1
|
Jarusheh HS, Al Jitan S, Banat F, Abu Haija M, Palmisano G. Phosphorus-modified copper ferrite (P-CuFe 2O 4) nanoparticles for photocatalytic ozonation of lomefloxacin. CHEMOSPHERE 2023; 340:139907. [PMID: 37633615 DOI: 10.1016/j.chemosphere.2023.139907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 08/13/2023] [Accepted: 08/19/2023] [Indexed: 08/28/2023]
Abstract
Phosphorus-modified copper ferrite (P-CuFe2O4) nanoparticles were prepared by a simple sol-gel auto-combustion process and used for the photocatalytic ozonation of lomefloxacin (LOM). The morphology, crystallinity, and structure of the synthesized CuFe2O4 and P-CuFe2O4 nanoparticles were investigated using various techniques. The high-performance liquid chromatography (HPLC) analysis revealed that the degradation of LOM achieved a 99% reduction after a duration of 90 min in the photocatalytic ozonation system. In accordance with the charge-to-mass ratio, four intermediates were proposed with the help of their fragments obtained in LC-MS/MS. The degradation kinetics of lomefloxacin followed a pseudo-first order reaction, and the degradation mechanism was proposed based on the results. P0.035Cu0.965Fe2O4 showed the highest total organic carbon (TOC) removal with 20.15% in 90 min, highest specific surface area and the highest fluoride and ammonium production using the ion chromatography (IC). The experimental results obtained from the electron paramagnetic resonance (EPR) analysis indicated that the modified P-CuFe2O4 samples exhibited significantly elevated levels of superoxide (.O2-) production compared to the CuFe2O4 samples. The findings of this study demonstrate that the introduction of phosphorus modification into the copper ferrite photocatalyst led to an augmentation of both the specific surface area and the total pore volume. Furthermore, the incorporation of phosphorus served to promote the efficient separation of electron-hole pairs by effectively trapping electrons in the conduction band, hence enhancing the degradation efficiency.
Collapse
Affiliation(s)
- Hebah Sami Jarusheh
- Department of Chemical Engineering, Khalifa University of Science and Technology, P.O. Box 127788, Abu Dhabi, United Arab Emirates; Center for Membrane and Advanced Water Technology, Khalifa University of Science and Technology, P.O. Box 127788, Abu Dhabi, United Arab Emirates; Research and Innovation Center on CO(2) and H(2), Khalifa University of Science and Technology, P.O. Box 127788, Abu Dhabi, United Arab Emirates
| | - Samar Al Jitan
- Department of Chemical Engineering, Khalifa University of Science and Technology, P.O. Box 127788, Abu Dhabi, United Arab Emirates; Center for Membrane and Advanced Water Technology, Khalifa University of Science and Technology, P.O. Box 127788, Abu Dhabi, United Arab Emirates; Research and Innovation Center on CO(2) and H(2), Khalifa University of Science and Technology, P.O. Box 127788, Abu Dhabi, United Arab Emirates
| | - Fawzi Banat
- Department of Chemical Engineering, Khalifa University of Science and Technology, P.O. Box 127788, Abu Dhabi, United Arab Emirates; Center for Membrane and Advanced Water Technology, Khalifa University of Science and Technology, P.O. Box 127788, Abu Dhabi, United Arab Emirates
| | - Mohammad Abu Haija
- Department of Chemistry, Khalifa University of Science and Technology, P.O. Box 127788, Abu Dhabi, United Arab Emirates; Advanced Materials Chemistry Center (AMCC), Khalifa University of Science and Technology, P.O. Box 127788 Abu Dhabi, United Arab Emirates
| | - Giovanni Palmisano
- Department of Chemical Engineering, Khalifa University of Science and Technology, P.O. Box 127788, Abu Dhabi, United Arab Emirates; Center for Membrane and Advanced Water Technology, Khalifa University of Science and Technology, P.O. Box 127788, Abu Dhabi, United Arab Emirates; Research and Innovation Center on CO(2) and H(2), Khalifa University of Science and Technology, P.O. Box 127788, Abu Dhabi, United Arab Emirates.
| |
Collapse
|
2
|
Sharma S, Jakhar P, Sharma H.
