1
|
Aguilar Rico F, Derogar M, Cubo L, Quiroga AG. Synthetic routes and chemical structural analysis for guiding the strategies on new Pt(II) metallodrug design. Dalton Trans 2024; 53:14949-14960. [PMID: 39177496 DOI: 10.1039/d4dt00967c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/24/2024]
Abstract
Metals in medicine is a distinct and mature field of investigation. Its progress in recent times cannot be denied, as it provides opportunities to advance our knowledge of the properties, speciation, reactivity and biological effects of metals in a medicinal context. The development of novel Pt(II) compounds to combat cancer continues to make valuable contributions but it has not yet achieved a complete cure. The chemistry of this field is basic for drug design improvements and our analysis of the chemical procedures is a practical tool for achieving effective Pt(II) anticancer drugs. We present chemical approaches in a manner that can be used to strategically plot new synthetic routes choosing right pathways. Clarifying the chemical challenge will help the scientific community to be aware of the ease and/or difficulty of the procedure before and after further studies, such as speciation, reactivity and biological action which are also very arduous and costly. The work provides information to tackle many challenges in chemistry, combining the knowledge on the Pt(II) reagent preparation together with the reactivity of the biological units used in the Pt(II) drug design. We discuss and include the description of the chemical reactions, the importance of multiple steps and the right order of such reactions to achieve the final drugs, analyzing the coordination principles as well as the organic and organometallic basis. This thorough study of the routes helps to detect the simpler or more complicated reactivity and will serve to improve the synthesis performance with possible post-modifications.
Collapse
Affiliation(s)
- Francisco Aguilar Rico
- Inorganic Chemistry Department, C/Francisco Tomás y Valiente, 7. Universidad Autónoma de Madrid, 28049 Madrid, Spain.
| | - Maryam Derogar
- Inorganic Chemistry Department, C/Francisco Tomás y Valiente, 7. Universidad Autónoma de Madrid, 28049 Madrid, Spain.
| | - Leticia Cubo
- Inorganic Chemistry Department, C/Francisco Tomás y Valiente, 7. Universidad Autónoma de Madrid, 28049 Madrid, Spain.
| | - Adoracion G Quiroga
- Inorganic Chemistry Department, C/Francisco Tomás y Valiente, 7. Universidad Autónoma de Madrid, 28049 Madrid, Spain.
- IadChem, Institute for Advance Research in Chemistry, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| |
Collapse
|
2
|
Das U, Basu U, Paira P. Recent trends in the design and delivery strategies of ruthenium complexes for breast cancer therapy. Dalton Trans 2024; 53:15113-15157. [PMID: 39219354 DOI: 10.1039/d4dt01482k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
As the most frequent and deadly type of cancer in women, breast cancer has a high propensity to spread to the brain, bones, lymph nodes, and lungs. The discovery of cisplatin marked the beginning of the development of anticancer metal-based medications, although the drug's severe side effects have limited its usage in clinical settings. The remarkable antimetastatic and anticancer activity of different ruthenium complexes such as NAMI-A, KP1019, KP1339, etc. reported in the 1980s has bolstered the discovery of ruthenium complexes with various types of ligands for anticancer applications. The review meticulously elucidates the cytotoxic and antimetastatic potential of reported ruthenium complexes against breast cancer cells. Notably, arene-based and cyclometalated ruthenium complexes emerge as standout candidates, showcasing remarkable potency with notably low IC50 values. These findings underscore the promising therapeutic avenues offered by ruthenium-based compounds, particularly in addressing the challenges posed by conventional treatments in refractory or aggressive breast cancer subtypes. Moreover, the review comprehensively integrates a spectrum of ruthenium complexes, spanning traditional metal complexes to nano-based formulations and light-activated variants, underscoring the versatility and adaptability of ruthenium chemistry in breast cancer therapy.
Collapse
Affiliation(s)
- Utpal Das
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology, Vellore-632014, Tamilnadu, India.
| | - Uttara Basu
- Department of Chemistry, Birla Institute of Technology & Science (BITS) Pilani, K K Birla Goa Campus, NH 17B Bypass Road, Goa - 403726, India
| | - Priyankar Paira
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology, Vellore-632014, Tamilnadu, India.
| |
Collapse
|
3
|
Sheikh HK, Ortiz CJC, Arshad T, Padrón JM, Khan H. Advancements in steroidal Pt(II) & Pt(IV) derivatives for targeted chemotherapy (2000-2023). Eur J Med Chem 2024; 271:116438. [PMID: 38685141 DOI: 10.1016/j.ejmech.2024.116438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 04/08/2024] [Accepted: 04/18/2024] [Indexed: 05/02/2024]
Abstract
One of the key strategies in chemotherapy involves crosslinking the DNA strands of cancer cells to impede their replication, with platinum (Pt) coordination compounds being a prominent class and cisplatin being its major representative. Steroidal ligands tethered to DNA interactive Pt core act as drug carriers for targeted therapy. While crosslinking of nuclear or mitochondrial DNA strands using coordination complexes has been studied for years, there remains a lack of comprehensive reviews addressing the advancements made in steroidal-Pt derivatives. This review specifically focuses on advancements made in steroid-tethered structural derivatives of Pt(II) or prodrug Pt(IV) for targeted chemotherapy, synthesized between 2000 and 2023. This period was deliberately chosen due to the widespread use of computational techniques for more accurate structure-based drug-design in last two decades. This review discusses the strategy behind tethering steroidal ligands such as testosterone, estrogen, bile acids, and cholesterol to the central DNA interactive Pt core through specific linker groups. The steroidal ligands function as drug delivery vehicles of DNA interactive Pt core and bind with their respective target receptors or proteins that are often overexpressed in cancer cells, thus enabling targeted delivery of Pt moiety to interact with DNA. We discussed structural features such as the location of the linker group on the steroid, the mono, bi, and tridentate configuration of the chelating arm in coordination with Pt, and the rigidity and flexibility of the linker group. The comparative in vitro, in vivo activities, and relative binding affinities of the designed compounds against standard Pt drugs are also discussed. We also provided a critique of observed trends and shortcomings. Our review will provide insights into future molecular designing of targeted DNA crosslinkers and their structural optimization to achieve desired drug properties. From this analysis, we proposed further research directions leading to the future of targeted chemotherapy.
Collapse
Affiliation(s)
- Hamdullah Khadim Sheikh
- Instituto Universitario de Bio-Orgánica Antonio González, Universidad de La Laguna, Spain; Faculty of Pharmacy, University of Karachi, Pakistan
| | | | | | - José M Padrón
- Instituto Universitario de Bio-Orgánica Antonio González, Universidad de La Laguna, Spain
| | - Haroon Khan
- Department of Pharmacy, Abdul Wali Khan University Mardan, Mardan, 23200, Pakistan.
