1
|
Soheilmoghaddam F, Rumble M, Cooper-White J. High-Throughput Routes to Biomaterials Discovery. Chem Rev 2021; 121:10792-10864. [PMID: 34213880 DOI: 10.1021/acs.chemrev.0c01026] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Many existing clinical treatments are limited in their ability to completely restore decreased or lost tissue and organ function, an unenviable situation only further exacerbated by a globally aging population. As a result, the demand for new medical interventions has increased substantially over the past 20 years, with the burgeoning fields of gene therapy, tissue engineering, and regenerative medicine showing promise to offer solutions for full repair or replacement of damaged or aging tissues. Success in these fields, however, inherently relies on biomaterials that are engendered with the ability to provide the necessary biological cues mimicking native extracellular matrixes that support cell fate. Accelerating the development of such "directive" biomaterials requires a shift in current design practices toward those that enable rapid synthesis and characterization of polymeric materials and the coupling of these processes with techniques that enable similarly rapid quantification and optimization of the interactions between these new material systems and target cells and tissues. This manuscript reviews recent advances in combinatorial and high-throughput (HT) technologies applied to polymeric biomaterial synthesis, fabrication, and chemical, physical, and biological screening with targeted end-point applications in the fields of gene therapy, tissue engineering, and regenerative medicine. Limitations of, and future opportunities for, the further application of these research tools and methodologies are also discussed.
Collapse
Affiliation(s)
- Farhad Soheilmoghaddam
- Tissue Engineering and Microfluidics Laboratory (TEaM), Australian Institute for Bioengineering and Nanotechnology (AIBN), University Of Queensland, St. Lucia, Queensland, Australia 4072.,School of Chemical Engineering, University Of Queensland, St. Lucia, Queensland, Australia 4072
| | - Madeleine Rumble
- Tissue Engineering and Microfluidics Laboratory (TEaM), Australian Institute for Bioengineering and Nanotechnology (AIBN), University Of Queensland, St. Lucia, Queensland, Australia 4072.,School of Chemical Engineering, University Of Queensland, St. Lucia, Queensland, Australia 4072
| | - Justin Cooper-White
- Tissue Engineering and Microfluidics Laboratory (TEaM), Australian Institute for Bioengineering and Nanotechnology (AIBN), University Of Queensland, St. Lucia, Queensland, Australia 4072.,School of Chemical Engineering, University Of Queensland, St. Lucia, Queensland, Australia 4072
| |
Collapse
|
2
|
Abstract
Microfluidics has played a vital role in developing novel methods to investigate biological phenomena at the molecular and cellular level during the last two decades. Microscale engineering of cellular systems is nevertheless a nascent field marked inherently by frequent disruptive advancements in technology such as PDMS-based soft lithography. Viable culture and manipulation of cells in microfluidic devices requires knowledge across multiple disciplines including molecular and cellular biology, chemistry, physics, and engineering. There has been numerous excellent reviews in the past 15 years on applications of microfluidics for molecular and cellular biology including microfluidic cell culture (Berthier et al., 2012; El-Ali, Sorger, & Jensen, 2006; Halldorsson et al., 2015; Kim et al., 2007; Mehling & Tay, 2014; Sackmann et al., 2014; Whitesides, 2006; Young & Beebe, 2010), cell culture models (Gupta et al., 2016; Inamdar & Borenstein, 2011; Meyvantsson & Beebe, 2008), cell secretion (Schrell et al., 2016), chemotaxis (Kim & Wu, 2012; Wu et al., 2013), neuron culture (Millet & Gillette, 2012a, 2012b), drug screening (Dittrich & Manz, 2006; Eribol, Uguz, & Ulgen, 2016; Wu, Huang, & Lee, 2010), cell sorting (Autebert et al., 2012; Bhagat et al., 2010; Gossett et al., 2010; Wyatt Shields Iv, Reyes, & López, 2015), single cell studies (Lecault et al., 2012; Reece et al., 2016; Yin & Marshall, 2012), stem cell biology (Burdick & Vunjak-Novakovic, 2009; Wu et al., 2011; Zhang & Austin, 2012), cell differentiation (Zhang et al., 2017a), systems biology (Breslauer, Lee, & Lee, 2006), 3D cell culture (Huh et al., 2011; Li et al., 2012; van Duinen et al., 2015), spheroids and organoids (Lee et al., 2016; Montanez-Sauri, Beebe, & Sung, 2015; Morimoto & Takeuchi, 2013; Skardal et al., 2016; Young, 2013), organ-on-chip (Bhatia & Ingber, 2014; Esch, Bahinski, & Huh, 2015; Huh et al., 2011; van der Meer & van den Berg, 2012), and tissue engineering (Andersson & Van Den Berg, 2004; Choi et al., 2007; Hasan et al., 2014). In this chapter, we provide an overview of PDMS-based microdevices for microfluidic cell culture. We discuss the advantages and challenges of using PDMS-based soft lithography for microfluidic cell culture and highlight recent progress and future directions in this area.
