1
|
Advances in the enzymatic biofuel cell powered sensing systems for tumor diagnosis and regulation. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2021.116476] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
2
|
Logic Gates Based on DNA Aptamers. Pharmaceuticals (Basel) 2020; 13:ph13110417. [PMID: 33238657 PMCID: PMC7700249 DOI: 10.3390/ph13110417] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 11/19/2020] [Accepted: 11/20/2020] [Indexed: 02/08/2023] Open
Abstract
DNA bio-computing is an emerging trend in modern science that is based on interactions among biomolecules. Special types of DNAs are aptamers that are capable of selectively forming complexes with target compounds. This review is devoted to a discussion of logic gates based on aptamers for the purposes of medicine and analytical chemistry. The review considers different approaches to the creation of logic gates and identifies the general algorithms of their creation, as well as describes the methods of obtaining an output signal which can be divided into optical and electrochemical. Aptameric logic gates based on DNA origami and DNA nanorobots are also shown. The information presented in this article can be useful when creating new logic gates using existing aptamers and aptamers that will be selected in the future.
Collapse
|
3
|
Wang Y, Sun S, Luo J, Xiong Y, Ming T, Liu J, Ma Y, Yan S, Yang Y, Yang Z, Reboud J, Yin H, Cooper JM, Cai X. Low sample volume origami-paper-based graphene-modified aptasensors for label-free electrochemical detection of cancer biomarker-EGFR. MICROSYSTEMS & NANOENGINEERING 2020; 6:32. [PMID: 34567646 PMCID: PMC8433370 DOI: 10.1038/s41378-020-0146-2] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 12/04/2019] [Accepted: 02/18/2020] [Indexed: 05/08/2023]
Abstract
In this work, an electrochemical paper-based aptasensor was fabricated for label-free and ultrasensitive detection of epidermal growth factor receptor (EGFR) by employing anti-EGFR aptamers as the bio-recognition element. The device used the concept of paper-folding, or origami, to serve as a valve between sample introduction and detection, so reducing sampling volumes and improving operation convenience. Amino-functionalized graphene (NH2-GO)/thionine (THI)/gold particle (AuNP) nanocomposites were used to modify the working electrode not only to generate the electrochemical signals, but also to provide an environment conducive to aptamer immobilization. Electrochemical characterization revealed that the formation of an insulating aptamer-antigen immunocomplex would hinder electron transfer from the sample medium to the working electrode, thus resulting in a lower signal. The experimental results showed that the proposed aptasensor exhibited a linear range from 0.05 to 200 ngmL-1 (R 2 = 0.989) and a detection limit of 5 pgmL-1 for EGFR. The analytical reliability of the proposed paper-based aptasensor was further investigated by analyzing serum samples, showing good agreement with the gold-standard enzyme-linked immunosorbent assay.
Collapse
Affiliation(s)
- Yang Wang
- State Key Laboratory of Transducer Technology, Institute of Electronics, Chinese Academy of Sciences, Beijing, 100190 China
- University of Chinese Academy of Sciences, Beijing, 100190 China
| | - Shuai Sun
- State Key Laboratory of Transducer Technology, Institute of Electronics, Chinese Academy of Sciences, Beijing, 100190 China
- University of Chinese Academy of Sciences, Beijing, 100190 China
| | - Jinping Luo
- State Key Laboratory of Transducer Technology, Institute of Electronics, Chinese Academy of Sciences, Beijing, 100190 China
- University of Chinese Academy of Sciences, Beijing, 100190 China
| | - Ying Xiong
- Key laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Thoracic Surgery II, Peking University Cancer Hospital & Institute, Beijing, 100142 China
| | - Tao Ming
- State Key Laboratory of Transducer Technology, Institute of Electronics, Chinese Academy of Sciences, Beijing, 100190 China
- University of Chinese Academy of Sciences, Beijing, 100190 China
| | - Juntao Liu
- State Key Laboratory of Transducer Technology, Institute of Electronics, Chinese Academy of Sciences, Beijing, 100190 China
- University of Chinese Academy of Sciences, Beijing, 100190 China
| | - Yuanyuan Ma
- Key laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Thoracic Surgery II, Peking University Cancer Hospital & Institute, Beijing, 100142 China
| | - Shi Yan
- Key laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Thoracic Surgery II, Peking University Cancer Hospital & Institute, Beijing, 100142 China
| | - Yue Yang
- Key laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Thoracic Surgery II, Peking University Cancer Hospital & Institute, Beijing, 100142 China
