1
|
Grisolia A, Dell’Olio G, Spadafora A, De Santo M, Morelli C, Leggio A, Pasqua L. Hybrid Polymer-Silica Nanostructured Materials for Environmental Remediation. Molecules 2023; 28:5105. [PMID: 37446768 PMCID: PMC10343502 DOI: 10.3390/molecules28135105] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 06/23/2023] [Accepted: 06/26/2023] [Indexed: 07/15/2023] Open
Abstract
Due to the ever-growing global population, it is necessary to develop highly effective processes that minimize the impact of human activities and consumption on the environment. The levels of organic and inorganic contaminants have rapidly increased in recent years, posing a threat to ecosystems. Removing these toxic pollutants from the environment is a challenging task that requires physical, chemical, and biological methods. An effective solution involves the use of novel engineered materials, such as silica-based nanostructured materials, which exhibit a high removal capacity for various pollutants. The starting materials are also thermally and mechanically stable, allowing for easy design and development at the nanoscale through versatile functionalization procedures, enabling their effective use in pollutant capture. However, improvements concerning mechanical properties or applicability for repeated cycles may be required to refine their structural features. This review focuses on hybrid/composite polymer-silica nanostructured materials. The state of the art in nanomaterial synthesis, different techniques of functionalization, and polymer grafting are described. Furthermore, it explores the application of polymer-modified nanostructured materials for the capture of heavy metals, dyes, hydrocarbons and petroleum derivatives, drugs, and other organic compounds. The paper concludes by offering recommendations for future research aimed at advancing the application of polymer-silica nanostructured materials in the efficiency of pollutant uptake.
Collapse
Affiliation(s)
- Antonio Grisolia
- Department of Environmental Engineering, University of Calabria, via P. Bucci, 87036 Arcavacata di Rende (CS), Italy; (A.G.); (G.D.); (A.S.)
| | - Gianluca Dell’Olio
- Department of Environmental Engineering, University of Calabria, via P. Bucci, 87036 Arcavacata di Rende (CS), Italy; (A.G.); (G.D.); (A.S.)
| | - Angelica Spadafora
- Department of Environmental Engineering, University of Calabria, via P. Bucci, 87036 Arcavacata di Rende (CS), Italy; (A.G.); (G.D.); (A.S.)
| | - Marzia De Santo
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, via P. Bucci, 87036 Arcavacata di Rende (CS), Italy; (M.D.S.); (C.M.)
| | - Catia Morelli
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, via P. Bucci, 87036 Arcavacata di Rende (CS), Italy; (M.D.S.); (C.M.)
| | - Antonella Leggio
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, via P. Bucci, 87036 Arcavacata di Rende (CS), Italy; (M.D.S.); (C.M.)
| | - Luigi Pasqua
- Department of Environmental Engineering, University of Calabria, via P. Bucci, 87036 Arcavacata di Rende (CS), Italy; (A.G.); (G.D.); (A.S.)
| |
Collapse
|
2
|
Oktaviyanti IK, Ali DS, Awadh SA, Opulencia MJC, Yusupov S, Dias R, Alsaikhan F, Mohammed MM, Sharma H, Mustafa YF, Saleh MM. RETRACTED ARTICLE: Recent advances on applications of immunosensing systems based on nanomaterials for CA15-3 breast cancer biomarker detection. Anal Bioanal Chem 2023; 415:367. [PMID: 35641643 DOI: 10.1007/s00216-022-04150-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 05/17/2022] [Accepted: 05/24/2022] [Indexed: 01/11/2023]
Affiliation(s)
- Ika Kustiyah Oktaviyanti
- Department of Pathology & Anatomy, Faculty of Medicine, Lambung Mangkurat University, Banjarmasin, South Kalimantan, Indonesia
| | - Diyar Salahuddin Ali
- Chemistry Department, College of Science, Salahaddin University, Erbil, 44002, Iraq
| | - Sura A Awadh
- Department of Anesthesia, Al-Mustaqbal University, Babylon, Iraq
| | | | - Shukhrat Yusupov
- Department of Pediatric Surgical Diseases, Samarkand State Medical Institute, Samarkand, Uzbekistan
- Department of Scientific Affairs, Tashkent State Dental Institute, Makhtumkuli Street 103, Tashkent, Uzbekistan
| | - Rui Dias
- School of Business and Administration, Polytechnic Institute of Setúbal, Portugal and CEFAGE-UE, IIFA, University of Évora, Évora, Portugal
| | - Fahad Alsaikhan
- Department of Clinical Pharmacy, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | - Mais Mahmood Mohammed
- Department of Medical Laboratory Techniques, Medical Technology College, Al-Farahidi University, Baghdad, Iraq
| | - Himanshu Sharma
- Department of Computer Engineering and Applications, GLA University, Mathura, India
| | - Yasser Fakri Mustafa
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Mosul, Mosul, 41001, Iraq
| | - Marwan Mahmood Saleh
- Department of Biophysics, College of Applied Sciences, University of Anbar, Al anbar, Iraq.
| |
Collapse
|
3
|
Akçapınar R, Özgür E, Goodarzi V, Uzun L. Surface imprinted upconversion nanoparticles for selective albumin recognition. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.129301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
4
|
Molecularly imprinted polymer (MIP) based core-shell microspheres for bacteria isolation. POLYMER 2022. [DOI: 10.1016/j.polymer.2022.124917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
5
|
Veloz Martínez I, Ek JI, Ahn EC, Sustaita AO. Molecularly imprinted polymers via reversible addition-fragmentation chain-transfer synthesis in sensing and environmental applications. RSC Adv 2022; 12:9186-9201. [PMID: 35424874 PMCID: PMC8985154 DOI: 10.1039/d2ra00232a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 02/23/2022] [Indexed: 12/14/2022] Open
Abstract
Molecularly imprinted polymers (MIP) have shown their potential as artificial and selective receptors for environmental monitoring. These materials can be tailor-made to achieve a specific binding event with a template through a chosen mechanism. They are capable of emulating the recognition capacity of biological receptors with superior stability and versatility of integration in sensing platforms. Commonly, these polymers are produced by traditional free radical bulk polymerization (FRP) which may not be the most suitable for enhancing the intended properties due to the poor imprinting performance. To improve the imprinting technique and the polymer capabilities, controlled/living radical polymerization (CRP) has been used to overcome the main drawbacks of FRP. Combining CRP techniques such as RAFT (reversible addition-fragmentation chain transfer) with MIP has achieved higher selectivity, sensitivity, and sorption capacity of these polymers when implemented as the transductor element in sensors. The present work focuses on RAFT-MIP design and synthesis strategies to enhance the binding affinities and their implementation in environmental contaminant sensing applications.
