1
|
Nomura K, Mekcham S. Organometallic complexes of vanadium and their reactions. ADVANCES IN ORGANOMETALLIC CHEMISTRY 2023. [DOI: 10.1016/bs.adomc.2022.10.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
2
|
Afonin MY, Sedelnikova AY, Konokhova AY, Sukhikh TS, Konchenko SN. STRUCTURE AND COMPOSITION OF [(nacnac)MnCl]2 (nacnac = HC(C(Me)N(2.6-i-Pr2C6H3))2) PRODUCTS REDUCED BY POTASSIUM-INTERCALATED GRAPHITE IN TOLUENE AND BENZENE. J STRUCT CHEM+ 2021. [DOI: 10.1134/s0022476621100139] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
3
|
Kurogi T, Chu J, Chen Y, Mindiola DJ. Neutral and Anionic Monomeric Zirconium Imides Prepared via Selective C=N Bond Cleavage of a Multidentate and Sterically Demanding β‐Diketiminato Ligand. Chem Asian J 2019; 14:2629-2638. [DOI: 10.1002/asia.201900451] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Revised: 05/13/2019] [Indexed: 11/10/2022]
Affiliation(s)
- Takashi Kurogi
- Department of ChemistryUniversity of Pennsylvania 231 South 34th Street Philadelphia PA 19104 USA
| | - Jiaxiang Chu
- State Key Laboratory of Organometallic ChemistryShanghai Institute of Organic Chemistry, Chinese Academy of Sciences 345 Lingling Road Shanghai 200032 P. R. China
| | - Yaofeng Chen
- State Key Laboratory of Organometallic ChemistryShanghai Institute of Organic Chemistry, Chinese Academy of Sciences 345 Lingling Road Shanghai 200032 P. R. China
| | - Daniel J. Mindiola
- Department of ChemistryUniversity of Pennsylvania 231 South 34th Street Philadelphia PA 19104 USA
| |
Collapse
|
4
|
|
5
|
Recent progress in synthesis and characterization of metal chalcone complexes and their potential as bioactive agents. Coord Chem Rev 2018. [DOI: 10.1016/j.ccr.2018.05.023] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
6
|
Okamoto S, Yamada T, Tanabe YK, Sakai M. Alkyne [2 + 2 + 2] Cyclotrimerization Catalyzed by a Low-Valent Titanium Reagent Derived from CpTiX3 (X = Cl, O-i-Pr), Me3SiCl, and Mg or Zn. Organometallics 2018. [DOI: 10.1021/acs.organomet.8b00678] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Sentaro Okamoto
- Department of Materials and Life Chemistry, Kanagawa University, 3-27-1 Rokkakubashi, Kanagawa-ku, Yokohama 221-8686, Japan
| | - Takeshi Yamada
- Department of Materials and Life Chemistry, Kanagawa University, 3-27-1 Rokkakubashi, Kanagawa-ku, Yokohama 221-8686, Japan
| | - Yu-ki Tanabe
- Department of Materials and Life Chemistry, Kanagawa University, 3-27-1 Rokkakubashi, Kanagawa-ku, Yokohama 221-8686, Japan
| | - Masaki Sakai
- Department of Materials and Life Chemistry, Kanagawa University, 3-27-1 Rokkakubashi, Kanagawa-ku, Yokohama 221-8686, Japan
| |
Collapse
|
7
|
Kriegel BM, Naested LCE, Nocton G, Lakshmi KV, Lohrey TD, Bergman RG, Arnold J. Redox-Initiated Reactivity of Dinuclear β-Diketiminatoniobium Imido Complexes. Inorg Chem 2017; 56:1626-1637. [PMID: 28098983 DOI: 10.1021/acs.inorgchem.6b02735] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
High-valent dichloride and dimethylniobium complexes 1 and 2 bearing tert-butylimido and N,N'-bis(2,4,6-trimethylphenyl)-β-diketiminate (BDIAr) ligands were prepared. The dimethyl complex reacted with dihydrogen to release methane and generate the hydride-bridged diniobium(IV) complex 3 in high yield. One-electron oxidation of 3 with silver salts resulted in the release of dihydrogen and conversion to a mixed-valent NbIII-NbIV complex, 4, that displayed a frozen-solution X-band electron paramagnetic resonance signal consistent with a slight dissymmetry between the two Nb centers. Spectroscopic and computational analysis supported the presence of Nb-Nb σ-bonding interactions in both 3 and 4. Finally, one-electron reduction of 4 resulted in conversion to the highly dissymmetric NbV-NbV dimer 5 that formed from the reductive C-N bond cleavage of one of the BDIAr supporting ligands.