| |
Collapse
|
4
|
Bresciani G, Vančo J, Funaioli T, Zacchini S, Malina T, Pampaloni G, Dvořák Z, Trávníček Z, Marchetti F. Anticancer Potential of Diruthenium Complexes with Bridging Hydrocarbyl Ligands from Bioactive Alkynols. Inorg Chem 2023; 62:15875-15890. [PMID: 37713240 PMCID: PMC10548421 DOI: 10.1021/acs.inorgchem.3c01731] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Indexed: 09/16/2023]
Abstract
Diruthenacyclopentenone complexes of the general composition [Ru2Cp2(CO)2{μ-η1:η3-CH═C(C(OH)(R))C(═O)}] (2a-c; Cp = η5-C5H5) were synthesized in 94-96% yields from the reactions of [Ru2Cp2(CO)2{μ-η1:η3-C(Ph)═C(Ph)C(═O)}] (1) with 1-ethynylcyclopentanol, 17α-ethynylestradiol, and 17-ethynyltestosterone, respectively, in toluene at reflux. Protonation of 2a-c by HBF4 afforded the corresponding allenyl derivatives [Ru2Cp2(CO)3{μ-η1:η2-CH═C═R}]BF4 (3a-c) in 85-93% yields. All products were thoroughly characterized by elemental analysis, mass spectrometry, and IR, UV-vis, and nuclear magnetic resonance spectroscopy. Additionally, 2a and 3a were investigated by cyclic voltammetry, and the single-crystal diffraction method was employed to establish the X-ray structures of 2b and 3a. The cytotoxicity in vitro of 2b and 3a-c was evaluated against nine human cancer cell lines (A2780, A2780R, MCF-7, HOS, A549, PANC-1, Caco-2, PC-3, and HeLa), while the selectivity was assessed on normal human lung fibroblast (MRC-5). Overall, complexes exert stronger cytotoxicity than cisplatin, and 3b (comprising 17α-estradiol derived ligand) emerged as the best-performing complex. Inductively coupled plasma mass spectrometry cellular uptake studies in A2780 cells revealed a higher level of internalization for 3b and 3c compared to 2b, 3a, and the reference compound RAPTA-C. Experiments conducted on A2780 cells demonstrated a noteworthy impact of 3a and 3b on the cell cycle, leading to the majority of the cells being arrested in the G0/G1 phase. Moreover, 3a moderately induced apoptosis and oxidative stress, while 3b triggered autophagy and mitochondrial membrane potential depletion.
Collapse
Affiliation(s)
- Giulio Bresciani
- University
of Pisa, Dipartimento di Chimica e Chimica
Industriale, Via G. Moruzzi
13, I-56124 Pisa, Italy
| | - Ján Vančo
- Regional
Centre of Advanced Technologies and Materials, Czech Advanced Technology
and Research Institute, Palacký University, Šlechtitelů 27, CZ-779 00 Olomouc, Czech Republic
| | - Tiziana Funaioli
- University
of Pisa, Dipartimento di Chimica e Chimica
Industriale, Via G. Moruzzi
13, I-56124 Pisa, Italy
| | - Stefano Zacchini
- University
of Bologna, Dipartimento di Chimica Industriale
“Toso Montanari”, Viale del Risorgimento 4, I-40136 Bologna, Italy
| | - Tomáš Malina
- Regional
Centre of Advanced Technologies and Materials, Czech Advanced Technology
and Research Institute, Palacký University, Šlechtitelů 27, CZ-779 00 Olomouc, Czech Republic
| | - Guido Pampaloni
- University
of Pisa, Dipartimento di Chimica e Chimica
Industriale, Via G. Moruzzi
13, I-56124 Pisa, Italy
| | - Zdeněk Dvořák
- Department
of Cell Biology and Genetics, Faculty of Science, Palacký University, Šlechtitelů 27, CZ-779
00 Olomouc, Czech
Republic
| | - Zdeněk Trávníček
- Regional
Centre of Advanced Technologies and Materials, Czech Advanced Technology
and Research Institute, Palacký University, Šlechtitelů 27, CZ-779 00 Olomouc, Czech Republic
| | - Fabio Marchetti
- University
of Pisa, Dipartimento di Chimica e Chimica
Industriale, Via G. Moruzzi
13, I-56124 Pisa, Italy
| |
Collapse
|
5
|
Rubbiani R, Wu W, Naik A, Larocca M, Schneider L, Padrutt R, Babu V, König C, Hinger D, Maake C, Ferrari S, Gasser G, Spingler B. Studying the cellular distribution of highly phototoxic platinated metalloporphyrins using isotope labelling. Chem Commun (Camb) 2021; 56:14373-14376. [PMID: 33140750 DOI: 10.1039/d0cc05196a] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Novel tetraplatinated metalloporphyrin-based photosensitizers (PSs) are reported, which show excellent phototoxic indexes (PIs) up to 5800 against HeLa cells, which is, to the best of our knowledge, the highest value reported for any porphyrin so far. Furthermore, 67Zn isotope labelling allowed the determination of the ratio of zinc to platinum inside the cells using ICP-MS.
Collapse
Affiliation(s)
- Riccardo Rubbiani
- Department of Chemistry, University of Zurich, Zurich CH 8057, Switzerland.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Eighty Years of Targeting Androgen Receptor Activity in Prostate Cancer: The Fight Goes on. Cancers (Basel) 2021; 13:cancers13030509. [PMID: 33572755 PMCID: PMC7865914 DOI: 10.3390/cancers13030509] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 01/25/2021] [Accepted: 01/25/2021] [Indexed: 12/24/2022] Open
Abstract
Simple Summary Prostate cancer is the second most common cancer in men world-wide, with nearly 1.3 million new cases each year, and over the next twenty years the incidence and death rate are predicted to nearly double. For decades, this lethal disease has been more or less successfully treated using hormonal therapy, which has the ultimate aim of inhibiting androgen signalling. However, prostate tumours can evade such hormonal therapies in a number of different ways and therapy resistant disease, so-called castration-resistant prostate cancer (CRPC) is the major clinical problem. Somewhat counterintuitively, the androgen receptor remains a key therapy target in CRPC. Here, we explain why this is the case and summarise both new hormone therapy strategies and the recent advances in knowledge of androgen receptor structure and function that underpin them. Abstract Prostate cancer (PCa) is the most common cancer in men in the West, other than skin cancer, accounting for over a quarter of cancer diagnoses in US men. In a seminal paper from 1941, Huggins and Hodges demonstrated that prostate tumours and metastatic disease were sensitive to the presence or absence of androgenic hormones. The first hormonal therapy for PCa was thus castration. In the subsequent eighty years, targeting the androgen signalling axis, where possible using drugs rather than surgery, has been a mainstay in the treatment of advanced and metastatic disease. Androgens signal via the androgen receptor, a ligand-activated transcription factor, which is the direct target of many such drugs. In this review we discuss the role of the androgen receptor in PCa and how the combination of structural information and functional screenings is continuing to be used for the discovery of new drug to switch off the receptor or modify its function in cancer cells.
Collapse
|
7
|
Promising applications of steroid сonjugates for cancer research and treatment. Eur J Med Chem 2020; 210:113089. [PMID: 33321260 DOI: 10.1016/j.ejmech.2020.113089] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 11/26/2020] [Accepted: 12/04/2020] [Indexed: 12/30/2022]
Abstract
The conjugation of biologically active molecules is a powerful tool for drug discovery used to target a variety of multifunctional diseases including cancer. Conjugated drugs can provide combination therapies in a single multi-functional agent and, by doing so, be more specific and powerful than conventional classic treatments. Steroids are widely used for conjugation with other biological active molecules. This review refers to investigations of steroid conjugates as potential anticancer agents carried out mostly over the past decade. It consists of five parts in which the data concerning structure and anticancer activity of steroid conjugates with DNA alkylating agents, metallocomplexes, approved drugs, some biological active molecules, some natural compounds and related synthetic analogs are described.