Collapse
Affiliation(s)
- Irvin Veloz Martínez
- School of Engineering and Science, Tecnologico de Monterrey Av. Eugenio Garza Sada 2501 Monterrey N.L. 64849 Mexico
| | - Jackeline Iturbe Ek
- School of Engineering and Science, Tecnologico de Monterrey Av. Eugenio Garza Sada 2501 Monterrey N.L. 64849 Mexico
| | - Ethan C Ahn
- Department of Electrical and Computer Engineering, The University of Texas at San Antonio San Antonio TX 78249 USA
| | - Alan O Sustaita
- School of Engineering and Science, Tecnologico de Monterrey Av. Eugenio Garza Sada 2501 Monterrey N.L. 64849 Mexico
| |
Collapse
|
6
|
Khetagoudar MC, Jinendra U, Praveen Kumar A, Bilehal D, Prasad Kollur S. Multiresidue pesticide analysis in green chilli using GC–MS/MS using modified QuEChERS method with highly efficient Fe3O4@CFR@GO nanocomposite. INORG CHEM COMMUN 2022. [DOI: 10.1016/j.inoche.2022.109195] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
7
|
|
8
|
Fan H, Wang J, Xu X, Jin Z, Wang J. A comparative study of photoresponsive molecularly imprinted polymers with different shell thicknesses: Effects on 6-O-α-maltosyl-β-cyclodextrin separation. J Food Sci 2021; 86:4060-4069. [PMID: 34458994 DOI: 10.1111/1750-3841.15880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 07/15/2021] [Accepted: 07/17/2021] [Indexed: 11/28/2022]
Abstract
Photoresponsive surface molecularly imprinted polymers (PSMIPs) with controlled nanoshell thicknesses were synthesized using different amounts of precursor materials to determine the effects of polymer shell layer thickness on the separation and purification of 6-O-alpha-maltosyl-beta-cyclodextrin (Mal-β-CD). The physicochemical properties and adsorption and desorption capacities of PSMIPs with different shell thicknesses were studied. Interestingly, the uniform thickness of the imprinted polymer shell layer could be adjusted from 10 to 60 nm by varying the amount of polymerization precursors, and the average mesopore diameter of PSMIPs was not significantly affected by shell thickness. However, the removal efficiency and selective capacity of PSMIPs on Mal-β-CD were strongly correlated to their shell thickness. The adsorption behavior of PSMIPs on Mal-β-CD fitted well with the Langmuir adsorption model and pseudo-second-order kinetic model. Based on the obtained results, PSMIPs with a 30-nm imprinted layer were found to be an excellent adsorbent for Mal-β-CD separation, with an adsorption capacity of 18.12 mg/g. They can therefore be used for industrial chromatographic separations of Mal-β-CD in the future. PRACTICAL APPLICATION: This article clearly demonstrated that the shell thickness of core-shell molecularly imprinted materials affected the degree and rate of cyclodextrin separation. Determining the optimal thickness is of great significance for the material in the separation and purification of cyclodextrin.
Collapse
Affiliation(s)
- Haoran Fan
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, China-Canada Joint Lab of Food Nutrition and Health (Beijing), School of Food and Health, Beijing Technology and Business University (BTBU), Beijing, P. R. China
| | - Jing Wang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, China-Canada Joint Lab of Food Nutrition and Health (Beijing), School of Food and Health, Beijing Technology and Business University (BTBU), Beijing, P. R. China
| | - Xueming Xu
- School of Food Science and Technology, Jiangnan University, Wuxi, P. R. China
| | - Zhengyu Jin
- School of Food Science and Technology, Jiangnan University, Wuxi, P. R. China
| | - Jinpeng Wang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, China-Canada Joint Lab of Food Nutrition and Health (Beijing), School of Food and Health, Beijing Technology and Business University (BTBU), Beijing, P. R. China
| |
Collapse
|
9
|
Ultrasensitive molecularly imprinted fluorescence sensor for simultaneous determination of CA125 and CA15-3 in human serum and OVCAR-3 and MCF-7 cells lines using Cd and Ni nanoclusters as new emitters. Anal Bioanal Chem 2021; 413:4049-4061. [PMID: 34057557 DOI: 10.1007/s00216-021-03362-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 03/19/2021] [Accepted: 04/19/2021] [Indexed: 02/05/2023]
Abstract
In the clinical diagnosis of tumors, a single-marker immunoassay may lead to false results. Thus there is a need for an effective and valid method for the simultaneous measurement of multiple tumor markers. In this work, an efficient fluorescence immunosensor for the simultaneous measurement of CA125 and CA15-3 tumor markers was fabricated by utilizing the high selectivity of magnetic molecularly imprinted polymers (MMIPs) and the high sensitivity of a fluorescence (FL) method. Ni nanoclusters (Ni NCs) and noble Cd nanoclusters (Cd NCs) were introduced as efficient and economic emitters, and magnetic graphene oxide (GO-Fe3O4) was applied as a support material for surface molecularly imprinted polymers. Under the most favorable experimental conditions, the fluorescence intensity of the Cd NCs and Ni NCs gradually increased with increasing concentration of CA125 and CA15-3 antigens at a range of 0.0005-40 U mL-1, respectively, with a limit of detection (LOD) of 50 μU mL-1. The developed method had excellent properties including a broad linear range, good reproducibility, and simple operation for the clinical diagnosis of CA 125 and CA 15-3 tumor markers. This molecularly imprinted fluorescence sensor has the potential to be an effective clinical tool for the timely screening of breast cancer in human serum samples and OVCAR-3 and MCF-7 cell lines, and can be applied in clinical diagnostics.
Collapse
|
10
|
Dinali LAF, de Oliveira HL, Teixeira LS, de Souza Borges W, Borges KB. Mesoporous molecularly imprinted polymer core@shell hybrid silica nanoparticles as adsorbent in microextraction by packed sorbent for multiresidue determination of pesticides in apple juice. Food Chem 2020; 345:128745. [PMID: 33302105 DOI: 10.1016/j.foodchem.2020.128745] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 11/19/2020] [Accepted: 11/25/2020] [Indexed: 12/13/2022]
Abstract
In this work, we report the synthesis of a mesoporous molecularly imprinted polymer on the surface of silica nanoparticles (core@mMIP) to be applied as adsorbent in microextraction by packed sorbent (MEPS) for selective determination of pesticides in apple juice. The core@mMIP was properly characterized, showing good adhesion of the polymer to the silica core. The best extraction conditions were: 200 µL of ultrapure water as washing solvent, 150 µL of acetonitrile as eluent, 100 µL of sample at pH 2.5, five draw-eject cycles and 8 mg of adsorbent. Thereby, recoveries of 96.12 ± 1.05%, 76.88 ± 6.18% and 76.18 ± 5.57% were obtained for pyriproxyfen (PPX), deltamethrin (DTM) and etofenprox (ETF), respectively. After validation, the method presented linearity in the range of 0.02-10 µg mL-1 (r > 0.99), limit of detection of 0.005 µg mL-1, satisfactory selectivity, and proper precision and accuracy. The method was successfully applied real samples of processed and fresh apple juice.