Collapse
Affiliation(s)
- Melikhan Tanyeri
- Biomedical Engineering Program, Duquesne University, Pittsburgh, PA, United States
| | - Savaş Tay
- Institute of Molecular Engineering, University of Chicago, Chicago, IL, United States; Institute of Genomics and Systems Biology, University of Chicago, Chicago, IL, United States.
| |
Collapse
|
3
|
Advances in Micro- and Nanotechnologies for Stem Cell-Based Translational Applications. STEM CELL BIOLOGY AND REGENERATIVE MEDICINE 2017. [DOI: 10.1007/978-3-319-29149-9_13] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
4
|
Matsuura K, Sugimoto I, Kuroda Y, Kadowaki K, Matsusaki M, Akashi M. Development of Microfluidic Systems for Fabricating Cellular Multilayers. ANAL SCI 2016; 32:1171-1176. [PMID: 27829621 DOI: 10.2116/analsci.32.1171] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
We designed a microfluidic system comprising microfluidic channels, pumps, and valves to enable the fabrication of cellular multilayers in order to reduce labor inputs for coating extracellular matrices onto adhesive cells (e.g., centrifugation). Our system was used to fabricate nanometer-sized, layer-by-layer films of the extracellular matrices on a monolayer of C2C12 myoblasts. The use of this microfluidic system allowed the fabrication of cellular multilayers in designed microfluidic channels and on commercial culture dishes. The thickness of the fabricated multilayer using this microfluidic system was higher than that of the multilayer that was formed by centrifugation. Because cellular multilayer fabrication is less laborious and the mechanical force to the cell is reduced, this novel system can be applied to tissue modeling for cell biology studies, pharmaceutical assays, and quantitative analyses of mechanical or chemical stimuli applied to multilayers.
Collapse
Affiliation(s)
- Koji Matsuura
- Research Core for Interdisciplinary Sciences, Okayama University
| | | | | | | | | | | |
Collapse
|
5
|
Induction of Human iPSC-Derived Cardiomyocyte Proliferation Revealed by Combinatorial Screening in High Density Microbioreactor Arrays. Sci Rep 2016; 6:24637. [PMID: 27097795 PMCID: PMC4838928 DOI: 10.1038/srep24637] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Accepted: 03/29/2016] [Indexed: 01/25/2023] Open
Abstract
Inducing cardiomyocyte proliferation in post-mitotic adult heart tissue is attracting significant attention as a therapeutic strategy to regenerate the heart after injury. Model animal screens have identified several candidate signalling pathways, however, it remains unclear as to what extent these pathways can be exploited, either individually or in combination, in the human system. The advent of human cardiac cells from directed differentiation of human pluripotent stem cells (hPSCs) now provides the ability to interrogate human cardiac biology in vitro, but it remains difficult with existing culture formats to simply and rapidly elucidate signalling pathway penetrance and interplay. To facilitate high-throughput combinatorial screening of candidate biologicals or factors driving relevant molecular pathways, we developed a high-density microbioreactor array (HDMA) – a microfluidic cell culture array containing 8100 culture chambers. We used HDMAs to combinatorially screen Wnt, Hedgehog, IGF and FGF pathway agonists. The Wnt activator CHIR99021 was identified as the most potent molecular inducer of human cardiomyocyte proliferation, inducing cell cycle activity marked by Ki67, and an increase in cardiomyocyte numbers compared to controls. The combination of human cardiomyocytes with the HDMA provides a versatile and rapid tool for stratifying combinations of factors for heart regeneration.
