1
|
Koatale PC, Welling MM, Mdanda S, Mdlophane A, Takyi-Williams J, Durandt C, van den Bout I, Cleeren F, Sathekge MM, Ebenhan T. Evaluation of [ 68Ga]Ga-DOTA-AeK as a Potential Imaging Tool for PET Imaging of Cell Wall Synthesis in Bacterial Infections. Pharmaceuticals (Basel) 2024; 17:1150. [PMID: 39338315 PMCID: PMC11434960 DOI: 10.3390/ph17091150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 08/20/2024] [Accepted: 08/28/2024] [Indexed: 09/30/2024] Open
Abstract
The ability of bacteria to recycle exogenous amino acid-based peptides and amino sugars for peptidoglycan biosynthesis was extensively investigated using optical imaging. In particular, fluorescent AeK-NBD was effectively utilized to study the peptidoglycan recycling pathway in Gram-negative bacteria. Based on these promising results, we were inspired to develop the radioactive AeK conjugate [68Ga]Ga-DOTA-AeK for the in vivo localization of bacterial infection using PET/CT. An easy-to-implement radiolabeling procedure for DOTA-AeK with [68Ga]GaCI3 followed by solid-phase purification was successfully established to obtain [68Ga]Ga-DOTA-AeK with a radiochemical purity of ≥95%. [68Ga]Ga-DOTA-AeK showed good stability over time with less protein binding under physiological conditions. The bacterial incorporation of [68Ga]Ga-DOTA-AeK and its fluorescent Aek-NBD analog were investigated in live and heat-killed Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus). Unfortunately, no conclusive in vitro intracellular uptake of [68Ga]Ga-DOTA-AeK was observed for E. coli or S. aureus live and heat-killed bacterial strains (p > 0.05). In contrast, AeK-NBD showed significantly higher intracellular incorporation in live bacteria compared to the heat-killed control (p < 0.05). Preliminary biodistribution studies of [68Ga]Ga-DOTA-AeK in a dual-model of chronic infection and inflammation revealed limited localization at the infection site with non-specific accumulation in response to inflammatory markers. Finally, our study demonstrates proof that the intracellular incorporation of AeK is necessary for successful bacteria-specific imaging using PET/CT. Therefore, Ga-68 was not a suitable radioisotope for tracing the bacterial uptake of AeK tripeptide, as it required chelation with a bulky metal chelator such as DOTA, which may have limited its active membrane transportation. An alternative for optimization is to explore diverse chemical structures of AeK that would allow for radiolabeling with 18F or 11C.
Collapse
Affiliation(s)
- Palesa C. Koatale
- Department of Nuclear Medicine, University of Pretoria, Pretoria 0001, South Africa; (P.C.K.); (S.M.); (A.M.); (M.M.S.)
- Nuclear Medicine Research Infrastructure (NuMeRI), Steve Biko Academic Hospital, Pretoria 0001, South Africa
| | - Mick M. Welling
- Department of Radiology, Interventional Molecular Imaging Laboratory, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands;
| | - Sipho Mdanda
- Department of Nuclear Medicine, University of Pretoria, Pretoria 0001, South Africa; (P.C.K.); (S.M.); (A.M.); (M.M.S.)
- Nuclear Medicine Research Infrastructure (NuMeRI), Steve Biko Academic Hospital, Pretoria 0001, South Africa
| | - Amanda Mdlophane
- Department of Nuclear Medicine, University of Pretoria, Pretoria 0001, South Africa; (P.C.K.); (S.M.); (A.M.); (M.M.S.)
- Nuclear Medicine Research Infrastructure (NuMeRI), Steve Biko Academic Hospital, Pretoria 0001, South Africa
| | - John Takyi-Williams
- Therapeutics Systems Research Laboratories (TSRL), Inc., Ann Arbor, MI 48109, USA;
| | - Chrisna Durandt
- Department of Medical Immunology, Institute for Cellular and Molecular Medicine, University of Pretoria, Pretoria 0001, South Africa;
- South African Medical Research Council Extramural Unit for Stem Cell Research and Therapy, University of Pretoria, Pretoria 0001, South Africa
| | - Iman van den Bout
- Department of Physiology, University of Pretoria, Pretoria 0001, South Africa;
| | - Frederik Cleeren
- Department of Pharmacy and Pharmacological Sciences, Radiopharmaceutical Research, KU Leuven, 3000 Leuven, Belgium;
| | - Mike M. Sathekge
- Department of Nuclear Medicine, University of Pretoria, Pretoria 0001, South Africa; (P.C.K.); (S.M.); (A.M.); (M.M.S.)
- Nuclear Medicine Research Infrastructure (NuMeRI), Steve Biko Academic Hospital, Pretoria 0001, South Africa
| | - Thomas Ebenhan
- Department of Nuclear Medicine, University of Pretoria, Pretoria 0001, South Africa; (P.C.K.); (S.M.); (A.M.); (M.M.S.)
- Nuclear Medicine Research Infrastructure (NuMeRI), Steve Biko Academic Hospital, Pretoria 0001, South Africa
| |
Collapse
|
2
|
Wang Y, Yang F, Li H. Development of a Novel, Easy-to-Prepare, and Potentially Valuable Peptide Coupling Technology Utilizing Amide Acid as a Linker. Pharmaceuticals (Basel) 2024; 17:981. [PMID: 39204086 PMCID: PMC11356999 DOI: 10.3390/ph17080981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 06/16/2024] [Accepted: 07/19/2024] [Indexed: 09/03/2024] Open
Abstract
The process of synthesizing radionuclide-coupled drugs, especially shutdown technology that links bipotent chelators with biomolecules, utilizes traditional coupling reactions, including emerging click chemistry; these reactions involve different drawbacks, such as complex and cumbersome reaction steps, long reaction times, and the use of catalysts at various pH values, which can negatively impact the effects of the chelating agent. To address the above problems in this study, This research designed a novel bipotent chelator coupled with peptides. In the present study, dichloromethane was used as a solvent, and the reaction was conducted at room temperature for 12 h. A one-step ring-opening method was employed to introduce the coupling functional group of tridentate amide acid. The coupling materials consisted of the amino active site of the peptide and diethylene glycol anhydride. In this paper, this study explored the reactions between different equivalents of acid anhydride coupled to the peptide (peptide sequence: HLRKLRKR) and determined that the maximum conversion of the peptide feedstock was 87%. To determine the selectivity of the reaction sites in this polypeptide, This study identified the peptide sequence at the reaction site using nuclear magnetic resonance (NMR) and liquid chromatography-mass spectrometry (LC-MS). For the selected peptide, the first reactive site was on the terminal amino group, followed by the amino group on the tetra- and hepta-lysine side chains. The tridentate amic acid framework functions as a chelating agent, capable of binding a range of lanthanide ions. This significantly reduces and optimizes the time and cost associated with synthesizing radionuclide-coupled drugs.
Collapse
Affiliation(s)
- Yaling Wang
- College of Chemistry and Materials Science, Fujian Normal University, Fuzhou 350117, China;
- Xiamen Institute of Rare Earth Materials, Haixi Institute, Chinese Academy of Sciences, Xiamen 361021, China
- Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China
| | - Fan Yang
- Xiamen Institute of Rare Earth Materials, Haixi Institute, Chinese Academy of Sciences, Xiamen 361021, China
- Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou 350108, China
- Xiamen Key-Laboratory of Rare Earth Photoelectric Functional Materials, Xiamen 361021, China
- Key Laboratory of Rare Earths, Chinese Academy of Sciences, China Rare Earth Group Research Institute, Ganzhou 341000, China
- Fujian Province Joint Innovation Key Laboratory of Fuel and Materials in Clean Nuclear Energy System, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China
- Key Laboratory of Rare Earths, Ganjiang Innovation Academy, Chinese Academy of Sciences, Ganzhou 341000, China
- Xiamen Key Laboratory of Rare Earth Photoelectric Functional Materials, Xiamen Institute of Rare Earth Materials, Haixi Institute, Chinese Academy of Sciences, Xiamen 361021, China
| | - Hongyan Li
- Department of Medical Physics, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| |
Collapse
|
3
|
Delaney S, Keinänen O, Lam D, Wolfe AL, Hamakubo T, Zeglis BM. Cadherin-17 as a target for the immunoPET of adenocarcinoma. Eur J Nucl Med Mol Imaging 2024; 51:2547-2557. [PMID: 38625402 PMCID: PMC11223962 DOI: 10.1007/s00259-024-06709-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 03/28/2024] [Indexed: 04/17/2024]
Abstract
PURPOSE Cadherin-17 (CDH17) is a calcium-dependent cell adhesion protein that is overexpressed in several adenocarcinomas, including gastric, colorectal, and pancreatic adenocarcinoma. High levels of CDH17 have been linked to metastatic disease and poor prognoses in patients with these malignancies, fueling interest in the protein as a target for diagnostics and therapeutics. Herein, we report the synthesis, in vitro validation, and in vivo evaluation of a CDH17-targeted 89Zr-labeled immunoPET probe. METHODS The CDH17-targeting mAb D2101 was modified with an isothiocyanate-bearing derivative of desferrioxamine (DFO) to produce a chelator-bearing immunoconjugate - DFO-D2101 - and flow cytometry and surface plasmon resonance (SPR) were used to interrogate its antigen-binding properties. The immunoconjugate was then radiolabeled with zirconium-89 (t1/2 ~ 3.3 days), and the serum stability and immunoreactive fraction of [89Zr]Zr-DFO-D2101 were determined. Finally, [89Zr]Zr-DFO-D2101's performance was evaluated in a trio of murine models of pancreatic ductal adenocarcinoma (PDAC): subcutaneous, orthotopic, and patient-derived xenografts (PDX). PET images were acquired over the course of 5 days, and terminal biodistribution data were collected after the final imaging time point. RESULTS DFO-D2101 was produced with a degree of labeling of ~ 1.1 DFO/mAb. Flow cytometry with CDH17-expressing AsPC-1 cells demonstrated that the immunoconjugate binds to its target in a manner similar to its parent mAb, while SPR with recombinant CDH17 revealed that D2101 and DFO-D2101 exhibit nearly identical KD values: 8.2 × 10-9 and 6.7 × 10-9 M, respectively. [89Zr]Zr-DFO-D2101 was produced with a specific activity of 185 MBq/mg (5.0 mCi/mg), remained >80% stable in human serum over the course of 5 days, and boasted an immunoreactive fraction of >0.85. In all three murine models of PDAC, the radioimmunoconjugate yielded high contrast images, with high activity concentrations in tumor tissue and low uptake in non-target organs. Tumoral activity concentrations reached as high as >60 %ID/g in two of the cohorts bearing PDXs. CONCLUSION Taken together, these data underscore that [89Zr]Zr-DFO-D2101 is a highly promising probe for the non-invasive visualization of CDH17 expression in PDAC. We contend that this radioimmunoconjugate could have a significant impact on the clinical management of patients with both PDAC and gastrointestinal adenocarcinoma, most likely as a theranostic imaging tool in support of CDH17-targeted therapies.
Collapse
Affiliation(s)
- Samantha Delaney
- Department of Chemistry, Hunter College of the City University of New York, 413 East 69th Street, New York, NY, 10021, USA
- Ph.D. Program in Biochemistry, The Graduate Center of the City University of New York, New York, NY, USA
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Outi Keinänen
- Department of Chemistry, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Dennis Lam
- Department of Biological Sciences, Hunter College of the City University of New York, New York, NY, USA
| | - Andrew L Wolfe
- Ph.D. Program in Biochemistry, The Graduate Center of the City University of New York, New York, NY, USA
- Department of Biological Sciences, Hunter College of the City University of New York, New York, NY, USA
- Ph.D. Program in Biology (Molecular, Cellular, and Developmental Biology Sub-Program), The Graduate Center of the City University of New York, New York, NY, USA
- Department of Pharmacology, Weill Cornell Medical College, New York, NY, USA
| | | | - Brian M Zeglis
- Department of Chemistry, Hunter College of the City University of New York, 413 East 69th Street, New York, NY, 10021, USA.
- Ph.D. Program in Biochemistry, The Graduate Center of the City University of New York, New York, NY, USA.
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
- Department of Radiology, Weill Cornell Medical College, New York, NY, USA.
| |
Collapse
|
4
|
Albanese V, Roccatello C, Pacifico S, Guerrini R, Preti D, Gentili S, Tegoni M, Remelli M, Bellotti D, Amico J, Gorgoni G, Cazzola E. Bifunctional octadentate pseudopeptides as Zirconium-89 chelators for immuno-PET applications. EJNMMI Radiopharm Chem 2024; 9:38. [PMID: 38705946 PMCID: PMC11070408 DOI: 10.1186/s41181-024-00263-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 04/15/2024] [Indexed: 05/07/2024] Open
Abstract
BACKGROUND Positron emission tomography (PET) is a highly sensitive method that provides fine resolution images, useful in the field of clinical diagnostics. In this context, Zirconium-89 (89Zr)-based imaging agents have represented a great challenge in molecular imaging with immuno-PET, which employs antibodies (mAbs) as biological vectors. Indeed, immuno-PET requires radionuclides that can be attached to the mAb to provide stable in vivo conjugates, and for this purpose, the radioactive element should have a decay half-life compatible with the time needed for the biodistribution of the immunoglobulin. In this regard, 89Zr is an ideal radioisotope for immuno-PET because its half-life perfectly matches the in vivo pharmacokinetics of mAbs. RESULTS The main objective of this work was the design and synthesis of a series of bifunctional octadentate pseudopeptides able to generate stable 89Zr complexes. To achieve this, here we investigated hydroxamate, N-methylhydroxamate and catecholate chelating moieties in complexing radioactive zirconium. N-methylhydroxamate proved to be the most effective 89Zr-chelating group. Furthermore, the increased flexibility and hydrophilicity obtained by using polyoxyethylene groups spacing the hydroxamate units led to chelators capable of rapidly forming (15 min) stable and water-soluble complexes with 89Zr under mild reaction conditions (aqueous environment, room temperature, and physiological pH) that are mandatory for complexation reactions involving biomolecules. Additionally, we report challenge experiments with the competitor ligand EDTA and metal ions such as Fe3+, Zn2+ and Cu2+. In all examined conditions, the chelators demonstrated stability against transmetallation. Finally, a maleimide moiety was introduced to apply one of the most promising ligands in bioconjugation reactions through Thiol-Michael chemistry. CONCLUSION Combining solid phase and solution synthesis techniques, we identified novel 89Zr-chelating molecules with a peptide scaffold. The adopted chemical design allowed modulation of molecular flexibility, hydrophilicity, as well as the decoration with different zirconium chelating groups. Best results in terms of 89Zr-chelating properties were achieved with the N-methyl hydroxamate moiety. The Zirconium complexes obtained with the most effective compounds were water-soluble, stable to transmetallation, and resistant to peptidases for at least 6 days. Further studies are needed to assess the potential of this novel class of molecules as Zirconium-chelating agents for in vivo applications.
Collapse
Affiliation(s)
- Valentina Albanese
- Department of Environmental and Prevention Sciences, University of Ferrara, Palazzo Turchi di Bagno, C.So Ercole I d'Este 32, 44121, Ferrara, Italy.
| | - Chiara Roccatello
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, Via Luigi Borsari 46, 44121, Ferrara, Italy
| | - Salvatore Pacifico
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, Via Luigi Borsari 46, 44121, Ferrara, Italy
| | - Remo Guerrini
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, Via Luigi Borsari 46, 44121, Ferrara, Italy
| | - Delia Preti
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, Via Luigi Borsari 46, 44121, Ferrara, Italy
| | - Silvia Gentili
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area Delle Scienze 11/A, 43124, Parma, Italy
| | - Matteo Tegoni
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area Delle Scienze 11/A, 43124, Parma, Italy
| | - Maurizio Remelli
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, Via Luigi Borsari 46, 44121, Ferrara, Italy.
| | - Denise Bellotti
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, Via Luigi Borsari 46, 44121, Ferrara, Italy
| | - Jonathan Amico
- Department of Radiopharmaceutical, IRCCS Sacro Cuore Don Calabria Hospital, Via Don A. Sempreboni 5, 37024, Negrar di Valpolicella, Verona, Italy
| | - Giancarlo Gorgoni
- Department of Radiopharmaceutical, IRCCS Sacro Cuore Don Calabria Hospital, Via Don A. Sempreboni 5, 37024, Negrar di Valpolicella, Verona, Italy
| | - Emiliano Cazzola
- Department of Radiopharmaceutical, IRCCS Sacro Cuore Don Calabria Hospital, Via Don A. Sempreboni 5, 37024, Negrar di Valpolicella, Verona, Italy
| |
Collapse
|
5
|
Delaney S, Grimaldi C, Houghton JL, Zeglis BM. MIB Guides: Measuring the Immunoreactivity of Radioimmunoconjugates. Mol Imaging Biol 2024; 26:213-221. [PMID: 38446323 PMCID: PMC10973015 DOI: 10.1007/s11307-024-01898-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 01/04/2024] [Accepted: 01/24/2024] [Indexed: 03/07/2024]
Abstract
Immunoglobulins, both full-length antibodies and smaller antibody fragments, have long been regarded as effective platforms for diagnostic and therapeutic radiopharmaceuticals. The construction of radiolabeled immunoglobulins (i.e., radioimmunoconjugates) requires the manipulation of the biomolecule through the attachment of a radiohalogen or the bioconjugation of a chelator that is subsequently used to coordinate a radiometal. Both synthetic approaches have historically relied upon the stochastic modification of amino acids within the immunoglobulin, a process which poses a risk to the structural and functional integrity of the biomolecule itself. Not surprisingly, radioimmunoconjugates with impaired antigen binding capacity will inevitably exhibit suboptimal in vivo performance. As a result, the biological characterization of any newly synthesized radioimmunoconjugate must include an assessment of whether it has retained its ability to bind its antigen. Herein, we provide straightforward and concise protocols for three assays that can be used to determine the immunoreactivity of a radioimmunoconjugate: (1) a cell-based linear extrapolation assay; (2) a cell-based antigen saturation assay; and (3) a resin- or bead-based assay. In addition, we will provide a critical analysis of the relative merits of each assay, an examination of the inherent limitations of immunoreactivity assays in general, and a discussion of other approaches that may be used to interrogate the biological behavior of radioimmunoconjugates.