Collapse
Affiliation(s)
- Laíse Aparecida Fonseca Dinali
- Departamento de Ciências Naturais, Universidade Federal de São João del-Rei (UFSJ), Campus Dom Bosco, Praça Dom Helvécio 74, Fábricas, 36301-160 São João del-Rei, Minas Gerais, Brazil
| | - Hanna Leijoto de Oliveira
- Departamento de Ciências Naturais, Universidade Federal de São João del-Rei (UFSJ), Campus Dom Bosco, Praça Dom Helvécio 74, Fábricas, 36301-160 São João del-Rei, Minas Gerais, Brazil
| | - Leila Suleimara Teixeira
- Departamento de Ciências Naturais, Universidade Federal de São João del-Rei (UFSJ), Campus Dom Bosco, Praça Dom Helvécio 74, Fábricas, 36301-160 São João del-Rei, Minas Gerais, Brazil
| | - Warley de Souza Borges
- Departamento de Ciências Exatas, Universidade Federal do Espírito Santo (UFES), 29075-910 Vitória, Espírito Santo, Brazil
| | - Keyller Bastos Borges
- Departamento de Ciências Naturais, Universidade Federal de São João del-Rei (UFSJ), Campus Dom Bosco, Praça Dom Helvécio 74, Fábricas, 36301-160 São João del-Rei, Minas Gerais, Brazil.
| |
Collapse
|
11
|
Ali TH, Mandal AM, Heidelberg T, Duali Hussen RS, Goh EW. Ionic magnetic core-shell nanoparticles for DNA extraction. RSC Adv 2020; 10:38818-38830. [PMID: 35518431 PMCID: PMC9057385 DOI: 10.1039/d0ra05933a] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 10/16/2020] [Indexed: 11/21/2022] Open
Abstract
Magnetic nanoparticles with specific surface features are interesting materials for biomedical applications. The combination of molecular interactions on small particles with macroscopic cohesion forces offers unique opportunities. This work reports the synthesis of magnetic core-shell nanoparticles with alkylimidazolium coated surface for effective DNA extraction. A magnetic Fe2O3 core was coated with a silica shell and functionalized with an organic halide. This enabled a surface coating with organic cations to mediate effective molecular interactions with polyanionic DNA. The large surface area of the ∼20 nm small particles with a magnetization of 25 emu g-1 enabled high DNA particle loading of 1/30 m% with easy isolation based on an external magnetic field. Moreover, the coating of the particles stabilized DNA against ultrasound initiated fragmentation.
Collapse
Affiliation(s)
- Tammar Hussein Ali
- Chemistry Department, Faculty of Science, University of Malaya 50603 Kuala Lumpur Malaysia
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Al-Muthanna University 66001 Samawah Al Muthanna Iraq
| | - Amar Mousa Mandal
- College of Basic Education, Science Department, Al-Muthanna University 66001 Samawah Al Muthanna Iraq
| | - Thorsten Heidelberg
- Chemistry Department, Faculty of Science, University of Malaya 50603 Kuala Lumpur Malaysia
| | | | - Ean Wai Goh
- Chemistry Department, Faculty of Science, University of Malaya 50603 Kuala Lumpur Malaysia
| |
Collapse
|
12
|
Liu L, Yang M, He M, Liu T, Chen F, Li Y, Feng X, Zhang Y, Zhang F. Magnetic solid phase extraction sorbents using methyl-parathion and quinalphos dual-template imprinted polymers coupled with GC-MS for class-selective extraction of twelve organophosphorus pesticides. Mikrochim Acta 2020; 187:503. [PMID: 32812169 DOI: 10.1007/s00604-020-04465-7] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Accepted: 07/25/2020] [Indexed: 11/26/2022]
Abstract
A novel magnetic dual-template molecularly imprinted polymer (DMIP) was prepared with methyl-parathion and quinalphos as templates. For comparison, a series of single-template polymers with only methyl-parathion (MPMIP) or quinalphos (QPMIP) as template as well as a non-imprinted polymer (NIP) in the absence of the template, were synthesized using the same procedure of DMIP. The obtained MIPs were characterized by scanning electron microscopy(SEM), Fourier transform infrared (FT-IR) spectroscopy, vibrating sample magnetometer (VSM), and X-ray diffraction (XRD). The properties including kinetic effect, thermodynamic effect, selectivity, and reusability of MIPs were investigated . Only DMIP possessed high affinity and good recognition for all twelve OPPs including quinalphos, isazophos, chlorpyrifos-methyl, chlorpyrifos, methidathion, triazophos, profenofos, fenthion, fenitrothion, methyl-parathion, parathion, and paraoxon in comparison to MPMIP, QPMIP, or NIP. Moreover, DMIP was used as magnetic solid phase extraction (MSPE) sorbent for the pre-concentration of twelve OPPs in cabbage samples. The developed DMIP-MSPE-GC-MS method showed high sensitivity, low LODs (1.62-13.9 ng/g), fast adsorption equilibrium (10 min), and acceptable spiked recoveries (81.5-113.4%) with relative standard deviations (RSD) in the range 0.05-7.0% (n = 3). The calibration plots were linear in the range 10-800 ng/mL with coefficients of determination (R2) better 0.99 for all twelve compounds. These results suggest that the DMIP is applicable for rapid determination and high throughput analysis of multi-pesticide residues. Graphical abstract.
Collapse
Affiliation(s)
- Lixia Liu
- Institute of Food Safety, Chinese Academy of Inspection & Quarantine, Beijing, China
- School of Pharmacy, China Medical University, Shenyang, China
| | - Minli Yang
- Institute of Food Safety, Chinese Academy of Inspection & Quarantine, Beijing, China
| | - Muyi He
- Institute of Food Safety, Chinese Academy of Inspection & Quarantine, Beijing, China
| | - Tong Liu
- Institute of Food Safety, Chinese Academy of Inspection & Quarantine, Beijing, China
| | - Fengming Chen
- Institute of Food Safety, Chinese Academy of Inspection & Quarantine, Beijing, China
| | - Yinlong Li
- Institute of Food Safety, Chinese Academy of Inspection & Quarantine, Beijing, China
| | - Xuesong Feng
- School of Pharmacy, China Medical University, Shenyang, China
| | - Yuan Zhang
- School of Pharmacy, China Medical University, Shenyang, China
| | - Feng Zhang
- Institute of Food Safety, Chinese Academy of Inspection & Quarantine, Beijing, China.
| |
Collapse
|
13
|
Restricted access media-imprinted nanomaterials based on a metal–organic framework for highly selective extraction of fluoroquinolones in milk and river water. J Chromatogr A 2020; 1626:461364. [DOI: 10.1016/j.chroma.2020.461364] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 06/20/2020] [Accepted: 06/20/2020] [Indexed: 12/12/2022]
|
14
|
Yang J, Feng W, Liang K, Chen C, Cai C. A novel fluorescence molecularly imprinted sensor for Japanese encephalitis virus detection based on metal organic frameworks and passivation-enhanced selectivity. Talanta 2020; 212:120744. [DOI: 10.1016/j.talanta.2020.120744] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 01/09/2020] [Accepted: 01/12/2020] [Indexed: 02/04/2023]
|
15
|
Seraj S, Lotfollahi MN, Nematollahzadeh A. Synthesis and sorption properties of heparin imprinted zeolite beta/polydopamine composite nanoparticles. REACT FUNCT POLYM 2020. [DOI: 10.1016/j.reactfunctpolym.2019.104462] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
16
|
Montagna V, Haupt K, Gonzato C. RAFT coupling chemistry: a general approach for post-functionalizing molecularly imprinted polymers synthesized by radical polymerization. Polym Chem 2020. [DOI: 10.1039/c9py01629e] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Herein we describe a straightforward protocol for the surface functionalization of free-radically synthesized imprinted nanoparticles via polymer grafting.