| | - Zhugen Yang
- Division of Biomedical Engineering, James Watt School of Engineering, University of Glasgow, Oakfield Avenue, Glasgow, G12 8LT United Kingdom
| | - Julien Reboud
- Division of Biomedical Engineering, James Watt School of Engineering, University of Glasgow, Oakfield Avenue, Glasgow, G12 8LT United Kingdom
| | - Huabing Yin
- Division of Biomedical Engineering, James Watt School of Engineering, University of Glasgow, Oakfield Avenue, Glasgow, G12 8LT United Kingdom
| | - Jonathan M. Cooper
- Division of Biomedical Engineering, James Watt School of Engineering, University of Glasgow, Oakfield Avenue, Glasgow, G12 8LT United Kingdom
| | - Xinxia Cai
- State Key Laboratory of Transducer Technology, Institute of Electronics, Chinese Academy of Sciences, Beijing, 100190 China
- University of Chinese Academy of Sciences, Beijing, 100190 China
| |
Collapse
|
4
|
Fu L, Liu J, Hu Z, Zhou M. Recent Advances in the Construction of Biofuel Cells Based Self-powered Electrochemical Biosensors: A Review. ELECTROANAL 2018. [DOI: 10.1002/elan.201800487] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Liangying Fu
- Key Laboratory of Nanobiosensing and Nanobioanalysis at Universities of Jilin Province, Key Laboratory of Polyoxometalate Science of Ministry of Education; National & Local United Engineering Laboratory for Power Batteries, Department of Chemistry, Northeast Normal University; Changchun, Jilin Province 130024 P.R. China
| | - Jingju Liu
- Key Laboratory of Nanobiosensing and Nanobioanalysis at Universities of Jilin Province, Key Laboratory of Polyoxometalate Science of Ministry of Education; National & Local United Engineering Laboratory for Power Batteries, Department of Chemistry, Northeast Normal University; Changchun, Jilin Province 130024 P.R. China
| | - Zongqian Hu
- Beijing Institute of Radiation Medicine; Beijing 100850 P.R. China
| | - Ming Zhou
- Key Laboratory of Nanobiosensing and Nanobioanalysis at Universities of Jilin Province, Key Laboratory of Polyoxometalate Science of Ministry of Education; National & Local United Engineering Laboratory for Power Batteries, Department of Chemistry, Northeast Normal University; Changchun, Jilin Province 130024 P.R. China
| |
Collapse
|
5
|
Yan K, Zhu Y, Ji W, Chen F, Zhang J. Visible Light-Driven Membraneless Photocatalytic Fuel Cell toward Self-Powered Aptasensing of PCB77. Anal Chem 2018; 90:9662-9666. [DOI: 10.1021/acs.analchem.8b02302] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Kai Yan
- Key Laboratory of Material Chemistry for Energy Conversion and Storage (Ministry of Education), School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, P. R. China
| | - Yuhan Zhu
- Key Laboratory of Material Chemistry for Energy Conversion and Storage (Ministry of Education), School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, P. R. China
| | - Weihao Ji
- Key Laboratory of Material Chemistry for Energy Conversion and Storage (Ministry of Education), School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, P. R. China
| | - Fang Chen
- Key Laboratory of Material Chemistry for Energy Conversion and Storage (Ministry of Education), School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, P. R. China
| | - Jingdong Zhang
- Key Laboratory of Material Chemistry for Energy Conversion and Storage (Ministry of Education), School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, P. R. China
| |
Collapse
|
6
|
Abstract
Self-powered electrochemical biosensors utilize biofuel cells as a simultaneous power source and biosensor, which simplifies the biosensor system, because it no longer requires a potentiostat, power for the potentiostat, and/or power for the signaling device. This review article is focused on detailing the advances in the field of self-powered biosensors and discussing their advantages and limitations compared to other types of electrochemical biosensors. The review will discuss self-powered biosensors formed from enzymatic biofuel cells, organelle-based biofuel cells, and microbial fuel cells. It also discusses the different mechanisms of sensing, including utilizing the analyte being the substrate/fuel for the biocatalyst, the analyte binding the biocatalyst to the electrode surface, the analyte being an inhibitor of the biocatalyst, the analyte resulting in the blocking of the bioelectrocatalytic response, the analyte reactivating the biocatalyst, Boolean logic gates, and combining affinity-based biorecognition elements with bioelectrocatalytic power generation. The final section of this review details areas of future investigation that are needed in the field, as well as problems that still need to be addressed by the field.
