1
|
Ogata FT, Verma S, Coulson-Thomas VJ, Gesteira TF. TGF-β-Based Therapies for Treating Ocular Surface Disorders. Cells 2024; 13:1105. [PMID: 38994958 PMCID: PMC11240592 DOI: 10.3390/cells13131105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 06/12/2024] [Accepted: 06/20/2024] [Indexed: 07/13/2024] Open
Abstract
The cornea is continuously exposed to injuries, ranging from minor scratches to deep traumas. An effective healing mechanism is crucial for the cornea to restore its structure and function following major and minor insults. Transforming Growth Factor-Beta (TGF-β), a versatile signaling molecule that coordinates various cell responses, has a central role in corneal wound healing. Upon corneal injury, TGF-β is rapidly released into the extracellular environment, triggering cell migration and proliferation, the differentiation of keratocytes into myofibroblasts, and the initiation of the repair process. TGF-β-mediated processes are essential for wound closure; however, excessive levels of TGF-β can lead to fibrosis and scarring, causing impaired vision. Three primary isoforms of TGF-β exist-TGF-β1, TGF-β2, and TGF-β3. Although TGF-β isoforms share many structural and functional similarities, they present distinct roles in corneal regeneration, which adds an additional layer of complexity to understand the role of TGF-β in corneal wound healing. Further, aberrant TGF-β activity has been linked to various corneal pathologies, such as scarring and Peter's Anomaly. Thus, understanding the molecular and cellular mechanisms by which TGF-β1-3 regulate corneal wound healing will enable the development of potential therapeutic interventions targeting the key molecule in this process. Herein, we summarize the multifaceted roles of TGF-β in corneal wound healing, dissecting its mechanisms of action and interactions with other molecules, and outline its role in corneal pathogenesis.
Collapse
Affiliation(s)
- Fernando T Ogata
- College of Optometry, University of Houston, 4901 Calhoun Road, Houston, TX 77204, USA
| | - Sudhir Verma
- College of Optometry, University of Houston, 4901 Calhoun Road, Houston, TX 77204, USA
- Deen Dayal Upadhyaya College, University of Delhi, Delhi 110078, India
| | | | - Tarsis F Gesteira
- College of Optometry, University of Houston, 4901 Calhoun Road, Houston, TX 77204, USA
| |
Collapse
|
2
|
Wu Y, Chau HF, Yeung YH, Thor W, Kai HY, Chan WL, Wong KL. Versatile Synthesis of Multivalent Porphyrin-Peptide Conjugates by Direct Porphyrin Construction on Resin. Angew Chem Int Ed Engl 2022; 61:e202207532. [PMID: 35730925 PMCID: PMC9543522 DOI: 10.1002/anie.202207532] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Indexed: 11/17/2022]
Abstract
Multifunctional porphyrin-peptide conjugates with different propensities for self-assembly into various supramolecular nanoarchitectures play important roles in advanced materials and biomedical research. However, preparing prefunctionalized core porphyrins by traditional low-yielding statistical synthesis and purifying them after peptide ligation through many rounds of HPLC purification is tedious and unsustainable. Herein, we report a novel integrated solid-phase synthetic protocol for the construction of porphyrin moieties from simple aldehydes and dipyrromethanes on resin-bound peptides directly to form mono-, cis/trans-di-, and trivalent porphyrin-peptide conjugates in a highly efficient and controllable manner; moreover, only single final-stage HPLC purification of the products is needed. This efficient strategy enables the rapid, greener, and substrate-controlled diversity-oriented synthesis of multivalent porphyrin-(long) peptide conjugate libraries for multifarious biological and materials applications.
Collapse
Affiliation(s)
- Yue Wu
- Department of Chemistry, Hong Kong Baptist University, 224 Waterloo Rd, Kowloon Tong, Kowloon, Hong Kong SAR, China
| | - Ho-Fai Chau
- Department of Chemistry, Hong Kong Baptist University, 224 Waterloo Rd, Kowloon Tong, Kowloon, Hong Kong SAR, China
| | - Yik-Hoi Yeung
- Department of Chemistry, Hong Kong Baptist University, 224 Waterloo Rd, Kowloon Tong, Kowloon, Hong Kong SAR, China
| | - Waygen Thor
- Department of Chemistry, Hong Kong Baptist University, 224 Waterloo Rd, Kowloon Tong, Kowloon, Hong Kong SAR, China
| | - Hei-Yui Kai
- Department of Chemistry, Hong Kong Baptist University, 224 Waterloo Rd, Kowloon Tong, Kowloon, Hong Kong SAR, China
| | - Wai-Lun Chan
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Hong Kong SAR, China
| | - Ka-Leung Wong
- Department of Chemistry, Hong Kong Baptist University, 224 Waterloo Rd, Kowloon Tong, Kowloon, Hong Kong SAR, China
| |
Collapse
|
3
|
Wu Y, Chau HF, Yeung YH, Thor W, Kai HY, Chan WL, Wong KL. Versatile Synthesis of Multivalent Porphyrin–Peptide Conjugates by Direct Porphyrin Construction on Resin. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202207532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Yue Wu
- Hong Kong Baptist University Department of Chemistry 224 Waterloo Rd 000000 Kowloon Tong HONG KONG
| | - Ho-Fai Chau
- Hong Kong Baptist University Department of Chemistry 224 Waterloo Rd Kowloon Tong HONG KONG
| | - Yik-Hoi Yeung
- Hong Kong Baptist University Department of Chemistry 224 Waterloo Rd 000000 Kowloon Tong HONG KONG
| | - Waygen Thor
- Hong Kong Baptist University Department of Chemistry 224 Waterloo Rd 000000 Kowloon Tong HONG KONG
| | - Hei-Yui Kai
- Hong Kong Baptist University Department of Chemistry 224 Waterloo Rd 000000 Kowloon Tong HONG KONG
| | - Wai-Lun Chan
- The Hong Kong Polytechnic University Department of Applied Biology and Chemical Technology 11 Yuk Choi Rd 000000 Hung Hom HONG KONG
| | - Ka-Leung Wong
- Hong Kong Baptist University Department of Chemistry Kowloon Tong Nil Hong Kong HONG KONG
| |
Collapse
|
4
|
Chattopadhyay S, Teixeira LBC, Kiessling LL, McAnulty JF, Raines RT. Bifunctional Peptide that Anneals to Damaged Collagen and Clusters TGF-β Receptors Enhances Wound Healing. ACS Chem Biol 2022; 17:314-321. [PMID: 35084170 DOI: 10.1021/acschembio.1c00745] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Transforming growth factor-β (TGF-β) plays important roles in wound healing. The activity of TGF-β is initiated upon the binding of the growth factor to the extracellular domains of its receptors. We sought to facilitate the activation by clustering these extracellular domains. To do so, we used a known peptide that binds to TGF-β receptors without diminishing their affinity for TGF-β. We conjugated this peptide to a collagen-mimetic peptide that can anneal to the damaged collagen in a wound bed. We find that the conjugate enhances collagen deposition and wound closure in mice in a manner consistent with the clustering of TGF-β receptors. This strategy provides a means to upregulate the TGF-β signaling pathway without adding exogenous TGF-β and could inspire means to treat severe wounds.