CuFe
2
O
4
nanomaterials: Current discoveries in synthesis, catalytic efficiency in coupling reactions, and their environmental applications. J CHIN CHEM SOC-TAIP 2023. [DOI: 10.1002/jccs.202200519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
- Shaily Sharma
- Microwave Chemistry Lab, Department of Chemistry UCOS, Mohanlal Sukhadia University Udaipur India
| | - Prakash Jakhar
- Microwave Chemistry Lab, Department of Chemistry UCOS, Mohanlal Sukhadia University Udaipur India
| | - Himanshu Sharma
- Microwave Chemistry Lab, Department of Chemistry UCOS, Mohanlal Sukhadia University Udaipur India
| |
Collapse
|
3
|
Agboola PO, Haider S, Shakir I. The impact of rare earth Nd 3+ cations on structural, spectral, magnetic and dielectric parameters of NiFe 2O 4 nanoparticles. JOURNAL OF TAIBAH UNIVERSITY FOR SCIENCE 2022. [DOI: 10.1080/16583655.2022.2059953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Philips O. Agboola
- College of Engineering Al-Muzahmia Branch, King Saud University, Riyadh, Saudi Arabia
| | - Sajjad Haider
- Department of Chemical Engineering, College of Engineering, King Saud University, Riyadh, Saudi Arabia
| | - Imran Shakir
- Department of Materials Science and Engineering, University of California, Los Angeles, CA, USA
| |
Collapse
|
4
|
Facile synthesis of Cu1-Co Fe2O4 (0 ≤ x ≤ 0.5) nanoparticles with enhanced magnetic and photocatalytic performances for organic dye degradation. ADV POWDER TECHNOL 2021. [DOI: 10.1016/j.apt.2021.09.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
5
|
Baláž M, Tešinský M, Marquardt J, Škrobian M, Daneu N, Rajňák M, Baláž P. Synthesis of copper nanoparticles from refractory sulfides using a semi-industrial mechanochemical approach. ADV POWDER TECHNOL 2020. [DOI: 10.1016/j.apt.2019.11.032] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
6
|
Zhao G, Wu H, Feng R, Wang D, Xu P, Wang H, Guo Z, Chen Q. Bimetallic Zeolitic Imidazolate Framework as an Intrinsic Two-Photon Fluorescence and pH-Responsive MR Imaging Agent. ACS OMEGA 2018; 3:9790-9797. [PMID: 31459108 PMCID: PMC6644450 DOI: 10.1021/acsomega.8b00923] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Accepted: 08/08/2018] [Indexed: 05/29/2023]
Abstract
Zeolitic imidazolate framework-8 (ZIF-8) has received wide attention in recent years as a potential drug vehicle for the treatment of cancer due to its acid-responsiveness and moderate biocompatibility. However, its congenital deficiency of intrinsic imaging capability limits its wider applications; therefore, a postsynthetic exchange approach was utilized to introduce paramagnetic manganese(II) ions into the ZIF-8 matrix. As a result, bimetallic zeolitic imidazolate frameworks (Mn-Zn-ZIF) were thus fabricated and exhibited pH-responsive T1-weighted magnetic resonance imaging (MRI) contrast effect. Remarkably, we also found its own fluorescence derived from 2-methylimidazole, which is the first report of the intrinsic two-photon fluorescence imaging of ZIFs to our knowledge. Mn-Zn-ZIF still preserves the original properties of ZIF-8 of high surface areas, microporosity, and acid sensitivity. After further PEGylation of Mn-Zn-ZIF, the nanoparticles showed no obvious toxicity and its MRI contrast effect has also been enhanced. Our work highlights the promise of modified zeolitic imidazolate frameworks as potential cancer theranostic platforms.