Collapse
Affiliation(s)
- Matteo Grattieri
- Departments of Chemistry and Materials Science & Engineering, University of Utah, 315 S 1400 E Rm 2020, Salt Lake City, Utah 84112, United States
| | - Shelley D. Minteer
- Departments of Chemistry and Materials Science & Engineering, University of Utah, 315 S 1400 E Rm 2020, Salt Lake City, Utah 84112, United States
| |
Collapse
|
7
|
Jia X, Dong S, Wang E. Engineering the bioelectrochemical interface using functional nanomaterials and microchip technique toward sensitive and portable electrochemical biosensors. Biosens Bioelectron 2016; 76:80-90. [DOI: 10.1016/j.bios.2015.05.037] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2015] [Revised: 05/13/2015] [Accepted: 05/14/2015] [Indexed: 01/08/2023]
|
8
|
Zhou M, Wang HL, Guo S. Towards high-efficiency nanoelectrocatalysts for oxygen reduction through engineering advanced carbon nanomaterials. Chem Soc Rev 2016; 45:1273-307. [DOI: 10.1039/c5cs00414d] [Citation(s) in RCA: 530] [Impact Index Per Article: 66.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
We summarize and discuss recent developments of different-dimensional advanced carbon nanomaterial-based noble-metal-free high-efficiency oxygen reduction electrocatalysts, including heteroatom-doped, transition metal-based nanoparticle-based, and especially iron carbide (Fe3C)-based carbon nanomaterial composites.
Collapse
Affiliation(s)
- Ming Zhou
- Key Laboratory of Polyoxometalate Science of Ministry of Education
- Faculty of Chemistry, and National & Local United Engineering Laboratory for Power Batteries
- Northeast Normal University
- Changchun
- P. R. China
| | - Hsing-Lin Wang
- Physical Chemistry and Applied Spectroscopy
- Chemistry Division
- Los Alamos National Laboratory
- Los Alamos
- USA
| | - Shaojun Guo
- Department of Materials Science and Engineering & Department of Energy and Resources Engineering
- College of Engineering
- Peking University
- Beijing 100871
- P. R. China
| |
Collapse
|
9
|
Zhou M. Recent Progress on the Development of Biofuel Cells for Self-Powered Electrochemical Biosensing and Logic Biosensing: A Review. ELECTROANAL 2015. [DOI: 10.1002/elan.201500173] [Citation(s) in RCA: 76] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
10
|
Gai P, Song R, Zhu C, Ji Y, Wang W, Zhang JR, Zhu JJ. Ultrasensitive self-powered cytosensors based on exogenous redox-free enzyme biofuel cells as point-of-care tools for early cancer diagnosis. Chem Commun (Camb) 2015; 51:16763-6. [DOI: 10.1039/c5cc07520c] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
An exogenous redox-free, membraneless enzyme biofuel cell-based ultrasensitive self-powered cytosensor was constructed as a point-of-care tool for early diagnosis of cancer.