Collapse
Affiliation(s)
- Valentina Montagna
- Sorbonne Universités
- Université de Technologie de Compiègne
- UMR CNRS 7025 Enzyme and Cell Engineering Laboratory
- Cedex
- France
| | - Karsten Haupt
- Sorbonne Universités
- Université de Technologie de Compiègne
- UMR CNRS 7025 Enzyme and Cell Engineering Laboratory
- Cedex
- France
| | - Carlo Gonzato
- Sorbonne Universités
- Université de Technologie de Compiègne
- UMR CNRS 7025 Enzyme and Cell Engineering Laboratory
- Cedex
- France
| |
Collapse
|
17
|
Yu H, Yao R, Shen S. Development of a novel assay of molecularly imprinted membrane by design-based gaussian pattern for vancomycin determination. J Pharm Biomed Anal 2019; 175:112789. [DOI: 10.1016/j.jpba.2019.112789] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2019] [Revised: 06/18/2019] [Accepted: 07/23/2019] [Indexed: 01/03/2023]
|
18
|
Yigaimu A, Muhammad T, Yang W, Muhammad I, Wubulikasimu M, Piletsky SA. Magnetic Molecularly Imprinted Polymer Particles Based Micro-Solid Phase Extraction for the Determination of 4-Nitrophenol in Lake Water. Macromol Res 2019. [DOI: 10.1007/s13233-019-7151-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
19
|
Jalilzadeh M, Çimen D, Özgür E, Esen C, Denizli A. Design and preparation of imprinted surface plasmon resonance (SPR) nanosensor for detection of Zn(II) ions. JOURNAL OF MACROMOLECULAR SCIENCE PART A-PURE AND APPLIED CHEMISTRY 2019. [DOI: 10.1080/10601325.2019.1617634] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
| | - Duygu Çimen
- Department of Chemistry, Hacettepe University, Ankara, Turkey
| | - Erdoğan Özgür
- Department of Chemistry, Hacettepe University, Ankara, Turkey
- Department of Chemistry, Aksaray University, Aksaray, Turkey
| | - Cem Esen
- Department of Chemistry, Aydın Adnan Menderes University, Aydın, Turkey
| | - Adil Denizli
- Department of Chemistry, Hacettepe University, Ankara, Turkey
| |
Collapse
|
20
|
Farooq S, Nie J, Cheng Y, Yan Z, Li J, Bacha SAS, Mushtaq A, Zhang H. Molecularly imprinted polymers' application in pesticide residue detection. Analyst 2019; 143:3971-3989. [PMID: 30058662 DOI: 10.1039/c8an00907d] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Molecularly imprinted polymers (MIPs) are produced using molecular imprinting technology (MIT) and have specific analyte-binding abilities and unique properties, including chemical and thermal stability, reusability, high selectivity, and high sensitivity. The application of MIPs in the detection of pesticides represents an advance and a superior scientific approach owing to their detection and characterization of trace levels in comparison with other methods. In this review, we have summarized the pre-treatment extraction of pesticides with different types of molecularly imprinted polymer for the detection of single and multiple pesticides by elaborating upon their specific extraction efficiency. The importance of different polymerization methods, functional monomers and cross-linkers is highlighted. The aim of this study is to investigate the importance of the application of MIPs in the detection of pesticides and recent advances in the last few years to overcome the limitations of previously developed methods. Existing restrictions and required future aspects are discussed.
Collapse
Affiliation(s)
- Saqib Farooq
- Institute of Pomology, Chinese Academy of Agricultural Sciences, 98# Xinghai South Street, 125100 Xingcheng, Liaoning Province, PR China
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Zhang D, Liu H, Geng W, Wang Y. A dual-function molecularly imprinted optopolymer based on quantum dots-grafted covalent-organic frameworks for the sensitive detection of tyramine in fermented meat products. Food Chem 2019; 277:639-645. [DOI: 10.1016/j.foodchem.2018.10.147] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Revised: 10/29/2018] [Accepted: 10/31/2018] [Indexed: 01/02/2023]
|
22
|
Si Z, Yu P, Dong Y, Lu Y, Tan Z, Yu X, Zhao R, Yan Y. Thermo-Responsive Molecularly Imprinted Hydrogels for Selective Adsorption and Controlled Release of Phenol From Aqueous Solution. Front Chem 2019; 6:674. [PMID: 30740393 PMCID: PMC6357936 DOI: 10.3389/fchem.2018.00674] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Accepted: 12/24/2018] [Indexed: 11/24/2022] Open
Abstract
In this study, thermo-responsive molecularly imprinted hydrogels (T-MIHs) were developed as an effective potential adsorbent for selectively adsorption phenol from wastewater. During the process, N-isopropyl acrylamide (NIPAm) was used as thermal responsive monomer. The obtained materials were characterized in detail by fourier transform infrared (FT-IR) spectrometer, scanning electron microscope (SEM), and thermo gravimetric analysis (TGA). A series of static adsorption studies were performed to investigate the kinetics, specific adsorption equilibrium, and selective recognition ability of phenol. Reversible adsorption and release of phenol were realized by changing temperatures. Three type of phenols, namely 3-chlorophenols (3-CP), 2,4-dichlorophenol (2,4-DCP), and 2,4,6-trichlorophenol (2,4,6-TCP) were selected as model analytes to evaluate the selective recognition performance of T-MIHs. The T-MIHs have good selectivity, temperature response, and reusability, making them ideal in applying in the controlled separation and release of phenol pollutants.