Collapse
Affiliation(s)
- Samantha Delaney
- Department of Chemistry, Hunter College of the City University of New York, New York, NY, USA
- Program in Biochemistry, The Graduate Center of the City University of New York, New York, NY, USA
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Camilla Grimaldi
- Department of Chemistry, Hunter College of the City University of New York, New York, NY, USA
- Program in Biochemistry, The Graduate Center of the City University of New York, New York, NY, USA
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Jacob L Houghton
- Department of Radiology, State University of New York at Stony Brook, 101 Nicolls Road, Health Sciences Center Level 4, Stony Brook, New York, NY, 11794, USA.
| | - Brian M Zeglis
- Department of Chemistry, Hunter College of the City University of New York, New York, NY, USA.
- Program in Biochemistry, The Graduate Center of the City University of New York, New York, NY, USA.
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
- Department of Radiology, Weill Cornell Medical College, 413 East 69th Street, New York, NY, 10021, USA.
| |
Collapse
|
6
|
Pometti MA, Di Natale G, Geremia G, Gauswami N, Garufi G, Ricciardi G, Sciortino M, Scopelliti F, Russo G, Ippolito M. A Kinetically Controlled Bioconjugation Method for the Synthesis of Radioimmunoconjugates and the Development of a Domain Mapping MS-Workflow for Its Characterization. Bioconjug Chem 2024; 35:324-332. [PMID: 38366964 PMCID: PMC10961728 DOI: 10.1021/acs.bioconjchem.3c00519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 01/20/2024] [Accepted: 01/25/2024] [Indexed: 02/19/2024]
Abstract
Immunoconjugates exploit the high affinity of monoclonal antibodies for a recognized antigen to selectively deliver a cytotoxic payload, such as drugs or radioactive nuclides, at the site of disease. Despite numerous techniques have been recently developed for site-selective bioconjugations of protein structures, reaction of ε-amine group of lysine residues with electrophilic reactants, such as activated esters (NHS), is the main method reported in the literature as it maintains proteins in their native conformation. Since antibodies hold a high number of lysine residues, a heterogeneous mixture of conjugates will be generated, which can result in decreased target affinity. Here, we report an intradomain regioselective bioconjugation between the monoclonal antibody Trastuzumab and the N-hydroxysuccinimide ester of the chelator 2,2',2″,2‴-(1,4,7,10-tetraazacyclododecane-1,4,7,10-tetrayl)tetraacetic acid (DOTA) by a kinetically controlled reaction adding substoichiometric quantities of the activated ester to the mAb working at slightly basic pH. Liquid chromatography-mass spectrometry (LC-MS) analyses were carried out to assess the chelator-antibody ratio (CAR) and the number of chelating moieties linked to the mAb chains. Proteolysis experiments showed four lysine residues mainly involved in bioconjugation (K188 for the light chain and K30, K293, and K417 for the heavy chain), each of which was located in a different domain. Since the displayed intradomain regioselectivity, a domain mapping MS-workflow, based on a selective domain denaturation, was developed to quantify the percentage of chelator linked to each mAb domain. The resulting immunoconjugate mixture showed an average CAR of 0.9. About a third of the heavy chains were found as monoconjugated, whereas conjugation of the chelator in the light chain was negligible. Domain mapping showed the CH3 domain bearing 13% of conjugated DOTA, followed by CH2 and VH respectively bearing 12.5 and 11% of bonded chelator. Bioconjugation was not found in the CH1 domain, whereas for the light chain, only the CL domain was conjugated (6%). Data analysis based on LC-MS quantification of different analytical levels (intact, reduced chains, and domains) provided the immunoconjugate formulation. A mixture of immunoconjugates restricted to 15 species was obtained, and the percentage of each one within the mixture was calculated. In particular, species bearing 1 DOTA with a relative abundance ranging from 4 to 20-fold, in comparison to species bearing 2DOTA, were observed. Pairing of bioconjugation under kinetic control with the developed domain mapping MS-workflow could raise the standard of chemical quality for immunoconjugates obtained with commercially available reactants.
Collapse
Affiliation(s)
- Marco A. Pometti
- Nuclear
Medicine Department, Cannizzaro Hospital, Via Messina 829, 95126 Catania, Italy
- FORA
S.p.A., Via Alfred Bernhard
Nobel 11/a, 43122 Parma, Italy
| | - Giuseppe Di Natale
- CNR-Istituto
di Cristallografia, Via
Paolo Gaifami 18, 95126 Catania, Italy
| | - Giancarlo Geremia
- Nuclear
Medicine Department, Cannizzaro Hospital, Via Messina 829, 95126 Catania, Italy
- Parco
scientifico e tecnologico della Sicilia S.C.P.A., Stradale Vincenzo Lancia 57, 95121 Catania, Italy
| | - Nileshgiri Gauswami
- Nuclear
Medicine Department, Cannizzaro Hospital, Via Messina 829, 95126 Catania, Italy
- Parco
scientifico e tecnologico della Sicilia S.C.P.A., Stradale Vincenzo Lancia 57, 95121 Catania, Italy
| | - Gianni Garufi
- Nuclear
Medicine Department, Cannizzaro Hospital, Via Messina 829, 95126 Catania, Italy
- Parco
scientifico e tecnologico della Sicilia S.C.P.A., Stradale Vincenzo Lancia 57, 95121 Catania, Italy
| | - Giuseppina Ricciardi
- Nuclear
Medicine Department, Cannizzaro Hospital, Via Messina 829, 95126 Catania, Italy
- FORA
S.p.A., Via Alfred Bernhard
Nobel 11/a, 43122 Parma, Italy
| | - Marcella Sciortino
- Nuclear
Medicine Department, Cannizzaro Hospital, Via Messina 829, 95126 Catania, Italy
- FORA
S.p.A., Via Alfred Bernhard
Nobel 11/a, 43122 Parma, Italy
| | - Fabrizio Scopelliti
- Nuclear
Medicine Department, Cannizzaro Hospital, Via Messina 829, 95126 Catania, Italy
| | - Giorgio Russo
- IBFM-CNR
Institute of Molecular Bioimaging and Physiology, Contrada Pietra Pollastra, 90015 Cefalù, Italy
| | - Massimo Ippolito
- Nuclear
Medicine Department, Cannizzaro Hospital, Via Messina 829, 95126 Catania, Italy
| |
Collapse
|
7
|
Whetter JN, Śmiłowicz D, Boros E. Exploring Aqueous Coordination Chemistry of Highly Lewis Acidic Metals with Emerging Isotopes for Nuclear Medicine. Acc Chem Res 2024; 57:933-944. [PMID: 38501206 DOI: 10.1021/acs.accounts.3c00781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/20/2024]
Abstract
Nuclear medicine harnesses radioisotopes for the diagnosis and treatment of disease. While the isotopes 99mTc and 111In have enabled the clinical diagnosis of millions of patients over the past 3 decades, more recent clinical translation of numerous 68Ga/177Lu-based radiopharmaceuticals for diagnostic imaging and therapy underscores the clinical utility of metal-based radiopharmaceuticals in mainstream cancer treatment. In addition to such established radionuclides, advancements in radioisotope production have enabled the production of radionuclides with a broad range of half-lives and emission properties of interest for nuclear medicine. Chemical means to form kinetically inert, in vivo-compatible species that can be modified with disease-targeting vectors is imperative. This presents a challenge for radiosiotopes of elements where the aqueous chemistry is still underdeveloped and poorly understood. Here, we discuss our efforts to date in exploring the aqueous, radioactive coordination chemistry of highly Lewis acidic metal ions and how our discoveries apply to the diagnosis and treatment of cancer in preclinical models of disease. The scope of this Account includes approaches to aqueous coordination of to-date understudied highly Lewis acidic metal ions with radioisotopes of emerging interest and the modulation of well-understood coordination environments of radio-coordination complexes to induce metal-catalyzed reactivity for separation and pro-drug applications.First, we discuss the development of seven-coordinate, small-cavity macrocyclic chelator platform mpatcn/picaga as an exemplary case study, which forms robust complexes with 44Sc/47Sc isotopes. Due to the high chemical hardness and pronounced Lewis acidity of the Sc3+ ion, the displacement of ternary ligand H2O by 18/natF- can be achieved to form an inert Sc-18/natF bond. Corresponding coordination complex natSc-18F is in vivo compatible and forms a theranostic tetrad with corresponding 44Sc/47Sc, 177Lu complexes all exhibiting homologous biodistribution profiles. Another exceptionally hard, highly Lewis acidic ion with underdeveloped aqueous chemistry and emerging interest in nuclear medicine is 45Ti4+. To develop de novo approaches to the mononuclear chelation of this ion under aqueous conditions, we employed a fragment-based bidentate ligand screening approach which identified two leads. The screen successfully predicted the formation of [45Ti][Ti(TREN-CAM)], a Ti-triscatechol complex that exhibits remarkable in vivo stability. Furthermore, the fragment-based screen also identified approaches that enabled solid-phase separation of Ti4+ and Sc3+ of interest in streamlining the isotope production of 45Ti and accessing new ways to separate 44Ti/44Sc for the development of a long-lived generator system. In addition to establishing the inert chelation of Ti4+ and Sc3+, we introduce controlled, metal-induced reactivity of corresponding coordination complexes on macroscopic and radiotracer scales. Metal-mediated autolytic amide bond cleavage (MMAAC) enables the temperature-dependent release of high-molar-activity, ready-to-inject radiopharmaceuticals; cleavage is selectively triggered by coordinated trivalent Lewis acid nat/68Ga3+ or Sc3+. Following the scope of reactivity and mechanistic studies, we validated MMAAC for the synthesis of high-molar-activity radiopharmaceuticals to image molecular targets with low expression and metal-mediated prodrug hydrolysis in vivo.This Account summarizes how developing the aqueous coordination chemistry and tuning the chemical reactivity of metal ions with high Lewis acidity at the macroscopic and tracer scales directly apply to the radiopharmaceutical synthesis with clinical potential.
Collapse
Affiliation(s)
- Jennifer N Whetter
- Department of Chemistry, University of Wisconsin─Madison, 1101 University Avenue, Madison, Wisconsin 53706, United States
| | - Dariusz Śmiłowicz
- Department of Chemistry, University of Wisconsin─Madison, 1101 University Avenue, Madison, Wisconsin 53706, United States
| | - Eszter Boros
- Department of Chemistry, University of Wisconsin─Madison, 1101 University Avenue, Madison, Wisconsin 53706, United States
| |
Collapse
|
8
|
Chakraborty A, Mitra A, Sahu S, Tawate M, Lad S, Kamaldeep, Rakshit S, Upadhye Bannore T, Gaikwad S, Dhotre G, Ray MK, Damle A, Basu S, Banerjee S. Intricacies in the Preparation of Patient Doses of [ 177Lu]Lu-Rituximab and [ 177Lu]Lu-Trastuzumab Using Low Specific Activity [ 177Lu]LuCl 3: Methodological Aspects. Mol Imaging Biol 2024; 26:61-80. [PMID: 37673943 DOI: 10.1007/s11307-023-01846-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 08/04/2023] [Accepted: 08/07/2023] [Indexed: 09/08/2023]
Abstract
The development of humanized monoclonal antibodies (MAbs) with Lutetium-177 ([177Lu]Lu3+) has brought a paradigm shift in the arena of targeted therapy of various cancers. [177Lu]Lu-DOTA-Rituximab and [177Lu]Lu-DOTA-Trastuzumab have gained prominence due to their improved therapeutic efficacy in the treatment of lymphoma and breast cancer. The clinical dose formulation of these radiolabeled MAbs, using low specific activity [177Lu]LuCl3, requires extensive optimization of the radiolabeling protocol. The present study merits the development of a single protocol which has been optimized for conjugation of Rituximab and Trastuzumab with p-NCS-benzyl-DOTA and further radiolabeling these immunoconjugates (ICs) with low specific activity [177Lu]LuCl3. Herein, we report a consistent and reproducible protocol for clinical dose formulations of [177Lu]Lu-DOTA-Rituximab and [177Lu]Lu-DOTA-Trastuzumab (~9.25 GBq each, equivalent to ~2 patient doses) with radiochemical yield (RCY) between 84 and 86% and radiochemical purities (RCP) >99%. The in vitro stabilities of both these radioimmunoconjugates (RICs) were retained up to 120 h post-radiolabeling, upon storage with L-ascorbic acid as stabilizer (concentration: ~ 220-240 μg/37MBq) at -20 °C. The ready-to-use formulation of clinical doses[177Lu]Lu-DOTA-Rituximab and [177Lu]Lu-DOTA-Trastuzumab has been successfully achieved by employing a single optimized protocol. While [177Lu]Lu-DOTA-Rituximab has exhibited a high degree of localization in retroperitoneal nodal mass of refractory lymphoma patient, high uptake of [177Lu]Lu-DOTA-Trastuzumab has been observed in metastatic breast carcinoma patient with multiple skeletal metastases.
Collapse
Affiliation(s)
- Avik Chakraborty
- Radiation Medicine Centre, Bhabha Atomic Research Centre, Parel, Mumbai, India
- Homi Bhabha National Institute, Mumbai, India
| | - Arpit Mitra
- Radiopharmaceuticals Laboratory, Board of Radiation and Isotope Technology, Vashi, Navi Mumbai, India
| | - Sudeep Sahu
- Radiation Medicine Centre, Bhabha Atomic Research Centre, Parel, Mumbai, India
| | - Megha Tawate
- Radiation Medicine Centre, Bhabha Atomic Research Centre, Parel, Mumbai, India
- Homi Bhabha National Institute, Mumbai, India
| | - Sangita Lad
- Radiation Medicine Centre, Bhabha Atomic Research Centre, Parel, Mumbai, India
| | - Kamaldeep
- Homi Bhabha National Institute, Mumbai, India
- Health Physics Division, Bhabha Atomic Research Centre, Trombay, Mumbai, India
| | - Sutapa Rakshit
- Radiation Medicine Centre, Bhabha Atomic Research Centre, Parel, Mumbai, India
| | | | - Sujay Gaikwad
- Radiation Medicine Centre, Bhabha Atomic Research Centre, Parel, Mumbai, India
| | - Geetanjali Dhotre
- Department of Chemical Sciences, Tata Institute of Fundamental Research, Mumbai, India
| | - Mukti Kanta Ray
- Radiation Medicine Centre, Bhabha Atomic Research Centre, Parel, Mumbai, India
- Homi Bhabha National Institute, Mumbai, India
| | - Archana Damle
- Radiation Medicine Centre, Bhabha Atomic Research Centre, Parel, Mumbai, India
- Homi Bhabha National Institute, Mumbai, India
| | - Sandip Basu
- Radiation Medicine Centre, Bhabha Atomic Research Centre, Parel, Mumbai, India
- Homi Bhabha National Institute, Mumbai, India
| | - Sharmila Banerjee
- Homi Bhabha National Institute, Mumbai, India.
- Advanced Centre for Treatment, Research and Education in Cancer, Tata Memorial Centre, Kharghar, Navi Mumbai, 410 210, India.
| |
Collapse
|
9
|
Ramogida C, Price E. Transition and Post-Transition Radiometals for PET Imaging and Radiotherapy. Methods Mol Biol 2024; 2729:65-101. [PMID: 38006492 DOI: 10.1007/978-1-0716-3499-8_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2023]
Abstract
Radiometals are an exciting class of radionuclides because of the large number of metallic elements available that have medically useful isotopes. To properly harness radiometals, they must be securely bound by chelators, which must be carefully matched to the radiometal ion to maximize radiolabeling performance and the stability of the resulting complex. This chapter focuses on practical aspects of radiometallation chemistry including chelator selection, radiolabeling procedures and conditions, radiolysis prevention, purification, quality control, requisite equipment and reagents, and useful tips.
Collapse
Affiliation(s)
- Caterina Ramogida
- Department of Chemistry, Simon Fraser University, Burnaby, BC, Canada.