Collapse
|
6
|
High-throughput screening approaches and combinatorial development of biomaterials using microfluidics. Acta Biomater 2016; 34:1-20. [PMID: 26361719 DOI: 10.1016/j.actbio.2015.09.009] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Revised: 09/07/2015] [Accepted: 09/08/2015] [Indexed: 12/11/2022]
Abstract
From the first microfluidic devices used for analysis of single metabolic by-products to highly complex multicompartmental co-culture organ-on-chip platforms, efforts of many multidisciplinary teams around the world have been invested in overcoming the limitations of conventional research methods in the biomedical field. Close spatial and temporal control over fluids and physical parameters, integration of sensors for direct read-out as well as the possibility to increase throughput of screening through parallelization, multiplexing and automation are some of the advantages of microfluidic over conventional, 2D tissue culture in vitro systems. Moreover, small volumes and relatively small cell numbers used in experimental set-ups involving microfluidics, can potentially decrease research cost. On the other hand, these small volumes and numbers of cells also mean that many of the conventional molecular biology or biochemistry assays cannot be directly applied to experiments that are performed in microfluidic platforms. Development of different types of assays and evidence that such assays are indeed a suitable alternative to conventional ones is a step that needs to be taken in order to have microfluidics-based platforms fully adopted in biomedical research. In this review, rather than providing a comprehensive overview of the literature on microfluidics, we aim to discuss developments in the field of microfluidics that can aid advancement of biomedical research, with emphasis on the field of biomaterials. Three important topics will be discussed, being: screening, in particular high-throughput and combinatorial screening; mimicking of natural microenvironment ranging from 3D hydrogel-based cellular niches to organ-on-chip devices; and production of biomaterials with closely controlled properties. While important technical aspects of various platforms will be discussed, the focus is mainly on their applications, including the state-of-the-art, future perspectives and challenges. STATEMENT OF SIGNIFICANCE Microfluidics, being a technology characterized by the engineered manipulation of fluids at the submillimeter scale, offers some interesting tools that can advance biomedical research and development. Screening platforms based on microfluidic technologies that allow high-throughput and combinatorial screening may lead to breakthrough discoveries not only in basic research but also relevant to clinical application. This is further strengthened by the fact that reliability of such screens may improve, since microfluidic systems allow close mimicking of physiological conditions. Finally, microfluidic systems are also very promising as micro factories of a new generation of natural or synthetic biomaterials and constructs, with finely controlled properties.
Collapse
|
7
|
Bajaj P, Harris JF, Huang JH, Nath P, Iyer R. Advances and Challenges in Recapitulating Human Pulmonary Systems: At the Cusp of Biology and Materials. ACS Biomater Sci Eng 2016; 2:473-488. [PMID: 33465851 DOI: 10.1021/acsbiomaterials.5b00480] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
The aim of this review is to provide an overview of physiologically relevant microengineered lung-on-a-chip (LoC) platforms for a variety of different biomedical applications with emphasis on drug screening. First, a brief outline of lung anatomy and physiology is presented followed by discussion of the lung parenchyma and its extracellular matrix. Next, we point out the technical challenges in recapitulating the complexity of lung in conventional static two-dimensional microenvironments and the need for alternate lung platforms. The importance of scaling laws is also emphasized in designing these in vitro microengineered lung platforms. The review then discusses current LoC platforms that have been used for testing the efficacy of drugs or as model systems for investigating disorders of the lung parenchyma. Finally, the design parameters in developing an ideal physiologically relevant LoC platform are presented. As this emerging field of organ-on-a-chip can serve an alternative platform for animal testing of drugs or modeling human diseases in vitro, it has significant potential to impact the future of pharmaceutical research.