Collapse
Affiliation(s)
- Zhenhui Si
- School of Computer Science, Jilin Normal University, Siping, China.,Key Laboratory of Numerical Simulation of Jilin Province, Jilin Normal University, Siping, China
| | - Ping Yu
- School of Computer Science, Jilin Normal University, Siping, China.,Key Laboratory of Numerical Simulation of Jilin Province, Jilin Normal University, Siping, China
| | - Yanying Dong
- School of Computer Science, Jilin Normal University, Siping, China.,Key Laboratory of Numerical Simulation of Jilin Province, Jilin Normal University, Siping, China
| | - Yang Lu
- School of Computer Science, Jilin Normal University, Siping, China.,Key Laboratory of Numerical Simulation of Jilin Province, Jilin Normal University, Siping, China
| | - Zhenjiang Tan
- School of Computer Science, Jilin Normal University, Siping, China.,Key Laboratory of Numerical Simulation of Jilin Province, Jilin Normal University, Siping, China
| | - Xiaopeng Yu
- School of Computer Science, Jilin Normal University, Siping, China.,Key Laboratory of Numerical Simulation of Jilin Province, Jilin Normal University, Siping, China
| | - Rui Zhao
- School of Computer Science, Jilin Normal University, Siping, China.,Key Laboratory of Numerical Simulation of Jilin Province, Jilin Normal University, Siping, China
| | - Yongsheng Yan
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, China
| |
Collapse
|
23
|
Li GR, Xu MY, Li JK, Yang Y. A study on the preparation and application of a core-shell surface imprinted uranyl magnetic chelating adsorbent. RSC Adv 2018; 8:37401-37409. [PMID: 35557815 PMCID: PMC9089315 DOI: 10.1039/c8ra06992a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Accepted: 10/09/2018] [Indexed: 11/21/2022] Open
Abstract
A core-shell surface imprinted uranyl magnetic chelating adsorbent (UMCA) was synthesized by combining the sol-gel process with the surface molecular imprinting technique (SMIT). A specific salophen and uranyl-salophen were designed and synthesized. Then, the synthesized uranyl-salophen complex was used as a template (in which uranyl is the target analyte), 3-aminopropyltriethoxysilane as a functional monomer and tetraethylorthosilicate as a cross-linker. The obtained UMCA was characterized by a variety of modern analytical and detection techniques. The adsorbent can be used for the solid-phase extraction of uranyl with good selectivity, high adsorption capacity, magnetic separation characteristics and good reusability. The chelating sorbent was successfully applied for the separation of uranyl, followed by multiphase photocatalytic resonance fluorescence method determination in several environmental water samples with a relative standard deviation of <5.48% and spiked recoveries of 92.5% to 103.0%. The adsorption mechanism was preliminarily discussed.
Collapse
Affiliation(s)
- Gui-Rong Li
- College of Public Health, University of South China Hengyang 421001 PR China +86 734 8281771 +86 734 8281391
| | - Meng-Yuan Xu
- College of Public Health, University of South China Hengyang 421001 PR China +86 734 8281771 +86 734 8281391
| | - Jie-Kang Li
- College of Public Health, University of South China Hengyang 421001 PR China +86 734 8281771 +86 734 8281391
| | - Yang Yang
- College of Public Health, University of South China Hengyang 421001 PR China +86 734 8281771 +86 734 8281391
| |
Collapse
|
24
|
Kueseng P, Nisoa M, Sontimuang C. Rapid preparation of molecularly imprinted polymers by custom-made microwave heating for analysis of atrazine in water. J Sep Sci 2018; 41:2783-2789. [DOI: 10.1002/jssc.201800198] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Revised: 04/21/2018] [Accepted: 04/23/2018] [Indexed: 11/10/2022]
Affiliation(s)
- Pamornrat Kueseng
- School of Science; Walailak University; Thasala Nakhon Si Thammarat Thailand
| | - Mudtorlep Nisoa
- School of Science; Walailak University; Thasala Nakhon Si Thammarat Thailand
- Center of Excellence in Plasma and Electromagnetic Wave; Walailak University; Thasala Nakhon Si Thammarat Thailand
| | - Chonlatid Sontimuang
- Faculty of Traditional Thai Medicine; Prince of Songkla University; Hat Yai Songkhla Thailand
| |
Collapse
|
25
|
Method for preparing a well-defined molecularly imprinted polymeric system via radiation-induced RAFT polymerization. Eur Polym J 2018. [DOI: 10.1016/j.eurpolymj.2018.03.037] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
26
|
Li X, Ma X, Huang R, Xie X, Guo L, Zhang M. Synthesis of a molecularly imprinted polymer on mSiO2
@Fe3
O4
for the selective adsorption of atrazine. J Sep Sci 2018; 41:2837-2845. [DOI: 10.1002/jssc.201800146] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Revised: 04/10/2018] [Accepted: 04/11/2018] [Indexed: 12/17/2022]
Affiliation(s)
- Xin Li
- School of Environmental Science and Engineering; Guangdong University of Technology; Guangzhou China
| | - Xiaoguo Ma
- School of Environmental Science and Engineering; Guangdong University of Technology; Guangzhou China
| | - Renfeng Huang
- School of Environmental Science and Engineering; Guangdong University of Technology; Guangzhou China
| | - Xiaowen Xie
- School of Environmental Science and Engineering; Guangdong University of Technology; Guangzhou China
| | - Lihui Guo
- School of Environmental Science and Engineering; Guangdong University of Technology; Guangzhou China
| | - Mengyuan Zhang
- School of Environmental Science and Engineering; Guangdong University of Technology; Guangzhou China
| |
Collapse
|
27
|
Synthesis and application of magnetic molecularly imprinted polymers in sample preparation. Anal Bioanal Chem 2018; 410:3991-4014. [DOI: 10.1007/s00216-018-1013-y] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Revised: 02/08/2018] [Accepted: 03/08/2018] [Indexed: 12/21/2022]
|
28
|
Lin X, Wu Y, Hao Y, Sun Q, Yan Y, Li C. Sensitive and Selective Determination of 2,4,6-Trichlorophenol Using a Molecularly Imprinted Polymer Based on Zinc Oxide Quantum Dots. ANAL LETT 2018. [DOI: 10.1080/00032719.2017.1384480] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Affiliation(s)
- Xinyu Lin
- School of Chemistry and Chemical Engineering, Institute of Green Chemistry and Chemical Technology, Jiangsu University, Zhenjiang, China
| | - Yilin Wu
- School of Chemistry and Chemical Engineering, Institute of Green Chemistry and Chemical Technology, Jiangsu University, Zhenjiang, China
| | - Yue Hao
- School of Chemistry and Chemical Engineering, Institute of Green Chemistry and Chemical Technology, Jiangsu University, Zhenjiang, China
| | - Qian Sun
- School of Chemistry and Chemical Engineering, Institute of Green Chemistry and Chemical Technology, Jiangsu University, Zhenjiang, China
| | - Yongsheng Yan
- School of Chemistry and Chemical Engineering, Institute of Green Chemistry and Chemical Technology, Jiangsu University, Zhenjiang, China
| | - Chunxiang Li
- School of Chemistry and Chemical Engineering, Institute of Green Chemistry and Chemical Technology, Jiangsu University, Zhenjiang, China
| |
Collapse
|
29
|
Guan SH, Huang MW, Li X, Cai Q. Determination of Atrazine, Simazine, Alachlor, and Metolachlor in Surface Water Using Dispersive Pipette Extraction and Gas Chromatography–Mass Spectrometry. ANAL LETT 2018. [DOI: 10.1080/00032719.2017.1341904] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
- Sharon Hongxia Guan
- School of Science and Technology, Georgia Gwinnett College, Lawrenceville, GA, USA
| | | | - Xiaoping Li
- School of Science and Technology, Georgia Gwinnett College, Lawrenceville, GA, USA
| | - Qingsong Cai
- The Complex Carbohydrate Research Center, University of Georgia, Athens, GA, USA
| |
Collapse
|
30
|
Pathak PK, Kumar A, Prasad BB. A novel electrocatalytic nanocomposite of reduced graphene oxide/silver nanocube hybrid decorated imprinted polymer for ultra-trace sensing of temozolomide. NEW J CHEM 2018. [DOI: 10.1039/c8nj01824c] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A new nanocomposite of reduced graphene oxide/silver nanocube hybrid decorated molecularly imprinted polymer at the surface of a screen-printed carbon electrode was developed for the electroanalysis of an anticancerous drug, temozolomide, at the ultra-trace level.