Collapse
Affiliation(s)
- Benjamin M Kriegel
- Department of Chemistry, University of California , Berkeley, California 94720, United States
| | - Lara C E Naested
- Department of Chemistry, University of California , Berkeley, California 94720, United States.,Ecole Polytechnique Fédérale de Lausanne, Institut des Sciences et Ingénierie Chimiques , CH-1015 Lausanne, Switzerland
| | - Grégory Nocton
- LCM, CNRS, Ecole Polytechnique, Université Paris-Saclay , Route de Saclay, 91128 Palaiseau Cedex, France
| | - K V Lakshmi
- Department of Chemistry and Chemical Biology and The Baruch '60 Center for Biochemical Solar Energy Research, Rensselaer Polytechnic Institute , Troy, New York 12180, United States
| | - Trevor D Lohrey
- Department of Chemistry, University of California , Berkeley, California 94720, United States
| | - Robert G Bergman
- Department of Chemistry, University of California , Berkeley, California 94720, United States
| | - John Arnold
- Department of Chemistry, University of California , Berkeley, California 94720, United States
| |
Collapse
|
8
|
Miao H, Wang S, Zhu X, Zhou S, Wei Y, Yuan Q, Mu X. Synthesis, characterization and catalytic activity of rare-earth metal amides incorporating cyclohexyl bridged bis(β-diketiminato) ligands. RSC Adv 2017. [DOI: 10.1039/c7ra07565k] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The bridged bis(β-diketiminato) ligands supported rare-earth amides exhibited high catalytic activity towards the hydrophosphination of β-nitroalkene and α,β-unsaturated carbonyl derivatives with an excellent regioselectivity.
Collapse
Affiliation(s)
- Hui Miao
- Laboratory of Functional Molecular Solids
- Ministry of Education
- Anhui Laboratory of Molecule-Based Materials
- College of Chemistry and Materials Science
- Anhui Normal University
| | - Shaowu Wang
- Laboratory of Functional Molecular Solids
- Ministry of Education
- Anhui Laboratory of Molecule-Based Materials
- College of Chemistry and Materials Science
- Anhui Normal University
| | - Xiancui Zhu
- Laboratory of Functional Molecular Solids
- Ministry of Education
- Anhui Laboratory of Molecule-Based Materials
- College of Chemistry and Materials Science
- Anhui Normal University
| | - Shuangliu Zhou
- Laboratory of Functional Molecular Solids
- Ministry of Education
- Anhui Laboratory of Molecule-Based Materials
- College of Chemistry and Materials Science
- Anhui Normal University
| | - Yun Wei
- Laboratory of Functional Molecular Solids
- Ministry of Education
- Anhui Laboratory of Molecule-Based Materials
- College of Chemistry and Materials Science
- Anhui Normal University
| | - Qingbing Yuan
- Laboratory of Functional Molecular Solids
- Ministry of Education
- Anhui Laboratory of Molecule-Based Materials
- College of Chemistry and Materials Science
- Anhui Normal University
| | - Xiaolong Mu
- Laboratory of Functional Molecular Solids
- Ministry of Education
- Anhui Laboratory of Molecule-Based Materials
- College of Chemistry and Materials Science
- Anhui Normal University
| |
Collapse
|
9
|
Webster RL. β-Diketiminate complexes of the first row transition metals: applications in catalysis. Dalton Trans 2017; 46:4483-4498. [DOI: 10.1039/c7dt00319f] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Although β-diketiminate complexes have been widely explored in stoichiometric studies, their use as catalysts is largely underdeveloped.