Collapse
Affiliation(s)
- Piyush Bajaj
- Information Systems and Modeling, §Bioscience Division, and ⊥Physics Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Jennifer F Harris
- Information Systems and Modeling, Bioscience Division, and ⊥Physics Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Jen-Huang Huang
- Information Systems and Modeling, Bioscience Division, and Physics Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Pulak Nath
- Information Systems and Modeling, Bioscience Division, and Physics Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Rashi Iyer
- Information Systems and Modeling, Bioscience Division, and Physics Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| |
Collapse
|
8
|
Poehler E, Pfeiffer SA, Herm M, Gaebler M, Busse B, Nagl S. Microchamber arrays with an integrated long luminescence lifetime pH sensor. Anal Bioanal Chem 2015; 408:2927-35. [DOI: 10.1007/s00216-015-9178-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2015] [Revised: 10/27/2015] [Accepted: 11/06/2015] [Indexed: 10/22/2022]
|
9
|
Recent advances and future applications of microfluidic live-cell microarrays. Biotechnol Adv 2015; 33:948-61. [DOI: 10.1016/j.biotechadv.2015.06.006] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2015] [Revised: 06/16/2015] [Accepted: 06/19/2015] [Indexed: 12/31/2022]
|
10
|
Abstract
Microfluidic perfusion culture is a novel technique to culture animal cells in a small-scale microchamber with medium perfusion. Polydimethylsiloxane (PDMS) is the most popular material to fabricate a microfluidic perfusion culture chip. Photolithography and replica molding techniques are generally used for fabrication of a microfluidic perfusion culture chip. Pressure-driven perfusion culture system is convenient technique to carry out the perfusion culture of animal cells in a microfluidic device. Here, we describe a general theory on microfluid network design, microfabrication technique, and experimental technique for pressure-driven perfusion culture in an 8 × 8 microchamber array on a glass slide-sized microchip made out of PDMS.
Collapse
Affiliation(s)
- Koji Hattori
- Research Center for Stem Cell Engineering, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki, Japan
| | | | | |
Collapse
|
11
|
Halldorsson S, Lucumi E, Gómez-Sjöberg R, Fleming RMT. Advantages and challenges of microfluidic cell culture in polydimethylsiloxane devices. Biosens Bioelectron 2014; 63:218-231. [PMID: 25105943 DOI: 10.1016/j.bios.2014.07.029] [Citation(s) in RCA: 608] [Impact Index Per Article: 55.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2014] [Revised: 07/03/2014] [Accepted: 07/12/2014] [Indexed: 02/06/2023]
Abstract
Culture of cells using various microfluidic devices is becoming more common within experimental cell biology. At the same time, a technological radiation of microfluidic cell culture device designs is currently in progress. Ultimately, the utility of microfluidic cell culture will be determined by its capacity to permit new insights into cellular function. Especially insights that would otherwise be difficult or impossible to obtain with macroscopic cell culture in traditional polystyrene dishes, flasks or well-plates. Many decades of heuristic optimization have gone into perfecting conventional cell culture devices and protocols. In comparison, even for the most commonly used microfluidic cell culture devices, such as those fabricated from polydimethylsiloxane (PDMS), collective understanding of the differences in cellular behavior between microfluidic and macroscopic culture is still developing. Moving in vitro culture from macroscopic culture to PDMS based devices can come with unforeseen challenges. Changes in device material, surface coating, cell number per unit surface area or per unit media volume may all affect the outcome of otherwise standard protocols. In this review, we outline some of the advantages and challenges that may accompany a transition from macroscopic to microfluidic cell culture. We focus on decisive factors that distinguish macroscopic from microfluidic cell culture to encourage a reconsideration of how macroscopic cell culture principles might apply to microfluidic cell culture.