Collapse
Affiliation(s)
- Purnendu Kumar Pathak
- Analytical Division
- Department of Chemistry
- Institute of Science
- Banaras Hindu University
- Varanasi 221005
| | - Anil Kumar
- Analytical Division
- Department of Chemistry
- Institute of Science
- Banaras Hindu University
- Varanasi 221005
| | - Bhim Bali Prasad
- Analytical Division
- Department of Chemistry
- Institute of Science
- Banaras Hindu University
- Varanasi 221005
| |
Collapse
|
31
|
Sheng L, Jin Y, He Y, Huang Y, Yan L, Zhao R. Well-defined magnetic surface imprinted nanoparticles for selective enrichment of 2,4-dichlorophenoxyacetic acid in real samples. Talanta 2017; 174:725-732. [DOI: 10.1016/j.talanta.2017.07.002] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2017] [Revised: 06/22/2017] [Accepted: 07/01/2017] [Indexed: 11/26/2022]
|
32
|
Photoresponsive hollow molecularly imprinted polymer for trace triamterene in biological samples. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2017; 76:568-578. [DOI: 10.1016/j.msec.2017.03.135] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Accepted: 03/13/2017] [Indexed: 12/19/2022]
|
33
|
Yola ML, Atar N. Electrochemical Detection of Atrazine by Platinum Nanoparticles/Carbon Nitride Nanotubes with Molecularly Imprinted Polymer. Ind Eng Chem Res 2017. [DOI: 10.1021/acs.iecr.7b01379] [Citation(s) in RCA: 99] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Mehmet Lütfi Yola
- Iskenderun Technical University, Faculty of Engineering
and Natural Sciences, Department of Biomedical Engineering, Hatay, Turkey
| | - Necip Atar
- Pamukkale University, Faculty of Engineering, Department
of Chemical Engineering, Denizli, Turkey
| |
Collapse
|
34
|
Saylan Y, Yilmaz F, Özgür E, Derazshamshir A, Yavuz H, Denizli A. Molecular Imprinting of Macromolecules for Sensor Applications. SENSORS 2017; 17:s17040898. [PMID: 28422082 PMCID: PMC5426548 DOI: 10.3390/s17040898] [Citation(s) in RCA: 88] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Revised: 04/07/2017] [Accepted: 04/07/2017] [Indexed: 02/06/2023]
Abstract
Molecular recognition has an important role in numerous living systems. One of the most important molecular recognition methods is molecular imprinting, which allows host compounds to recognize and detect several molecules rapidly, sensitively and selectively. Compared to natural systems, molecular imprinting methods have some important features such as low cost, robustness, high recognition ability and long term durability which allows molecularly imprinted polymers to be used in various biotechnological applications, such as chromatography, drug delivery, nanotechnology, and sensor technology. Sensors are important tools because of their ability to figure out a potentially large number of analytical difficulties in various areas with different macromolecular targets. Proteins, enzymes, nucleic acids, antibodies, viruses and cells are defined as macromolecules that have wide range of functions are very important. Thus, macromolecules detection has gained great attention in concerning the improvement in most of the studies. The applications of macromolecule imprinted sensors will have a spacious exploration according to the low cost, high specificity and stability. In this review, macromolecules for molecularly imprinted sensor applications are structured according to the definition of molecular imprinting methods, developments in macromolecular imprinting methods, macromolecular imprinted sensors, and conclusions and future perspectives. This chapter follows the latter strategies and focuses on the applications of macromolecular imprinted sensors. This allows discussion on how sensor strategy is brought to solve the macromolecules imprinting.
Collapse
Affiliation(s)
- Yeşeren Saylan
- Department of Chemistry, Division of Biochemistry, Hacettepe University, 06800 Ankara, Turkey.
| | - Fatma Yilmaz
- Department of Chemistry Technology, Abant Izzet Baysal University, 14900 Bolu, Turkey.
| | - Erdoğan Özgür
- Department of Chemistry, Division of Biochemistry, Hacettepe University, 06800 Ankara, Turkey.
| | - Ali Derazshamshir
- Department of Chemistry, Division of Biochemistry, Hacettepe University, 06800 Ankara, Turkey.
| | - Handan Yavuz
- Department of Chemistry, Division of Biochemistry, Hacettepe University, 06800 Ankara, Turkey.
| | - Adil Denizli
- Department of Chemistry, Division of Biochemistry, Hacettepe University, 06800 Ankara, Turkey.
| |
Collapse
|
35
|
SiO2-MIP core-shell nanoparticles containing gold nanoclusters for sensitive fluorescence detection of the antibiotic erythromycin. Mikrochim Acta 2017. [DOI: 10.1007/s00604-017-2216-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
36
|
Detection of glycoprotein through fluorescent boronic acid-based molecularly imprinted polymer. Anal Chim Acta 2017; 960:110-116. [DOI: 10.1016/j.aca.2016.12.046] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Revised: 12/28/2016] [Accepted: 12/30/2016] [Indexed: 01/09/2023]
|
37
|
Luo X, Xi Y, Yu H, Yin X, Luo S. Capturing Cadmium(II) Ion from Wastewater Containing Solid Particles and Floccules Using Ion-Imprinted Polymers with Broom Effect. Ind Eng Chem Res 2017. [DOI: 10.1021/acs.iecr.6b04030] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Xubiao Luo
- Key Laboratory
of Jiangxi
Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, P.R. China
| | - Yu Xi
- Key Laboratory
of Jiangxi
Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, P.R. China
| | - Haiyan Yu
- Key Laboratory
of Jiangxi
Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, P.R. China
| | - Xiaocui Yin
- Key Laboratory
of Jiangxi
Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, P.R. China
| | - Shenglian Luo
- Key Laboratory
of Jiangxi
Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, P.R. China
| |
Collapse
|
38
|
Zhao L, Yang J, Ye H, Zhao F, Zeng B. Preparation of hydrophilic surface-imprinted ionic liquid polymer on multi-walled carbon nanotubes for the sensitive electrochemical determination of imidacloprid. RSC Adv 2017. [DOI: 10.1039/c6ra25969c] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A hydrophilic ionic liquid monomer was immobilized on carboxylated MWNTs by ion exchange, then reversible addition–fragmentation chain transfer precipitation polymerization was performed in the presence of a template, imidacloprid.