Collapse
Affiliation(s)
- Panpan Gai
- State Key Laboratory of Analytical Chemistry for Life Science and Collaborative Innovation Center of Chemistry for Life Sciences
- School of Chemistry and Chemical Engineering
- Nanjing University
- Nanjing 210093
- P. R. China
| | - Rongbin Song
- State Key Laboratory of Analytical Chemistry for Life Science and Collaborative Innovation Center of Chemistry for Life Sciences
- School of Chemistry and Chemical Engineering
- Nanjing University
- Nanjing 210093
- P. R. China
| | - Cheng Zhu
- State Key Laboratory of Analytical Chemistry for Life Science and Collaborative Innovation Center of Chemistry for Life Sciences
- School of Chemistry and Chemical Engineering
- Nanjing University
- Nanjing 210093
- P. R. China
| | - Yusheng Ji
- State Key Laboratory of Analytical Chemistry for Life Science and Collaborative Innovation Center of Chemistry for Life Sciences
- School of Chemistry and Chemical Engineering
- Nanjing University
- Nanjing 210093
- P. R. China
| | - Wengjing Wang
- State Key Laboratory of Analytical Chemistry for Life Science and Collaborative Innovation Center of Chemistry for Life Sciences
- School of Chemistry and Chemical Engineering
- Nanjing University
- Nanjing 210093
- P. R. China
| | - Jian-Rong Zhang
- State Key Laboratory of Analytical Chemistry for Life Science and Collaborative Innovation Center of Chemistry for Life Sciences
- School of Chemistry and Chemical Engineering
- Nanjing University
- Nanjing 210093
- P. R. China
| | - Jun-Jie Zhu
- State Key Laboratory of Analytical Chemistry for Life Science and Collaborative Innovation Center of Chemistry for Life Sciences
- School of Chemistry and Chemical Engineering
- Nanjing University
- Nanjing 210093
- P. R. China
| |
Collapse
|
11
|
Liu S, Wang L, Lian W, Liu H, Li CZ. Logic Gate System with Three Outputs and Three Inputs Based on Switchable Electrocatalysis of Glucose by Glucose Oxidase Entrapped in Chitosan Films. Chem Asian J 2014; 10:225-30. [DOI: 10.1002/asia.201402927] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2014] [Indexed: 11/11/2022]
|
12
|
González-Guerrero MJ, Esquivel JP, Sánchez-Molas D, Godignon P, Muñoz FX, del Campo FJ, Giroud F, Minteer SD, Sabaté N. Membraneless glucose/O2 microfluidic enzymatic biofuel cell using pyrolyzed photoresist film electrodes. LAB ON A CHIP 2013; 13:2972-2979. [PMID: 23719742 DOI: 10.1039/c3lc50319d] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Biofuel cells typically yield lower power and are more difficult to fabricate than conventional fuel cells using inorganic catalysts. This work presents a glucose/O2 microfluidic biofuel cell (MBFC) featuring pyrolyzed photoresist film (PPF) electrodes made on silicon wafers using a rapid thermal process, and subsequently encapsulated by rapid prototyping techniques into a double-Y-shaped microchannel made entirely of plastic. A ferrocenium-based polyethyleneimine polymer linked to glucose oxidase (GOx/Fc-C6-LPEI) was used in the anode, while the cathode contained a mixture of laccase, anthracene-modified multi-walled carbon nanotubes, and tetrabutylammonium bromide-modified Nafion (MWCNTs/laccase/TBAB-Nafion). The cell performance was studied under different flow-rates, obtaining a maximum open circuit voltage of 0.54 ± 0.04 V and a maximum current density of 290 ± 28 μA cm(-2) at room temperature under a flow rate of 70 μL min(-1) representing a maximum power density of 64 ± 5 μW cm(-2). Although there is room for improvement, this is the best performance reported to date for a bioelectrode-based microfluidic enzymatic biofuel cell, and its materials and fabrication are amenable to mass production.
Collapse
Affiliation(s)
- Maria José González-Guerrero
- Instituto de Microelectrónica de Barcelona, IMB-CNM (CSIC), Campus de la Universidad Autónoma de Barcelona (Esfera UAB), 08193-Bellaterra, Barcelona, Spain
| | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Du Y, Li B, Wang E. "Fitting" makes "sensing" simple: label-free detection strategies based on nucleic acid aptamers. Acc Chem Res 2013; 46:203-13. [PMID: 23214491 DOI: 10.1021/ar300011g] [Citation(s) in RCA: 174] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Nucleic acid aptamers are small sequences of DNA made via in vitro selection techniques to bind targets with high affinity and specificity. The term aptamer derives from the Latin, aptus, meaning "to fit", emphasizing the lock-and-key relationship between aptamers and their binding targets. In 2004, aptamers began to attract researchers' attention as new binding elements for biosensors (i.e. aptasensors). Their advantages over other sensors include a diverse range of possible target molecules, high target affinity, simple synthesis, and ability to form Watson-Crick base pairs. These attributes create an enormous array of possible sensing applications and target molecules, spanning nearly all detection methods and readout techniques. In particular, aptamers provide an opportunity for designing "label-free" sensors, meaning sensors that do not require covalently labeling a signal probe to either the analyte or the recognition element (here, the aptamer). "Label-free" systems previously could only analyze large molecules using a few readout techniques, such as when employing the other recognition elements like antibodies. "Label-free" methods are one of the most effective and promising strategies for faster, simpler, and more convenient detection, since they avoid the expensive and tedious labeling process and challenging labeling reactions, while retaining the highest degree of activity and affinity for the recognition element. "Label-free" sensors are one of the most promising future biosensors. In this Account, we describe our efforts exploring and constructing such label-free sensing strategies based on aptamers. Our methods have included using various readout techniques, employing novel nanomaterials, importing lab-on-a-chip platforms, and improving logical recognition. The resulting sensors demonstrate that aptamers are ideal tools for "label-free" sensors. We divide this Account into three main parts describing three strategies for designing "label-free" sensors: (1) Label-free, separation-free strategies. These include colorimetric sensors based on G-quadruplex-hemin complex, and fluorescent sensors based on fluorescent small molecules, novel conjugated polymers, and metal ion clusters. (2) Label-free, separation-required strategies. In this part, electrochemical sensors are introduced, including sensors with different subtechniques using an electrode array. (3) Logic sensors. Some logic recognition systems are introduced. We emphasize that label-free aptasensors are not merely simple. We hope our introduction illustrates the powerful, flexible, and smart functions of aptamers in carrying out various detection tasks or playing various recognition games. Our work is only a start. We believe this field will bring additional knowledge on general designs, anti-interference, multianalysis, minimization, and auto-operation of aptamer biosensors.
