1
|
Serreli G, Deiana M. Role of Dietary Polyphenols in the Activity and Expression of Nitric Oxide Synthases: A Review. Antioxidants (Basel) 2023; 12:antiox12010147. [PMID: 36671009 PMCID: PMC9854440 DOI: 10.3390/antiox12010147] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 01/04/2023] [Accepted: 01/05/2023] [Indexed: 01/10/2023] Open
Abstract
Nitric oxide (NO) plays several key roles in the functionality of an organism, and it is usually released in numerous organs and tissues. There are mainly three isoforms of the enzyme that produce NO starting from the metabolism of arginine, namely endothelial nitric oxide synthase (eNOS), inducible nitric oxide synthase (iNOS), and neuronal nitric oxide synthase (nNOS). The expression and activity of these isoforms depends on the activation/deactivation of different signaling pathways at an intracellular level following different physiological and pathological stimuli. Compounds of natural origin such as polyphenols, which are obtainable through diet, have been widely studied in recent years in in vivo and in vitro investigations for their ability to induce or inhibit NO release, depending on the tissue. In this review, we aim to disclose the scientific evidence relating to the activity of the main dietary polyphenols in the modulation of the intracellular pathways involved in the expression and/or functionality of the NOS isoforms.
Collapse
|
2
|
Yuan E, Lian Y, Li Q, Lai Z, Sun L, Lai X, Chen R, Wen S, Zhu J, Zhang W, Sun S. Roles of Adinandra nitida (Theaceae) and camellianin A in HCl/ethanol-induced acute gastric ulcer in mice. FOOD SCIENCE AND HUMAN WELLNESS 2022. [DOI: 10.1016/j.fshw.2022.03.032] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
3
|
Serafim C, Araruna ME, Júnior EA, Diniz M, Hiruma-Lima C, Batista L. A Review of the Role of Flavonoids in Peptic Ulcer (2010-2020). Molecules 2020; 25:molecules25225431. [PMID: 33233494 PMCID: PMC7699562 DOI: 10.3390/molecules25225431] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 09/15/2020] [Accepted: 09/16/2020] [Indexed: 02/07/2023] Open
Abstract
Peptic ulcers are characterized by erosions on the mucosa of the gastrointestinal tract that may reach the muscle layer. Their etiology is multifactorial and occurs when the balance between offensive and protective factors of the mucosa is disturbed. Peptic ulcers represent a global health problem, affecting millions of people worldwide and showing high rates of recurrence. Helicobacter pylori infection and the use of non-steroidal anti-inflammatory drugs (NSAIDs) are one of the most important predisposing factors for the development of peptic ulcers. Therefore, new approaches to complementary treatments are needed to prevent the development of ulcers and their recurrence. Natural products such as medicinal plants and their isolated compounds have been widely used in experimental models of peptic ulcers. Flavonoids are among the molecules of greatest interest in biological assays due to their anti-inflammatory and antioxidant properties. The present study is a literature review of flavonoids that have been reported to show peptic ulcer activity in experimental models. Studies published from January 2010 to January 2020 were selected from reference databases. This review refers to a collection of flavonoids with antiulcer activity in vivo and in vitro models.
Collapse
Affiliation(s)
- Catarina Serafim
- Postgraduate Program in Natural Products and Bioactive Synthetic, Health Sciences Center, Federal University of Paraiba, João Pessoa 58051900, Paraiba, Brazil; (C.S.); (M.E.A.); (E.A.J.)
| | - Maria Elaine Araruna
- Postgraduate Program in Natural Products and Bioactive Synthetic, Health Sciences Center, Federal University of Paraiba, João Pessoa 58051900, Paraiba, Brazil; (C.S.); (M.E.A.); (E.A.J.)
| | - Edvaldo Alves Júnior
- Postgraduate Program in Natural Products and Bioactive Synthetic, Health Sciences Center, Federal University of Paraiba, João Pessoa 58051900, Paraiba, Brazil; (C.S.); (M.E.A.); (E.A.J.)
