 2011; 51:128-41. [DOI: 10.1021/ic201300e] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Diego La Mendola
- Istituto di Biostrutture e Bioimmagini-CNR-Catania, Viale A. Doria 6, 95125 Catania,
Italy
| | - Daniel Farkas
- Department of Chemistry, University of Gothenburg, PO Box 462, SE-40530 Gothenburg,
Sweden
| | - Francesco Bellia
- Dipartimento di Scienze
Chimiche, Università di Catania,
Viale A. Doria 6, 95125
Catania, Italy
| | - Antonio Magrì
- Istituto di Biostrutture e Bioimmagini-CNR-Catania, Viale A. Doria 6, 95125 Catania,
Italy
| | - Alessio Travaglia
- Dipartimento di Scienze
Chimiche, Università di Catania,
Viale A. Doria 6, 95125
Catania, Italy
| | - Örjan Hansson
- Department of Chemistry, University of Gothenburg, PO Box 462, SE-40530 Gothenburg,
Sweden
| | - Enrico Rizzarelli
- Dipartimento di Scienze
Chimiche, Università di Catania,
Viale A. Doria 6, 95125
Catania, Italy
| |
Collapse
|
31
|
Vagliasindi LI, Arena G, Bonomo RP, Pappalardo G, Tabbì G. Copper complex species within a fragment of the N-terminal repeat region in opossum PrP protein. Dalton Trans 2011; 40:2441-50. [PMID: 21283898 DOI: 10.1039/c0dt01425g] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Affiliation(s)
- Laura I Vagliasindi
- Dipartimento di Scienze Chimiche, Università degli Studi di Catania, Viale A. Doria 6, 95125, Catania, Italy
| | | | | | | | | |
Collapse
|