1
|
Çelikbıçak Ö, Hamaloğlu KÖ, Salih B, Pişkin E. Following hybridization on sensor/array platforms by using SPR, elipsometer and MALDI-MS. NUCLEOSIDES NUCLEOTIDES & NUCLEIC ACIDS 2020; 39:1057-1072. [PMID: 32397925 DOI: 10.1080/15257770.2020.1750635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
The aim of this study is to develop a methodology in which Surface Plasmon Resonance (SPR), Ellipsometer (EM) and Matrix-Assisted Laser Desorption/Ionization-Mass Spectrometry (MALDI-MS) will be used together for detection of single-strand oligodeoxynucleotides (ssODNs) targets. A selected target-ssODNs, and its complementary, the probe-ssODNs carrying a -SH end group, a spacer arm (HS-(CH2)6-(T)15, and a non-complementary ssODNs were used. Silicone based stamps with 16 regions were prepared and used for micro-contact printing (µCP) of the probe-ssODNs on the gold coated surfaces homogeneously. A modulator-spacer molecule (6-mercapto-1-hexanol) was co-immobilized to control surface probe density, to orientate the probe-ssODNs, and to eliminate the nonspecific interactions. SPR was used successfully to follow the hybridization of the target-ssODNs with the immobilized probe-ssODNs on the platform surfaces. Complete hybridizations were achieved in 100 min. It was obtained that there was a linear relationship between relative change in delta and target concentration below 1 µm. Using imaging version of ellipsometer (IEM) allowed imaging of the surfaces and supported extra datum for the SPR results. After a very simple dehybridization protocol, MALDI-MS analysis allowed detection of the target-ssODNs hybridized on the sensor/array platforms.
Collapse
Affiliation(s)
- Ömür Çelikbıçak
- Department of Chemistry, Hacettepe University, Ankara, Turkey
| | | | - Bekir Salih
- Department of Chemistry, Hacettepe University, Ankara, Turkey
| | - Erhan Pişkin
- Nanobiyomedtek, Cyberpark, Bilkent, Ankara, Turkey
| |
Collapse
|
2
|
Sangsuwan A, Narupai B, Sae-ung P, Rodtamai S, Rodthongkum N, Hoven VP. Patterned Poly(acrylic acid) Brushes Containing Gold Nanoparticles for Peptide Detection by Surface-Assisted Laser Desorption/Ionization Mass Spectrometry. Anal Chem 2015; 87:10738-46. [DOI: 10.1021/acs.analchem.5b00734] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Arunee Sangsuwan
- Program in Petrochemistry and Polymer Science, Faculty of Science, ‡Organic Synthesis
Research Unit, Department of Chemistry, Faculty of Science, §Program in Macromolecular
Science, Faculty of Science, and ∥Metallurgy and Materials Science Research
Institute, Chulalongkorn University, Phayathai Road, Pathumwan, Bangkok 10330, Thailand
| | - Benjaporn Narupai
- Program in Petrochemistry and Polymer Science, Faculty of Science, ‡Organic Synthesis
Research Unit, Department of Chemistry, Faculty of Science, §Program in Macromolecular
Science, Faculty of Science, and ∥Metallurgy and Materials Science Research
Institute, Chulalongkorn University, Phayathai Road, Pathumwan, Bangkok 10330, Thailand
| | - Pornpen Sae-ung
- Program in Petrochemistry and Polymer Science, Faculty of Science, ‡Organic Synthesis
Research Unit, Department of Chemistry, Faculty of Science, §Program in Macromolecular
Science, Faculty of Science, and ∥Metallurgy and Materials Science Research
Institute, Chulalongkorn University, Phayathai Road, Pathumwan, Bangkok 10330, Thailand
| | - Sasithon Rodtamai
- Program in Petrochemistry and Polymer Science, Faculty of Science, ‡Organic Synthesis
Research Unit, Department of Chemistry, Faculty of Science, §Program in Macromolecular
Science, Faculty of Science, and ∥Metallurgy and Materials Science Research
Institute, Chulalongkorn University, Phayathai Road, Pathumwan, Bangkok 10330, Thailand
| | - Nadnudda Rodthongkum
- Program in Petrochemistry and Polymer Science, Faculty of Science, ‡Organic Synthesis
Research Unit, Department of Chemistry, Faculty of Science, §Program in Macromolecular
Science, Faculty of Science, and ∥Metallurgy and Materials Science Research
Institute, Chulalongkorn University, Phayathai Road, Pathumwan, Bangkok 10330, Thailand
| | - Voravee P. Hoven
- Program in Petrochemistry and Polymer Science, Faculty of Science, ‡Organic Synthesis
Research Unit, Department of Chemistry, Faculty of Science, §Program in Macromolecular
Science, Faculty of Science, and ∥Metallurgy and Materials Science Research
Institute, Chulalongkorn University, Phayathai Road, Pathumwan, Bangkok 10330, Thailand
| |
Collapse
|
3
|
Dasilva N, Díez P, Matarraz S, González-González M, Paradinas S, Orfao A, Fuentes M. Biomarker discovery by novel sensors based on nanoproteomics approaches. SENSORS 2012; 12:2284-308. [PMID: 22438764 PMCID: PMC3304166 DOI: 10.3390/s120202284] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2011] [Revised: 01/20/2012] [Accepted: 02/14/2012] [Indexed: 12/23/2022]
Abstract
During the last years, proteomics has facilitated biomarker discovery by coupling high-throughput techniques with novel nanosensors. In the present review, we focus on the study of label-based and label-free detection systems, as well as nanotechnology approaches, indicating their advantages and applications in biomarker discovery. In addition, several disease biomarkers are shown in order to display the clinical importance of the improvement of sensitivity and selectivity by using nanoproteomics approaches as novel sensors.