| | - Margareth Diniz
- Department of Pharmacy, Health Sciences Center, Federal University of Paraíba, João Pessoa 58051900, Paraiba, Brazil;
| | - Clélia Hiruma-Lima
- Department of Structural and Functional Biology (Physiology), Institute of Biosciences, São Paulo State University, Botucatu 18618970, São Paulo, Brazil;
| | - Leônia Batista
- Department of Pharmacy, Health Sciences Center, Federal University of Paraíba, João Pessoa 58051900, Paraiba, Brazil;
- Correspondence: ; Tel.: +55-83-32167003; Fax: +55-83-32167502
| |
Collapse
|
4
|
Ugan RA, Un H. The Protective Roles of Butein on Indomethacin Induced Gastric Ulcer in Mice. Eurasian J Med 2020; 52:265-270. [PMID: 33209079 DOI: 10.5152/eurasianjmed.2020.20022] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Objective Butein is a potential agent first isolated from Rhus verniciflua that has medicinal value in East Asia and has been used in the treatment of gastritis, gastric cancer, and atherosclerosis since ancient times. The aim of our study is to show, for the first time, the anti-ulcerative effect of butein in indomethacin induced gastric ulcer in mice. Materials and Methods A total of 42 mice were fasted 24 hours for the ulcer experiment, and 10, 20, and 40 mg/kg doses of butein were evaluated for their antiulcer activity. Famotidine 40 mg/kg was used as a positive control group. For ulcer induction, 25 mg/kg dose of indomethacin was administered to the mice and after 6 hours all stomachs were dissected out. After macroscopic analyses, tumor necrosis factor-alpha (TNF-α), interleukin-1β (IL-1β), COX-1, and COX-2 mRNA levels of stomachs were evaluated by Real Time PCR, and Superoxide dismutase (SOD), glutathione (GSH), and malondialdehyde (MDA) were determined by ELISA. Results Butein administration exerted 50.8%, 65.9%, and 87.1% antiulcer effects at 10, 20, and 40 mg/kg, respectively. Butein administration decreased oxidative stress and inflammatory parameters in stomach tissues dose dependently. Furthermore, butein administration increased stomach PGE2 levels and decreased COX-1 and COX-2 mRNA levels. Conclusion Butein has been shown to have a healing effect on ulcers in macroscopic examinations in our study. We observed that butein has antioxidant and anti-cytokine properties in gastric tissue. Butein could be an important alternative in the treatment of indomethacin-induced ulcers. Whether butein is a partial agonist of the COX enzyme should be investigated in future studies.
Collapse
Affiliation(s)
- Rustem Anil Ugan
- Department of Pharmacology, Ataturk University, Faculty of Pharmacy, Erzurum, Turkey
| | - Harun Un
- Department of Biochemistry, Agri Ibrahim Cecen University, Faculty of Pharmacy, Agri, Turkey
| |
Collapse
|
5
|
Zhang W, Lian Y, Li Q, Sun L, Chen R, Lai X, Lai Z, Yuan E, Sun S. Preventative and Therapeutic Potential of Flavonoids in Peptic Ulcers. Molecules 2020; 25:molecules25204626. [PMID: 33050668 PMCID: PMC7594042 DOI: 10.3390/molecules25204626] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 10/08/2020] [Accepted: 10/10/2020] [Indexed: 01/10/2023] Open
Abstract
Peptic ulcer disease is a common gastrointestinal tract disorder that affects up to 20% of the population of the world. Treatment of peptic ulcer remains challenging due to the limited effectiveness and severe side effects of the currently available drugs. Hence, natural compounds, owing to their medicinal, ecological, and other safe properties, are becoming popular potential candidates in preventing and treating peptic ulcers. Flavonoids, the most abundant polyphenols in plants, exhibit gastroprotective effects against peptic ulcer both in vivo and in vitro. In this review, we summarized the anti-ulcer functions and mechanisms, and also the bioavailability, efficacy, and safety, of flavonoid monomers in the gastrointestinal tract. Flavonoids exerted cytoprotective and rehabilitative effects by not only strengthening defense factors, such as mucus and prostaglandins, but also protecting against potentially harmful factors via their antioxidative, anti-inflammatory, and antibacterial activities. Although controlled clinical studies are limited at present, flavonoids have shown a promising preventable and therapeutic potential in peptic ulcers.