Collapse
|
8
|
Heng MP, Tan CH, Saad HM, Sim KS, Tan KW. Mitochondria-dependent apoptosis inducer: Testosterone-N4-ethylthiosemicarbazonate and its metal complexes with selective cytotoxicity towards human colorectal carcinoma cell line (HCT 116). Inorganica Chim Acta 2020. [DOI: 10.1016/j.ica.2020.119581] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
9
|
Brzeminski P, Fabisiak A, Berkowska K, Rárová L, Marcinkowska E, Sicinski RR. Synthesis of Gemini analogs of 19-norcalcitriol and their platinum(II) complexes. Bioorg Chem 2020; 100:103883. [PMID: 32361296 DOI: 10.1016/j.bioorg.2020.103883] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 04/17/2020] [Accepted: 04/22/2020] [Indexed: 01/01/2023]
Abstract
Hormonally active vitamin D3 metabolite, calcitriol, plays an important role in calcium-phosphate homeostasis, immune system actions and cell differentiation. Although anticancer activity of calcitriol is well documented and thousands of its analogs have been synthesized, none has been approved as a potential drug against cancer. Therefore, we attempted to introduce the cytotoxic effect to the calcitriol molecule by its linking to cisplatin. Herein, we present the synthesis of vitamin D compounds, designed on the basis of molecular modeling and docking experiments to the vitamin D receptor, and characterized by the presence of significantly different two side chains attached to C-20. In this study, a new synthetic approach to Gemini analogs was developed. Preparation of the target 19-norcalcitriol compounds involved separate syntheses of several building blocks (the A-ring, C/D-rings and side-chain fragments). The convergent synthetic strategy was used to combine these components by the different coupling processes, the crucial one being Wittig-Horner reaction of the Grundmann ketone analog with the known 2-methylene A-ring phosphine oxide. Due to the nature of the constructed steroidal side chains (bidentate ligands), which allowed coordination of metal ions, the first conjugate-type platinum(II) complexes of the vitamin D analogs were also successfully prepared and characterized. The target vitamin D compounds, displaying significant affinity for a vitamin D receptor, were assessed in vitro for their anti-proliferative activities towards several cell lines.
Collapse
Affiliation(s)
- Pawel Brzeminski
- Department of Chemistry, University of Warsaw, Pasteura 1, 02-093 Warsaw, Poland
| | - Adrian Fabisiak
- Department of Chemistry, University of Warsaw, Pasteura 1, 02-093 Warsaw, Poland
| | - Klaudia Berkowska
- Department of Biotechnology, University of Wroclaw, Joliot-Curie 14a, 50-383 Wroclaw, Poland
| | - Lucie Rárová
- Laboratory of Growth Regulators, Institute of Experimental Botany of the Czech Academy of Sciences & Palacký University, Šlechtitelů 27, 78371 Olomouc, Czech Republic
| | - Ewa Marcinkowska
- Department of Biotechnology, University of Wroclaw, Joliot-Curie 14a, 50-383 Wroclaw, Poland
| | - Rafal R Sicinski
- Department of Chemistry, University of Warsaw, Pasteura 1, 02-093 Warsaw, Poland.
| |
Collapse
|
10
|
Heng MP, Sim KS, Tan KW. Nickel and zinc complexes of testosterone N4-substituted thiosemicarbazone: Selective cytotoxicity towards human colorectal carcinoma cell line HCT 116 and their cell death mechanisms. J Inorg Biochem 2020; 208:111097. [PMID: 32438269 DOI: 10.1016/j.jinorgbio.2020.111097] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2019] [Revised: 04/25/2020] [Accepted: 04/26/2020] [Indexed: 12/12/2022]
Abstract
Two new Schiff base ligands (TE and TF) were prepared from conjugation of testosterone with 4-(4-ethylphenyl)-3-thiosemicarbazide and 4-(4-fluorophenyl)-3-thiosemicarbazide, respectively. Their nickel (NE and NF) and zinc (ZE and ZF) complexes were reported. X-ray crystallography revealed a distorted square planar geometry was adopted by NE. The compounds demonstrated excellent selectivity towards the colorectal carcinoma cell line HCT 116 despite their weak preferences towards the prostate cancer cell lines (PC-3 and LNCaP). Against HCT 116, all these compounds were able to arrest cell cycle at G0/G1 phase and induce apoptosis via mitochondria-dependent (TE, NE, and TF) and extrinsic apoptotic pathway (ZE, NF, and ZF). Moreover, only ZE was able to act as topoisomease I poison and halt its enzymatic reactions although all compounds presented excellent affinity towards DNA.
Collapse
Affiliation(s)
- Mok Piew Heng
- Institute of Biological Sciences, Faculty of Science, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Kae Shin Sim
- Institute of Biological Sciences, Faculty of Science, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Kong Wai Tan
- Department of Chemistry, Faculty of Science, University of Malaya, 50603 Kuala Lumpur, Malaysia..
| |
Collapse
|
11
|
Matesanz AI, Herrero JM, Faraco EJ, Cubo L, Quiroga AG. New Platinum(II) Triazole Thiosemicarbazone Complexes: Analysis of Their Reactivity and Potential Antitumoral Action. Chembiochem 2020; 21:1226-1232. [PMID: 31746118 DOI: 10.1002/cbic.201900545] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Revised: 11/18/2019] [Indexed: 12/30/2022]
Abstract
The synthesis and characterization of three new platinum complexes, with 3,5-diacetyl-1,2,4-triazole bis(4-N-isopropylthiosemicarbazone) as a ligand, are reported. The specific conditions under which solvent coordination takes place are reported and the X-ray structure of the complex with one solvent molecule of dimethyl sulfoxide is resolved. Analysis of the reactivity of these platinum compounds aids in finding the best solution profile for biological investigations. Then, the interactions of the complexes with biological models, such as calf-thymus DNA, are studied by using UV spectroscopy and tracking the changes in electrophoretic mobility produced in the supercoiled plasmid DNA model. Initial screening of these potential antitumoral compounds indicates possible selective antitumoral action.
Collapse
Affiliation(s)
- Ana I Matesanz
- Inorganic Chemistry Department, Universidad Autónoma de Madrid, Ciudad Universitaria de Cantoblanco, 28049, Madrid, Spain
| | - Jorge M Herrero
- Inorganic Chemistry Department, Universidad Autónoma de Madrid, Ciudad Universitaria de Cantoblanco, 28049, Madrid, Spain
| | - Eva J Faraco
- Inorganic Chemistry Department, Universidad Autónoma de Madrid, Ciudad Universitaria de Cantoblanco, 28049, Madrid, Spain
| | - Leticia Cubo
- Inorganic Chemistry Department, Universidad Autónoma de Madrid, Ciudad Universitaria de Cantoblanco, 28049, Madrid, Spain
| | - Adoracion G Quiroga
- Inorganic Chemistry Department, Universidad Autónoma de Madrid, Ciudad Universitaria de Cantoblanco, 28049, Madrid, Spain.,Institute for Advanced Research in Chemical Sciences (IAdChem), Universidad Autónoma de Madrid, Ciudad Universitaria de Cantoblanco, 28049, Madrid, Spain
| |
Collapse
|
12
|
Ferroni C, Varchi G. Non-Steroidal Androgen Receptor Antagonists and Prostate Cancer: A Survey on Chemical Structures Binding this Fast-Mutating Target. Curr Med Chem 2019; 26:6053-6073. [PMID: 30209993 DOI: 10.2174/0929867325666180913095239] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Revised: 06/04/2018] [Accepted: 06/04/2018] [Indexed: 02/01/2023]
Abstract
The Androgen Receptor (AR) pathway plays a major role in both the pathogenesis and progression of prostate cancer. In particular, AR is chiefly involved in the development of Castration-Resistant Prostate Cancer (CRPC) as well as in the resistance to the secondgeneration AR antagonist enzalutamide, and to the selective inhibitor of cytochrome P450 17A1 (CYP17A1) abiraterone. Several small molecules acting as AR antagonists have been designed and developed so far, also as a result of the ability of cells expressing this molecular target to rapidly develop resistance and turn pure receptor antagonists into ineffective or event detrimental molecules. This review covers a survey of most promising classes of non-steroidal androgen receptor antagonists, also providing insights into their mechanism of action and efficacy in treating prostate cancer.