- Life Sciences Division, TRIUMF, Vancouver, BC, Canada.
| | - Eric Price
- Department of Chemistry, College of Arts and Science, University of Saskatchewan, Saskatoon, SK, Canada
| |
Collapse
|
10
|
Hierlmeier I, Guillou A, Earley DF, Linden A, Holland JP, Bartholomä MD. HNODThia: A Promising Chelator for the Development of 64Cu Radiopharmaceuticals. Inorg Chem 2023; 62:20677-20687. [PMID: 37487036 DOI: 10.1021/acs.inorgchem.3c01616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/26/2023]
Abstract
Herein, we present the synthesis and coordination chemistry of copper(II) and zinc(II) complexes of two novel heterocyclic triazacyclononane (tacn)-based chelators (HNODThia and NODThia-AcNHEt). The chelator HNODThia was further derivatized to obtain a novel PSMA-based bioconjugate (NODThia-PSMA) and a bifunctional photoactivatable azamacrocyclic analogue, NODThia-PEG3-ArN3, for the development of copper-64 radiopharmaceuticals. 64Cu radiolabeling experiments were performed on the different metal-binding chelates, whereby quantitative radiochemical conversion (RCC) was obtained in less than 10 min at room temperature. The in vitro stability of NODThia-PSMA in human plasma was assessed by ligand-challenge and copper-exchange experiments. Next, we investigated the viability of the photoactivatable analog (NODThia-PEG3-ArN3) for the light-induced photoradiosynthesis of radiolabeled proteins. One-pot photoconjugation reactions to human serum albumin (HSA) as a model protein and the clinically relevant monoclonal antibody formulation MetMAb were performed. [64Cu]Cu-7-azepin-HSA and [64Cu]Cu-7-azepin-onartuzumab were prepared in less than 15 min by irradiation at 395 nm, with radiochemical purities (RCP) of >95% and radiochemical yields (RCYs) of 42.7 ± 5.3 and 49.6%, respectively. Together, the results obtained here open the way for the development of highly stable 64Cu-radiopharmaceuticals by using aza-heterocyclic tacn-based chelators, and the method can easily be extended to the development of 67Cu radiopharmaceuticals for future applications in molecularly targeted radio(immuno)therapy.
Collapse
Affiliation(s)
- Ina Hierlmeier
- Department of Nuclear Medicine, Saarland University - Medical Center, Kirrberger Str. 100, Building 50, 66421 Homburg, Germany
| | - Amaury Guillou
- University of Zurich, Department of Chemistry, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
- University of Caen, Cyceron, Bd Henri Becquerel, 14000 Caen, France
| | - Daniel F Earley
- University of Zurich, Department of Chemistry, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | - Anthony Linden
- University of Zurich, Department of Chemistry, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | - Jason P Holland
- University of Zurich, Department of Chemistry, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | - Mark D Bartholomä
- Department of Nuclear Medicine, Saarland University - Medical Center, Kirrberger Str. 100, Building 50, 66421 Homburg, Germany
| |
Collapse
|
11
|
Hu A, Martin KE, Śmiłowicz D, Aluicio-Sarduy E, Cingoranelli SJ, Lapi SE, Engle JW, Boros E, Wilson JJ. Construction of the Bioconjugate Py-Macrodipa-PSMA and Its In Vivo Investigations with Large 132/135La 3+ and Small 47Sc 3+ Radiometal Ions. Eur J Inorg Chem 2023; 26:e202300457. [PMID: 38495596 PMCID: PMC10939043 DOI: 10.1002/ejic.202300457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Indexed: 03/19/2024]
Abstract
To harness radiometals in clinical settings, a chelator forming a stable complex with the metal of interest and targets the desired pathological site is needed. Toward this goal, we previously reported a unique set of chelators that can stably bind to both large and small metal ions, via a conformational switch. Within this chelator class, py-macrodipa is particularly promising based on its ability to stably bind several medicinally valuable radiometals including large 132/135La3+, 213Bi3+, and small 44Sc3+. Here, we report a 10-step organic synthesis of its bifunctional analogue py-macrodipa-NCS, which contains an amine-reactive -NCS group that is amenable for bioconjugation reactions to targeting vectors. The hydrolytic stability of py-macordipa-NCS was assessed, revealing a half-life of 6.0 d in pH 9.0 aqueous buffer. This bifunctional chelator was then conjugated to a prostate-specific membrane antigen (PSMA)-binding moiety, yielding the bioconjugate py-macrodipa-PSMA, which was subsequently radiolabeled with large 132/135La3+ and small 47Sc3+, revealing efficient and quantitative complex formation. The resulting radiocomplexes were injected into mice bearing both PSMA-expressing and PSMA-non-expressing tumor xenografts to determine their biodistribution patterns, revealing delivery of both 132/135La3+ and 47Sc3+ to PSMA+ tumor sites. However, partial radiometal dissociation was observed, suggesting that py-macrodipa-PSMA needs further structural optimization.
Collapse
Affiliation(s)
- Aohan Hu
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, USA
| | - Kirsten E Martin
- Department of Chemistry, Stony Brook University, Stony Brook, New York 11794, USA
| | - Dariusz Śmiłowicz
- Department of Chemistry, Stony Brook University, Stony Brook, New York 11794, USA
| | - Eduardo Aluicio-Sarduy
- Department of Medical Physics and Department of Radiology, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | - Shelbie J Cingoranelli
- Department of Radiology, University of Alabama at Birmingham, Birmingham, Alabama 35294, USA
| | - Suzanne E Lapi
- Department of Radiology, University of Alabama at Birmingham, Birmingham, Alabama 35294, USA
| | - Jonathan W Engle
- Department of Medical Physics and Department of Radiology, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | - Eszter Boros
- Department of Chemistry, Stony Brook University, Stony Brook, New York 11794, USA
| | - Justin J Wilson
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, USA
| |
Collapse
|
12
|
Delaney S, Nagy Á, Karlström AE, Zeglis BM. Site-Specific Photoaffinity Bioconjugation for the Creation of 89Zr-Labeled Radioimmunoconjugates. Mol Imaging Biol 2023; 25:1104-1114. [PMID: 37052759 PMCID: PMC10570397 DOI: 10.1007/s11307-023-01818-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 03/14/2023] [Accepted: 03/23/2023] [Indexed: 04/14/2023]
Abstract
PURPOSE Site-specific approaches to bioconjugation produce well-defined and homogeneous immunoconjugates with potential for superior in vivo behavior compared to analogs synthesized using traditional, stochastic methods. The possibility of incorporating photoaffinity chemistry into a site-specific bioconjugation strategy is particularly enticing, as it could simplify and accelerate the preparation of homogeneous immunoconjugates for the clinic. In this investigation, we report the synthesis, in vitro characterization, and in vivo evaluation of a site-specifically modified, 89Zr-labeled radioimmunoconjugate created via the reaction between an mAb and an Fc-binding protein bearing a photoactivatable 4-benzoylphenylalanine residue. PROCEDURES A variant of the Fc-binding Z domain of protein A containing a photoactivatable, 4-benzoylphenylalanine residue - Z(35BPA) - was modified with desferrioxamine (DFO), combined with the A33 antigen-targeting mAb huA33, and irradiated with UV light. The resulting immunoconjugate - DFOZ(35BPA)-huA33 - was purified and characterized via SDS-PAGE, MALDI-ToF mass spectrometry, surface plasmon resonance, and flow cytometry. The radiolabeling of DFOZ(35BPA)-huA33 was optimized to produce [89Zr]Zr-DFOZ(35BPA)-huA33, and the immunoreactivity of the radioimmunoconjugate was determined with SW1222 human colorectal cancer cells. Finally, the in vivo performance of [89Zr]Zr-DFOZ(35BPA)-huA33 in mice bearing subcutaneous SW1222 xenografts was interrogated via PET imaging and biodistribution experiments and compared to that of a stochastically labeled control radioimmunoconjugate, [89Zr]Zr-DFO-huA33. RESULTS HuA33 was site-specifically modified with Z(35BPA)-DFO, producing an immunoconjugate with on average 1 DFO/mAb, high in vitro stability, and high affinity for its target. [89Zr]Zr-DFOZ(35BPA)-huA33 was synthesized in 95% radiochemical yield and exhibited a specific activity of 2 mCi/mg and an immunoreactive fraction of ~ 0.85. PET imaging and biodistribution experiments revealed that high concentrations of the radioimmunoconjugate accumulated in tumor tissue (i.e., ~ 40%ID/g at 120 h p.i.) but also that the Z(35BPA)-bearing immunoPET probe produced higher uptake in the liver, spleen, and kidneys than its stochastically modified cousin, [89Zr]Zr-DFO-huA33. CONCLUSIONS Photoaffinity chemistry and an Fc-binding variant of the Z domain were successfully leveraged to create a novel site-specific strategy for the synthesis of radioimmunoconjugates. The probe synthesized using this method - DFOZ(35BPA)-huA33 - was well-defined and homogeneous, and the resulting radioimmunoconjugate ([89Zr]Zr-DFOZ(35BPA)-huA33) boasted high specific activity, stability, and immunoreactivity. While the site-specifically modified radioimmunoconjugate produced high activity concentrations in tumor tissue, it also yielded higher uptake in healthy organs than a stochastically modified analog, suggesting that optimization of this system is necessary prior to clinical translation.
Collapse
Affiliation(s)
- Samantha Delaney
- Department of Chemistry, Hunter College, City University of New York, New York, NY, USA
- Ph.D. Program in Biochemistry, The Graduate Center of the City University of New York, New York, NY, USA
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Ábel Nagy
- Department of Protein Science, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Amelie Eriksson Karlström
- Department of Protein Science, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, Stockholm, Sweden.
| | - Brian M Zeglis
- Department of Chemistry, Hunter College, City University of New York, New York, NY, USA.
- Ph.D. Program in Biochemistry, The Graduate Center of the City University of New York, New York, NY, USA.
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
- Ph.D. Program in Chemistry, The Graduate Center of the City University of New York, New York, NY, USA.
- Department of Radiology, Weill Cornell Medical College, New York, NY, USA.
| |
Collapse
|
13
|
Naplekov DK, Bárta P, Trejtnar F, Sklenářová H, Lenčo J. Implementing reversed-phase and hydrophilic interaction liquid chromatography into the characterization of DTPA-ramucirumab conjugate before radiolabeling. J Pharm Biomed Anal 2023; 235:115615. [PMID: 37566949 DOI: 10.1016/j.jpba.2023.115615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 07/27/2023] [Accepted: 07/30/2023] [Indexed: 08/13/2023]
Abstract
Radioimmunoconjugates represent a promising class of therapeutics and diagnostics. The characterization of intermediate chelator-antibody products, i.e., without the radionuclide, is frequently omitted, bringing significant uncertainty in the radioimmunoconjugate preparation. In the present study, we explored the utility of reversed-phase (RPLC) and hydrophilic interaction (HILIC) liquid chromatography with UV detection to characterize ramucirumab stochastically conjugated with p-SCN-Bn-CHX-A"-DTPA chelator (shortly DTPA). The conjugation was well reflected in RPLC chromatograms, while chromatograms from HILIC were significantly less informative. RPLC analyses at the intact level confirmed that the conjugation resulted in a heterogeneous mixture of modified ramucirumab. Moreover, the RPLC of DTPA-ramucirumab confirmed heterogeneous conjugation of all subunits. The peptide mapping did not reveal substantial changes after the conjugation, indicating that most parts of ramucirumab molecules remained unmodified and that the DTPA chelator was bound to various sites. Eventually, the RPLC method for analysis of intact ramucirumab was successfully applied to online monitoring of conjugation reaction in 1 h intervals for a total of 24 h synthesis, which readily reflected the structural changes of ramucirumab in the form of retention time shift by 0.21 min and increase in peak width by 0.22 min. The results were obtained in real-time, practically under 10 min per monitoring cycle. To the best of our knowledge, our study represents the first evaluation of RPLC and HILIC to assess the quality of intermediates during the on-site preparation of radioimmunoconjugates prior to radiolabeling.
Collapse
Affiliation(s)
- Denis K Naplekov
- Charles University, Faculty of Pharmacy in Hradec Kralove, Department of Analytical Chemistry, Akademika Heyrovskeho 1203/8, 500 05 Hradec Kralove, Czech Republic
| | - Pavel Bárta
- Charles University, Faculty of Pharmacy in Hradec Kralove, Department of Biophysics and Physical Chemistry, Akademika Heyrovskeho 1203/8, 500 05 Hradec Kralove, Czech Republic
| | - František Trejtnar
- Charles University, Faculty of Pharmacy in Hradec Kralove, Department of Pharmacology and Toxicology, Akademika Heyrovskeho 1203/8, 500 05 Hradec Kralove, Czech Republic
| | - Hana Sklenářová
- Charles University, Faculty of Pharmacy in Hradec Kralove, Department of Analytical Chemistry, Akademika Heyrovskeho 1203/8, 500 05 Hradec Kralove, Czech Republic
| | - Juraj Lenčo
- Charles University, Faculty of Pharmacy in Hradec Kralove, Department of Analytical Chemistry, Akademika Heyrovskeho 1203/8, 500 05 Hradec Kralove, Czech Republic.
| |
Collapse
|
14
|
Martin KE, Mattocks JA, Śmiłowicz D, Aluicio-Sarduy E, Whetter JN, Engle JW, Cotruvo JA, Boros E. Radiolabeling and in vivo evaluation of lanmodulin with biomedically relevant lanthanide isotopes. RSC Chem Biol 2023; 4:414-421. [PMID: 37292057 PMCID: PMC10246553 DOI: 10.1039/d3cb00020f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 04/04/2023] [Indexed: 06/10/2023] Open
Abstract
Short-lived, radioactive lanthanides comprise an emerging class of radioisotopes attractive for biomedical imaging and therapy applications. To deliver such isotopes to target tissues, they must be appended to entities that target antigens overexpressed on the target cell's surface. However, the thermally sensitive nature of biomolecule-derived targeting vectors requires the incorporation of these isotopes without the use of denaturing temperatures or extreme pH conditions; chelating systems that can capture large radioisotopes under mild conditions are therefore highly desirable. Herein, we demonstrate the successful radiolabeling of the lanthanide-binding protein, lanmodulin (LanM), with medicinally relevant radioisotopes: 177Lu, 132/135La and 89Zr. Radiolabeling of the endogenous metal-binding sites of LanM, as well exogenous labeling of a protein-appended chelator, was successfully conducted at 25 °C and pH 7 with radiochemical yields ranging from 20-82%. The corresponding radiolabeled constructs possess good formulation stability in pH 7 MOPS buffer over 24 hours (>98%) in the presence of 2 equivalents of natLa carrier. In vivo experiments with [177Lu]-LanM, [132/135La]-LanM, and a prostate cancer targeting-vector linked conjugate, [132/135La]-LanM-PSMA, reveal that endogenously labeled constructs produce bone uptake in vivo. Exogenous, chelator-tag mediated radiolabeling to produce [89Zr]-DFO-LanM enables further study of the protein's in vivo behavior, demonstrating low bone and liver uptake, and renal clearance of the protein itself. While these results indicate that additional stabilization of LanM is required, this study establishes precedence for the radiochemical labeling of LanM with medically relevant lanthanide radioisotopes.
Collapse
Affiliation(s)
- Kirsten E Martin
- Department of Chemistry, Stony Brook University, Stony Brook New York 11794 USA
| | - Joseph A Mattocks
- Department of Chemistry, The Pennsylvania State University, University Park Pennsylvania 16802 USA
| | - Dariusz Śmiłowicz
- Department of Chemistry, Stony Brook University, Stony Brook New York 11794 USA
| | - Eduardo Aluicio-Sarduy
- Department of Medical Physics, University of Wisconsin Madison Wisconsin 53705 USA
- Department of Radiology, University of Wisconsin Madison Wisconsin 53705 USA
| | - Jennifer N Whetter
- Department of Chemistry, Stony Brook University, Stony Brook New York 11794 USA
| | - Jonathan W Engle
- Department of Medical Physics, University of Wisconsin Madison Wisconsin 53705 USA
- Department of Radiology, University of Wisconsin Madison Wisconsin 53705 USA
| | - Joseph A Cotruvo
- Department of Chemistry, The Pennsylvania State University, University Park Pennsylvania 16802 USA
| | - Eszter Boros
- Department of Chemistry, Stony Brook University, Stony Brook New York 11794 USA
| |
Collapse
|
15
|
Rong J, Haider A, Jeppesen TE, Josephson L, Liang SH. Radiochemistry for positron emission tomography. Nat Commun 2023; 14:3257. [PMID: 37277339 PMCID: PMC10241151 DOI: 10.1038/s41467-023-36377-4] [Citation(s) in RCA: 32] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 01/30/2023] [Indexed: 06/07/2023] Open
Abstract
Positron emission tomography (PET) constitutes a functional imaging technique that is harnessed to probe biological processes in vivo. PET imaging has been used to diagnose and monitor the progression of diseases, as well as to facilitate drug development efforts at both preclinical and clinical stages. The wide applications and rapid development of PET have ultimately led to an increasing demand for new methods in radiochemistry, with the aim to expand the scope of synthons amenable for radiolabeling. In this work, we provide an overview of commonly used chemical transformations for the syntheses of PET tracers in all aspects of radiochemistry, thereby highlighting recent breakthrough discoveries and contemporary challenges in the field. We discuss the use of biologicals for PET imaging and highlight general examples of successful probe discoveries for molecular imaging with PET - with a particular focus on translational and scalable radiochemistry concepts that have been entered to clinical use.