Collapse
|
10
|
The anti-tumor activity of novel oxovanadium complexes derived from thiosemicarbazones and fluoro-phenanthroline derivatives. Polyhedron 2016. [DOI: 10.1016/j.poly.2016.07.021] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
11
|
Bellows SM, Arnet NA, Gurubasavaraj PM, Brennessel WW, Bill E, Cundari TR, Holland PL. The Mechanism of N-N Double Bond Cleavage by an Iron(II) Hydride Complex. J Am Chem Soc 2016; 138:12112-23. [PMID: 27598037 PMCID: PMC5499983 DOI: 10.1021/jacs.6b04654] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The use of hydride species for substrate reductions avoids strong reductants, and may enable nitrogenase to reduce multiple bonds without unreasonably low redox potentials. In this work, we explore the N═N bond cleaving ability of a high-spin iron(II) hydride dimer with concomitant release of H2. Specifically, this diiron(II) complex reacts with azobenzene (PhN═NPh) to perform a four-electron reduction, where two electrons come from H2 reductive elimination and the other two come from iron oxidation. The rate law of the H2 releasing reaction indicates that diazene binding occurs prior to H2 elimination, and the negative entropy of activation and inverse kinetic isotope effect indicate that H-H bond formation is the rate-limiting step. Thus, substrate binding causes reductive elimination of H2 that formally reduces the metals, and the metals use the additional two electrons to cleave the N-N multiple bond.
Collapse
Affiliation(s)
- Sarina M. Bellows
- Department of Chemistry, University of Rochester, Rochester, NY 14627
| | | | | | | | - Eckhard Bill
- Max Planck Institute for Chemical Energy Conversion, Stiftstrasse 34-36, Mülheim an der Ruhr, Germany
| | - Thomas R. Cundari
- Department of Chemistry and CASCaM, University of North Texas, Denton, TX 76203
| | - Patrick L. Holland
- Department of Chemistry, University of Rochester, Rochester, NY 14627
- Department of Chemistry, Yale University, New Haven, CT 06520
| |
Collapse
|
12
|
Hohloch S, Kriegel BM, Bergman RG, Arnold J. Group 5 chemistry supported by β-diketiminate ligands. Dalton Trans 2016; 45:15725-15745. [DOI: 10.1039/c6dt01770c] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
β-Diketiminate (BDI) ligands are widely used supporting ligands in modern organometallic chemistry and are capable of stabilizing various metal complexes in multiple oxidation states and coordination environments.
Collapse
Affiliation(s)
| | | | | | - John Arnold
- Department of Chemistry
- University of California
- Berkeley
- USA
| |
Collapse
|
13
|
Camp C, Arnold J. On the non-innocence of “Nacnacs”: ligand-based reactivity in β-diketiminate supported coordination compounds. Dalton Trans 2016; 45:14462-98. [DOI: 10.1039/c6dt02013e] [Citation(s) in RCA: 133] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
While β-diketiminate (BDI or ‘nacnac’) ligands have been widely adopted to stabilize a wide range of metal ions in multiple oxidation states and coordination numbers, in several occurrences these ligands do not behave as spectators and participate in reactivity.
Collapse
Affiliation(s)
- Clément Camp
- Univ Lyon
- CNRS, ESCPE Lyon
- Université Claude Bernard Lyon 1
- C2P2 UMR 5265
- F-69616 Villeurbanne
| | - John Arnold
- Department of Chemistry
- University of California
- Berkeley
- USA
| |
Collapse
|
14
|
Chen C, Bellows SM, Holland PL. Tuning steric and electronic effects in transition-metal β-diketiminate complexes. Dalton Trans 2015; 44:16654-70. [PMID: 26244489 DOI: 10.1039/c5dt02215k] [Citation(s) in RCA: 108] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
β-Diketiminates are widely used supporting ligands for building a range of metal complexes with different oxidation states, structures, and reactivities. This Perspective summarizes the steric and electronic influences of ligand substituents on these complexes, with an eye toward informing the design of new complexes with optimized properties. The backbone and N-aryl substituents can give significant steric effects on structure, reactivity and selectivity of reactions. The electron density on the metal can be tuned by installation of electron withdrawing or donating groups on the β-diketiminate ligand as well. Examples are shown from throughout the transition metal series to demonstrate different types of effects attributable to systematic variation of β-diketiminate ligands.