Collapse
Affiliation(s)
- Yan Du
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P.R. China
| | - Bingling Li
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P.R. China
| | - Erkang Wang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P.R. China
| |
Collapse
|
14
|
Wu J, Coradin T, Aimé C. Reversible bioresponsive aptamer-based nanocomposites: ATP binding and removal from DNA-grafted silica nanoparticles. J Mater Chem B 2013; 1:5353-5359. [DOI: 10.1039/c3tb20499e] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
15
|
Liu Y, Tang Y, Cao A. Reversible logic gate modulated by nucleases based on cationic conjugated polymer/DNA assembly. Polym Chem 2013. [DOI: 10.1039/c3py00123g] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
16
|
Li B, Ellington* AD. Electrochemical Techniques as Powerful Readout Methods for Aptamer-based Biosensors. DNA CONJUGATES AND SENSORS 2012. [DOI: 10.1039/9781849734936-00211] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Aptamers are single-stranded nucleic acids that can be selected in vitro with special folding structures to bind to many different small-molecule, protein, and cellular targets. Over the past two decades, aptamers have become novel promising recognition elements for the fabrication of biosensors. These ‘aptasensors’ have several advantages over antibodies in that they are relatively easy to synthesise or modify in vitro, and can be appended with linkers and reporters for adaptation to various sensing strategies. In this chapter, we introduce the various electrochemical techniques that can be used as powerful readout methods for aptasensors, providing a brief introduction to aptamers and related electrochemical techniques, and then a detailed description of various branches within the field, including labelled strategies, unlabelled strategies, and enzyme-amplified strategies. For each type of approach, several basic and improved design principles will be addressed. It is hoped that, through this discussion, readers will get a sense of how several variables (aptamers, targets and redox reporters) are successfully combined with electrochemical techniques in order to produce a series of sensing platforms with high selectivity and sensitivity.
Collapse
Affiliation(s)
- Bingling Li
- Institute for Cellular and Molecular Biology Center for Systems and Synthetic Biology, Department of Chemistry and Biochemistry, University of Texas at Austin, Austin, TX 78712 USA
| | - Andrew D. Ellington*
- Institute for Cellular and Molecular Biology Center for Systems and Synthetic Biology, Department of Chemistry and Biochemistry, University of Texas at Austin, Austin, TX 78712 USA
| |
Collapse
|
17
|
Small-size biofuel cell on paper. Biosens Bioelectron 2012; 35:155-159. [DOI: 10.1016/j.bios.2012.02.035] [Citation(s) in RCA: 92] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2011] [Revised: 02/12/2012] [Accepted: 02/16/2012] [Indexed: 11/18/2022]
|
18
|
Zhou M, Wang J. Biofuel Cells for Self-Powered Electrochemical Biosensing and Logic Biosensing: A Review. ELECTROANAL 2012. [DOI: 10.1002/elan.201100631] [Citation(s) in RCA: 140] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
19
|
Zhang M, Ye BC. A reversible fluorescent DNA logic gate based on graphene oxide and its application for iodide sensing. Chem Commun (Camb) 2012; 48:3647-9. [DOI: 10.1039/c2cc17906g] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
20
|
Zhou M, Dong S. Bioelectrochemical interface engineering: toward the fabrication of electrochemical biosensors, biofuel cells, and self-powered logic biosensors. Acc Chem Res 2011; 44:1232-43. [PMID: 21812435 DOI: 10.1021/ar200096g] [Citation(s) in RCA: 248] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Over the past decade, researchers have devoted considerable attention to the integration of living organisms with electronic elements to yield bioelectronic devices. Not only is the integration of DNA, enzymes, or whole cells with electronics of scientific interest, but it has many versatile potential applications. Researchers are using these ideas to fabricate biosensors for analytical applications and to assemble biofuel cells (BFCs) and biomolecule-based devices. Other research efforts include the development of biocomputing systems for information