Collapse
Affiliation(s)
- Jian Rong
- Department of Radiology and Imaging Sciences, Emory University, 1364 Clifton Rd, Atlanta, GA, 30322, USA
- Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital & Department of Radiology, Harvard Medical School, Boston, MA, 02114, USA
| | - Ahmed Haider
- Department of Radiology and Imaging Sciences, Emory University, 1364 Clifton Rd, Atlanta, GA, 30322, USA
- Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital & Department of Radiology, Harvard Medical School, Boston, MA, 02114, USA
| | - Troels E Jeppesen
- Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital & Department of Radiology, Harvard Medical School, Boston, MA, 02114, USA
| | - Lee Josephson
- Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital & Department of Radiology, Harvard Medical School, Boston, MA, 02114, USA
| | - Steven H Liang
- Department of Radiology and Imaging Sciences, Emory University, 1364 Clifton Rd, Atlanta, GA, 30322, USA.
- Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital & Department of Radiology, Harvard Medical School, Boston, MA, 02114, USA.
| |
Collapse
|
16
|
Goel M, Mackeyev Y, Krishnan S. Radiolabeled nanomaterial for cancer diagnostics and therapeutics: principles and concepts. Cancer Nanotechnol 2023; 14:15. [PMID: 36865684 PMCID: PMC9968708 DOI: 10.1186/s12645-023-00165-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 02/13/2023] [Indexed: 03/01/2023] Open
Abstract
In the last three decades, radiopharmaceuticals have proven their effectiveness for cancer diagnosis and therapy. In parallel, the advances in nanotechnology have fueled a plethora of applications in biology and medicine. A convergence of these disciplines has emerged more recently with the advent of nanotechnology-aided radiopharmaceuticals. Capitalizing on the unique physical and functional properties of nanoparticles, radiolabeled nanomaterials or nano-radiopharmaceuticals have the potential to enhance imaging and therapy of human diseases. This article provides an overview of various radionuclides used in diagnostic, therapeutic, and theranostic applications, radionuclide production through different techniques, conventional radionuclide delivery systems, and advancements in the delivery systems for nanomaterials. The review also provides insights into fundamental concepts necessary to improve currently available radionuclide agents and formulate new nano-radiopharmaceuticals.
Collapse
Affiliation(s)
- Muskan Goel
- Amity School of Applied Sciences, Amity University, Gurugram, Haryana 122413 India
| | - Yuri Mackeyev
- Vivian L. Smith Department of Neurosurgery, University of Texas Health Science Center, Houston, TX 77030 USA
| | - Sunil Krishnan
- Vivian L. Smith Department of Neurosurgery, University of Texas Health Science Center, Houston, TX 77030 USA
| |
Collapse
|
17
|
Modern Developments in Bifunctional Chelator Design for Gallium Radiopharmaceuticals. MOLECULES (BASEL, SWITZERLAND) 2022; 28:molecules28010203. [PMID: 36615397 PMCID: PMC9822085 DOI: 10.3390/molecules28010203] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/19/2022] [Accepted: 12/19/2022] [Indexed: 12/28/2022]
Abstract
The positron-emitting radionuclide gallium-68 has become increasingly utilised in both preclinical and clinical settings with positron emission tomography (PET). The synthesis of radiochemically pure gallium-68 radiopharmaceuticals relies on careful consideration of the coordination chemistry. The short half-life of 68 min necessitates rapid quantitative radiolabelling (≤10 min). Desirable radiolabelling conditions include near-neutral pH, ambient temperatures, and low chelator concentrations to achieve the desired apparent molar activity. This review presents a broad overview of the requirements of an efficient bifunctional chelator in relation to the aqueous coordination chemistry of gallium. Developments in bifunctional chelator design and application are then presented and grouped according to eight categories of bifunctional chelator: the macrocyclic chelators DOTA and TACN; the acyclic HBED, pyridinecarboxylates, siderophores, tris(hydroxypyridinones), and DTPA; and the mesocyclic diazepines.
Collapse
|
18
|
Antibody-Based In Vivo Imaging of Central Nervous System Targets-Evaluation of a Pretargeting Approach Utilizing a TCO-Conjugated Brain Shuttle Antibody and Radiolabeled Tetrazines. Pharmaceuticals (Basel) 2022; 15:ph15121445. [PMID: 36558900 PMCID: PMC9787164 DOI: 10.3390/ph15121445] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Revised: 11/09/2022] [Accepted: 11/15/2022] [Indexed: 11/25/2022] Open
Abstract
Bioorthogonal pretargeted imaging using the inverse-electron-demand Diels-Alder (IEDDA) reaction between a tetrazine (Tz) and a trans-cyclooctene (TCO) represents an attractive strategy for molecular imaging via antibodies. The advantages of using a pretargeted imaging approach are on the one hand the possibility to achieve a high signal-to-noise ratio and imaging contrast; on the other hand, the method allows the uncoupling of the biological half-life of antibodies from the physical half-life of short-lived radionuclides. A brain-penetrating antibody (mAb) specific for β-amyloid (Aβ) plaques was functionalized with TCO moieties for pretargeted labeling of Aβ plaques in vitro, ex vivo, and in vivo by a tritium-labeled Tz. The overall aim was to explore the applicability of mAbs for brain imaging, using a preclinical model system. In vitro clicked mAb-TCO-Tz was able to pass the blood-brain barrier of transgenic PS2APP mice and specifically visualize Aβ plaques ex vivo. Further experiments showed that click reactivity of the mAb-TCO construct in vivo persisted up to 3 days after injection by labeling Aβ plaques ex vivo after incubation of brain sections with the Tz in vitro. An attempted in vivo click reaction between injected mAb-TCO and Tz did not lead to significant labeling of Aβ plaques, most probably due to unfavorable in vivo properties of the used Tz and a long half-life of the mAb-TCO in the blood stream. This study clearly demonstrates that pretargeted imaging of CNS targets via antibody-based click chemistry is a viable approach. Further experiments are warranted to optimize the balance between stability and reactivity of all reactants, particularly the Tz.
Collapse
|
19
|
Hull A, Li Y, Bartholomeusz D, Hsieh W, Tieu W, Pukala TL, Staudacher AH, Bezak E. Preliminary Development and Testing of C595 Radioimmunoconjugates for Targeting MUC1 Cancer Epitopes in Pancreatic Ductal Adenocarcinoma. Cells 2022; 11:cells11192983. [PMID: 36230945 PMCID: PMC9563759 DOI: 10.3390/cells11192983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 09/23/2022] [Indexed: 11/16/2022] Open
Abstract
Mucin 1 is a transmembrane glycoprotein which overexpresses cancer-specific epitopes (MUC1-CE) on pancreatic ductal adenocarcinoma (PDAC) cells. As PDAC is a low survival and highly aggressive malignancy, developing radioimmunoconjugates capable of targeting MUC1-CE could lead to improvements in PDAC outcomes. The aim of this study was to develop and perform preliminary testing of diagnostic and therapeutic radioimmunoconjugates for PDAC using an anti-MUC1 antibody, C595. Firstly, p-SCN-Bn-DOTA was conjugated to the C595 antibody to form a DOTA-C595 immunoconjugate. The stability and binding affinity of the DOTA-C595 conjugate was evaluated using mass spectrometry and ELISA. DOTA-C595 was radiolabelled to Copper-64, Lutetium-177, Gallium-68 and Technetium-99m to form novel radioimmunoconjugates. Cell binding assays were performed in PANC-1 (strong MUC1-CE expression) and AsPC-1 (weak MUC1-CE expression) cell lines using 64Cu-DOTA-C595 and 177Lu-DOTA-C595. An optimal molar ratio of 4:1 DOTA groups per C595 molecule was obtained from the conjugation process. DOTA-C595 labelled to Copper-64, Lutetium-177, and Technetium-99m with high efficiency, although the Gallium-68 labelling was low. 177Lu-DOTA-C595 demonstrated high cellular binding to the PANC-1 cell lines which was significantly greater than AsPC-1 binding at concentrations exceeding 100 nM (p < 0.05). 64Cu-DOTA-C595 showed similar binding to the PANC-1 and AsPC-1 cells with no significant differences observed between cell lines (p > 0.05). The high cellular binding of 177Lu-DOTA-C595 to MUC1-CE positive cell lines suggests promise as a therapeutic radioimmunoconjugate against PDAC while further work is required to harness the potential of 64Cu-DOTA-C595 as a diagnostic radioimmunoconjugate.
Collapse
Affiliation(s)
- Ashleigh Hull
- Allied Health and Human Performance Academic Unit, Cancer Research Institute, University of South Australia, Adelaide, SA 5001, Australia
- Department of PET, Nuclear Medicine & Bone Densitometry, Royal Adelaide Hospital, SA Medical Imaging, Adelaide, SA 5000, Australia
- Correspondence:
| | - Yanrui Li
- Allied Health and Human Performance Academic Unit, Cancer Research Institute, University of South Australia, Adelaide, SA 5001, Australia
| | - Dylan Bartholomeusz
- Department of PET, Nuclear Medicine & Bone Densitometry, Royal Adelaide Hospital, SA Medical Imaging, Adelaide, SA 5000, Australia
- Adelaide Medical School, The University of Adelaide, Adelaide, SA 5000, Australia
| | - William Hsieh
- Allied Health and Human Performance Academic Unit, Cancer Research Institute, University of South Australia, Adelaide, SA 5001, Australia
- Department of PET, Nuclear Medicine & Bone Densitometry, Royal Adelaide Hospital, SA Medical Imaging, Adelaide, SA 5000, Australia
| | - William Tieu
- Molecular Imaging and Therapy Research Unit, South Australian Health and Medical Research Institute, Adelaide, SA 5000, Australia
- School of Physical Sciences, The University of Adelaide, Adelaide, SA 5000, Australia
| | - Tara L. Pukala
- School of Physical Sciences, The University of Adelaide, Adelaide, SA 5000, Australia
| | - Alexander H. Staudacher
- Adelaide Medical School, The University of Adelaide, Adelaide, SA 5000, Australia
- Translational Oncology Laboratory, Centre for Cancer Biology, SA Pathology and University of South Australia, Adelaide, SA 5000, Australia
| | - Eva Bezak
- Allied Health and Human Performance Academic Unit, Cancer Research Institute, University of South Australia, Adelaide, SA 5001, Australia
- School of Physical Sciences, The University of Adelaide, Adelaide, SA 5000, Australia
| |
Collapse
|
20
|
Trastuzumab-conjugated oxine-based ligand for [ 89Zr]Zr 4+ immunoPET. J Inorg Biochem 2022; 235:111936. [PMID: 35878576 DOI: 10.1016/j.jinorgbio.2022.111936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 06/21/2022] [Accepted: 07/14/2022] [Indexed: 11/20/2022]
Abstract
A new, bifunctional chelating ligand for immuno-Positron Emission Tomography (PET) was designed, synthesized, and conjugated to Trastuzumab for a proof-of-concept study with 89Zr. H4neunox was synthesized from the tris(2-aminoethyl)amine backbone, decorated with 8-hydroxyquinoline moieties, and utilizes a primary amine for functionalization. A maleimide moiety extends the chelator to create H4neunox-mal for antibody conjugation via maleimide-thiol click chemistry. Preliminary 89Zr radiolabeling of H4neunox indicated quantitative radiolabeling at 1 × 10-5 M, but improved inertness towards human serum (96% intact at 7 d) and Fe3+ (92% intact at 24 h) compared to the previously synthesized H5decaox. The chelator was successfully conjugated to the monoclonal antibody, Trastuzumab, and used in preliminary radiolabeling reactions (37 °C, 2 h) with 89Zr. Radiochemical assessments of the new H4neunox-Trastuzumab conjugate include 89Zr radiolabeling, spin filter purification, cell-binding immunoreactivity, and in vivo PET imaging and biodistribution in SKOV-3 tumour bearing nude mice, performed in comparison with the desferrioxamine B analog, DFO-Trastuzumab. The [89Zr]Zr(neunox-Trastuzumab) showed lowered inertness towards serum (76% intact at 24 h) as well as demetallation in vivo through bone uptake (21% ID/g) in PET imaging and biodistribution studies when compared to [89Zr]Zr(DFO-Trastuzumab). Although the combination of the chelator and antibody had detrimental effects on their intended purposes, nonetheless, the primary amine platform of H4neunox developed here provides an oxine-based bifunctional ligand for further derivatizations with other targeting vectors.
Collapse
|
21
|
Menon SR, Mitra A, Chakraborty A, Tawate M, Sahu S, Rakshit S, Gaikwad S, Dhotre G, Damle A, Banerjee S. Clinical Dose Preparation of [ 177Lu]Lu-DOTA-Pertuzumab Using Medium Specific Activity [ 177Lu]LuCl 3 for Radioimmunotherapy of Breast and Epithelial Ovarian Cancers, with HER2 Receptor Overexpression. Cancer Biother Radiopharm 2022; 37:384-402. [PMID: 35575711 DOI: 10.1089/cbr.2021.0230] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Background: The overexpression of human epidermal growth factor receptor 2 (HER2) is commonly associated with metastatic breast cancer and epithelial ovarian cancer. The U.S. Food and Drug Administration (FDA) has approved Trastuzumab as an anti-HER2 agent for the metastatic breast and epithelial ovarian cancer. However, Trastuzumab has severe limitations in the treatment of metastatic breast cancer associated with ligand-dependent dimerization of HER2 receptor at the extracellular domain-II (ECD-II) region. The therapeutic approach in combination of pertuzumab and trastuzumab is found to be effective in preventing HER2 dimerization at the ECD-II region. The radioimmunotherapeutic approach, utilizing both these anti-HER2 agents (trastuzumab/pertuzumab), radiolabeled with [177Lu]Lu3+, has proved to be clinically efficacious with promising potential. Toward this, the formulation for clinical doses of [177Lu]Lu-DOTA-pertuzumab has been optimized using medium specific activity (0.81 GBq/μg) [177Lu]LuCl3. Materials and Methods: Preconcentrated pertuzumab was conjugated with p-NCS-benzyl-DOTA. Purified DOTA-benzyl-pertuzumab conjugate was radiolabeled with carrier-added [177Lu]LuCl3. Quality control parameters were evaluated for the [177Lu]Lu-DOTA-pertuzumab. In vivo biodistribution was carried out at different time points postadministration. Specific cell binding, immunoreactivity, and internalization were investigated by using SKOV3 and SKBR3 cells. Results: In this study, the authors reported a consistent and reproducible protocol for clinical dose formulations of [177Lu]Lu-DOTA-pertuzumab, with a radiochemical yield of 86.67% ± 1.03% and radiochemical purity (RCP) of 99.36% ± 0.36% (n = 10). Preclinical cell binding studies of [177Lu]Lu-DOTA-pertuzumab revealed specific binding with SKOV3 and SKBR3 cells up to 24.4% ± 1.4% and 23.2% ± 0.8%, respectively. The uptakes in SKOV3- and SKBR3-xenografted tumor in severe combined immunodeficiency mice were observed to be 25.9% ± 0.8% and 25.2% ± 1.2% ID/g at 48 and 120 h postinjection, respectively. Conclusions: A protocol was optimized for the preparation of ready-to-use clinical dose of [177Lu]Lu-DOTA-pertuzumab, in hospital radiopharmacy settings. The retention of RCP of the radiopharmaceutical, on storage in saline and serum, at -20°C, up to 120 h postradiolabeling, confirmed its in vitro stability.