Collapse
Affiliation(s)
- Chi Chen
- Department of Chemistry, Yale University, New Haven, Connecticut 06511, USA.
| | | | | |
Collapse
|
15
|
Morris WD, Wolczanski PT, Sutter J, Meyer K, Cundari TR, Lobkovsky EB. Iron and chromium complexes containing tridentate chelates based on nacnac and imino- and methyl-pyridine components: triggering C-X bond formation. Inorg Chem 2014; 53:7467-84. [PMID: 25010819 DOI: 10.1021/ic500807y] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Nacnac-based tridentate ligands containing a pyridyl-methyl and a 2,6-dialkyl-phenylamine (i.e., (2,6-R2-C6H3N═C(Me)CH═C(Me)NH(CH2py); R = Et, {Et(nn)PM}H; R = (i)Pr, {(i)Pr(nn)PM}H) were synthesized by condensation routes. Treatment of M{N(TMS)2}THFn (M = Cr, n = 2; M = Fe, Co, n = 1; TMS = trimethylsilane; THF = tetrahydrofuran) with {(i)Pr(nn)PM}H) afforded {(i)Pr(nn)PM}MN(TMS)2 (1-M(iPr); M = Cr, Fe); {Et(nn)PM}MN(TMS)2 (1-M(Et); M = Fe, Co) was similarly obtained. {R(nn)PM}FeBr (R = (i)Pr, Et; 2-Fe(R)) were prepared from FeBr2 and {R(nn)PM}Li, and alkylated to generate {R(nn)PM}Fe(neo)Pe (R = (i)Pr, Et; 3-Fe(R)). Carbonylation of 3-Fe(R) provided {(i)Pr(nn)PM}Fe(CO(neo)Pe)CO (4-Fe(iPr)), and carbonylations of 1-Fe(R) (R = Et, (i)Pr) and 1-Cr(iPr) induced deamination to afford {R(nn)PI}Fe(CO)2 (R = (i)Pr, 5-Fe(iPr); Et, 5-Fe(Et)), where PI is pyridine-imine, and {κ(2)-N,N-pyrim-pyr}Cr(CO)4 (6-Cr(iPr)), in which the aryl-amide side of the nacnac attacked the incipient PI group. Carbon-carbon bonds were formed at the imine carbon of the {R(nn)PI} ligand. Addition of [{(i)Pr(nn)PI}(2-)](K(+)(THF)x)2 to FeCl3 generated {(i)Pr(nn)CHpy}2Fe2Cl2 (7-Fe(iPr)), and TMSN3 induced the deamination of 1-Fe(Et), but with disproportionation to provide {[Et(nn)CHpy]2}Fe (8-Fe(Et)). Ph2CN2 induced C-C bond formation with 1-Fe(iPr) via its thermal degradation to ultimately afford {(i)Pr(nn)CHpy}2(FeN═CPh2)2 (9-Fe(iPr)). The compounds were examined by X-ray crystallography (1-M(iPr), M = Cr, Fe; 1-Co(Et); 2-Fe(iPr); 4-Fe(iPr); 5-Fe(iPr); 6-Cr(iPr); 7-Fe(iPr); 8-Fe(Et); 9-Fe(iPr)), Mössbauer spectroscopy, and NMR spectroscopy. Structural parameters assessing redox noninnocence are discussed, as are structural and mechanistic consequences of the various electronic environments.