Collapse
Affiliation(s)
- Wenji Zhang
- Guangdong Academy of Agricultural Sciences or Guangdong Key Laboratory of Tea Resources Innovation & Utilization, Tea Research Institute, Guangzhou 510640, China; (W.Z.); (Q.L.); (L.S.); (R.C.); (X.L.); (Z.L.)
| | - Yingyi Lian
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China;
| | - Qiuhua Li
- Guangdong Academy of Agricultural Sciences or Guangdong Key Laboratory of Tea Resources Innovation & Utilization, Tea Research Institute, Guangzhou 510640, China; (W.Z.); (Q.L.); (L.S.); (R.C.); (X.L.); (Z.L.)
| | - Lingli Sun
- Guangdong Academy of Agricultural Sciences or Guangdong Key Laboratory of Tea Resources Innovation & Utilization, Tea Research Institute, Guangzhou 510640, China; (W.Z.); (Q.L.); (L.S.); (R.C.); (X.L.); (Z.L.)
| | - Ruohong Chen
- Guangdong Academy of Agricultural Sciences or Guangdong Key Laboratory of Tea Resources Innovation & Utilization, Tea Research Institute, Guangzhou 510640, China; (W.Z.); (Q.L.); (L.S.); (R.C.); (X.L.); (Z.L.)
| | - Xingfei Lai
- Guangdong Academy of Agricultural Sciences or Guangdong Key Laboratory of Tea Resources Innovation & Utilization, Tea Research Institute, Guangzhou 510640, China; (W.Z.); (Q.L.); (L.S.); (R.C.); (X.L.); (Z.L.)
| | - Zhaoxiang Lai
- Guangdong Academy of Agricultural Sciences or Guangdong Key Laboratory of Tea Resources Innovation & Utilization, Tea Research Institute, Guangzhou 510640, China; (W.Z.); (Q.L.); (L.S.); (R.C.); (X.L.); (Z.L.)
| | - Erdong Yuan
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China;
- Correspondence: (E.Y.); (S.S.); Tel.: +86-20-8711-3848 (E.Y.); +86-20-8516-1045 (S.S.)
| | - Shili Sun
- Guangdong Academy of Agricultural Sciences or Guangdong Key Laboratory of Tea Resources Innovation & Utilization, Tea Research Institute, Guangzhou 510640, China; (W.Z.); (Q.L.); (L.S.); (R.C.); (X.L.); (Z.L.)
- Correspondence: (E.Y.); (S.S.); Tel.: +86-20-8711-3848 (E.Y.); +86-20-8516-1045 (S.S.)
| |
Collapse
|
6
|
Xue Z, Shi G, Fang Y, Liu X, Zhou X, Feng S, Zhao L. Protective effect of polysaccharides from Radix Hedysari on gastric ulcers induced by acetic acid in rats. Food Funct 2019; 10:3965-3976. [DOI: 10.1039/c9fo00433e] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
The potential anti-gastric ulcer effects of Hedysarum polysaccharides (HPS-50 and HPS-80) were explored in rats.
Collapse
Affiliation(s)
- Zhiyuan Xue
- School of Pharmacy
- Lanzhou University
- Lanzhou
- P. R. China
| | - Gengen Shi
- School of Pharmacy
- Lanzhou University
- Lanzhou
- P. R. China
| | - Yaoyao Fang
- School of Pharmacy
- Lanzhou University
- Lanzhou
- P. R. China
| | - Xiaohua Liu
- School of Pharmacy
- Lanzhou University
- Lanzhou
- P. R. China
| | - Xianglin Zhou
- School of Pharmacy
- Lanzhou University
- Lanzhou
- P. R. China
| | - Shilan Feng
- School of Pharmacy
- Lanzhou University
- Lanzhou
- P. R. China
| | - Lianggong Zhao
- The Second Hospital of Lanzhou University
- Lanzhou
- P. R. China
| |
Collapse
|
7
|
Cheng YT, Lu CC, Yen GC. Phytochemicals enhance antioxidant enzyme expression to protect against NSAID-induced oxidative damage of the gastrointestinal mucosa. Mol Nutr Food Res 2017; 61. [PMID: 27883262 DOI: 10.1002/mnfr.201600659] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Revised: 11/15/2016] [Accepted: 11/17/2016] [Indexed: 12/17/2022]
Abstract
The gastrointestinal (GI) mucosa provides the first protective barrier for digested food and xenobiotics, which are easily attacked by toxic substances. Nonsteroidal anti-inflammatory drugs, including aspirin, diclofenac, indomethacin, and ketoprofen, are widely used in clinical medicine, but these drugs may cause oxidative stress, leading to GI damage such as ulcers. Lansoprazol, omeprazole, and other clinical drugs are widely used to treat duodenal and gastric ulcers and have been shown to have multiple biological functions, such as antioxidant activity and the ability to upregulate antioxidant enzymes in vivo. Therefore, the reduction of oxidative stress may be an effective curative strategy for preventing and treating nonsteroidal anti-inflammatory drug induced ulcers of the GI mucosa. Phytochemicals, such as dietary phenolic compounds, phenolic acids, flavan-3-ols, flavonols, flavonoids, gingerols, carotenes, and organosulfur, are common antioxidants in fruits, vegetables, and beverages. A large amount of evidence has demonstrated that natural phytochemicals possess bioactivity and potential health benefits, such as antioxidant, anti-inflammatory, and antibacterial benefits, and they can prevent digestive disease processes. In this review, we summarize the literature on phytochemicals with biological effects, such as angiogenic, antioxidant, antiapoptotic, anti-inflammatory, and antiulceration effects, and their related mechanisms are also discussed.