Collapse
Affiliation(s)
- Sreeja Raj Menon
- Health Physics Division, Bhabha Atomic Research Centre, Mumbai, India.,Homi Bhabha National Institute, Mumbai, India
| | - Arpit Mitra
- Medical Cyclotron Facility, Board of Radiation and Isotope Technology, Mumbai, India
| | - Avik Chakraborty
- Homi Bhabha National Institute, Mumbai, India.,Radiation Medicine Centre, Bhabha Atomic Research Centre, Mumbai, India
| | - Megha Tawate
- Radiation Medicine Centre, Bhabha Atomic Research Centre, Mumbai, India
| | - Sudeep Sahu
- Radiation Medicine Centre, Bhabha Atomic Research Centre, Mumbai, India
| | - Sutapa Rakshit
- Radiation Medicine Centre, Bhabha Atomic Research Centre, Mumbai, India
| | - Sujay Gaikwad
- Homi Bhabha National Institute, Mumbai, India.,Radiation Medicine Centre, Bhabha Atomic Research Centre, Mumbai, India
| | - Geetanjali Dhotre
- Department of Chemical Sciences, Tata Institute of Fundamental Research, Mumbai, India
| | - Archana Damle
- Homi Bhabha National Institute, Mumbai, India.,Radiation Medicine Centre, Bhabha Atomic Research Centre, Mumbai, India
| | - Sharmila Banerjee
- Homi Bhabha National Institute, Mumbai, India.,Radiological Research Unit, Advance Centre for Treatment, Research and Education in Cancer, Tata Memorial Centre, Navi Mumbai, India
| |
Collapse
|
22
|
Harriswangler C, Caneda-Martínez L, Rousseaux O, Esteban-Gómez D, Fougère O, Pujales-Paradela R, Valencia L, Fernández MI, Lepareur N, Platas-Iglesias C. Versatile Macrocyclic Platform for the Complexation of [ natY/ 90Y]Yttrium and Lanthanide Ions. Inorg Chem 2022; 61:6209-6222. [PMID: 35418232 PMCID: PMC9044452 DOI: 10.1021/acs.inorgchem.2c00378] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Indexed: 11/29/2022]
Abstract
We report a macrocyclic ligand (H3L6) based on a 3,6,10,13-tetraaza-1,8(2,6)-dipyridinacyclotetradecaphane platform containing three acetate pendant arms and a benzyl group attached to the fourth nitrogen atom of the macrocycle. The X-ray structures of the YL6 and TbL6 complexes reveal nine coordination of the ligand to the metal ions through the six nitrogen atoms of the macrocycle and three oxygen atoms of the carboxylate pendants. A combination of NMR spectroscopic studies (1H, 13C, and 89Y) and DFT calculations indicated that the structure of the YL6 complex in the solid state is maintained in an aqueous solution. The detailed study of the emission spectra of the EuL6 and TbL6 complexes revealed Ln3+-centered emission with quantum yields of 7.0 and 60%, respectively. Emission lifetime measurements indicate that the ligand offers good protection of the metal ions from surrounding water molecules, preventing the coordination of water molecules. The YL6 complex is remarkably inert with respect to complex dissociation, with a lifetime of 1.7 h in 1 M HCl. On the other hand, complex formation is fast (∼1 min at pH 5.4, 2 × 10-5 M). Studies using the 90Y-nuclide confirmed fast radiolabeling since [90Y]YL6 is nearly quantitatively formed (radiochemical yield (RCY) > 95) in a short time over a broad range of pH values from ca. 2.4 to 9.0. Challenging experiments in the presence of excess ethylenediaminetetraacetic acid (EDTA) and in human serum revealed good stability of the [90Y]YL6 complex. All of these experiments combined suggest the potential application of H3L6 derivatives as Y-based radiopharmaceuticals.
Collapse
Affiliation(s)
- Charlene Harriswangler
- Centro
de Investigacións Científicas Avanzadas (CICA) and Departamento
de Química, Facultade de Ciencias, Universidade da Coruña, 15071 Galicia, A Coruña, Spain
| | - Laura Caneda-Martínez
- Centro
de Investigacións Científicas Avanzadas (CICA) and Departamento
de Química, Facultade de Ciencias, Universidade da Coruña, 15071 Galicia, A Coruña, Spain
| | - Olivier Rousseaux
- Groupe
Guerbet, Centre de Recherche d’Aulnay-sous-Bois, BP 57400, 95943 Roissy CdG Cedex, France
| | - David Esteban-Gómez
- Centro
de Investigacións Científicas Avanzadas (CICA) and Departamento
de Química, Facultade de Ciencias, Universidade da Coruña, 15071 Galicia, A Coruña, Spain
| | - Olivier Fougère
- Groupe
Guerbet, Centre de Recherche d’Aulnay-sous-Bois, BP 57400, 95943 Roissy CdG Cedex, France
| | - Rosa Pujales-Paradela
- Centro
de Investigacións Científicas Avanzadas (CICA) and Departamento
de Química, Facultade de Ciencias, Universidade da Coruña, 15071 Galicia, A Coruña, Spain
| | - Laura Valencia
- Departamento
de Química Inorgánica, Facultad de Ciencias, Universidade de Vigo, As Lagoas, Marcosende, 36310 Pontevedra, Spain
| | - M. Isabel Fernández
- Centro
de Investigacións Científicas Avanzadas (CICA) and Departamento
de Química, Facultade de Ciencias, Universidade da Coruña, 15071 Galicia, A Coruña, Spain
| | - Nicolas Lepareur
- Univ
Rennes, Centre Eugène Marquis, Inrae, Inserm, Institut NUMECAN
(Nutrition, Métabolismes et Cancer)—UMR_A 1341, UMR_S
1241, F-35000 Rennes, France
| | - Carlos Platas-Iglesias
- Centro
de Investigacións Científicas Avanzadas (CICA) and Departamento
de Química, Facultade de Ciencias, Universidade da Coruña, 15071 Galicia, A Coruña, Spain
| |
Collapse
|
23
|
Hu A, Wilson JJ. Advancing Chelation Strategies for Large Metal Ions for Nuclear Medicine Applications. Acc Chem Res 2022; 55:904-915. [PMID: 35230803 DOI: 10.1021/acs.accounts.2c00003] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Nuclear medicine leverages radioisotopes of a wide range of elements, a significant portion of which are metals, for the diagnosis and treatment of disease. To optimally use radioisotopes of the metal ions, or radiometals, for these applications, a chelator that efficiently forms thermodynamically and kinetically stable complexes with them is required. The chelator also needs to attach to a biological targeting vector that locates pathological tissues. Numerous chelators suitable for small radiometals have been established to date, but chelators that work well for large radiometals are significantly less common. In this Account, we describe recent progress by us and others in the advancement of ligands for large radiometal chelation with emerging applications in nuclear medicine.First, we discuss and analyze the coordination chemistry of the chelator macropa, a macrocyclic ligand that contains the 18-crown-6 backbone and two picolinate pendent arms, with large metal ions in the context of nuclear medicine. This ligand is known for its unusual reverse size selectivity, the preference for binding large over small metal ions. The radiolabeling properties of macropa with large radiometals 225Ac3+, 132/135La3+, 131Ba2+, 223Ra2+, 213Bi3+, and related in vivo investigations are described. The development of macropa derivatives containing different pendent donors or rigidifying groups in the macrocyclic core is also briefly reviewed.Next, efforts to transform macropa into a radiopharmaceutical agent via covalent conjugation to biological targeting vectors are summarized. In this discussion, two types of bifunctional analogues of macropa reported in the literature, macropa-NCS and mcp-click, are presented. Their implementation in different radiopharmaceutical agents is discussed. Bioconjugates containing macropa attached to small-molecule targeting vectors or macromolecular antibodies are presented. The in vitro and in vivo evaluations of these constructs are also discussed.Lastly, chelators with dual size selectivity are described. This class of ligands exhibits good affinities for both large and small metal ions. This property is valuable for nuclear medicine applications that require the simultaneous chelation of both large and small radiometals with complementary therapeutic and diagnostic properties. Recently, we reported an 18-membered macrocyclic ligand called macrodipa that attains this selectivity pattern. This chelator, its second-generation analogue py-macrodipa, and their applications for chelating the medicinally relevant large 135La3+, 225Ac3+, 213Bi3+, and small 44Sc3+ ions are also presented. Studies with these radiometals show that py-macrodipa can effectively radiolabel and stably retain both large and small radiometals. Overall, this Account makes the case for innovative ligand design approaches for novel emerging radiometal ions with unusual coordination chemistry properties.
Collapse
Affiliation(s)
- Aohan Hu
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Justin J. Wilson
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| |
Collapse
|
24
|
Vaughn BA, Loveless CS, Cingoranelli SJ, Schlyer D, Lapi SE, Boros E. Evaluation of 177Lu and 47Sc Picaga-Linked, Prostate-Specific Membrane Antigen-Targeting Constructs for Their Radiotherapeutic Efficacy and Dosimetry. Mol Pharm 2021; 18:4511-4519. [PMID: 34714082 DOI: 10.1021/acs.molpharmaceut.1c00711] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Lu-177-based, targeted radiotherapeutics/endoradiotherapies are an emerging clinical tool for the management of various cancers. The chelator 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA) remains the workhorse for such applications but can limit apparent molar activity or efficient charge modulation, which can impact target binding and, as a consequence, target efficacy. Previously, our lab had developed the small, rare earth selective bifunctional chelator, picaga, as an efficient bifunctional chelator for scandium and lutetium isotopes. Here, we assess the performance of these constructs for therapy in prostate-specific membrane antigen (PSMA)-expressing tumor xenografts. To assess the viability of picaga conjugates in conjunction with long in vivo circulation, a picaga conjugate functionalized with a serum albumin binding moiety, 177Lu-picaga-Alb53-PSMA, was also synthesized. A directly comparative, low, single 3.7 MBq dose treatment study with Lu-PSMA-617 was conducted. Treatment with 177Lu-picaga-Alb53-PSMA resulted in tumor regression and lengthened median survival (54 days) when compared with the vehicle (16 days), 47Sc-picaga-DUPA-, 177Lu-picaga-DUPA-, and 177Lu-PSMA-617-treated cohorts (21, 23, and 21 days, respectively).
Collapse
Affiliation(s)
- Brett A Vaughn
- Department of Chemistry, Stony Brook University, 100 Nicolls Road, Stony Brook, New York 11794, United States
| | - C Shaun Loveless
- Department of Radiology, University of Alabama at Birmingham, Birmingham, Alabama 35294, United States
| | - Shelbie J Cingoranelli
- Department of Radiology, University of Alabama at Birmingham, Birmingham, Alabama 35294, United States
| | - David Schlyer
- Brookhaven National Laboratory, Upton, New York 11973, United States.,Department of Biomedical Engineering, Stony Brook University, Stony Brook, New York 11794, United States
| | - Suzanne E Lapi
- Department of Radiology, University of Alabama at Birmingham, Birmingham, Alabama 35294, United States
| | - Eszter Boros
- Department of Chemistry, Stony Brook University, 100 Nicolls Road, Stony Brook, New York 11794, United States
| |
Collapse
|
25
|
Southcott L, Li L, Patrick BO, Stephan H, Jaraquemada-Peláez MDG, Orvig C. [ nat/89Zr][Zr(pypa)]: Thermodynamically Stable and Kinetically Inert Binary Nonadentate Complex for Radiopharmaceutical Applications. Inorg Chem 2021; 60:18082-18093. [PMID: 34788042 DOI: 10.1021/acs.inorgchem.1c02709] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
H4pypa is a nonadentate nonmacrocyclic chelator, which previously demonstrated high affinity for scandium-44, lutetium-177, and indium-111. Herein, we report the highly stable binary [Zr(pypa)] complex; the nonradioactive complex was synthesized and characterized in detail using high-resolution electrospray-ionization mass spectroscopy (HR-ESI-MS) and various nuclear magnetic resonance spectroscopies (NMR), which revealed C2v symmetry of the complex. The geometry of [Zr(pypa)] was further detailed via X-ray crystallography and compared with the structure of [Fe(Hpypa)]. Despite a slow complexation rate with an association half-life of 31.4 h at pH 2 and room temperature, the [Zr(pypa)] complex is thermodynamically stable (log KML = 38.92, pZr = 39.4). Radiochemical studies demonstrated quantitative radiolabeling achieved at 10 μM chelator concentration within 2 h at 40 °C and pH = 7, antibody-compatible conditions. Of the utmost importance, [89Zr][Zr(pypa)] is highly kinetically inert upon challenge with excess EDTA and DFO ligands, superior to [89Zr][Zr(DFO)]+, and maintains inertness toward human serum.
Collapse
Affiliation(s)
- Lily Southcott
- Medicinal Inorganic Chemistry Group, Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, British Columbia V6T 1Z1, Canada.,Life Sciences Division, TRIUMF, 4004 Wesbrook Mall, Vancouver, British Columbia V6T 2A3, Canada
| | - Lily Li
- Medicinal Inorganic Chemistry Group, Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, British Columbia V6T 1Z1, Canada.,Life Sciences Division, TRIUMF, 4004 Wesbrook Mall, Vancouver, British Columbia V6T 2A3, Canada
| | - Brian O Patrick
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, British Columbia V6T 1Z1, Canada
| | - Holger Stephan
- Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden─Rossendorf, P.O. Box 51 01 19, D-01314 Dresden, Germany
| | - María de Guadalupe Jaraquemada-Peláez
- Medicinal Inorganic Chemistry Group, Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, British Columbia V6T 1Z1, Canada
| | - Chris Orvig
- Medicinal Inorganic Chemistry Group, Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, British Columbia V6T 1Z1, Canada
| |
Collapse
|
26
|
Feiner IVJ, Longo B, Gómez-Vallejo V, Calvo J, Chomet M, Vugts DJ, Windhorst AD, Padro D, Zanda M, Rejc L, Llop J. Comparison of analytical methods for antibody conjugates with application in nuclear imaging - Report from the trenches. Nucl Med Biol 2021; 102-103:24-33. [PMID: 34492606 DOI: 10.1016/j.nucmedbio.2021.08.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 08/15/2021] [Indexed: 10/20/2022]
Abstract
INTRODUCTION Monoclonal antibodies (mAbs) are widely used in nuclear imaging. Radiolabelling with positron emitting radionuclides, typically radiometals, requires the incorporation of a bifunctional chelator for the formation of the radiometal-mAb complex. Additionally, mAbs can be conjugated with small molecules capable to undergo bioorthogonal click reactions in vivo, enabling pre-targeting strategies. The determination of the number of functionalities attached to the mAb is critically important to ensure a good labelling yield or to guarantee pre-targeting efficacy. In this work, we compare three different analytical methods for the assessment of average functionalisation and heterogeneity of the conjugated mAbs. METHODS Two selected mAbs (Trastuzumab and Bevacizumab) were randomly conjugated through lysine residues with 3-10 equivalents p-isothiocyanatobenzyl-desferrioxamine (p-NCS-Bz-DFO) or 20-200 equivalents trans-cyclooctene-N-hydroxysuccinimide ester (TCO-NHS). The DFO- or TCO-to-mAb ratio were determined using three different methods: direct titration (radiometric for DFO-conjugated mAbs, photometric for TCO-conjugated mAbs), MALDI/TOF MS mass analysis (Matrix-Assisted Laser Desorption-Ionization/Time of Flight Mass Spectrometry), and UPLC/ESI-TOF MS mass analysis (Ultra High Performance Liquid Chromatography/Electrospray Ionization-Time of Flight Mass Spectrometry). RESULTS Radiometric and photometric titrations provided information on the average number of DFO and TCO functionalities per mAb respectively. MALDI/TOF MS provided equivalent results to those obtained by titration, although investigation of the heterogeneity of the resulting mixture was challenging and inaccurate. UPLC/ESI-TOF MS resulted in good peak resolution in the case of DFO-conjugated mAbs, where an accurate discrimination of the contribution of mono-, di- and tri-substituted mAbs could be achieved by mathematical fitting of the spectra. However, UPLC/ESI-TOF MS was unable to discriminate between different conjugates when the smaller TCO moiety was attached to the mAbs. CONCLUSIONS The three techniques offered comparable results in terms of determining the average number of conjugates per mAb. Additionally, UPLC/ESI-TOF MS was able to shed a light on the heterogeneity of the resulting functionalised mAbs, especially in the case of DFO-conjugated mAbs. Finally, while using a single analytical method might not be a reliable way to determine the average functionalisation and assess the heterogeneity of the sample, a combination of these methods could substantially improve the characterization of mAb conjugates.