Collapse
Affiliation(s)
- Wesley D Morris
- Department of Chemistry & Chemical Biology, Baker Laboratory, Cornell University , Ithaca, New York 14853, United States
| | | | | | | | | | | |
Collapse
|
16
|
Williams VA, Wolczanski PT, Sutter J, Meyer K, Lobkovsky EB, Cundari TR. Iron complexes derived from {nacnac-(CH2py)2}- and {nacnac-(CH2py)(CHpy)}n ligands: stabilization of iron(II) via redox noninnocence. Inorg Chem 2014; 53:4459-74. [PMID: 24762120 DOI: 10.1021/ic5001123] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Nacnac-based tetradentate chelates, {nacnac-(CH2py)2}(-) ({nn(PM)2}(-)) and {nacnac-(CH2py)(CHpy)}(n) ({nn(PM)(PI)}(n)) have been investigated in iron complexes. Treatment of Fe{N(TMS)2}2(THF) with {nn(PM)2}H afforded {nn(PM)2}FeN(TMS)2 [1-N(TMS)2], which led to {nn(PM)2}FeCl (1-Cl) from HCl and to {nn(PM)2}FeN3 (1-N3) upon salt metathesis. Dehydroamination of 1-N(TMS)2 was induced by L (L = PMe3, CO) to afford {nn(PM)(PI)}Fe(PMe3)2 [2-(PMe3)2] and {nn(PM)(PI)}FeCO (3-CO). Substitution of 2-(PMe3)2 led to {nn(PM)(PI)}Fe(PMe3)CO [2-(PMe3)CO], and exposure to a vacuum provided {nn(PM)(PI)}Fe(PMe3) (3-PMe3). Metathesis routes to {nn(PM)(PI)}FeL2 (2-L2; L = PMe3, PMe2Ph) and {nn(PM)(PI)}FeL (3-L; L = PMePh2, PPh3) from [{nn(PM)(PI)}(2-)]Li2 and FeBr2(THF)2 in the presence of L proved feasible, and 1e(-) and 2e(-) oxidation of 2-(PMe3)2 afforded 2(+)-(PMe3)2 and 2(2+)-(PMe3)2 salts. Mössbauer spectroscopy, structural studies, and calculational assessments revealed the dominance of iron(II) in both high-spin (1-X) and low-spin (2-L2 and 3-L) environments, and the redox noninnocence (RNI) of {nn(PM)(PI)}(n) [2-L2, 3-L, n = 2-; 2(+)-(PMe3)2, n = 1-; 2(2+)-(PMe3)2, n = 0]. A discussion regarding the utility of RNI in chemical reactivity is proffered.
Collapse
Affiliation(s)
- Valerie A Williams
- Baker Laboratory, Department of Chemistry & Chemical Biology, Cornell University , Ithaca, New York 14853, United States
| | | | | | | | | | | |
Collapse
|
17
|
Boynton JN, Guo JD, Fettinger JC, Melton CE, Nagase S, Power PP. Linear and nonlinear two-coordinate vanadium complexes: synthesis, characterization, and magnetic properties of V(II) amides. J Am Chem Soc 2013; 135:10720-8. [PMID: 23782062 DOI: 10.1021/ja403244w] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The synthesis and characterization of the first stable two-coordinate vanadium complexes are described. The vanadium(II) primary amido derivative V{N(H)Ar(iPr6)}2 [Ar(iPr6) = C6H3-2,6-(C6H2-2,4,6-iPr3)2] (1) was synthesized via the reaction of LiN(H)Ar(iPr6) with the V(III) complex VCl3·2NMe3 or the V(II) salt [V2Cl3(THF)6](+)I(-) in a 2:1 and 4:1 stoichiometry, respectively. Reaction of the less crowded LiN(H)Ar(Me6) with [V2Cl3(THF)6](+)I(-) afforded V{N(H)Ar(Me6)}2 [Ar(Me6) = C6H3-2,6-(C6H2-2,4,6-Me3)2] (2), which has a nonlinear [N-V-N = 123.47(9)°] vanadium coordination. Magnetometry studies showed that V{N(H)Ar(iPr6)}2 and V{N(H)Ar(Me6)}2 have ambient temperature magnetic moments of 3.41 and 2.77 μB, respectively, which are consistent with a high-spin d(3) electron configuration. These values suggest a significant spin orbital angular momentum contribution that leads to a magnetic moment that is lower than their spin-only value of 3.87 μB. DFT calculations showed that the major absorptions in their UV-vis spectra were due to ligand to metal charge transfer transitions. Exposure of the reaction mixture for 2 to dry O2 resulted in the formation of the diamagnetic V(V) oxocluster [V{N(H)Ar(Me6)}2]2(μ-O-Li-O)2 (3).