Collapse
Affiliation(s)
- Claudia Ferroni
- Institute of Organic Synthesis and Photoreactivity - ISOF, Italian National Research Council, Bologna, Italy
| | - Greta Varchi
- Institute of Organic Synthesis and Photoreactivity - ISOF, Italian National Research Council, Bologna, Italy
| |
Collapse
|
13
|
Koch V, Meschkov A, Feuerstein W, Pfeifer J, Fuhr O, Nieger M, Schepers U, Bräse S. Synthesis, Characterization, and Biological Properties of Steroidal Ruthenium(II) and Iridium(III) Complexes Based on the Androst-16-en-3-ol Framework. Inorg Chem 2019; 58:15917-15926. [DOI: 10.1021/acs.inorgchem.9b02402] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Vanessa Koch
- Institute of Organic Chemistry (IOC), Karlsruhe Institute of Technology (KIT), Fritz-Haber-Weg 6, 76131 Karlsruhe, Germany
| | - Anna Meschkov
- Institute of Organic Chemistry (IOC), Karlsruhe Institute of Technology (KIT), Fritz-Haber-Weg 6, 76131 Karlsruhe, Germany
- Institute of Functional Interfaces (IFG), Karlsruhe Institute of Technology (KIT), Hermann von Helmholtz Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| | - Wolfram Feuerstein
- Institute of Inorganic Chemistry, Division Molecular Chemistry, Karlsruhe Institute of Technology (KIT), Engesserstr. 15, 76131 Karlsruhe, Germany
| | - Juliana Pfeifer
- Institute of Functional Interfaces (IFG), Karlsruhe Institute of Technology (KIT), Hermann von Helmholtz Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| | - Olaf Fuhr
- Institute for Nanotechnology (INT) and Karlsruhe Nano Micro Facility (KNMF), Karlsruhe Institute of Technology (KIT), Hermann von Helmholtz Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| | - Martin Nieger
- Department of Chemistry, University of Helsinki, P.O. Box 55, 00014 Helsinki, Finland
| | - Ute Schepers
- Institute of Organic Chemistry (IOC), Karlsruhe Institute of Technology (KIT), Fritz-Haber-Weg 6, 76131 Karlsruhe, Germany
- Institute of Functional Interfaces (IFG), Karlsruhe Institute of Technology (KIT), Hermann von Helmholtz Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| | - Stefan Bräse
- Institute of Organic Chemistry (IOC), Karlsruhe Institute of Technology (KIT), Fritz-Haber-Weg 6, 76131 Karlsruhe, Germany
- Institute of Toxicology and Genetics, Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, D-76344 Eggenstein-Leopoldshafen, Germany
| |
Collapse
|
14
|
Barrett S, De Franco M, Kellett A, Dempsey E, Marzano C, Erxleben A, Gandin V, Montagner D. Anticancer activity, DNA binding and cell mechanistic studies of estrogen-functionalised Cu(II) complexes. J Biol Inorg Chem 2019; 25:49-60. [DOI: 10.1007/s00775-019-01732-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Accepted: 10/08/2019] [Indexed: 12/20/2022]
|
15
|
Sreekanth V, Bajaj A. Recent Advances in Engineering of Lipid Drug Conjugates for Cancer Therapy. ACS Biomater Sci Eng 2019; 5:4148-4166. [DOI: 10.1021/acsbiomaterials.9b00689] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Vedagopuram Sreekanth
- Laboratory of Nanotechnology and Chemical Biology, Regional Centre for Biotechnology, NCR Biotech Science Cluster, 3rd Milestone Faridabad-Gurgaon Expressway, Faridabad 121001, Haryana, India
- Manipal Academy of Higher Education, Manipal-576104, India
| | - Avinash Bajaj
- Laboratory of Nanotechnology and Chemical Biology, Regional Centre for Biotechnology, NCR Biotech Science Cluster, 3rd Milestone Faridabad-Gurgaon Expressway, Faridabad 121001, Haryana, India
| |
Collapse
|
16
|
Beretta GL, Zaffaroni N. Androgen Receptor-Directed Molecular Conjugates for Targeting Prostate Cancer. Front Chem 2019; 7:369. [PMID: 31192191 PMCID: PMC6546842 DOI: 10.3389/fchem.2019.00369] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Accepted: 05/06/2019] [Indexed: 12/18/2022] Open
Abstract
Due to its central role in the cellular biology of prostate cancer (PC), androgen receptor (AR) still remains an important therapeutic target for fighting this tumor. Several drugs targeting AR have been reported so far, and many new molecules are expected for the future. In spite of their antitumor efficacy, these drugs are not selective for malignant cells and are subjected to AR-mediated activation of drug resistance mechanisms that are responsible for several drawbacks, including systemic toxicity and disease recurrence and metastasis. Among the several strategies considered to overcome these drawbacks, very appealing appears the design of hybrid small-molecule conjugates targeting AR to drive drug action on receptor-positive PC cells. These compounds are designed around on an AR binder, which selectively engages AR with high potency, coupled with a moiety endowed with different pharmacological properties. In this review we focus on two classes of compounds: a) small-molecules and AR-ligand based conjugates that reduce AR expression, which allow down-regulation of AR levels by activating its proteasome-mediated degradation, and b) AR-ligand-based conjugates for targeting small-molecules, in which the AR binder tethers small-molecules, including conventional antitumor drugs (e.g., cisplatin, doxorubicin, histone deacetylase inhibitors, as well as photo-sensitizers) and selectively directs drug action toward receptor-positive PC cells.
Collapse
Affiliation(s)
- Giovanni L Beretta
- Molecular Pharmacology Unit, Department of Applied Research and Technological Development, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Nadia Zaffaroni
- Molecular Pharmacology Unit, Department of Applied Research and Technological Development, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| |
Collapse
|
17
|
Cabrera S, Navas F, Matesanz AI, Maroto M, Riedel T, Dyson PJ, Quiroga AG. Versatile Route to trans-Platinum(II) Complexes via Manipulation of a Coordinated 3-(Pyridin-3-yl)propanoic Acid Ligand. Inorg Chem 2019; 58:7200-7208. [DOI: 10.1021/acs.inorgchem.9b00126] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
| | | | | | | | - Tina Riedel
- Institute of Chemical Sciences and Engineering, Swiss Federal Institute of Technology Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Paul J. Dyson
- Institute of Chemical Sciences and Engineering, Swiss Federal Institute of Technology Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | | |
Collapse
|
18
|
Lv G, Qiu L, Li K, Liu Q, Li X, Peng Y, Wang S, Lin J. Enhancement of therapeutic effect in breast cancer with a steroid-conjugated ruthenium complex. NEW J CHEM 2019. [DOI: 10.1039/c8nj04159h] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
A hybrid metallic prodrug for targeting PR-positive breast cancer therapy was prepared, which revealed significantly in vivo antitumor effect.