Collapse
Affiliation(s)
- Yu-Ting Cheng
- Department of Food Science and Biotechnology, National Chung Hsing University, Taichung, Taiwan
| | - Chi-Cheng Lu
- Department of Food Science and Biotechnology, National Chung Hsing University, Taichung, Taiwan
| | - Gow-Chin Yen
- Department of Food Science and Biotechnology, National Chung Hsing University, Taichung, Taiwan
| |
Collapse
|
8
|
Antonisamy P, Arasu MV, Dhanasekaran M, Choi KC, Aravinthan A, Kim NS, Kang CW, Kim JH. Protective effects of trigonelline against indomethacin-induced gastric ulcer in rats and potential underlying mechanisms. Food Funct 2016; 7:398-408. [DOI: 10.1039/c5fo00403a] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The gastroprotective activity of trigonelline against indomethacin-induced ulcer and the role of anti-oxidant, anti-inflammatory and anti-apoptotic mechanisms have been explored.
Collapse
Affiliation(s)
- Paulrayer Antonisamy
- College of Veterinary Medicine
- Biosafety Research Institute
- Chonbuk National University
- Iksan-city
- Republic of Korea
| | - Mariadhas Valan Arasu
- Department of Botany and Microbiology
- Addiriyah Chair for Environmental Studies
- College of Science
- King Saud University
- Riyadh 11451
| | - Muniappan Dhanasekaran
- Division of Ethnopharmacology
- Entomology Research Institute
- Loyola College
- Chennai 600 034
- India
| | - Ki Choon Choi
- Grassland and forage division
- National Institute of Animal Science
- RDA
- Chungnam 330-801
- Republic of Korea
| | - Adithan Aravinthan
- College of Veterinary Medicine
- Biosafety Research Institute
- Chonbuk National University
- Iksan-city
- Republic of Korea
| | - Nam Soo Kim
- College of Veterinary Medicine
- Biosafety Research Institute
- Chonbuk National University
- Iksan-city
- Republic of Korea
| | - Chang-Won Kang
- College of Veterinary Medicine
- Biosafety Research Institute
- Chonbuk National University
- Iksan-city
- Republic of Korea
| | - Jong-Hoon Kim
- College of Veterinary Medicine
- Biosafety Research Institute
- Chonbuk National University
- Iksan-city
- Republic of Korea
| |
Collapse
|
9
|
Borato DG, Scoparo CT, Maria-Ferreira D, da Silva LM, de Souza LM, Iacomini M, Werner MFDP, Baggio CH. Healing mechanisms of the hydroalcoholic extract and ethyl acetate fraction of green tea (Camellia sinensis (L.) Kuntze) on chronic gastric ulcers. Naunyn Schmiedebergs Arch Pharmacol 2015; 389:259-68. [DOI: 10.1007/s00210-015-1200-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Accepted: 12/14/2015] [Indexed: 02/07/2023]
|
10
|
Farzaei MH, Abdollahi M, Rahimi R. Role of dietary polyphenols in the management of peptic ulcer. World J Gastroenterol 2015; 21:6499-6517. [PMID: 26074689 PMCID: PMC4458761 DOI: 10.3748/wjg.v21.i21.6499] [Citation(s) in RCA: 90] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2014] [Revised: 02/22/2015] [Accepted: 04/03/2015] [Indexed: 02/06/2023] Open
Abstract
Peptic ulcer disease is a multifactorial and complex disease involving gastric and duodenal ulcers. Despite medical advances, the management of peptic ulcer and its complications remains a challenge, with high morbidity and death rates for the disease. An accumulating body of evidence suggests that, among a broad reach of natural molecules, dietary polyphenols with multiple biological mechanisms of action play a pivotal part in the management of gastric and duodenal ulcers. The current review confirmed that dietary polyphenols possess protective and therapeutic potential in peptic ulcer mediated by: improving cytoprotection, re-epithelialization, neovascularization, and angiogenesis; up-regulating tissue growth factors and prostaglandins; down-regulating anti-angiogenic factors; enhancing endothelial nitric oxide synthase-derived NO; suppressing oxidative mucosal damage; amplifying antioxidant performance, antacid, and anti-secretory activity; increasing endogenous mucosal defensive agents; and blocking Helicobacter pylori colonization associated gastric morphological changes and gastroduodenal inflammation and ulceration. In addition, anti-inflammatory activity due to down-regulation of proinflammatory cytokines and cellular and intercellular adhesion agents, suppressing leukocyte-endothelium interaction, inhibiting nuclear signaling pathways of inflammatory process, and modulating intracellular transduction and transcription pathways have key roles in the anti-ulcer action of dietary polyphenols. In conclusion, administration of a significant amount of dietary polyphenols in the human diet or as part of dietary supplementation along with conventional treatment can result in perfect security and treatment of peptic ulcer. Further well-designed preclinical and clinical tests are recommended in order to recognize higher levels of evidence for the confirmation of bioefficacy and safety of dietary polyphenols in the management of peptic ulcer.