Collapse
Affiliation(s)
- Skarphedinn Halldorsson
- Center for Systems Biology and Biomedical Center, University of Iceland, Sturlugata 8, Reykjavik, Iceland
| | - Edinson Lucumi
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, 7 avenue des Hauts-Fourneaux, Esch-sur-Alzette, Luxembourg
| | - Rafael Gómez-Sjöberg
- Engineering Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA, United States of America
| | - Ronan M T Fleming
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, 7 avenue des Hauts-Fourneaux, Esch-sur-Alzette, Luxembourg.
| |
Collapse
|
12
|
Ertl P, Sticker D, Charwat V, Kasper C, Lepperdinger G. Lab-on-a-chip technologies for stem cell analysis. Trends Biotechnol 2014; 32:245-53. [PMID: 24726257 DOI: 10.1016/j.tibtech.2014.03.004] [Citation(s) in RCA: 90] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2013] [Revised: 02/20/2014] [Accepted: 03/05/2014] [Indexed: 01/21/2023]
Abstract
The combination of microfabrication-based technologies with cell biology has laid the foundation for the development of advanced in vitro diagnostic systems capable of analyzing cell cultures under physiologically relevant conditions. In the present review, we address recent lab-on-a-chip developments for stem cell analysis. We highlight in particular the tangible advantages of microfluidic devices to overcome most of the challenges associated with stem cell identification, expansion and differentiation, with the greatest advantage being that lab-on-a-chip technology allows for the precise regulation of culturing conditions, while simultaneously monitoring relevant parameters using embedded sensory systems. State-of-the-art lab-on-a-chip platforms for in vitro assessment of stem cell cultures are presented and their potential future applications discussed.
Collapse
Affiliation(s)
- Peter Ertl
- BioSensor Technologies, AIT Austrian Institute of Technology GmbH, Vienna, Austria.
| | - Drago Sticker
- BioSensor Technologies, AIT Austrian Institute of Technology GmbH, Vienna, Austria
| | - Verena Charwat
- Department of Biotechnology, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Cornelia Kasper
- Department of Biotechnology, University of Natural Resources and Life Sciences, Vienna, Austria
| | | |
Collapse
|
13
|
Yum K, Hong SG, Healy KE, Lee LP. Physiologically relevant organs on chips. Biotechnol J 2013; 9:16-27. [PMID: 24357624 DOI: 10.1002/biot.201300187] [Citation(s) in RCA: 99] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2013] [Revised: 09/16/2013] [Accepted: 10/28/2013] [Indexed: 12/23/2022]
Abstract
Recent advances in integrating microengineering and tissue engineering have generated promising microengineered physiological models for experimental medicine and pharmaceutical research. Here we review the recent development of microengineered physiological systems, or also known as "ogans-on-chips", that reconstitute the physiologically critical features of specific human tissues and organs and their interactions. This technology uses microengineering approaches to construct organ-specific microenvironments, reconstituting tissue structures, tissue-tissue interactions and interfaces, and dynamic mechanical and biochemical stimuli found in specific organs, to direct cells to assemble into functional tissues. We first discuss microengineering approaches to reproduce the key elements of physiologically important, dynamic mechanical microenvironments, biochemical microenvironments, and microarchitectures of specific tissues and organs in microfluidic cell culture systems. This is followed by examples of microengineered individual organ models that incorporate the key elements of physiological microenvironments into single microfluidic cell culture systems to reproduce organ-level functions. Finally, microengineered multiple organ systems that simulate multiple organ interactions to better represent human physiology, including human responses to drugs, is covered in this review. This emerging organs-on-chips technology has the potential to become an alternative to 2D and 3D cell culture and animal models for experimental medicine, human disease modeling, drug development, and toxicology.