Collapse
Affiliation(s)
- Irene V J Feiner
- CIC biomaGUNE, Basque Research and Technology Alliance (BRTA), Paseo Miramon 182, 20014 San Sebastian, Spain
| | - Beatrice Longo
- Kosterlitz Centre for Therapeutics, University of Aberdeen, UK
| | - Vanessa Gómez-Vallejo
- CIC biomaGUNE, Basque Research and Technology Alliance (BRTA), Paseo Miramon 182, 20014 San Sebastian, Spain
| | - Javier Calvo
- CIC biomaGUNE, Basque Research and Technology Alliance (BRTA), Paseo Miramon 182, 20014 San Sebastian, Spain
| | - Marion Chomet
- Amsterdam UMC, VU University, Dept. of Radiology and Nuclear Medicine, De Boelelaan 1085c, 1117 HV Amsterdam, the Netherlands
| | - Danielle J Vugts
- Amsterdam UMC, VU University, Dept. of Radiology and Nuclear Medicine, De Boelelaan 1085c, 1117 HV Amsterdam, the Netherlands
| | - Albert D Windhorst
- Amsterdam UMC, VU University, Dept. of Radiology and Nuclear Medicine, De Boelelaan 1085c, 1117 HV Amsterdam, the Netherlands
| | - Daniel Padro
- CIC biomaGUNE, Basque Research and Technology Alliance (BRTA), Paseo Miramon 182, 20014 San Sebastian, Spain
| | - Matteo Zanda
- Kosterlitz Centre for Therapeutics, University of Aberdeen, UK; CNR-SCITEC, via Mancinelli 7, 20131 Milan, Italy
| | - Luka Rejc
- University of Ljubljana, Faculty of Chemistry and Chemical Technology, Večna pot 113, 1000 Ljubljana, Slovenia
| | - Jordi Llop
- CIC biomaGUNE, Basque Research and Technology Alliance (BRTA), Paseo Miramon 182, 20014 San Sebastian, Spain; Centro de Investigación Biomédica en Red - Enfermedades Respiratorias (CIBERES), Spain.
| |
Collapse
|
27
|
Yousuf I, Bashir M, Arjmand F, Tabassum S. Advancement of metal compounds as therapeutic and diagnostic metallodrugs: Current frontiers and future perspectives. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.214104] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
28
|
Antipin IS, Alfimov MV, Arslanov VV, Burilov VA, Vatsadze SZ, Voloshin YZ, Volcho KP, Gorbatchuk VV, Gorbunova YG, Gromov SP, Dudkin SV, Zaitsev SY, Zakharova LY, Ziganshin MA, Zolotukhina AV, Kalinina MA, Karakhanov EA, Kashapov RR, Koifman OI, Konovalov AI, Korenev VS, Maksimov AL, Mamardashvili NZ, Mamardashvili GM, Martynov AG, Mustafina AR, Nugmanov RI, Ovsyannikov AS, Padnya PL, Potapov AS, Selektor SL, Sokolov MN, Solovieva SE, Stoikov II, Stuzhin PA, Suslov EV, Ushakov EN, Fedin VP, Fedorenko SV, Fedorova OA, Fedorov YV, Chvalun SN, Tsivadze AY, Shtykov SN, Shurpik DN, Shcherbina MA, Yakimova LS. Functional supramolecular systems: design and applications. RUSSIAN CHEMICAL REVIEWS 2021. [DOI: 10.1070/rcr5011] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
29
|
Islam A, Pishesha N, Harmand TJ, Heston H, Woodham AW, Cheloha RW, Bousbaine D, Rashidian M, Ploegh HL. Converting an Anti-Mouse CD4 Monoclonal Antibody into an scFv Positron Emission Tomography Imaging Agent for Longitudinal Monitoring of CD4 + T Cells. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2021; 207:1468-1477. [PMID: 34408009 PMCID: PMC8387391 DOI: 10.4049/jimmunol.2100274] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 06/21/2021] [Indexed: 12/26/2022]
Abstract
Immuno-positron emission tomography (PET), a noninvasive imaging modality, can provide a dynamic approach for longitudinal assessment of cell populations of interest. Transformation of mAbs into single-chain variable fragment (scFv)-based PET imaging agents would allow noninvasive tracking in vivo of a wide range of possible targets. We used sortase-mediated enzymatic labeling in combination with PEGylation to develop an anti-mouse CD4 scFv-based PET imaging agent constructed from an anti-mouse CD4 mAb. This anti-CD4 scFv can monitor the in vivo distribution of CD4+ T cells by immuno-PET. We tracked CD4+ and CD8+ T cells in wild-type mice, in immunodeficient recipients reconstituted with monoclonal populations of OT-II and OT-I T cells, and in a B16 melanoma model. Anti-CD4 and -CD8 immuno-PET showed that the persistence of both CD4+ and CD8+ T cells transferred into immunodeficient mice improved when recipients were immunized with OVA in CFA. In tumor-bearing animals, infiltration of both CD4+ and CD8+ T cells increased as the tumor grew. The approach described in this study should be readily applicable to convert clinically useful Abs into the corresponding scFv PET imaging agents.
Collapse
Affiliation(s)
- Ashraful Islam
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA
- Department of Pediatrics, Harvard Medical School, Boston, MA
- Department of Clinical Medicine, UiT The Arctic University of Norway, Tromso, Norway
| | - Novalia Pishesha
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA
- Department of Pediatrics, Harvard Medical School, Boston, MA
- Society of Fellows, Harvard University, Cambridge, MA
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA
| | - Thibault J Harmand
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA
- Department of Pediatrics, Harvard Medical School, Boston, MA
| | - Hailey Heston
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA
- Department of Pediatrics, Harvard Medical School, Boston, MA
| | - Andrew W Woodham
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA
- Department of Pediatrics, Harvard Medical School, Boston, MA
| | - Ross W Cheloha
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA
- Department of Pediatrics, Harvard Medical School, Boston, MA
| | - Djenet Bousbaine
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA
- Microbiology Graduate Program, Massachusetts Institute of Technology, Cambridge, MA
| | - Mohammad Rashidian
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA; and
- Department of Radiology, Harvard Medical School, Boston, MA
| | - Hidde L Ploegh
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA;
- Department of Pediatrics, Harvard Medical School, Boston, MA
| |
Collapse
|
30
|
Sharma SK, Glaser JM, Edwards KJ, Sarbisheh EK, Salih AK, Lewis JS, Price EW. A Systematic Evaluation of Antibody Modification and 89Zr-Radiolabeling for Optimized Immuno-PET. Bioconjug Chem 2021; 32:1177-1191. [PMID: 32197571 PMCID: PMC9423892 DOI: 10.1021/acs.bioconjchem.0c00087] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Immuno-PET using desferrioxamine (DFO)-conjugated zirconium-89 ([89Zr]Zr4+)-labeled antibodies is a powerful tool used for preclinical and clinical molecular imaging. However, a comprehensive study evaluating the variables involved in DFO-conjugation and 89Zr-radiolabeling of antibodies and their impact on the in vitro and in vivo behavior of the resulting radioimmunoconjugates has not been adequately performed. Here, we synthesized different DFO-conjugates of the HER2-targeting antibody (Ab)-trastuzumab, dubbed T5, T10, T20, T60, and T200-to indicate the molar equivalents of DFO used for bioconjugation. Next we radiolabeled the immunoconjugates with ([89Zr]Zr4+) under a comprehensive set of reaction conditions including different buffers (PBS, chelexed-PBS, TRIS/HCl, HEPES; ± radioprotectants), different reaction volumes (0.1-1 mL), variable amounts of DFO-conjugated Ab (5, 25, 50 μg), and radioactivity (0.2-1.0 mCi; 7.4-37 MBq). We evaluated the effects of these variables on radiochemical yield (RCY), molar activity (Am)/specific activity (As), immunoreactive fraction, and ultimately the in vivo biodistribution profile and tumor targeting ability of the trastuzumab radioimmunoconjugates. We show that increasing the degree of DFO conjugation to trastuzumab increased the RCY (∼90%) and Am/As (∼194 MBq/nmol; 35 mCi/mg) but decreased the HER2-binding affinity (3.5×-4.6×) and the immunoreactive fraction of trastuzumab down to 50-64%, which translated to dramatically inferior in vivo performance of the radioimmunoconjugate. Cell-based immunoreactivity assays and standard binding affinity analyses using surface plasmon resonance (SPR) did not predict the poor in vivo performance of the most extreme T200 conjugate. However, SPR-based concentration free calibration analysis yielded active antibody concentration and was predictive of the in vivo trends. Positron emission tomography (PET) imaging and biodistribution studies in a HER2-positive xenograft model revealed activity concentrations of 38.7 ± 3.8 %ID/g in the tumor and 6.3 ± 4.1 %ID/g in the liver for ([89Zr]Zr4+)-T5 (∼1.4 ± 0.5 DFOs/Ab) at 120 h after injection of the radioimmunoconjugates. On the other hand, ([89Zr]Zr4+)-T200 (10.9 ± 0.7 DFOs/Ab) yielded 16.2 ± 3.2 %ID/g in the tumor versus 27.5 ± 4.1 %ID/g in the liver. Collectively, our findings suggest that synthesizing trastuzumab immunoconjugates bearing 1-3 DFOs per Ab (T5 and T10) combined with radiolabeling performed in low reaction volumes using Chelex treated PBS or HEPEs without a radioprotectant provided radioimmunoconjugates having high Am/As (97 MBq/nmol; 17.5 ± 2.2 mCi/mg), highly preserved immunoreactive fractions (86-93%), and favorable in vivo biodistribution profile with excellent tumor uptake.
Collapse
Affiliation(s)
- Sai Kiran Sharma
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Jonathan M. Glaser
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Kimberly J. Edwards
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | | | - Akam K. Salih
- Department of Chemistry, University of Saskatchewan, Saskatoon, SK, S7N-5C9, Canada
| | - Jason S. Lewis
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
- Radiochemistry and Molecular Imaging Probes Core, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
- Department of Pharmacology, Weill Cornell Medical College, New York, NY, 10065, USA
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
- Department of Radiology, Weill Cornell Medical College, New York, NY, 10065, USA
| | - Eric W. Price
- Department of Chemistry, University of Saskatchewan, Saskatoon, SK, S7N-5C9, Canada
| |
Collapse
|
31
|
Bubenshchikov VB, Larenkov AA, Kodina GE. Preparation of 89Zr Solutions for Radiopharmaceuticals Synthesis. RADIOCHEMISTRY 2021. [DOI: 10.1134/s1066362221030152] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
32
|
Bouleau A, Lebon V, Truillet C. PET imaging of immune checkpoint proteins in oncology. Pharmacol Ther 2021; 222:107786. [PMID: 33307142 DOI: 10.1016/j.pharmthera.2020.107786] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Accepted: 11/30/2020] [Indexed: 02/07/2023]
Abstract
Despite the remarkable clinical successes of immune checkpoint inhibitors (ICIs) in various advanced cancers, response is still limited to a subset of patients that generally exhibit tumoral expression of immune checkpoint (IC) proteins. Development of biomarkers assessing the expression of such ICs is therefore a major challenge nowadays to refine patient selection and improve therapeutic benefits. Positron emission tomography (PET) imaging using IC-targeted radiolabeled monoclonal antibodies (immunoPET) provides a non-invasive and whole-body visualization of in vivo IC biodistribution. As such, PET imaging of ICs may serve as a robust biomarker to predict and monitor responses to ICIs, complementing the existing immunohistochemical techniques. Besides monoclonal antibodies, other PET radioligand formats, ranging from antibody-derived fragments to small proteins, have gained increasing interest owing to their faster pharmacokinetics and enhanced imaging characteristics. We provide an overview of the various strategies investigated so far for PET imaging of ICs in preclinical and clinical studies, emphasizing their benefits and limitations. Moreover, we discuss various parameters to consider for designing optimized and best-suited PET radioligands.
Collapse
Affiliation(s)
- Alizée Bouleau
- Université Paris-Saclay, CEA, CNRS, Inserm, BioMaps, Service Hospitalier Frédéric Joliot, 4 place du Général Leclerc, 91401 ORSAY, France
| | - Vincent Lebon
- Université Paris-Saclay, CEA, CNRS, Inserm, BioMaps, Service Hospitalier Frédéric Joliot, 4 place du Général Leclerc, 91401 ORSAY, France
| | - Charles Truillet
- Université Paris-Saclay, CEA, CNRS, Inserm, BioMaps, Service Hospitalier Frédéric Joliot, 4 place du Général Leclerc, 91401 ORSAY, France.
| |
Collapse
|
33
|
Chomet M, van Dongen GAMS, Vugts DJ. State of the Art in Radiolabeling of Antibodies with Common and Uncommon Radiometals for Preclinical and Clinical Immuno-PET. Bioconjug Chem 2021; 32:1315-1330. [PMID: 33974403 PMCID: PMC8299458 DOI: 10.1021/acs.bioconjchem.1c00136] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
![]()
Inert
and stable radiolabeling of monoclonal antibodies (mAb),
antibody fragments, or antibody mimetics with radiometals is a prerequisite
for immuno-PET. While radiolabeling is preferably fast, mild, efficient,
and reproducible, especially when applied for human use in a current
Good Manufacturing Practice compliant way, it is crucial that the
obtained radioimmunoconjugate is stable and shows preserved immunoreactivity
and in vivo behavior. Radiometals and chelators have
extensively been evaluated to come to the most ideal radiometal–chelator
pair for each type of antibody derivative. Although PET imaging of
antibodies is a relatively recent tool, applications with 89Zr, 64Cu, and 68Ga have greatly increased in
recent years, especially in the clinical setting, while other less
common radionuclides such as 52Mn, 86Y, 66Ga, and 44Sc, but also 18F as in [18F]AlF are emerging promising candidates for the radiolabeling
of antibodies. This review presents a state of the art overview of
the practical aspects of radiolabeling of antibodies, ranging from
fast kinetic affibodies and nanobodies to slow kinetic intact mAbs.
Herein, we focus on the most common approach which consists of first
modification of the antibody with a chelator, and after eventual storage
of the premodified molecule, radiolabeling as a second step. Other
approaches are possible but have been excluded from this review. The
review includes recent and representative examples from the literature
highlighting which radiometal–chelator–antibody combinations
are the most successful for in vivo application.
Collapse
Affiliation(s)
- Marion Chomet
- Amsterdam UMC, Vrije Universiteit Amsterdam, Radiology & Nuclear Medicine, Cancer Center Amsterdam, De Boelelaan 1117, Amsterdam 1081 HV, The Netherlands
| | - Guus A M S van Dongen
- Amsterdam UMC, Vrije Universiteit Amsterdam, Radiology & Nuclear Medicine, Cancer Center Amsterdam, De Boelelaan 1117, Amsterdam 1081 HV, The Netherlands
| | - Danielle J Vugts
- Amsterdam UMC, Vrije Universiteit Amsterdam, Radiology & Nuclear Medicine, Cancer Center Amsterdam, De Boelelaan 1117, Amsterdam 1081 HV, The Netherlands
| |
Collapse
|
34
|
Herrero Álvarez N, Bauer D, Hernández-Gil J, Lewis JS. Recent Advances in Radiometals for Combined Imaging and Therapy in Cancer. ChemMedChem 2021; 16:2909-2941. [PMID: 33792195 DOI: 10.1002/cmdc.202100135] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Indexed: 12/14/2022]
Abstract
Nuclear medicine is defined as the use of radionuclides for diagnostic and therapeutic applications. The imaging modalities positron emission tomography (PET) and single-photon emission computed tomography (SPECT) are based on γ-emissions of specific energies. The therapeutic technologies are based on β- -particle-, α-particle-, and Auger electron emitters. In oncology, PET and SPECT are used to detect cancer lesions, to determine dosimetry, and to monitor therapy effectiveness. In contrast, radiotherapy is designed to irreparably damage tumor cells in order to eradicate or control the disease's progression. Radiometals are being explored for the development of diagnostic and therapeutic radiopharmaceuticals. Strategies that combine both modalities (diagnostic and therapeutic), referred to as theranostics, are promising candidates for clinical applications. This review provides an overview of the basic concepts behind therapeutic and diagnostic radiopharmaceuticals and their significance in contemporary oncology. Select radiometals that significantly impact current and upcoming cancer treatment strategies are grouped as clinically suitable theranostics pairs. The most important physical and chemical properties are discussed. Standard production methods and current radionuclide availability are provided to indicate whether a cost-efficient use in a clinical routine is feasible. Recent preclinical and clinical developments and outline perspectives for the radiometals are highlighted in each section.
Collapse
Affiliation(s)
- Natalia Herrero Álvarez
- Department of Radiology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, USA
| | - David Bauer
- Department of Radiology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, USA
| | - Javier Hernández-Gil
- Department of Radiology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, USA.,Biomedical MRI/MoSAIC, Department of Imaging and Pathology, Katholieke Universiteit, Herestraat 49, 3000, Leuven, Belgium
| | - Jason S Lewis
- Department of Radiology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, USA.,Department of Radiology, Weill Cornell Medical College, 1300 York Avenue, New York, NY, 10065, USA.,Department of Pharmacology, Weill-Cornell Medical College, New York, NY, 10065, USA
| |
Collapse
|
35
|
Saluja V, Mishra Y, Mishra V, Giri N, Nayak P. Dendrimers based cancer nanotheranostics: An overview. Int J Pharm 2021; 600:120485. [PMID: 33744447 DOI: 10.1016/j.ijpharm.2021.120485] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Revised: 02/26/2021] [Accepted: 03/09/2021] [Indexed: 12/12/2022]
Abstract
Cancer is a known deadliest disease that requires a judicious diagnostic, targeting, and treatment strategy for an early prognosis and selective therapy. The major pitfalls of the conventional approach are non-specificity in targeting, failure to precisely monitor therapy outcome, and cancer progression leading to malignancies. The unique physicochemical properties offered by nanotechnology derived nanocarriers have the potential to radically change the landscape of cancer diagnosis and therapeutic management. An integrative approach of utilizing both diagnostic and therapeutic functionality using a nanocarrier is termed as nanotheranostic. The nanotheranostics platform is designed in such a way that overcomes various biological barriers, efficiently targets the payload to the desired locus, and simultaneously supports planning, monitoring, and verification of treatment delivery to demonstrate an enhanced therapeutic efficacy. Thus, a nanotheranostic platform could potentially assist in drug targeting, image-guided focal therapy, drug release and distribution monitoring, predictionof treatment response, and patient stratification. A class of highly branched nanocarriers known as dendrimers is recognized as an advanced nanotheranostic platform that has the potential to revolutionize the oncology arena by its unique and exciting features. A dendrimer is a well-defined three-dimensional globular chemical architecture with a high level of monodispersity, amenability of precise size control, and surface functionalization. All the dendrimer properties exhibit a reproducible pharmacokinetic behavior that could ensure the desired biodistribution and efficacy. Dendrimers are thus being exploited as a nanotheranostic platform embodying a diverse class of therapeutic, imaging, and targeting moieties for cancer diagnosis and treatment.