Collapse
Affiliation(s)
- Gaochao Lv
- Key Laboratory of Nuclear Medicine
- Ministry of Health
- Jiangsu Key Laboratory of Molecular Nuclear Medicine
- Jiangsu Institute of Nuclear Medicine
- Wuxi 214063
| | - Ling Qiu
- Key Laboratory of Nuclear Medicine
- Ministry of Health
- Jiangsu Key Laboratory of Molecular Nuclear Medicine
- Jiangsu Institute of Nuclear Medicine
- Wuxi 214063
| | - Ke Li
- Key Laboratory of Nuclear Medicine
- Ministry of Health
- Jiangsu Key Laboratory of Molecular Nuclear Medicine
- Jiangsu Institute of Nuclear Medicine
- Wuxi 214063
| | - Qingzhu Liu
- Key Laboratory of Nuclear Medicine
- Ministry of Health
- Jiangsu Key Laboratory of Molecular Nuclear Medicine
- Jiangsu Institute of Nuclear Medicine
- Wuxi 214063
| | - Xi Li
- Key Laboratory of Nuclear Medicine
- Ministry of Health
- Jiangsu Key Laboratory of Molecular Nuclear Medicine
- Jiangsu Institute of Nuclear Medicine
- Wuxi 214063
| | - Ying Peng
- Key Laboratory of Nuclear Medicine
- Ministry of Health
- Jiangsu Key Laboratory of Molecular Nuclear Medicine
- Jiangsu Institute of Nuclear Medicine
- Wuxi 214063
| | - Shijie Wang
- Key Laboratory of Nuclear Medicine
- Ministry of Health
- Jiangsu Key Laboratory of Molecular Nuclear Medicine
- Jiangsu Institute of Nuclear Medicine
- Wuxi 214063
| | - Jianguo Lin
- Key Laboratory of Nuclear Medicine
- Ministry of Health
- Jiangsu Key Laboratory of Molecular Nuclear Medicine
- Jiangsu Institute of Nuclear Medicine
- Wuxi 214063
| |
Collapse
|
19
|
|
20
|
Qin X, Fang L, Zhao J, Gou S. Theranostic Pt(IV) Conjugate with Target Selectivity for Androgen Receptor. Inorg Chem 2018; 57:5019-5029. [DOI: 10.1021/acs.inorgchem.8b00083] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
21
|
Brabec V, Hrabina O, Kasparkova J. Cytotoxic platinum coordination compounds. DNA binding agents. Coord Chem Rev 2017. [DOI: 10.1016/j.ccr.2017.04.013] [Citation(s) in RCA: 77] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
22
|
Monaghan AE, McEwan IJ. A sting in the tail: the N-terminal domain of the androgen receptor as a drug target. Asian J Androl 2017; 18:687-94. [PMID: 27212126 PMCID: PMC5000789 DOI: 10.4103/1008-682x.181081] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
The role of androgen receptor (AR) in the initiation and progression of prostate cancer (PCa) is well established. Competitive inhibition of the AR ligand-binding domain (LBD) has been the staple of antiandrogen therapies employed to combat the disease in recent years. However, their efficacy has often been limited by the emergence of resistance, mediated through point mutations, and receptor truncations. As a result, the prognosis for patients with malignant castrate resistant disease remains poor. The amino-terminal domain (NTD) of the AR has been shown to be critical for AR function. Its modular activation function (AF-1) is important for both gene regulation and participation in protein-protein interactions. However, due to the intrinsically disordered structure of the domain, its potential as a candidate for therapeutic intervention has been dismissed in the past. The recent emergence of the small molecule EPI-001 has provided evidence that AR-NTD can be targeted therapeutically, independent of the LBD. Targeting of AR-NTD has the potential to disrupt multiple intermolecular interactions between AR and its coregulatory binding partners, in addition to intramolecular cross-talk between the domains of the AR. Therapeutics targeting these protein-protein interactions or NTD directly should also have efficacy against emerging AR splice variants which may play a role in PCa progression. This review will discuss the role of intrinsic disorder in AR function and illustrate how emerging therapies might target NTD in PCa.
Collapse
Affiliation(s)
- Amy E Monaghan
- School of Medicine, Medical Sciences and Nutrition, Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen, AB25 2ZD, United Kingdom
| | - Iain J McEwan
- School of Medicine, Medical Sciences and Nutrition, Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen, AB25 2ZD, United Kingdom
| |
Collapse
|
23
|
Abstract
DNA-damaging agents, such as methylating agents, chloroethylating agents and platinum-based agents, have been extensively used as anticancer drugs. However, the side effects, high toxicity, lack of selectivity and resistance severely limit their clinical applications. In recent years, a strategy combining a DNA-damaging agent with a bioactive molecule (e.g., enzyme inhibitors) or carrier (e.g., steroid hormone and DNA intercalators) to produce a new 'combi-molecule' with improved efficacy or selectivity has been attempted to overcome these drawbacks. The combi-molecule simultaneously acts on two targets and is expected to possess better potency than the parent compounds. Many studies have shown DNA-damaging combi-molecules exhibiting excellent anticancer activity in vitro and in vivo. This review focuses on the development of combi-molecules, which possess increased DNA-damaging potency, anticancer efficacy and tumor selectivity and reduced side reactions than the parent compounds. The future opportunities and challenges in the discovery of combi-molecules were also discussed.
Collapse
|
24
|
Kue CS, Kamkaew A, Burgess K, Kiew LV, Chung LY, Lee HB. Small Molecules for Active Targeting in Cancer. Med Res Rev 2016; 36:494-575. [PMID: 26992114 DOI: 10.1002/med.21387] [Citation(s) in RCA: 96] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Revised: 02/03/2016] [Accepted: 02/04/2016] [Indexed: 12/29/2022]
Abstract
For the purpose of this review, active targeting in cancer research encompasses strategies wherein a ligand for a cell surface receptor expressed on tumor cells is used to deliver a cytotoxic or imaging cargo. This area of research is more than two decades old, but in those 20 and more years, how many receptors have been studied extensively? What kinds of the ligands are used for active targeting? Are they mostly naturally occurring molecules such as folic acid, or synthetic substances developed in campaigns for medicinal chemistry efforts? This review outlines the most important receptor or ligand combinations that have been used in active targeting to answer these questions, and therefore to address the most important one of all: is research in active targeting affording diminishing returns, or is this an area for which the potential far exceeds progress made so far?
Collapse
Affiliation(s)
- Chin S Kue
- Department of Pharmacology, Faculty of Medicine, University of Malaya, 50603, Kuala Lumpur, Malaysia
| | - Anyanee Kamkaew
- Department of Chemistry, Texas A & M University, Box 30012, College Station, TX, 77842
| | - Kevin Burgess
- Department of Chemistry, Texas A & M University, Box 30012, College Station, TX, 77842
| | - Lik V Kiew
- Department of Pharmacology, Faculty of Medicine, University of Malaya, 50603, Kuala Lumpur, Malaysia
| | - Lip Y Chung
- Department of Pharmacy, Faculty of Medicine, University of Malaya, 50603, Kuala Lumpur, Malaysia
| | - Hong B Lee
- Department of Pharmacy, Faculty of Medicine, University of Malaya, 50603, Kuala Lumpur, Malaysia
| |
Collapse
|
25
|
Gabano E, Ravera M, Tinello S, Osella D. Synthesis of PtIV-Biomolecule Conjugates through Click Chemistry. Eur J Inorg Chem 2015. [DOI: 10.1002/ejic.201501066] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
26
|
Heng MP, Sinniah SK, Teoh WY, Sim KS, Ng SW, Cheah YK, Tan KW. Synthesis of a DNA-targeting nickel (II) complex with testosterone thiosemicarbazone which exhibits selective cytotoxicity towards human prostate cancer cells (LNCaP). SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2015; 150:360-372. [PMID: 26057090 DOI: 10.1016/j.saa.2015.05.095] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2014] [Revised: 05/27/2015] [Accepted: 05/28/2015] [Indexed: 06/04/2023]
Abstract
Testosterone thiosemicarbazone, L and its nickel (II) complex 1 were synthesized and characterized by using FTIR, CHN, (1)H NMR, and X-ray crystallography. X-ray diffraction study confirmed the formation of L from condensation of testosterone and thiosemicarbazide. Mononuclear complex 1 is coordinated to two Schiff base ligands via two imine nitrogens and two tautomeric thiol sulfurs. The cytotoxicity of both compounds was investigated via MTT assay with cisplatin as positive reference standard. L is more potent towards androgen-dependent LNCaP (prostate) and HCT 116 (colon). On the other hand, complex 1, which is in a distorted square planar environment with L acting as a bidentate NS-donor ligand, is capable of inhibiting the growth of all the cancer cell lines tested, including PC-3 (prostate). It is noteworthy that both compounds are less toxic towards human colon cell CCD-18Co. The intrinsic DNA binding constant (Kb) of both compounds were evaluated via UV-Vis spectrophotometry. Both compounds showed Kb values which are comparable to the reported Kb value of typical classical intercalator such as ethidium bromide. The binding constant of the complex is almost double compared with ligand L. Both compounds were unable to inhibit the action topoisomerase I, which is the common target in cancer treatment (especially colon cancer). This suggest a topoisomerase I independent-cell death mechanism.