Collapse
Affiliation(s)
- Lijuan Zhao
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education)
- College of Chemistry and Molecular Sciences
- Wuhan University
- Wuhan 430072
- P. R. China
| | - Juan Yang
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education)
- College of Chemistry and Molecular Sciences
- Wuhan University
- Wuhan 430072
- P. R. China
| | - Huili Ye
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education)
- College of Chemistry and Molecular Sciences
- Wuhan University
- Wuhan 430072
- P. R. China
| | - Faqiong Zhao
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education)
- College of Chemistry and Molecular Sciences
- Wuhan University
- Wuhan 430072
- P. R. China
| | - Baizhao Zeng
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education)
- College of Chemistry and Molecular Sciences
- Wuhan University
- Wuhan 430072
- P. R. China
| |
Collapse
|
39
|
Kumar P, Kim KH, Bansal V, Kumar S, Dilbaghi N, Kim YH. Modern progress and future challenges in nanocarriers for probe applications. Trends Analyt Chem 2017. [DOI: 10.1016/j.trac.2016.10.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
40
|
Molecularly imprinted polymer nanomaterials and nanocomposites by controlled/living radical polymerization. Prog Polym Sci 2016. [DOI: 10.1016/j.progpolymsci.2016.04.001] [Citation(s) in RCA: 111] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
41
|
Synthesis of adenosine-imprinted microspheres for the recognition of ADP-ribosylated proteins. Biosens Bioelectron 2016; 87:858-864. [PMID: 27657848 DOI: 10.1016/j.bios.2016.09.027] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2016] [Revised: 09/07/2016] [Accepted: 09/08/2016] [Indexed: 01/02/2023]
Abstract
Core-shell structural adenosine-imprinted microspheres were prepared via a two-step procedure. Polystyrene core particles (CP) were firstly prepared via a reversible addition-fragmentation chain transfer (RAFT) polymerization leaving the iniferter on the surface of the cores, then a molecularly imprinted polymer (MIP) shell was synthesized on the surface of the cores by using acrylamide (AAm) as the functional monomer and ethylene glycol dimethacrylate (EGDMA) as the cross-linker. The formation and growth of the MIP layer were seen dependent on the initiator (AIBN), AAm and the polymerization time used within the polymerization. SEM/TEM images showed that the dimensions of the cores and shells were 2μM and 44nm, respectively. The MIP microspheres exhibited a fast rebinding rate within 2h and a maximum adsorption capacity of 177μg per gram for adenosine. The adsorption fitted a Langmuir-Freundlich (LF) isotherm model with a KLF value of 41mL/μg and a qm value of 177μg/g for the MIP microspheres. The values were larger than those for a non-molecularly imprinted polymer (NIP) particles (5mL/μg and 88μg/g) indicating a better adsorption ability towards adenosine. The MIP microspheres showed a good selectivity for adenosine with a higher adsorption (683nmol/g) for adenosine than that (91nmol/g, 24nmol/g and 54nmol/g) for guanosine, cytidine and uridine respectively. Further experiment proved that the adenosine-imprinted polymer microspheres also had a good selectivity for ADP-ribosylated proteins that the MIP could extract the ADP-ribosylated proteins from the cell extract samples.
Collapse
|
42
|
Long Z, Xu W, Lu Y, Qiu H. Nanosilica-based molecularly imprinted polymer nanoshell for specific recognition and determination of rhodamine B in red wine and beverages. J Chromatogr B Analyt Technol Biomed Life Sci 2016; 1029-1030:230-238. [DOI: 10.1016/j.jchromb.2016.06.030] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Revised: 06/15/2016] [Accepted: 06/17/2016] [Indexed: 02/04/2023]
|
43
|
Luo J, Ma Q, Wei W, Zhu Y, Liu R, Liu X. Synthesis of Water-Dispersible Molecularly Imprinted Electroactive Nanoparticles for the Sensitive and Selective Paracetamol Detection. ACS APPLIED MATERIALS & INTERFACES 2016; 8:21028-21038. [PMID: 27463123 DOI: 10.1021/acsami.6b05440] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
A novel kind of water-dispersible molecularly imprinted electroactive nanoparticles was prepared combining macromolecular self-assembly with molecularly imprinting technique employing paracetamol (PCM) as template molecule. An amphiphilic electroactive copolymer (P(NVC-EHA-AA), PNEA) containing carbazole group was first synthesized through a one-pot free radical copolymerization. The coassembly of the electroactive copolymers with the template molecules (PCM) in aqueous solution generated nanoparticles embedded with PCM, leading to the formation of molecularly imprinted electroactive nanoparticles (MIENPs). A robust MIP film was formed on the surface of electrode by electrodeposition of MIENPs and subsequent electropolymerization of the carbazole units in MIENPs. After the extraction of PCM molecules, a MIP sensor was successfully constructed. It should be noted that electropolymerization of the electroactive units in MIENPs creates cross-conjugated polymer network, which not only locks the recognition sites but also significantly accelerates the electron transfer and thus enhances the response signal of the MIP sensor. These advantages endowed the MIP sensor with good selectivity and high sensitivity for PCM detection. The MIP sensor could recognize PCM from its possible interfering substances with good selectivity. Under the optimal conditions, two linear ranges from 1 μM to 0.1 mM and 0.1 to 10 mM with a detection limit of 0.3 μM were obtained for PCM detection. The MIP sensor also showed good stability and repeatability, which has been successfully used to analyze PCM in tablets and human urine samples with satisfactory results.