Collapse
Affiliation(s)
- Gaozheng Zhao
- Hefei
National Laboratory for Physical Sciences at Microscale, Department
of Materials Science & Engineering & Collaborative Innovation
Center of Suzhou Nano Science and Technology, CAS High Magnetic Field
Laboratory, University of Science and Technology
of China, Hefei 230026, China
| | - Huihui Wu
- Anhui
Key Laboratory for Cellular Dynamics and Chemical Biology, School
of Life Sciences, University of Science
and Technology of China, Hefei 230027, China
| | - Ruilu Feng
- Hefei
National Laboratory for Physical Sciences at Microscale, Department
of Materials Science & Engineering & Collaborative Innovation
Center of Suzhou Nano Science and Technology, CAS High Magnetic Field
Laboratory, University of Science and Technology
of China, Hefei 230026, China
| | - Dongdong Wang
- Hefei
National Laboratory for Physical Sciences at Microscale, Department
of Materials Science & Engineering & Collaborative Innovation
Center of Suzhou Nano Science and Technology, CAS High Magnetic Field
Laboratory, University of Science and Technology
of China, Hefei 230026, China
| | - Pengping Xu
- Hefei
National Laboratory for Physical Sciences at Microscale, Department
of Materials Science & Engineering & Collaborative Innovation
Center of Suzhou Nano Science and Technology, CAS High Magnetic Field
Laboratory, University of Science and Technology
of China, Hefei 230026, China
| | - Haibao Wang
- Radiology
Department of the First Affiliated Hospital of Anhui Medical University, Hefei 230022, China
| | - Zhen Guo
- Anhui
Key Laboratory for Cellular Dynamics and Chemical Biology, School
of Life Sciences, University of Science
and Technology of China, Hefei 230027, China
| | - Qianwang Chen
- Hefei
National Laboratory for Physical Sciences at Microscale, Department
of Materials Science & Engineering & Collaborative Innovation
Center of Suzhou Nano Science and Technology, CAS High Magnetic Field
Laboratory, University of Science and Technology
of China, Hefei 230026, China
| |
Collapse
|
7
|
Assortment of magnetic nanospinels for activation of distinct inorganic oxidants in photo-Fenton’s process. ACTA ACUST UNITED AC 2015. [DOI: 10.1016/j.molcata.2015.03.009] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
8
|
Lukiyanchuk IV, Rudnev VS, Ustinov AY, Morozova VP, Adigamova MV, Tyrina LM, Chernykh IV. Bifunctional Fe-containing coatings formed on aluminum by plasma-electrolytic oxidation. RUSS J APPL CHEM+ 2012. [DOI: 10.1134/s1070427212110092] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
9
|
Hu F, Zhao YS. Inorganic nanoparticle-based T1 and T1/T2 magnetic resonance contrast probes. NANOSCALE 2012; 4:6235-43. [PMID: 22971876 DOI: 10.1039/c2nr31865b] [Citation(s) in RCA: 96] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Magnetic resonance imaging (MRI) yields high spatially resolved contrast with anatomical details for diagnosis, deeper penetration depth and rapid 3D scanning. To improve imaging sensitivity, adding contrast agents accelerates the relaxation rate of water molecules, thereby greatly increasing the contrast between specific issues or organs of interest. Currently, the majority of T(1) contrast agents are paramagnetic molecular complexes, typically Gd(iii) chelates. Various nanoparticulate T(1) and T(1)/T(2) contrast agents have recently been investigated as novel agents possessing the advantages of both the T(1) contrast effect and nanostructural characteristics. In this minireview, we describe the recent progress of these inorganic nanoparticle-based MRI contrast agents. Specifically, we mainly report on Gd and Mn-based inorganic nanoparticles and ultrasmall iron oxide/ferrite nanoparticles.
Collapse
Affiliation(s)
- Fengqin Hu
- College of Chemistry, Beijing Normal University, Beijing 100875, China.
| | | |
Collapse
|
10
|
Sun QC, Birkel CS, Cao J, Tremel W, Musfeldt JL. Spectroscopic signature of the superparamagnetic transition and surface spin disorder in CoFe2O4 nanoparticles. ACS NANO 2012; 6:4876-4883. [PMID: 22540958 DOI: 10.1021/nn301276q] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Phonons are exquisitely sensitive to finite length scale effects in a wide variety of materials. To investigate confinement in combination with strong magnetoelastic interactions, we measured the infrared vibrational properties of CoFe(2)O(4) nanoparticles and compared our results to trends in the coercivity over the same size range and to the response of the bulk material. Remarkably, the spectroscopic response is sensitive to the size-induced crossover to the superparamagnetic state, which occurs between 7 and 10 nm. A spin-phonon coupling analysis supports the core-shell model. Moreover, it provides an estimate of the magnetically disordered shell thickness, which increases from 0.4 nm in the 14 nm particles to 0.8 nm in the 5 nm particles, demonstrating that the associated local lattice distortions take place on the length scale of the unit cell. These findings are important for understanding finite length scale effects in this and other magnetic oxides where magnetoelastic interactions are important.
Collapse
Affiliation(s)
- Qi-C Sun
- Department of Chemistry, University of Tennessee, Knoxville, Tennessee 37996, USA
| | | | | | | | | |
Collapse
|