Collapse
Affiliation(s)
- Mok Piew Heng
- Department of Chemistry, Faculty of Science, University of Malaya, 50603 Kuala Lumpur, Malaysia; Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400 Serdang, Malaysia
| | - Saravana Kumar Sinniah
- Institute of Biological Sciences, Faculty of Science, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Wuen Yew Teoh
- Institute of Biological Sciences, Faculty of Science, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Kae Shin Sim
- Institute of Biological Sciences, Faculty of Science, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Seik Weng Ng
- Department of Chemistry, Faculty of Science, University of Malaya, 50603 Kuala Lumpur, Malaysia; Chemistry Department, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah, Saudi Arabia
| | - Yoke Kqueen Cheah
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400 Serdang, Malaysia
| | - Kong Wai Tan
- Department of Chemistry, Faculty of Science, University of Malaya, 50603 Kuala Lumpur, Malaysia
| |
Collapse
|
27
|
Tian X, He Y, Zhou J. Progress in antiandrogen design targeting hormone binding pocket to circumvent mutation based resistance. Front Pharmacol 2015; 6:57. [PMID: 25852559 PMCID: PMC4371693 DOI: 10.3389/fphar.2015.00057] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2014] [Accepted: 03/05/2015] [Indexed: 12/30/2022] Open
Abstract
Androgen receptor (AR) plays a critical role in the development and progression of prostate cancer (PCa). Current clinically used antiandrogens such as flutamide, bicalutamide, and newly approved enzalutamide mainly target the hormone binding pocket (HBP) of AR. However, over time, drug resistance invariably develops and switches these antiandrogens from antagonist to agonist of the AR. Accumulated evidence indicates that AR mutation is an important cause for the drug resistance. This review will give an overview of the mutation based resistance of the current clinically used antiandrogens and the rational drug design to overcome the resistance, provides a promising strategy for the development of the new generation of antiandrogens targeting HBP.
Collapse
Affiliation(s)
- Xiaohong Tian
- Lady Davis Institute, Jewish General Hospital, Mcgill University Montreal, QC, Canada
| | - Yang He
- Immunology, Institute of Medicinal Biotechnology Chinese Academy of Medical Science Beijing, China
| | - Jinming Zhou
- Immunology, Institute of Medicinal Biotechnology Chinese Academy of Medical Science Beijing, China
| |
Collapse
|
28
|
Medici S, Peana M, Nurchi VM, Lachowicz JI, Crisponi G, Zoroddu MA. Noble metals in medicine: Latest advances. Coord Chem Rev 2015. [DOI: 10.1016/j.ccr.2014.08.002] [Citation(s) in RCA: 373] [Impact Index Per Article: 37.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
29
|
Kotovshchikov YN, Latyshev GV, Lukashev NV, Beletskaya IP. Alkynylation of steroids via Pd-free Sonogashira coupling. Org Biomol Chem 2015; 13:5542-55. [DOI: 10.1039/c5ob00559k] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
A new biligand catalytic system was applied for the Pd-free Sonogashira syntheses of valuable steroidal enynes.
Collapse
Affiliation(s)
| | | | - Nikolay V. Lukashev
- Chemistry Department
- M. V. Lomonosov Moscow State University
- Moscow 119991
- Russia
| | - Irina P. Beletskaya
- Chemistry Department
- M. V. Lomonosov Moscow State University
- Moscow 119991
- Russia
| |
Collapse
|
30
|
Stafford VS, Suntharalingam K, Shivalingam A, White AJP, Mann DJ, Vilar R. Syntheses of polypyridyl metal complexes and studies of their interaction with quadruplex DNA. Dalton Trans 2015; 44:3686-700. [DOI: 10.1039/c4dt02910k] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
A series of metal complexes with substituted terpyridines show high affinity towards quadruplex DNA, particularly bimetallic (trpy)Pt/M(cyclen) complexes.
Collapse
Affiliation(s)
| | | | | | | | - David J. Mann
- Department of Life Sciences
- Imperial College London
- London SW7 2AZ
- UK
| | - Ramon Vilar
- Department of Chemistry
- Imperial College London
- London SW7 2AZ
- UK
| |
Collapse
|
31
|
Ngo AH, Adams MJ, Do LH. Selective Acceptorless Dehydrogenation and Hydrogenation by Iridium Catalysts Enabling Facile Interconversion of Glucocorticoids. Organometallics 2014. [DOI: 10.1021/om5010258] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Anh H. Ngo
- Department of Chemistry, University of Houston, Houston, Texas 77204, United States
| | - Michael J. Adams
- Department of Chemistry, University of Houston, Houston, Texas 77204, United States
| | - Loi H. Do
- Department of Chemistry, University of Houston, Houston, Texas 77204, United States
| |
Collapse
|
32
|
Barreiro E, Casas JS, Couce MD, Sánchez A, Sánchez-Gonzalez A, Sordo J, Vázquez-López EM. Mono and dinuclear phosphinegold(I) sulfanylcarboxylates: Influence of nuclearity and substitution of PPh 3 for PEt 3 on cytotoxicity. J Inorg Biochem 2014; 138:89-98. [DOI: 10.1016/j.jinorgbio.2014.05.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2014] [Revised: 05/06/2014] [Accepted: 05/06/2014] [Indexed: 12/01/2022]
|
33
|
Levine PM, Garabedian MJ, Kirshenbaum K. Targeting the androgen receptor with steroid conjugates. J Med Chem 2014; 57:8224-37. [PMID: 24936953 PMCID: PMC4207530 DOI: 10.1021/jm500101h] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The androgen receptor (AR) is a major therapeutic target in prostate cancer pharmacology. Progression of prostate cancer has been linked to elevated expression of AR in malignant tissue, suggesting that AR plays a central role in prostate cancer cell biology. Potent therapeutic agents can be precisely crafted to specifically target AR, potentially averting systemic toxicities associated with nonspecific chemotherapies. In this review, we describe various strategies to generate steroid conjugates that can selectively engage AR with high potency. Analogies to recent developments in nonsteroidal conjugates targeting AR are also evaluated. Particular focus is placed on potential applications in AR pharmacology. The review culminates with a description of future prospects for targeting AR.
Collapse
Affiliation(s)
- Paul M Levine
- Department of Chemistry, New York University , New York, New York 10003, United States
| | | | | |
Collapse
|
34
|
Kalaivani P, Saranya S, Poornima P, Prabhakaran R, Dallemer F, Vijaya Padma V, Natarajan K. Biological evaluation of new nickel(II) metallates: Synthesis, DNA/protein binding and mitochondrial mediated apoptosis in human lung cancer cells (A549) via ROS hypergeneration and depletion of cellular antioxidant pool. Eur J Med Chem 2014; 82:584-99. [DOI: 10.1016/j.ejmech.2014.05.075] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2014] [Revised: 05/27/2014] [Accepted: 05/31/2014] [Indexed: 10/25/2022]
|
35
|
Wang B, Qian H, Yiu SM, Sun J, Zhu G. Platinated benzonaphthyridone is a stronger inhibitor of poly(ADP-ribose) polymerase-1 and a more potent anticancer agent than is the parent inhibitor. Eur J Med Chem 2014; 71:366-73. [DOI: 10.1016/j.ejmech.2013.10.062] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2013] [Revised: 10/15/2013] [Accepted: 10/24/2013] [Indexed: 01/01/2023]
|
36
|
Wilson JJ, Lippard SJ. Synthetic methods for the preparation of platinum anticancer complexes. Chem Rev 2013; 114:4470-95. [PMID: 24283498 DOI: 10.1021/cr4004314] [Citation(s) in RCA: 499] [Impact Index Per Article: 41.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Justin J Wilson
- Department of Chemistry, Massachusetts Institute of Technology , Cambridge, Massachusetts 02139, United States
| | | |
Collapse
|
37
|
Johnstone TC, Wilson JJ, Lippard SJ. Monofunctional and higher-valent platinum anticancer agents. Inorg Chem 2013; 52:12234-49. [PMID: 23738524 PMCID: PMC3818431 DOI: 10.1021/ic400538c] [Citation(s) in RCA: 184] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Platinum compounds represent one of the great success stories of metals in medicine. Following the serendipitous discovery of the anticancer activity of cisplatin by Rosenberg, a large number of cisplatin variants have been prepared and tested for their ability to kill cancer cells and inhibit tumor growth. These efforts continue today with increased realization that new strategies are needed to overcome issues of toxicity and resistance inherent to treatment by the approved platinum anticancer agents. One approach has been the use of so-called "non-traditional" platinum(II) and platinum(IV) compounds that violate the structure-activity relationships that governed platinum drug-development research for many years. Another is the use of specialized drug-delivery strategies. Here we describe recent developments from our laboratory involving monofunctional platinum(II) complexes together with a historical account of the manner by which we came to investigate these compounds and their relationship to previously studied molecules. We also discuss work carried out using platinum(IV) prodrugs and the development of nanoconstructs designed to deliver them in vivo.