Collapse
Affiliation(s)
- Jing Luo
- The Key Laboratory of Food Colloids, Biotechnology, Ministry of Education, School of Chemical, Material Engineering, Jiangnan University , Wuxi, Jiangsu, China 214122
| | - Qiang Ma
- The Key Laboratory of Food Colloids, Biotechnology, Ministry of Education, School of Chemical, Material Engineering, Jiangnan University , Wuxi, Jiangsu, China 214122
| | - Wei Wei
- The Key Laboratory of Food Colloids, Biotechnology, Ministry of Education, School of Chemical, Material Engineering, Jiangnan University , Wuxi, Jiangsu, China 214122
| | - Ye Zhu
- The Key Laboratory of Food Colloids, Biotechnology, Ministry of Education, School of Chemical, Material Engineering, Jiangnan University , Wuxi, Jiangsu, China 214122
| | - Ren Liu
- The Key Laboratory of Food Colloids, Biotechnology, Ministry of Education, School of Chemical, Material Engineering, Jiangnan University , Wuxi, Jiangsu, China 214122
| | - Xiaoya Liu
- The Key Laboratory of Food Colloids, Biotechnology, Ministry of Education, School of Chemical, Material Engineering, Jiangnan University , Wuxi, Jiangsu, China 214122
| |
Collapse
|
44
|
Niu M, Pham-Huy C, He H. Core-shell nanoparticles coated with molecularly imprinted polymers: a review. Mikrochim Acta 2016. [DOI: 10.1007/s00604-016-1930-4] [Citation(s) in RCA: 134] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
45
|
Wang A, Lu H, Xu S. Preparation of Magnetic Hollow Molecularly Imprinted Polymers for Detection of Triazines in Food Samples. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2016; 64:5110-5116. [PMID: 27257079 DOI: 10.1021/acs.jafc.6b01197] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Novel magnetic hollow molecularly imprinted polymers (M-H-MIPs) were proposed for highly selective recognition and fast enrichment of triazines in food samples. M-H-MIPs were prepared on the basis of multi-step swelling polymerization, followed by in situ growth of magnetic Fe3O4 nanoparticles on the surface of hollow molecularly imprinted polymers (H-MIPs). Transmission electron microscopy and scanning electron microscopy confirmed the successful immobilization of Fe3O4 nanoparticles on the surface of H-MIPs. M-H-MIPs could be separated simply using an external magnet. The binding adsorption results indicated that M-H-MIPs displayed high binding capacity and fast mass transfer property and class selective property for triazines. Langmuir isotherm and pseudo-second-order kinetic models fitted the best adsorption models for M-H-MIPs. M-H-MIPs were used to analyze atrazine, simazine, propazine, and terbuthylazine in corn, wheat, and soybean samples. Satisfactory recoveries were in the range of 80.62-101.69%, and relative standard deviation was lower than 5.2%. Limits of detection from 0.16 to 0.39 μg L(-1) were obtained. When the method was applied to test positive samples that were contaminated with triazines, the results agree well with those obtained from an accredited method. Thus, the M-H-MIP-based dispersive solid-phase extraction method proved to be a convenient and practical platform for detection of triazines in food samples.
Collapse
Affiliation(s)
- Aixiang Wang
- School of Chemistry and Chemical Engineering, Linyi University , Linyi, Shandong 276005, People's Republic of China
| | - Hongzhi Lu
- School of Chemistry and Chemical Engineering, Linyi University , Linyi, Shandong 276005, People's Republic of China
| | - Shoufang Xu
- School of Chemistry and Chemical Engineering, Linyi University , Linyi, Shandong 276005, People's Republic of China
| |
Collapse
|
46
|
Zhu F, Wang J, Zhu L, Tan L, Feng G, Liu S, Dai Y, Wang H. Preparation of molecularly imprinted polymers using theanine as dummy template and its application as SPE sorbent for the determination of eighteen amino acids in tobacco. Talanta 2016; 150:388-98. [PMID: 26838422 DOI: 10.1016/j.talanta.2015.12.038] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Revised: 12/11/2015] [Accepted: 12/14/2015] [Indexed: 10/22/2022]
Abstract
In this paper, a novel dummy template molecularly imprinted polymer (DMIP) based on a vinyl-SiO2 microspheres surface for the simultaneous selective recognition and enrichment of 18 amino acids was prepared via a surface molecular imprinting technique using theanine as a dummy template. Compared to the imprinted polymers prepared using traditional polymerization techniques, the obtained DMIPs exhibited a regular spherical shape and were relatively monodisperse. The maximal sorption capacity (Qmax) of the resulting DMIPs for the 18 amino acids was up to 1444.3 mg g(-1). A kinetic binding study showed that the sorption capacity reached 85.40% of Qmax in 25 min and sorption equilibrium at 30 min. The imprint factors of the sorbents ranged from 2.86 to 6.9 for the 18 amino acids, which indicated that the DMIP sorbents have high selectivity. An HPLC-UV method for the simultaneous determination of 18 amino acids in tobacco and tobacco smoke was developed using the DMIPs as sorbents for solid phase extraction (SPE) in the sample pretreatment procedure. Under the optimum experimental conditions, the materials had enrichment factors of up to 200 for the amino acids, and the recoveries of the 18 amino acids in tobacco smoke were in the range from 79% to 104% with relative standard deviations of less than 7.4%. It indicated that the obtained DMIP sorbents could specifically recognize the amino acids from complicated samples.
Collapse
Affiliation(s)
- Fengling Zhu
- Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Jing Wang
- Research and Development Center, China Tobacco Chuanyu Industrial Corporation, Chengdu, Sichuan 610066, China
| | - Lijun Zhu
- Research and Development Center, China Tobacco Chuanyu Industrial Corporation, Chengdu, Sichuan 610066, China
| | - Lanlan Tan
- Research and Development Center, China Tobacco Chuanyu Industrial Corporation, Chengdu, Sichuan 610066, China
| | - Guanglin Feng
- Research and Development Center, China Tobacco Chuanyu Industrial Corporation, Chengdu, Sichuan 610066, China
| | - Shaomin Liu
- Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, China.
| | - Ya Dai
- Research and Development Center, China Tobacco Chuanyu Industrial Corporation, Chengdu, Sichuan 610066, China.
| | - Hua Wang
- Research and Development Center, China Tobacco Anhui Industrial Corporation, Hefei, Anhui 230088, China
| |
Collapse
|
47
|
Su LQ, Gao Y, Qin SL, Li JJ. Determination of Atrazine in Vegetables with Extraction by a Magnetite–Chitosan Molecularly Imprinted Polymer and Gas Chromatography. ANAL LETT 2016. [DOI: 10.1080/00032719.2016.1140771] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
48
|
Asman S, Mohamad S, Sarih NM. Study of the morphology and the adsorption behavior of molecularly imprinted polymers prepared by reversible addition-fragmentation chain transfer (RAFT) polymerization process based on two functionalized β-cyclodextrin as monomers. J Mol Liq 2016. [DOI: 10.1016/j.molliq.2015.11.057] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
49
|
Liu G, Li T, Yang X, She Y, Wang M, Wang J, Zhang M, Wang S, Jin F, Jin M, Shao H, Jiang Z, Yu H. Competitive fluorescence assay for specific recognition of atrazine by magnetic molecularly imprinted polymer based on Fe 3 O 4 -chitosan. Carbohydr Polym 2016; 137:75-81. [DOI: 10.1016/j.carbpol.2015.10.062] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2015] [Revised: 10/13/2015] [Accepted: 10/15/2015] [Indexed: 01/10/2023]
|
50
|
Abdollahi E, Abdouss M, Salami-Kalajahi M, Mohammadi A. Molecular Recognition Ability of Molecularly Imprinted Polymer Nano- and Micro-Particles by Reversible Addition-Fragmentation Chain Transfer Polymerization. POLYM REV 2016. [DOI: 10.1080/15583724.2015.1119162] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|