Collapse
Affiliation(s)
- Vikrant Saluja
- Faculty of Pharmaceutical Sciences, PCTE Group of Institutes, Ludhiana, Punjab, India; School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, India
| | - Yachana Mishra
- Department of Zoology, Shri Shakti Degree College, Sankhahari, Ghatampur, Kanpur Nagar, Uttar Pradesh, India
| | - Vijay Mishra
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, India.
| | - Namita Giri
- College of Pharmacy, Ferris State University, Big Rapids, MI 49307, USA
| | - Pallavi Nayak
- Faculty of Pharmaceutical Sciences, PCTE Group of Institutes, Ludhiana, Punjab, India; School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, India
| |
Collapse
|
36
|
Harmand TJ, Islam A, Pishesha N, Ploegh HL. Nanobodies as in vivo, non-invasive, imaging agents. RSC Chem Biol 2021; 2:685-701. [PMID: 34212147 PMCID: PMC8190910 DOI: 10.1039/d1cb00023c] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 03/02/2021] [Indexed: 12/12/2022] Open
Abstract
In vivo imaging has become in recent years an incredible tool to study biological events and has found critical applications in diagnostic medicine. Although a lot of efforts and applications have been achieved using monoclonal antibodies, other types of delivery agents are being developed. Among them, VHHs, antigen binding fragments derived from camelid heavy chain-only antibodies, also known as nanobodies, have particularly attracted attention. Indeed, their stability, fast clearance, good tissue penetration, high solubility, simple cloning and recombinant production make them attractive targeting agents for imaging modalities such as PET, SPECT or Infra-Red. In this review, we discuss the pioneering work that has been carried out using VHHs and summarize the recent developments that have been made using nanobodies for in vivo, non-invasive, imaging.
Collapse
Affiliation(s)
- Thibault J Harmand
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Harvard Medical School Boston MA USA
| | - Ashraful Islam
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Harvard Medical School Boston MA USA
- Department of Clinical Medicine, UiT The Arctic University of Norway Tromso Norway
| | - Novalia Pishesha
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Harvard Medical School Boston MA USA
- Society of Fellows, Harvard University Cambridge MA USA
- Klarman Cell Observatory, Broad Institute of MIT and Harvard Cambridge MA USA
| | - Hidde L Ploegh
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Harvard Medical School Boston MA USA
| |
Collapse
|
37
|
Martin S, Maus S, Stemler T, Rosar F, Khreish F, Holland JP, Ezziddin S, Bartholomä MD. Proof-of-Concept Study of the NOTI Chelating Platform: Preclinical Evaluation of 64Cu-Labeled Mono- and Trimeric c(RGDfK) Conjugates. Mol Imaging Biol 2021; 23:95-108. [PMID: 32856224 PMCID: PMC7782405 DOI: 10.1007/s11307-020-01530-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 07/14/2020] [Accepted: 08/09/2020] [Indexed: 12/13/2022]
Abstract
PURPOSE We recently developed a chelating platform based on the macrocycle 1,4,7-triazacyclononane with up to three five-membered azaheterocyclic arms for the preparation of 68Ga- and 64Cu-based radiopharmaceuticals. Based on this platform, the chelator scaffold NOTI-TVA with three additional carboxylic acid groups for bioconjugation was synthesized and characterized. The primary aims of this proof-of-concept study were (1) to evaluate if trimeric radiotracers on the basis of the NOTI-TVA 6 scaffold can be developed, (2) to determine if the additional substituents for bioconjugation at the non-coordinating NH atoms of the imidazole residues of the building block NOTI influence the metal binding properties, and (3) what influence multiple targeting vectors have on the biological performance of the radiotracer. The cyclic RGDfK peptide that specifically binds to the αvß3 integrin receptor was selected as the biological model system. PROCEDURES Two different synthetic routes for the preparation of NOTI-TVA 6 were explored. Three c(RGDfK) peptide residues were conjugated to the NOTI-TVA 6 building block by standard peptide chemistry providing the trimeric bioconjugate NOTI-TVA-c(RGDfK)3 9. Labeling of 9 with [64Cu]CuCl2 was performed manually at pH 8.2 at ambient temperature. Binding affinities of Cu-8, the Cu2+ complex of the previously described monomer NODIA-Me-c(RGDfK) 8, and the trimer Cu-9 to integrin αvß3 were determined in competitive cell binding experiments in the U-87MG cell line. The pharmacokinetics of both 64Cu-labeled conjugates [64Cu]Cu-8 and [64Cu]Cu-9 were determined by small-animal PET imaging and ex vivo biodistribution studies in mice bearing U-87MG xenografts. RESULTS Depending on the synthetic route, NOTI-TVA 6 was obtained with an overall yield up to 58 %. The bioconjugate 9 was prepared in 41 % yield. Both conjugates [64Cu]Cu-8 and [64Cu]Cu-9 were radiolabeled quantitatively at ambient temperature in high molar activities of Am ~ 20 MBq nmol-1 in less than 5 min. Competitive inhibitory constants IC50 of c(RDGfK) 7, Cu-8, and Cu-9 were determined to be 159.5 ± 1.3 nM, 256.1 ± 2.1 nM, and 99.5 ± 1.1 nM, respectively. In small-animal experiments, both radiotracers specifically delineated αvß3 integrin-positive U-87MG tumors with low uptake in non-target organs and rapid blood clearance. The trimer [64Cu]Cu-9 showed a ~ 2.5-fold higher tumor uptake compared with the monomer [64Cu]Cu-8. CONCLUSIONS Functionalization of NOTI at the non-coordinating NH atoms of the imidazole residues for bioconjugation was straightforward and allowed the preparation of a homotrimeric RGD conjugate. After optimization of the synthesis, required building blocks to make NOTI-TVA 6 are now available on multi-gram scale. Modifications at the imidazole groups had no measurable impact on metal binding properties in vitro and in vivo suggesting that the NOTI scaffold is a promising candidate for the development of 64Cu-labeled multimeric/multifunctional radiotracers.
Collapse
Affiliation(s)
- Sebastian Martin
- Department of Nuclear Medicine, Saarland University - Medical Center, Kirrbergerstrasse, D-66421, Homburg, Germany
- Department of Nuclear Medicine and Molecular Imaging, Lausanne University Hospital, Rue de Bugnon 25A, CH-1011, Lausanne, Switzerland
| | - Stephan Maus
- Department of Nuclear Medicine, Saarland University - Medical Center, Kirrbergerstrasse, D-66421, Homburg, Germany
| | - Tobias Stemler
- Department of Nuclear Medicine, Saarland University - Medical Center, Kirrbergerstrasse, D-66421, Homburg, Germany
| | - Florian Rosar
- Department of Nuclear Medicine, Saarland University - Medical Center, Kirrbergerstrasse, D-66421, Homburg, Germany
| | - Fadi Khreish
- Department of Nuclear Medicine, Saarland University - Medical Center, Kirrbergerstrasse, D-66421, Homburg, Germany
| | - Jason P Holland
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, CH-8057, Zurich, Switzerland
| | - Samer Ezziddin
- Department of Nuclear Medicine, Saarland University - Medical Center, Kirrbergerstrasse, D-66421, Homburg, Germany
| | - Mark D Bartholomä
- Department of Nuclear Medicine, Saarland University - Medical Center, Kirrbergerstrasse, D-66421, Homburg, Germany.
- Department of Nuclear Medicine, University of Freiburg - Medical Center, Hugstetterstrasse 55, 79106, Freiburg, Germany.
| |
Collapse
|
38
|
Pellico J, Gawne PJ, T M de Rosales R. Radiolabelling of nanomaterials for medical imaging and therapy. Chem Soc Rev 2021; 50:3355-3423. [PMID: 33491714 DOI: 10.1039/d0cs00384k] [Citation(s) in RCA: 112] [Impact Index Per Article: 37.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Nanomaterials offer unique physical, chemical and biological properties of interest for medical imaging and therapy. Over the last two decades, there has been an increasing effort to translate nanomaterial-based medicinal products (so-called nanomedicines) into clinical practice and, although multiple nanoparticle-based formulations are clinically available, there is still a disparity between the number of pre-clinical products and those that reach clinical approval. To facilitate the efficient clinical translation of nanomedicinal-drugs, it is important to study their whole-body biodistribution and pharmacokinetics from the early stages of their development. Integrating this knowledge with that of their therapeutic profile and/or toxicity should provide a powerful combination to efficiently inform nanomedicine trials and allow early selection of the most promising candidates. In this context, radiolabelling nanomaterials allows whole-body and non-invasive in vivo tracking by the sensitive clinical imaging techniques positron emission tomography (PET), and single photon emission computed tomography (SPECT). Furthermore, certain radionuclides with specific nuclear emissions can elicit therapeutic effects by themselves, leading to radionuclide-based therapy. To ensure robust information during the development of nanomaterials for PET/SPECT imaging and/or radionuclide therapy, selection of the most appropriate radiolabelling method and knowledge of its limitations are critical. Different radiolabelling strategies are available depending on the type of material, the radionuclide and/or the final application. In this review we describe the different radiolabelling strategies currently available, with a critical vision over their advantages and disadvantages. The final aim is to review the most relevant and up-to-date knowledge available in this field, and support the efficient clinical translation of future nanomedicinal products for in vivo imaging and/or therapy.
Collapse
Affiliation(s)
- Juan Pellico
- School of Biomedical Engineering & Imaging Sciences, King's College London, St. Thomas' Hospital, London SE1 7EH, UK.
| | | | | |
Collapse
|
39
|
PET Radiochemistry. Mol Imaging 2021. [DOI: 10.1016/b978-0-12-816386-3.00027-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
40
|
Research progress of 18F labeled small molecule positron emission tomography (PET) imaging agents. Eur J Med Chem 2020; 205:112629. [PMID: 32956956 DOI: 10.1016/j.ejmech.2020.112629] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Revised: 06/07/2020] [Accepted: 06/28/2020] [Indexed: 01/12/2023]
Abstract
With the development of positron emission tomography (PET) technology, a variety of PET imaging agents labeled with radionuclide 18F have been developed and widely used in the diagnosis and treatment of various clinical diseases in recent years. For example, they have showed a great value of study in the field of tumor detection, tumor treatment and evaluation of tumor therapy in a non-invasive, qualitative and quantitative way. In this review, we highlight the recent development in chemical synthesis, structure and characterization, imaging characterization, and potential applications of these 18F labeled small molecule PET imaging agents for the past five years. The development and application of 18F labeled small molecules will expand our knowledge of the function and distribution of diseases-related molecular targets and shed light on the diagnosis and treatment of various diseases including tumors.
Collapse
|
41
|
Bolzati C, Duatti A. The emerging value of 64Cu for molecular imaging and therapy. THE QUARTERLY JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING : OFFICIAL PUBLICATION OF THE ITALIAN ASSOCIATION OF NUCLEAR MEDICINE (AIMN) [AND] THE INTERNATIONAL ASSOCIATION OF RADIOPHARMACOLOGY (IAR), [AND] SECTION OF THE SOCIETY OF RADIOPHARMACEUTICAL CHEMISTRY AND BIOLOGY 2020; 64:329-337. [PMID: 33026210 DOI: 10.23736/s1824-4785.20.03292-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Along with other novel metallic radionuclides, copper-64 (64Cu) is currently being investigated as an alternative option to the gallium-68 (68Ga) and lutetium-177 (177Lu) radiopharmaceuticals widely used for targeting somatostatin receptors, expressed by neuroendocrine tumors (NETs), and recently prostate specific membrane antigen (PSMA), expressed by prostate cancer cells. This interest is mostly driven by the peculiar nuclear properties of 64Cu that make it an almost ideal example of theranostic radionuclide. In fact, 64Cu emits both low-energy positrons, β- particles and a swarm of Auger electrons. This combination of different emissions may allow to collect high-resolution PET images, but also to use the same radiopharmaceutical for eliciting a therapeutic effect. Another unique behavior of 64Cu originates from the fundamental biological role played in organisms by the ionic forms of the copper element, which is naturally involved in a multitude of cellular processes including cell replication. These intrinsic biological characteristics has led to the discovery that 64Cu, under its simplest dicationic form Cu2+, is able to specifically target a variety of cancerous cells and to detect the onset of a metastatic process in its initial stage. This short review reports an outline of the status of 64Cu radiopharmaceuticals and of the most relevant results that are constantly disclosed by preclinical and investigational clinical studies.
Collapse
Affiliation(s)
| | - Adriano Duatti
- Department of Chemical and Pharmaceutical Sciences, University of Ferrara, Ferrara, Italy -
| |
Collapse
|
42
|
Joaqui-Joaqui MA, Pandey MK, Bansal A, Raju MVR, Armstrong-Pavlik F, Dundar A, Wong HL, DeGrado TR, Pierre VC. Catechol-Based Functionalizable Ligands for Gallium-68 Positron Emission Tomography Imaging. Inorg Chem 2020; 59:12025-12038. [DOI: 10.1021/acs.inorgchem.0c00975] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- M. Andrey Joaqui-Joaqui
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Mukesh K. Pandey
- Department of Radiology, Mayo Clinic, Rochester, Minnesota 55905, United States
| | - Aditya Bansal
- Department of Radiology, Mayo Clinic, Rochester, Minnesota 55905, United States
| | | | - Fiona Armstrong-Pavlik
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Ayca Dundar
- Department of Radiology, Mayo Clinic, Rochester, Minnesota 55905, United States
| | - Henry L. Wong
- Department of Medicinal Chemistry and Institute for Therapeutics Discovery & Development, University of Minnesota, Minneapolis, Minnesota 55414, United States
| | - Timothy R. DeGrado
- Department of Radiology, Mayo Clinic, Rochester, Minnesota 55905, United States
| | - Valérie C. Pierre
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
43
|
Brandt M, Cowell J, Aulsebrook ML, Gasser G, Mindt TL. Radiolabelling of the octadentate chelators DFO* and oxoDFO* with zirconium-89 and gallium-68. J Biol Inorg Chem 2020; 25:789-796. [PMID: 32661784 DOI: 10.1007/s00775-020-01800-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 07/06/2020] [Indexed: 01/20/2023]
Abstract
In recent years, clinical imaging with zirconium-89 (89Zr)-labelled monoclonal antibodies (Ab) by positron emission tomography (immunoPET) has been gaining significant importance in nuclear medicine for the diagnosis of different types of cancer. For complexation of the radiometal 89Zr and its attachment to the Ab, chelating agents are required. To date, only the hexadentate chelator desferrioxamine (DFO) is applied in the clinic for this purpose. However, there is increasing preclinical evidence that the [89Zr]Zr-DFO complex is not sufficiently stable and partly releases the radiometal in vivo due to the incomplete coordination sphere of the metal. This leads to unfavourable unspecific uptake of the osteophilic radiometal in bones, hence decreasing the signal-to-noise-ratio and leading to an increased dose to the patient. In the past, several new chelators with denticities > 6 have been published, notably the octadentate DFO derivative DFO*. DFO*, however, shows limited water solubility, wherefore an oxygen containing analogue, termed oxoDFO*, was developed in 2017. However, no data on the suitability of oxoDFO* for radiolabelling with 89Zr has yet been reported. In this proof-of-concept study, we present the first radiolabelling results of the octadentate, water-soluble chelator oxoDFO*, as well as the in vitro stability of the resulting complex [89Zr]Zr-oxoDFO* in comparison to the analogous octadentate, but less water-soluble derivative DFO* and the current "standard" chelator DFO. In addition, the suitability of DFO* and oxoDFO* for radiolabeling with the short-lived PET metal gallium-68 is discussed. The water-soluble, octadentate chelator oxoDFO* provides stable complexes with the positron emitter Zirconium-89. The radiolabelling can be performed at room temperature and neutral pH and thus, oxoDFO* represents a promising chelator for applications in immunoPET.