Collapse
Affiliation(s)
- Timothy C. Johnstone
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, 02139
| | - Justin J. Wilson
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, 02139
| | - Stephen J. Lippard
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, 02139
| |
Collapse
|
38
|
Affiliation(s)
- Franck Le Bideau
- Institut de Chimie de Strasbourg (UMR 7177), CNRS-Université de Strasbourg , Strasbourg 67000, France
| | | |
Collapse
|
39
|
Zamora A, Rodríguez V, Cutillas N, Yellol GS, Espinosa A, Samper KG, Capdevila M, Palacios O, Ruiz J. New steroidal 7-azaindole platinum(II) antitumor complexes. J Inorg Biochem 2013; 128:48-56. [PMID: 23932925 DOI: 10.1016/j.jinorgbio.2013.07.010] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2013] [Revised: 07/03/2013] [Accepted: 07/08/2013] [Indexed: 02/07/2023]
Abstract
Two new steroidal 7-azaindole-based N-donor ligands 17-α-[7-azaindole-5-ethynyl]-17-β-testosterone (ET-Haza) (1) and 17-α-[7-azaindole-5-ethynyl]-19-nortestosterone (LEV-Haza) (2), and two new DNA damaging warheads with an enhanced lipophilicity [Pt(dmba)Cl(L)] (dmba=N,N-dimethylbenzylamine-κN,κC; L=ET-Haza (3) and LEV-Haza (4)) have been prepared and characterized. Values of IC50 were calculated for complexes 3 and 4 against a panel of human tumor cell lines representative of ovarian (A2780 and A2780cis) and breast cancers (T47D). At 48 h of incubation time 3 and 4 showed very low resistance factors (RF of 1) against an A2780 cell line which has acquired resistance to cisplatin, IC50 values of the new complexes towards normal human LLC-PK1 renal cells at 48 h being about double than that of cisplatin. 3 and 4 are able to react with 9-ethylguanine (9-EtG) yielding the corresponding monoadduct [Pt(dmba)(L)(9-EtG)](+) derivatives as followed by ESI-MS. Compound 3 interacts mainly with double-stranded (DS) oligonucleotides as shown by analysis with ESI-TOF-MS, being also able to displace ethidium bromide (EB) from DNA, as observed by an electrophoretic mobility study. 3 and 4 are good cathepsin B inhibitors. Theoretical calculations at the COSMO(CHCl3)/B3LYP-D/def2-TZVPPecp//B3LYP-D/def2-TZVPecp level and energy evaluations at the COSMO(CHCl3)/PWPB95-D3/def2-TZVPPecp level of theory on compound 4 and model systems have been done.
Collapse
Affiliation(s)
- Ana Zamora
- Departamento de Química Inorgánica and Regional Campus of International Excellence "Campus Mare Nostrum", Universidad de Murcia and Instituto Murciano de Investigación Biosanitaria (IMIB), Spain, E-30071 Murcia, Spain
| | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Matesanz AI, Leitao I, Souza P. Palladium(II) and platinum(II) bis(thiosemicarbazone) complexes of the 2,6-diacetylpyridine series with high cytotoxic activity in cisplatin resistant A2780cisR tumor cells and reduced toxicity. J Inorg Biochem 2013; 125:26-31. [PMID: 23685347 DOI: 10.1016/j.jinorgbio.2013.04.005] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2013] [Revised: 04/16/2013] [Accepted: 04/17/2013] [Indexed: 10/26/2022]
Abstract
Preparation and characterization of four novel 2,6-diacetylpyridine bis((4)N-tolylthiosemicarbazonato) palladium(II) and platinum(II) complexes, [PdL(1-2)] and [PtL(1-2)], are described. All compounds have been characterized by elemental analysis and by IR and NMR spectroscopy, and the crystal and molecular structures of complexes [PdL(2)] and [PtL(2)] have been determined by a single crystal X-ray diffraction. The ligands act as dianionic tetradentate donors coordinating to the metal center in a square planar geometry through the Npyridinic atom and the Niminic and the S atoms from one thiosemicarbazone arm, the fourth coordination position is occupied by the Nhydrazinic of the other arm. The new compounds synthesized have been evaluated for antiproliferative activity in vitro against NCI-H460, HepG2, MCF-7, A2780 and A2780cisR human cancer cell lines. The cytotoxicity data suggest that [PdL(1)], [PdL(2)] and [PtL(2)] may be endowed with important antitumor properties since they are capable of not only circumventing cisplatin resistance in A2780cisR cells but also exhibiting high antiproliferative activity in breast cancer MCF-7 cells. Subsequent toxicity study, in LLC-PK1 cells, has also been carried out and shows that none of these compounds are in vitro toxic in the tested concentration range.
Collapse
Affiliation(s)
- Ana I Matesanz
- Departamento de Química Inorgánica Módulo 07, Facultad de Ciencias, c/Francisco Tomás y Valiente nº 7, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | | | | |
Collapse
|
41
|
Targeted delivery of platinum-based anticancer complexes. Curr Opin Chem Biol 2013; 17:175-88. [DOI: 10.1016/j.cbpa.2013.01.004] [Citation(s) in RCA: 200] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2012] [Accepted: 01/09/2013] [Indexed: 11/18/2022]
|
42
|
Cui S, Wang Y, Chen G. Disturbance of DNA conformation by the binding of testosterone-based platinum drugs via groove-face and intercalative interactions: a molecular dynamics simulation study. BMC STRUCTURAL BIOLOGY 2013; 13:4. [PMID: 23517640 PMCID: PMC3610147 DOI: 10.1186/1472-6807-13-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/17/2012] [Accepted: 03/14/2013] [Indexed: 11/29/2022]
Abstract
BACKGROUND To explore novel platinum-based anticancer agents that are distinct from the structure and interaction mode of the traditional cisplatin by forming the bifunctional intrastrand 1,2 GpG adduct, the monofunctional platinum+DNA adducts with extensive non-covalent interactions had been studied. It was reported that the monofunctional testosterone-based platinum(II) agents present the high anticancer activity. Moreover, it was also found that the testosterone-based platinum agents could cause the DNA helix to undergo significant unwinding and bending over the non-testosterone-based platinum agents. However, the interaction mechanisms of these platinum agents with DNA at the atomic level are not yet clear so far. RESULTS In the present work, we used molecular dynamics (MD) simulations and DNA conformational dynamics calculations to study the DNA distortion properties of the testosterone-based platinum+DNA, the improved testosterone-based platinum+DNA and the non-testosterone-based platinum+DNA adducts. The results show that the intercalative interaction of the improved flexible testosterone-based platinum agent with DNA molecule could cause larger DNA conformational distortion than the groove-face interaction of the rigid testosterone-based platinum agent with DNA molecule. Further investigations for the non-testosterone-based platinum agent reveal the occurrence of insignificant change of DNA conformation due to the absence of testosterone ligand in such agent. Based on the DNA dynamics analysis, the DNA base motions relating to DNA groove parameter changes and hydrogen bond destruction of DNA base pairs were also discussed in this work. CONCLUSIONS The flexible linker in the improved testosterone-based platinum agent causes an intercalative interaction with DNA in the improved testosterone-based platinum+DNA adduct, which is different from the groove-face interaction caused by a rigid linker in the testosterone-based platinum agent. The present investigations provide useful information of DNA conformation affected by a testosterone-based platinum complex at the atomic level.