Collapse
Affiliation(s)
- Kyungsuk Yum
- Department of Bioengineering, University of California, Berkeley, CA, USA; Department of Materials Science and Engineering, University of Texas, Arlington, TX, USA
| | | | | | | |
Collapse
|
14
|
Hattori K, Sugiura S, Kanamori T. Pressure-Driven Microfluidic Perfusion Culture Device for Integrated Dose-Response Assays. ACTA ACUST UNITED AC 2013; 18:437-45. [DOI: 10.1177/2211068213503155] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
15
|
Yoshimitsu R, Hattori K, Sugiura S, Kondo Y, Yamada R, Tachikawa S, Satoh T, Kurisaki A, Ohnuma K, Asashima M, Kanamori T. Microfluidic perfusion culture of human induced pluripotent stem cells under fully defined culture conditions. Biotechnol Bioeng 2013; 111:937-47. [PMID: 24222619 DOI: 10.1002/bit.25150] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2013] [Revised: 10/09/2013] [Accepted: 11/08/2013] [Indexed: 01/18/2023]
Abstract
Human induced pluripotent stem cells (hiPSCs) are a promising cell source for drug screening. For this application, self-renewal or differentiation of the cells is required, and undefined factors in the culture conditions are not desirable. Microfluidic perfusion culture allows the production of small volume cultures with precisely controlled microenvironments, and is applicable to high-throughput cellular environment screening. Here, we developed a microfluidic perfusion culture system for hiPSCs that uses a microchamber array chip under defined extracellular matrix (ECM) and culture medium conditions. By screening various ECMs we determined that fibronectin and laminin are appropriate for microfluidic devices made out of the most popular material, polydimethylsiloxane (PDMS). We found that the growth rate of hiPSCs under pressure-driven perfusion culture conditions was higher than under static culture conditions in the microchamber array. We applied our new system to self-renewal and differentiation cultures of hiPSCs, and immunocytochemical analysis showed that the state of the hiPSCs was successfully controlled. The effects of three antitumor drugs on hiPSCs were comparable between microchamber array and 96-well plates. We believe that our system will be a platform technology for future large-scale screening of fully defined conditions for differentiation cultures on integrated microfluidic devices.
Collapse
Affiliation(s)
- Ryosuke Yoshimitsu
- Department of Bioengineering, Nagaoka University of Technology, 1603-1 Kamitomioka, Nagaoka, Niigata, 940-2188, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Dao L, Gonnermann C, Franz CM. Investigating differential cell-matrix adhesion by directly comparative single-cell force spectroscopy. J Mol Recognit 2013; 26:578-89. [DOI: 10.1002/jmr.2303] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2013] [Revised: 07/24/2013] [Accepted: 07/31/2013] [Indexed: 01/22/2023]
Affiliation(s)
- Lu Dao
- Center for Functional Nanostructures; Karlsruhe Institute of Technology (KIT); Wolfgang-Gaede-Strasse 1a 76131 Karlsruhe Germany
- Zoologisches Institut I; Karlsruhe Institute für Technology (KIT); Haid-und-Neu-Strasse 9 76131 Karlsruhe Germany
| | - Carina Gonnermann
- Center for Functional Nanostructures; Karlsruhe Institute of Technology (KIT); Wolfgang-Gaede-Strasse 1a 76131 Karlsruhe Germany
- Zoologisches Institut I; Karlsruhe Institute für Technology (KIT); Haid-und-Neu-Strasse 9 76131 Karlsruhe Germany
| | - Clemens M. Franz
- Center for Functional Nanostructures; Karlsruhe Institute of Technology (KIT); Wolfgang-Gaede-Strasse 1a 76131 Karlsruhe Germany
- Zoologisches Institut I; Karlsruhe Institute für Technology (KIT); Haid-und-Neu-Strasse 9 76131 Karlsruhe Germany
| |
Collapse
|
17
|
Hattori K, Yoshimitsu R, Sugiura S, Maruyama A, Ohnuma K, Kanamori T. Masked plasma oxidation: simple micropatterning of extracellular matrix in a closed microchamber array. RSC Adv 2013. [DOI: 10.1039/c3ra42976h] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
|
18
|
Titmarsh DM, Chen H, Wolvetang EJ, Cooper-White JJ. Arrayed cellular environments for stem cells and regenerative medicine. Biotechnol J 2012; 8:167-79. [PMID: 22890848 DOI: 10.1002/biot.201200149] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2012] [Revised: 07/02/2012] [Accepted: 07/17/2012] [Indexed: 12/26/2022]
Abstract
The behavior and composition of both multipotent and pluripotent stem cell populations are exquisitely controlled by a complex, spatiotemporally variable interplay of physico-chemical, extracellular matrix, cell-cell interaction, and soluble factor cues that collectively define the stem cell niche. The push for stem cell-based regenerative medicine models and therapies has fuelled demands for increasingly accurate cellular environmental control and enhanced experimental throughput, driving an evolution of cell culture platforms away from conventional culture formats toward integrated systems. Arrayed cellular environments typically provide a set of discrete experimental elements with variation of one or several classes of stimuli across elements of the array. These are based on high-content/high-throughput detection, small sample volumes, and multiplexing of environments to increase experimental parameter space, and can be used to address a range of biological processes at the cell population, single-cell, or subcellular level. Arrayed cellular environments have the capability to provide an unprecedented understanding of the molecular and cellular events that underlie expansion and specification of stem cell and therapeutic cell populations, and thus generate successful regenerative medicine outcomes. This review focuses on recent key developments of arrayed cellular environments and their contribution and potential in stem cells and regenerative medicine.