Collapse
Affiliation(s)
- Marie Brandt
- Ludwig Boltzmann Institute Applied Diagnostics, General Hospital of Vienna, Währinger Gürtel 18-20, 1090, Vienna, Austria.,Department of Biomedical Imaging and Image Guided Therapy, Division of Nuclear Medicine, Medical University of Vienna, Währinger Gürtel 18-20, 1090, Vienna, Austria
| | - Joseph Cowell
- Laboratory for Inorganic Chemical Biology, Chimie ParisTech, PSL University, CNRS, Institute of Chemistry for Life and Health Sciences, 75005, Paris, France
| | - Margaret L Aulsebrook
- Laboratory for Inorganic Chemical Biology, Chimie ParisTech, PSL University, CNRS, Institute of Chemistry for Life and Health Sciences, 75005, Paris, France
| | - Gilles Gasser
- Laboratory for Inorganic Chemical Biology, Chimie ParisTech, PSL University, CNRS, Institute of Chemistry for Life and Health Sciences, 75005, Paris, France.
| | - Thomas L Mindt
- Ludwig Boltzmann Institute Applied Diagnostics, General Hospital of Vienna, Währinger Gürtel 18-20, 1090, Vienna, Austria. .,Department of Biomedical Imaging and Image Guided Therapy, Division of Nuclear Medicine, Medical University of Vienna, Währinger Gürtel 18-20, 1090, Vienna, Austria. .,Department of Chemistry, Institute of Inorganic Chemistry, University of Vienna, Währinger Straße 42, 1090, Vienna, Austria.
| |
Collapse
|
44
|
Li L, de Guadalupe Jaraquemada-Peláez M, Aluicio-Sarduy E, Wang X, Barnhart TE, Cai W, Radchenko V, Schaffer P, Engle JW, Orvig C. Coordination chemistry of [Y(pypa)] - and comparison immuno-PET imaging of [ 44Sc]Sc- and [ 86Y]Y-pypa-phenyl-TRC105. Dalton Trans 2020; 49:5547-5562. [PMID: 32270167 PMCID: PMC7222037 DOI: 10.1039/d0dt00437e] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Both scandium-44 and yttrium-86 are popular PET isotopes with appropriate half-lives for immuno-positron emission tomography (immuno-PET) imaging. Herein, a new bifunctional H4pypa ligand, H4pypa-phenyl-NCS, is synthesized, conjugated to a monoclonal antibody, TRC105, and labeled with both radionuclides to investigate the long-term in vivo stability of each complex. While the 44Sc-labeled radiotracer exhibited promising pharmacokinetics and stability in 4T1-xenograft mice (n = 3) even upon prolonged interactions with blood serum proteins, the progressive bone uptake of the 86Y-counterpart indicated in vivo demetallation, obviating H4pypa as a suitable chelator for Y3+ ion in vivo. The solution chemistry of [natY(pypa)]- was studied in detail and the complex found to be thermodynamically stable in solution with a pM value 22.0, ≥3 units higher than those of the analogous DOTA- and CHX-A''-DTPA-complexes; the 86Y-result in vivo was therefore most unexpected. To explore further this in vivo lability, Density Functional Theory (DFT) calculation was performed to predict the geometry of [Y(pypa)]- and the results were compared with those for the analogous Sc- and Lu-complexes; all three adopted the same coordination geometry (i.e. distorted capped square antiprism), but the metal-ligand bonds were much longer in [Y(pypa)]- than in [Lu(pypa)]- and [Sc(pypa)]-, which could indicate that the size of the binding cavity is too small for the Y3+ ion, but suitable for both the Lu3+ and Sc3+ ions. Considered along with results from [86Y][Y(pypa-phenyl-TRC105)], it is noted that when matching chelators with radionuclides, chemical data such as the thermodynamic stability and in vitro inertness, albeit useful and necessary, do not always translate to in vivo inertness, especially with the prolonged blood circulation of the radiotracer bound to a monoclonal antibody. Although H4pypa is a nonadentate chelator, which theoretically matches the coordination number of the Y3+ ion, we show herein that its binding cavity, in fact, favors smaller metal ions such as Sc3+ and Lu3+ and further exploitation of the Sc-pypa combination is desired.
Collapse
Affiliation(s)
- Lily Li
- Medicinal Inorganic Chemistry Group, Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, British Columbia V6T 1Z1, Canada.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Li L, Rousseau J, Jaraquemada-Peláez MDG, Wang X, Robertson A, Radchenko V, Schaffer P, Lin KS, Bénard F, Orvig C. 225Ac-H 4py4pa for Targeted Alpha Therapy. Bioconjug Chem 2020; 32:1348-1363. [PMID: 32216377 DOI: 10.1021/acs.bioconjchem.0c00171] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Herein, we present the syntheses and characterization of a new undecadendate chelator, H4py4pa, and its bifunctional analog H4py4pa-phenyl-NCS, conjugated to the monoclonal antibody, Trastuzumab, which targets the HER2+ cancer. H4py4pa possesses excellent affinity for 225Ac (α, t1/2 = 9.92 d) for targeted alpha therapy (TAT), where quantitative radiolabeling yield was achieved at ambient temperature, pH = 7, in 30 min at 10-6 M chelator concentration, leading to a complex highly stable in mouse serum for at least 9 d. To investigate the chelation of H4py4pa with large metal ions, lanthanum (La3+), which is the largest nonradioactive metal of the lanthanide series, was adopted as a surrogate for 225Ac to enable a series of nonradioactive chemical studies. In line with the 1H NMR spectrum, the DFT (density functional theory)-calculated structure of the [La(py4pa)]- anion possessed a high degree of symmetry, and the La3+ ion was secured by two distinct pairs of picolinate arms. Furthermore, the [La(py4pa)]- complex also demonstrated a superb thermodynamic stability (log K[La(py4pa)]- ∼ 20.33, pLa = 21.0) compared to those of DOTA (log K[La(DOTA)]- ∼ 24.25, pLa = 19.2) or H2macropa (log K[La(macropa)]- = 14.99, pLa ∼ 8.5). Moreover, the functional versatility offered by the bifunctional py4pa precursor permits facile incorporation of various linkers for bioconjugation through direct nucleophilic substitution. In this work, a short phenyl-NCS linker was incorporated to tether H4py4pa to Trastuzumab. Radiolabeling studies, in vitro serum stability, and animal studies were performed in parallel with the DOTA-benzyl-Trastuzumab. Both displayed excellent in vivo stability and tumor specificity.
Collapse
Affiliation(s)
- Lily Li
- Medicinal Inorganic Chemistry Group, Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, British Columbia V6T 1Z1, Canada.,Life Sciences Division, TRIUMF, 4004 Wesbrook Mall, Vancouver, British Columbia V6T 2A3, Canada
| | - Julie Rousseau
- Department of Molecular Oncology, BC Cancer, 675 West 10th Avenue, Vancouver, British Columbia V5Z 1L3, Canada
| | - María de Guadalupe Jaraquemada-Peláez
- Medicinal Inorganic Chemistry Group, Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, British Columbia V6T 1Z1, Canada
| | - Xiaozhu Wang
- Medicinal Inorganic Chemistry Group, Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, British Columbia V6T 1Z1, Canada
| | - Andrew Robertson
- Life Sciences Division, TRIUMF, 4004 Wesbrook Mall, Vancouver, British Columbia V6T 2A3, Canada.,Department of Physics and Astronomy, University of British Columbia, 325-6224 Agricultural Road, Vancouver, British Columbia V6T 1Z1, Canada
| | - Valery Radchenko
- Life Sciences Division, TRIUMF, 4004 Wesbrook Mall, Vancouver, British Columbia V6T 2A3, Canada.,Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, British Columbia V6T 1Z1, Canada
| | - Paul Schaffer
- Life Sciences Division, TRIUMF, 4004 Wesbrook Mall, Vancouver, British Columbia V6T 2A3, Canada.,Department of Radiology, University of British Columbia, 2775 Laurel Street, Vancouver, British Columbia V5Z 1M9, Canada.,Department of Chemistry, Simon Fraser University, 8888 University Drive, Burnaby, British Columbia V5A 1S6, Canada
| | - Kuo-Shyan Lin
- Department of Molecular Oncology, BC Cancer, 675 West 10th Avenue, Vancouver, British Columbia V5Z 1L3, Canada
| | - François Bénard
- Department of Molecular Oncology, BC Cancer, 675 West 10th Avenue, Vancouver, British Columbia V5Z 1L3, Canada
| | - Chris Orvig
- Medicinal Inorganic Chemistry Group, Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, British Columbia V6T 1Z1, Canada
| |
Collapse
|
46
|
Rangger C, Haubner R. Radiolabelled Peptides for Positron Emission Tomography and Endoradiotherapy in Oncology. Pharmaceuticals (Basel) 2020; 13:E22. [PMID: 32019275 PMCID: PMC7169460 DOI: 10.3390/ph13020022] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 01/14/2020] [Accepted: 01/16/2020] [Indexed: 02/07/2023] Open
Abstract
This review deals with the development of peptide-based radiopharmaceuticals for the use with positron emission tomography and peptide receptor radiotherapy. It discusses the pros and cons of this class of radiopharmaceuticals as well as the different labelling strategies, and summarises approaches to optimise metabolic stability. Additionally, it presents different target structures and addresses corresponding tracers, which are already used in clinical routine or are being investigated in clinical trials.
Collapse
Affiliation(s)
| | - Roland Haubner
- Department of Nuclear Medicine, Medical University of Innsbruck, Anichstrasse 35, 6020 Innsbruck, Austria;
| |
Collapse
|
47
|
Li L, Jaraquemada-Peláez MDG, Aluicio-Sarduy E, Wang X, Jiang D, Sakheie M, Kuo HT, Barnhart TE, Cai W, Radchenko V, Schaffer P, Lin KS, Engle JW, Bénard F, Orvig C. [ nat/44Sc(pypa)] -: Thermodynamic Stability, Radiolabeling, and Biodistribution of a Prostate-Specific-Membrane-Antigen-Targeting Conjugate. Inorg Chem 2020; 59:1985-1995. [PMID: 31976659 DOI: 10.1021/acs.inorgchem.9b03347] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
44Sc is an attractive positron-emitting radionuclide for PET imaging; herein, a new complex of the Sc3+ ion with nonmacrocyclic chelator H4pypa was synthesized and characterized with high-resolution electrospray-ionization mass spectrometry (HR-ESI-MS), as well as different nuclear magnetic resonance (NMR) spectroscopic techniques (1H, 13C, 1H-13C HSQC, 1H-13C HMBC, COSY, and NOESY). In aqueous solution (pH = 7), [Sc(pypa)]- presented two isomeric forms, the structures of which were predicted using density functional theory (DFT) calculation with a small energy difference of 22.4 kJ/mol, explaining their coexistence. [Sc(pypa)]- was found to have superior thermodynamic stability (pM = 27.1) compared to [Sc(AAZTA)]- (24.7) and [Sc(DOTA)]- (23.9). In radiolabeling, [44Sc][Sc(pypa)]- formed efficiently at RT in 15 min over a range of pH (2-5.5), resulting in a complex that is highly stable (>99%) in mouse serum over at least six half-lives of scandium-44. Similar labeling efficiency was observed with the PSMA (prostate-specific membrane antigen)-targeting H4pypa-C7-PSMA617 at pH = 5.5 (RT, 15 min), confirming negligible disturbance from the bifunctionalization on scandium-44 scavenging. Moreover, the kinetic inertness of the radiocomplex was proved in vivo. Surprisingly, the molar activity was found to have profound influence on the pharmacokinetics of the radiotracers where lower molar activity drastically reduced the background accumulations, particularly, kidney, and thus, yielded a much higher tumor-to-background contrast.
Collapse
Affiliation(s)
- Lily Li
- Life Sciences Division , TRIUMF , 4004 Wesbrook Mall , Vancouver , British Columbia V6T 2A3 , Canada
| | | | - Eduardo Aluicio-Sarduy
- Department of Medical Physics , University of Wisconsin-Madison , Madison , Wisconsin 53705 , United States
| | | | - Dawei Jiang
- Department of Medical Physics , University of Wisconsin-Madison , Madison , Wisconsin 53705 , United States
| | - Meelad Sakheie
- Life Sciences Division , TRIUMF , 4004 Wesbrook Mall , Vancouver , British Columbia V6T 2A3 , Canada
| | - Hsiou-Ting Kuo
- Department of Molecular Oncology , BC Cancer , 675 West 10th Ave , Vancouver , British Columbia V5Z 1L3 , Canada
| | - Todd E Barnhart
- Department of Medical Physics , University of Wisconsin-Madison , Madison , Wisconsin 53705 , United States
| | - Weibo Cai
- Department of Medical Physics , University of Wisconsin-Madison , Madison , Wisconsin 53705 , United States
| | - Valery Radchenko
- Life Sciences Division , TRIUMF , 4004 Wesbrook Mall , Vancouver , British Columbia V6T 2A3 , Canada
| | - Paul Schaffer
- Life Sciences Division , TRIUMF , 4004 Wesbrook Mall , Vancouver , British Columbia V6T 2A3 , Canada
| | - Kuo-Shyan Lin
- Department of Molecular Oncology , BC Cancer , 675 West 10th Ave , Vancouver , British Columbia V5Z 1L3 , Canada
| | - Jonathan W Engle
- Department of Medical Physics , University of Wisconsin-Madison , Madison , Wisconsin 53705 , United States
| | - François Bénard
- Department of Molecular Oncology , BC Cancer , 675 West 10th Ave , Vancouver , British Columbia V5Z 1L3 , Canada
| | | |
Collapse
|
48
|
Zaibaq NG, Pollard AC, Collins MJ, Pisaneschi F, Pagel MD, Wilson LJ. Evaluation of the Biodistribution of Serinolamide-Derivatized C 60 Fullerene. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E143. [PMID: 31941058 PMCID: PMC7023239 DOI: 10.3390/nano10010143] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 12/31/2019] [Accepted: 01/08/2020] [Indexed: 12/12/2022]
Abstract
Carbon nanoparticles have consistently been of great interest in medicine. However, there are currently no clinical materials based on carbon nanoparticles, due to inconsistent biodistribution and excretion data. In this work, we have synthesized a novel C60 derivative with a metal chelating agent (1,4,7-Triazacyclononane-1,4,7-triacetic acid; NOTA) covalently bound to the C60 cage and radiolabeled with copper-64 (t1/2 = 12.7 h). Biodistribution of the material was assessed in vivo using positron emission tomography (PET). Bingel-Hirsch chemistry was employed to functionalize the fullerene cage with highly water-soluble serinolamide groups allowing this new C60 conjugate to clear quickly from mice almost exclusively through the kidneys. Comparing the present results to the larger context of reports of biocompatible fullerene derivatives, this work offers an important evaluation of the in vivo biodistribution, using experimental evidence to establish functionalization guidelines for future C60-based biomedical platforms.
Collapse
Affiliation(s)
- Nicholas G. Zaibaq
- Department of Chemistry and Smalley-Curl Institute, Rice University, 6100 Main St, Houston, TX 77005, USA; (N.G.Z.); (A.C.P.); (M.J.C.)
| | - Alyssa C. Pollard
- Department of Chemistry and Smalley-Curl Institute, Rice University, 6100 Main St, Houston, TX 77005, USA; (N.G.Z.); (A.C.P.); (M.J.C.)
- Department of Cancer Systems Imaging, MD Anderson Cancer Center, 1881 East Rd, Houston, TX 77054, USA;
| | - Michael J. Collins
- Department of Chemistry and Smalley-Curl Institute, Rice University, 6100 Main St, Houston, TX 77005, USA; (N.G.Z.); (A.C.P.); (M.J.C.)
| | - Federica Pisaneschi
- Department of Cancer Systems Imaging, MD Anderson Cancer Center, 1881 East Rd, Houston, TX 77054, USA;
| | - Mark D. Pagel
- Department of Chemistry and Smalley-Curl Institute, Rice University, 6100 Main St, Houston, TX 77005, USA; (N.G.Z.); (A.C.P.); (M.J.C.)
- Department of Cancer Systems Imaging, MD Anderson Cancer Center, 1881 East Rd, Houston, TX 77054, USA;
| | - Lon J. Wilson
- Department of Chemistry and Smalley-Curl Institute, Rice University, 6100 Main St, Houston, TX 77005, USA; (N.G.Z.); (A.C.P.); (M.J.C.)
| |
Collapse
|
49
|
MacPherson DS, Fung K, Cook BE, Francesconi LC, Zeglis BM. A brief overview of metal complexes as nuclear imaging agents. Dalton Trans 2019; 48:14547-14565. [PMID: 31556418 PMCID: PMC6829947 DOI: 10.1039/c9dt03039e] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Metallic radionuclides have been instrumental in the field of nuclear imaging for over half a century. While recent years have played witness to a dramatic rise in the use of radiometals as labels for chelator-bearing biomolecules, imaging agents based solely on coordination compounds of radiometals have long played a critical role in the discipline as well. In this work, we seek to provide a brief overview of metal complex-based radiopharmaceuticals for positron emission tomography (PET) and single photon emission computed tomography (SPECT). More specifically, we have focused on imaging agents in which the metal complex itself rather than a pendant biomolecule or targeting moiety is responsible for the in vivo behavior of the tracer. This family of compounds contains metal complexes based on an array of different nuclides as well as probes that have been used for the imaging of a variety of pathologies, including infection, inflammation, cancer, and heart disease. Indeed, two of the defining traits of transition metal complexes-modularity and redox chemistry-have both been creatively leveraged in the development of imaging agents. In light of our audience, particular attention is paid to structure and mechanism, though clinical data is addressed as well. Ultimately, it is our hope that this review will not only educate readers about some of the seminal work performed in this space over the last 30 years but also spur renewed interest in the creation of radiopharmaceuticals based on small metal complexes.
Collapse
Affiliation(s)
- Douglas S MacPherson
- Department of Chemistry, Hunter College of the City University of New York, New York, NY 10028, USA.
| | | | | | | | | |
Collapse
|
50
|
Gut M, Holland JP. Synthesis and Photochemical Studies on Gallium and Indium Complexes of DTPA-PEG3-ArN3 for Radiolabeling Antibodies. Inorg Chem 2019; 58:12302-12310. [DOI: 10.1021/acs.inorgchem.9b01802] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Melanie Gut
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | - Jason P. Holland
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| |
Collapse
|