Collapse
Affiliation(s)
- Shanshan Cui
- Key Laboratory of Theoretical and Computational Photochemistry of Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, P. R. China
| | - Yan Wang
- Key Laboratory of Theoretical and Computational Photochemistry of Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, P. R. China
- Present address: College of Chemistry, Beijing Normal University, 19# Xinjiekouwai Street, Haidian District, Beijing 100875, PR China
| | - Guangju Chen
- Key Laboratory of Theoretical and Computational Photochemistry of Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, P. R. China
- Present address: College of Chemistry, Beijing Normal University, 19# Xinjiekouwai Street, Haidian District, Beijing 100875, PR China
| |
Collapse
|
43
|
Kvasnica M, Rarova L, Oklestkova J, Budesinsky M, Kohout L. Synthesis and cytotoxic activities of estrone and estradiol cis-dichloroplatinum(II) complexes. Bioorg Med Chem 2012; 20:6969-78. [DOI: 10.1016/j.bmc.2012.10.013] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2012] [Revised: 10/11/2012] [Accepted: 10/14/2012] [Indexed: 10/27/2022]
|
44
|
Understanding trans platinum complexes as potential antitumor drugs beyond targeting DNA. J Inorg Biochem 2012; 114:106-12. [DOI: 10.1016/j.jinorgbio.2012.06.002] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2012] [Revised: 06/05/2012] [Accepted: 06/05/2012] [Indexed: 11/20/2022]
|
45
|
Phenanthriplatin, a monofunctional DNA-binding platinum anticancer drug candidate with unusual potency and cellular activity profile. Proc Natl Acad Sci U S A 2012; 109:11987-92. [PMID: 22773807 DOI: 10.1073/pnas.1207670109] [Citation(s) in RCA: 256] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Monofunctional platinum(II) complexes of general formula cis-[Pt(NH(3))(2)(N-heterocycle)Cl]Cl bind DNA at a single site, inducing little distortion in the double helix. Despite this behavior, these compounds display significant antitumor properties, with a different spectrum of activity than that of classic bifunctional cross-linking agents like cisplatin. To discover the most potent monofunctional platinum(II) compounds, the N-heterocycle was systematically varied to generate a small library of new compounds, with guidance from the X-ray structure of RNA polymerase II (Pol II) stalled at a monofunctional pyriplatin-DNA adduct. In pyriplatin, the N-heterocycle is pyridine. The most effective complex evaluated was phenanthriplatin, cis-[Pt(NH(3))(2)(phenanthridine)Cl]NO(3), which exhibits significantly greater activity than the Food and Drug Administration-approved drugs cisplatin and oxaliplatin. Studies of phenanthriplatin in the National Cancer Institute 60-cell tumor panel screen revealed a spectrum of activity distinct from that of these clinically validated anticancer agents. The cellular uptake of phenanthriplatin is substantially greater than that of cisplatin and pyriplatin because of the hydrophobicity of the phenanthridine ligand. Phenanthriplatin binds more effectively to 5'-deoxyguanosine monophosphate than to N-acetyl methionine, whereas pyriplatin reacts equally well with both reagents. This chemistry supports DNA as a viable cellular target for phenanthriplatin and suggests that it may avoid cytoplasmic platinum scavengers with sulfur-donor ligands that convey drug resistance. With the use of globally platinated Gaussia luciferase vectors, we determined that phenanthriplatin inhibits transcription in live mammalian cells as effectively as cisplatin, despite its inability to form DNA cross-links.
Collapse
|
46
|
García Ruano JL, Alemán J, Marzo L, Alvarado C, Tortosa M, Díaz‐Tendero S, Fraile A. Expanding the Scope of Arylsulfonylacetylenes as Alkynylating Reagents and Mechanistic Insights in the Formation of Csp
2
Csp and Csp
3
Csp Bonds from Organolithiums. Chemistry 2012; 18:8414-22. [DOI: 10.1002/chem.201200939] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2012] [Indexed: 11/10/2022]
Affiliation(s)
- José Luis García Ruano
- Departamento de Química Orgánica (Módulo 1), Universidad Autónoma de Madrid, Fax: (+) 3491497466
| | - José Alemán
- Departamento de Química Orgánica (Módulo 1), Universidad Autónoma de Madrid, Fax: (+) 3491497466
| | - Leyre Marzo
- Departamento de Química Orgánica (Módulo 1), Universidad Autónoma de Madrid, Fax: (+) 3491497466
| | - Cuauhtémoc Alvarado
- Departamento de Química Orgánica (Módulo 1), Universidad Autónoma de Madrid, Fax: (+) 3491497466
| | - Mariola Tortosa
- Departamento de Química Orgánica (Módulo 1), Universidad Autónoma de Madrid, Fax: (+) 3491497466
| | - Sergio Díaz‐Tendero
- Departamento de Química (Módulo 13), Universidad Autónoma de Madrid, Cantoblanco, 28049‐Madrid (Spain)
| | - Alberto Fraile
- Departamento de Química Orgánica (Módulo 1), Universidad Autónoma de Madrid, Fax: (+) 3491497466
| |
Collapse
|
47
|
García Ruano JL, Alemán J, Marzo L, Alvarado C, Tortosa M, Díaz-Tendero S, Fraile A. Arylsulfonylacetylenes as Alkynylating Reagents of C sp 2H Bonds Activated with Lithium Bases. Angew Chem Int Ed Engl 2012. [DOI: 10.1002/ange.201107821] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
48
|
Ruano JLG, Alemán J, Marzo L, Alvarado C, Tortosa M, Díaz-Tendero S, Fraile A. Arylsulfonylacetylenes as alkynylating reagents of Csp2-H bonds activated with lithium bases. Angew Chem Int Ed Engl 2012; 51:2712-6. [PMID: 22298507 DOI: 10.1002/anie.201107821] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2011] [Revised: 11/26/2011] [Indexed: 11/07/2022]
Abstract
Chameleon: a new strategy for the synthesis of a wide variety of alkynyl derivatives by the reaction of substituted arylsulfonylacetylenes with organolithium species is described. The high yields, the simplicity of the experimental procedure, the broad scope of this reaction, and the formation of C(sp)-C(sp2) bonds without using transition metals are the main features of this methodology.
Collapse
|
49
|
Matesanz AI, Hernández C, Rodríguez A, Souza P. 3,5-Diacetyl-1,2,4-triazol bis(4N-substituted thiosemicarbazone) palladium(II) complexes: Synthesis, structure, antiproliferative activity and low toxicity on normal kidney cells. J Inorg Biochem 2011; 105:1613-22. [DOI: 10.1016/j.jinorgbio.2011.08.014] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2011] [Revised: 07/18/2011] [Accepted: 08/22/2011] [Indexed: 10/17/2022]
|
50
|
Pt-rotaxanes as cytotoxic agents. Bioorg Med Chem Lett 2011; 21:6880-3. [DOI: 10.1016/j.bmcl.2011.09.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2011] [Revised: 08/29/2011] [Accepted: 09/02/2011] [Indexed: 11/22/2022]
|