Collapse
Affiliation(s)
- Noelia Dasilva
- Centro de Investigación del Cáncer/IBMCC (USAL/CSIC), Departamento de Medicina and Servicio General de Citometría, University of Salamanca, Salamanca 37007, Spain; E-Mails: (N.D.); (P.D.); (S.M.); (M.G.-G.); (A.O.)
| | - Paula Díez
- Centro de Investigación del Cáncer/IBMCC (USAL/CSIC), Departamento de Medicina and Servicio General de Citometría, University of Salamanca, Salamanca 37007, Spain; E-Mails: (N.D.); (P.D.); (S.M.); (M.G.-G.); (A.O.)
| | - Sergio Matarraz
- Centro de Investigación del Cáncer/IBMCC (USAL/CSIC), Departamento de Medicina and Servicio General de Citometría, University of Salamanca, Salamanca 37007, Spain; E-Mails: (N.D.); (P.D.); (S.M.); (M.G.-G.); (A.O.)
| | - María González-González
- Centro de Investigación del Cáncer/IBMCC (USAL/CSIC), Departamento de Medicina and Servicio General de Citometría, University of Salamanca, Salamanca 37007, Spain; E-Mails: (N.D.); (P.D.); (S.M.); (M.G.-G.); (A.O.)
| | - Sara Paradinas
- Departamento de Química Analítica, Facultad de Ciencias Químicas, University of Salamanca, Salamanca 37008, Spain; E-Mail:
| | - Alberto Orfao
- Centro de Investigación del Cáncer/IBMCC (USAL/CSIC), Departamento de Medicina and Servicio General de Citometría, University of Salamanca, Salamanca 37007, Spain; E-Mails: (N.D.); (P.D.); (S.M.); (M.G.-G.); (A.O.)
| | - Manuel Fuentes
- Centro de Investigación del Cáncer/IBMCC (USAL/CSIC), Departamento de Medicina and Servicio General de Citometría, University of Salamanca, Salamanca 37007, Spain; E-Mails: (N.D.); (P.D.); (S.M.); (M.G.-G.); (A.O.)
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +34-923-294-811; Fax: +34-923-294-743
| |
Collapse
|
4
|
Abstract
The completion of the human genome project has led to intensified efforts toward comprehensive analysis of proteomes. New possibilities exist for efficient proteomic technologies. However, primary attention is given to the discovery of new predictive biomarker patterns. Understanding proteomes and, in particular, protein-mediated interactions underlying their complexity and diversity, is critical for the development of more reliable and robust diagnostic platforms, which are anticipated to enable personalized medicine. Of immediate relevance in this respect are those approaches that capitalize on the application of nanotechnology, which is seen as a powerful tool for the diagnosis of early-stage diseases. Here we highlight the current state of the field exemplified by recent nano-enabled technologies for biomarker discovery.
Collapse
|
5
|
Dean B. Dissecting the Syndrome of Schizophrenia: Progress toward Clinically Useful Biomarkers. SCHIZOPHRENIA RESEARCH AND TREATMENT 2011; 2011:614730. [PMID: 22937270 PMCID: PMC3420453 DOI: 10.1155/2011/614730] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/18/2010] [Revised: 03/28/2011] [Accepted: 04/07/2011] [Indexed: 12/17/2022]
Abstract
The search for clinically useful biomarkers has been one of the holy grails of schizophrenia research. This paper will outline the evolving notion of biomarkers and then outline outcomes from a variety of biomarkers discovery strategies. In particular, the impact of high-throughput screening technologies on biomarker discovery will be highlighted and how new or improved technologies may allow the discovery of either diagnostic biomarkers for schizophrenia or biomarkers that will be useful in determining appropriate treatments for people with the disorder. History tells those involved in biomarker research that the discovery and validation of useful biomarkers is a long process and current progress must always be viewed in that light. However, the approval of the first biomarker screen with some value in predicting responsiveness to antipsychotic drugs suggests that biomarkers can be identified and that these biomarkers that will be useful in diagnosing and treating people with schizophrenia.
Collapse
Affiliation(s)
- Brian Dean
- The Rebecca L. Cooper Research Laboratories, The Mental Health Research Institute, Locked bag 11, Parkville, VIC 3052, Australia
- The Department of Psychiatry, The University of Melbourne, Parkville, VIC 3052, Australia
| |
Collapse
|