Collapse
Affiliation(s)
- Drew M Titmarsh
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St. Lucia, Australia
| | | | | | | |
Collapse
|
19
|
Current advances in peptide and small molecule microarray technologies. Curr Opin Chem Biol 2012; 16:234-42. [DOI: 10.1016/j.cbpa.2011.12.007] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2011] [Revised: 12/16/2011] [Accepted: 12/16/2011] [Indexed: 11/18/2022]
|
20
|
Oh KW, Lee K, Ahn B, Furlani EP. Design of pressure-driven microfluidic networks using electric circuit analogy. LAB ON A CHIP 2012; 12:515-45. [PMID: 22179505 DOI: 10.1039/c2lc20799k] [Citation(s) in RCA: 255] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
This article reviews the application of electric circuit methods for the analysis of pressure-driven microfluidic networks with an emphasis on concentration- and flow-dependent systems. The application of circuit methods to microfluidics is based on the analogous behaviour of hydraulic and electric circuits with correlations of pressure to voltage, volumetric flow rate to current, and hydraulic to electric resistance. Circuit analysis enables rapid predictions of pressure-driven laminar flow in microchannels and is very useful for designing complex microfluidic networks in advance of fabrication. This article provides a comprehensive overview of the physics of pressure-driven laminar flow, the formal analogy between electric and hydraulic circuits, applications of circuit theory to microfluidic network-based devices, recent development and applications of concentration- and flow-dependent microfluidic networks, and promising future applications. The lab-on-a-chip (LOC) and microfluidics community will gain insightful ideas and practical design strategies for developing unique microfluidic network-based devices to address a broad range of biological, chemical, pharmaceutical, and other scientific and technical challenges.
Collapse
Affiliation(s)
- Kwang W Oh
- SMALL (Sensors and MicroActuators Learning Lab), Department of Electrical Engineering, University at Buffalo, The State University of New York at Buffalo (SUNY-Buffalo), New York 14260, USA.
| | | | | | | |
Collapse
|
21
|
Kovarik ML, Gach PC, Ornoff DM, Wang Y, Balowski J, Farrag L, Allbritton NL. Micro total analysis systems for cell biology and biochemical assays. Anal Chem 2012; 84:516-40. [PMID: 21967743 PMCID: PMC3264799 DOI: 10.1021/ac202611x] [Citation(s) in RCA: 180] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Michelle L. Kovarik
- Department of Chemistry, University of North Carolina, Chapel Hill, North Carolina 27599
| | - Phillip C. Gach
- Department of Chemistry, University of North Carolina, Chapel Hill, North Carolina 27599
| | - Douglas M. Ornoff
- Department of Chemistry, University of North Carolina, Chapel Hill, North Carolina 27599
- Department of Pharmacology, University of North Carolina, Chapel Hill, North Carolina 27599
| | - Yuli Wang
- Department of Chemistry, University of North Carolina, Chapel Hill, North Carolina 27599
| | - Joseph Balowski
- Department of Chemistry, University of North Carolina, Chapel Hill, North Carolina 27599
| | - Lila Farrag
- School of Medicine, University of North Carolina, Chapel Hill, North Carolina 27599
| | - Nancy L. Allbritton
- Department of Chemistry, University of North Carolina, Chapel Hill, North Carolina 27599
- Department of Biomedical Engineering, University of North Carolina, Chapel Hill, NC 27599 and North Carolina State University, Raleigh, NC 27695
| |
Collapse
|