Collapse
Affiliation(s)
- Jessica N Boynton
- Department of Chemistry, University of California-Davis, 1 Shields Avenue, Davis, California 95616, USA
| | | | | | | | | | | |
Collapse
|
18
|
|
19
|
Arrowsmith M, Crimmin MR, Hill MS, Kociok-Köhn G. Beryllium derivatives of a phenyl-substituted β-diketiminate: a well-defined ring opening reaction of tetrahydrofuran. Dalton Trans 2013; 42:9720-6. [PMID: 23685744 DOI: 10.1039/c3dt51021b] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Affiliation(s)
- Merle Arrowsmith
- Department of Chemistry, University of Bath, Claverton Down, Bath, BA2 7AY, UK
| | | | | | | |
Collapse
|
20
|
Chen HZ, Liu SC, Yen CH, Yu JSK, Shieh YJ, Kuo TS, Tsai YC. Reactions of Metal-Metal Quintuple Bonds with Alkynes: [2+2+2] and [2+2] Cycloadditions. Angew Chem Int Ed Engl 2012; 51:10342-6. [DOI: 10.1002/anie.201205027] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2012] [Indexed: 11/09/2022]
|
21
|
Chen HZ, Liu SC, Yen CH, Yu JSK, Shieh YJ, Kuo TS, Tsai YC. Reactions of Metal-Metal Quintuple Bonds with Alkynes: [2+2+2] and [2+2] Cycloadditions. Angew Chem Int Ed Engl 2012. [DOI: 10.1002/ange.201205027] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
22
|
Cowley RE, Holland PL. Ligand effects on hydrogen atom transfer from hydrocarbons to three-coordinate iron imides. Inorg Chem 2012; 51:8352-61. [PMID: 22800175 DOI: 10.1021/ic300870y] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A new β-diketiminate ligand with 2,4,6-tri(phenyl)phenyl N-substituents provides protective bulk around the metal without exposing any weak C-H bonds. This ligand improves the stability of reactive iron(III) imido complexes with Fe═NAd and Fe═NMes functional groups (Ad = 1-adamantyl; Mes = mesityl). The new ligand gives iron(III) imido complexes that are significantly more reactive toward 1,4-cyclohexadiene than the previously reported 2,6-diisopropylphenyl diketiminate variants. Analysis of X-ray crystal structures implicates Fe═N-C bending, a longer Fe═N bond, and greater access to the metal as potential reasons for the increase in C-H bond activation rates.
Collapse
Affiliation(s)
- Ryan E Cowley
- Department of Chemistry, University of Rochester, Rochester, New York 14627, United States
| | | |
Collapse
|
23
|
|
24
|
Hamaki H, Takeda N, Nabika M, Tokitoh N. Catalytic Activities for Olefin Polymerization: Titanium(III), Titanium(IV), Zirconium(IV), and Hafnium(IV) β-Diketiminato, 1-Aza-1,3-butadienyl–Imido, and 1-Aza-2-butenyl–Imido Complexes Bearing an Extremely Bulky Substituent, the Tbt Group (Tbt = 2,4,6-[(Me3Si)2CH]3C6H2). Macromolecules 2012. [DOI: 10.1021/ma2024107] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Hirofumi Hamaki
- Institute for Chemical Research, Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan
| | - Nobuhiro Takeda
- Institute for Chemical Research, Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan
| | - Masaaki Nabika
- Petrochemicals Research Laboratory, Sumitomo Chemical Co., Ltd., 2−1 Kitasode, Sodegaura,
Chiba 299-0295, Japan
| | - Norihiro Tokitoh
- Institute for Chemical Research, Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan
| |
Collapse
|
25
|
Tskhovrebov AG, Solari E, Wodrich MD, Scopelliti R, Severin K. Sequential N–O and N–N Bond Cleavage of N-Heterocyclic Carbene-Activated Nitrous Oxide with a Vanadium Complex. J Am Chem Soc 2012; 134:1471-3. [DOI: 10.1021/ja210976a] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- Alexander G. Tskhovrebov
- Institut des Sciences
et Ingénierie Chimiques, École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne,
Switzerland
| | - Euro Solari
- Institut des Sciences
et Ingénierie Chimiques, École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne,
Switzerland
| | - Matthew D. Wodrich
- Institut des Sciences
et Ingénierie Chimiques, École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne,
Switzerland
| | - Rosario Scopelliti
- Institut des Sciences
et Ingénierie Chimiques, École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne,
Switzerland
| | - Kay Severin
- Institut des Sciences
et Ingénierie Chimiques, École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne,
Switzerland
| |
Collapse
|
26
|
Suresh P, Sathyanarayana A, Prabusankar G, Hernandez O, Golhen S. The First Monomeric β-Diketiminate Stabilized Four-Coordinated Bismuth(III) Bistrifluoromethanesulfonate. Z Anorg Allg Chem 2012. [DOI: 10.1002/zaac.201100463] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|