Collapse
|
11
|
Huang B, Chen H. (−)-Epigallocatechin-3-gallate inhibits matrix metalloproteinases in oral ulcers. RSC Adv 2015. [DOI: 10.1039/c5ra01263e] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The overexpression of MMPs results in excessive extracellular matrix degradation and oral ulcer healing delay.
Collapse
Affiliation(s)
- Bin Huang
- Department of Stomatology of Hubei University of Science and Technology
- Xianning
- China
| | - Huangqin Chen
- Department of Stomatology of Hubei University of Science and Technology
- Xianning
- China
| |
Collapse
|
12
|
Cheng YT, Ho CY, Jhang JJ, Lu CC, Yen GC. DJ-1 plays an important role in caffeic acid-mediated protection of the gastrointestinal mucosa against ketoprofen-induced oxidative damage. J Nutr Biochem 2014; 25:1045-57. [DOI: 10.1016/j.jnutbio.2014.05.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2013] [Revised: 04/30/2014] [Accepted: 05/08/2014] [Indexed: 12/13/2022]
|
13
|
Cheng YT, Wu SL, Ho CY, Huang SM, Cheng CL, Yen GC. Beneficial effects of Camellia Oil (Camellia oleifera Abel.) on ketoprofen-induced gastrointestinal mucosal damage through upregulation of HO-1 and VEGF. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2014; 62:642-50. [PMID: 24377395 DOI: 10.1021/jf404614k] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Nonsteroidal anti-inflammatory drugs, such as ketoprofen, are generally used to treat pain and inflammation and as pyretic agents in clinical medicine. However, the usage of these drugs may lead to oxidative injury to the gastrointestinal mucosa. Camellia oil ( Camellia oleifera Abel.) is commonly used in Taiwan and China as cooking oil. Traditional remedies containing this oil exert beneficial health effects on the bowel, stomach, liver, and lungs. However, the effects of camellia oil on ketoprofen-induced oxidative gastrointestinal mucosal lesions remain unknown. The objective of this study was to evaluate the effect of camellia oil on ketoprofen-induced acute gastrointestinal ulcers. The results showed that treatment of Int-407 cells with camellia oil (50-75 μg/mL) not only increased the levels of heme oxygenase-1 (HO-1), glutathione peroxidase (GPx), and superoxide dismutase (SOD) mRNA expression but also increased vascular endothelial growth factor (VEGF) and prostaglandin E2 (PGE2) protein secretion, which served as a mucosal barrier against gastrointestinal oxidative injury. Moreover, Sprague-Dawley (SD) rats treated with camellia oil (2 mL/kg/day) prior to the administration of ketoprofen (50 mg/kg/day) successfully inhibited COX-2 protein expression, inhibited the production of interleukin-6 (IL-6) and nitrite oxide (NO), reversed the impairment of the antioxidant system, and decreased oxidative damage in the gastrointestinal mucosa. More importantly, pretreatment of SD rats with camellia oil strongly inhibited gastrointestinal mucosal injury induced by ketoprofen, which was proved by the histopathological staining of gastrointestinal tissues. Our data suggest that camellia oil exerts potent antiulcer effects against oxidative damage in the stomach and intestine induced by ketoprofen.
Collapse
Affiliation(s)
- Yu-Ting Cheng
- Department of Food Science and Biotechnology, National Chung Hsing University , 250 Kuokuang Road, Taichung 402, Taiwan
| | | | | | | | | | | |
Collapse
|