processing. In this Account, we focus on our recent progress in engineering at the bioelectrochemical interface (BECI) for the rational design and construction of important bioelectronic devices, ranging from electrochemical (EC-) biosensors to BFCs, and self-powered logic biosensors. Hydrogels and sol-gels provide attractive materials for the immobilization of enzymes because they make EC-enzyme biosensors stable and even functional in extreme environments. We use a layer-by-layer (LBL) self-assembly technique to fabricate multicomponent thin films on the BECI at the nanometer scale. Additionally, we demonstrate how carbon nanomaterials have paved the way for new and improved EC-enzyme biosensors. In addition to the widely reported BECI-based electrochemical impedance spectroscopy (EIS)-type aptasensors, we integrate the LBL technique with our previously developed "solid-state probe" technique for redox probes immobilization on electrode surfaces to design and fabricate BECI-based differential pulse voltammetry (DPV)-type aptasensors. BFCs can directly harvest energy from ambient biofuels as green energy sources, which could lead to their application as simple, flexible, and portable power sources. Porous materials provide favorable microenvironments for enzyme immobilization, which can enhance BFC power output. Furthermore, by introducing aptamer-based logic systems to BFCs, such systems could be applied as self-powered and intelligent aptasensors for the logic detection. We have developed biocomputing keypad lock security systems which can be also used for intelligent medical diagnostics. BECI engineering provides a simple but effective approach toward the design and fabrication of EC-biosensors, BFCs, and self-powered logic biosensors, which will make essential contributions in the development of creative and practical bioelectronic devices. The exploration of novel interface engineering applications and the creation of new fabrication concepts or methods merit further attention.
Collapse
Affiliation(s)
- Ming Zhou
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P.R. China
| | - Shaojun Dong
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P.R. China
| |
Collapse
|
21
|
Orozco J, Campuzano S, Kagan D, Zhou M, Gao W, Wang J. Dynamic isolation and unloading of target proteins by aptamer-modified microtransporters. Anal Chem 2011; 83:7962-9. [PMID: 21888314 DOI: 10.1021/ac202029k] [Citation(s) in RCA: 110] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
We describe here a new strategy for isolating target proteins from complex biological samples based on an aptamer-modified self-propelled microtube engine. For this purpose, a thiolated thrombin or a mixed thrombin-ATP aptamer (prehybridized with a thiolated short DNA) was coassembled with mercaptohexanol onto the gold surface of these microtube engines. The rapid movement of the aptamer-modified microtransporter resulted in highly selective and rapid capture of the target thrombin, with an effective discrimination against a large excess of nontarget proteins. Release of the captured thrombin can be triggered by the addition of ATP that can bind and displace the immobilized mixed thrombin-ATP aptamer in 20 min. The rapid loading and unloading abilities demonstrated by these selective microtransporters are illustrated in complex matrixes such as human serum and plasma. The new motion-driven protein isolation platform represents a new approach in bioanalytical chemistry based on active transport of proteins and offers considerable promise for diverse diagnostic applications.
Collapse
Affiliation(s)
- Jahir Orozco
- Department of Nanoengineering, University of California, San Diego, La Jolla, California 92093, USA
| | | | | | | | | | | |
Collapse
|
22
|
Zhou M, Wang F, Dong S. Boolean logic gates based on oxygen-controlled biofuel cell in “one pot”. Electrochim Acta 2011. [DOI: 10.1016/j.electacta.2011.01.113] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
23
|
Zhou M, Zheng X, Wang J, Dong S. ‘Non-destructive’ biocomputing security system based on gas-controlled biofuel cell and potentially used for intelligent medical diagnostics. Bioinformatics 2010; 27:399-404. [DOI: 10.1093/bioinformatics/btq678] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
|