Collapse
Affiliation(s)
- Sayani Chattopadhyay
- Department of Chemistry, University of Wisconsin−Madison, Madison, Wisconsin 53706, United States
| | - Leandro B. C. Teixeira
- Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin−Madison, Madison, Wisconsin 53706, United States
| | - Laura L. Kiessling
- Department of Chemistry, University of Wisconsin−Madison, Madison, Wisconsin 53706, United States
- Department of Biochemistry, University of Wisconsin−Madison, Madison, Wisconsin 53706, United States
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Jonathan F. McAnulty
- Department of Surgical Sciences, School of Veterinary Medicine, University of Wisconsin−Madison, Madison, Wisconsin 53706, United States
| | - Ronald T. Raines
- Department of Chemistry, University of Wisconsin−Madison, Madison, Wisconsin 53706, United States
- Department of Biochemistry, University of Wisconsin−Madison, Madison, Wisconsin 53706, United States
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
5
|
Inflammation, Fibrosis and Cancer: Mechanisms, Therapeutic Options and Challenges. Cancers (Basel) 2022; 14:cancers14030552. [PMID: 35158821 PMCID: PMC8833582 DOI: 10.3390/cancers14030552] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Revised: 01/15/2022] [Accepted: 01/17/2022] [Indexed: 01/09/2023] Open
Abstract
Uncontrolled inflammation is a salient factor in multiple chronic inflammatory diseases and cancers. In this review, we provided an in-depth analysis of the relationships and distinctions between uncontrolled inflammation, fibrosis and cancers, while emphasizing the challenges and opportunities of developing novel therapies for the treatment and/or management of these diseases. We described how drug delivery systems, combination therapy and the integration of tissue-targeted and/or pathways selective strategies could overcome the challenges of current agents for managing and/or treating chronic inflammatory diseases and cancers. We also recognized the value of the re-evaluation of the disease-specific roles of multiple pathways implicated in the pathophysiology of chronic inflammatory diseases and cancers-as well as the application of data from single-cell RNA sequencing in the success of future drug discovery endeavors.
Collapse
|
6
|
Webber MJ, Pashuck ET. (Macro)molecular self-assembly for hydrogel drug delivery. Adv Drug Deliv Rev 2021; 172:275-295. [PMID: 33450330 PMCID: PMC8107146 DOI: 10.1016/j.addr.2021.01.006] [Citation(s) in RCA: 80] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 12/29/2020] [Accepted: 01/04/2021] [Indexed: 01/15/2023]
Abstract
Hydrogels prepared via self-assembly offer scalable and tunable platforms for drug delivery applications. Molecular-scale self-assembly leverages an interplay of attractive and repulsive forces; drugs and other active molecules can be incorporated into such materials by partitioning in hydrophobic domains, affinity-mediated binding, or covalent integration. Peptides have been widely used as building blocks for self-assembly due to facile synthesis, ease of modification with bioactive molecules, and precise molecular-scale control over material properties through tunable interactions. Additional opportunities are manifest in stimuli-responsive self-assembly for more precise drug action. Hydrogels can likewise be fabricated from macromolecular self-assembly, with both synthetic polymers and biopolymers used to prepare materials with controlled mechanical properties and tunable drug release. These include clinical approaches for solubilization and delivery of hydrophobic drugs. To further enhance mechanical properties of hydrogels prepared through self-assembly, recent work has integrated self-assembly motifs with polymeric networks. For example, double-network hydrogels capture the beneficial properties of both self-assembled and covalent networks. The expanding ability to fabricate complex and precise materials, coupled with an improved understanding of biology, will lead to new classes of hydrogels specifically tailored for drug delivery applications.
Collapse
Affiliation(s)
- Matthew J Webber
- University of Notre Dame, Department of Chemical & Biomolecular Engineering, Notre Dame, IN 46556, USA.
| | - E Thomas Pashuck
- Lehigh University, Department of Bioengineering, Bethlehem, PA 18015, USA.
| |
Collapse
|
7
|
Chen H, Ding Y, Yang Q, Barnych B, González-Sapienza G, Hammock BD, Wang M, Hua X. Fluorescent "Turn off-on" Small-Molecule-Monitoring Nanoplatform Based on Dendrimer-like Peptides as Competitors. ACS APPLIED MATERIALS & INTERFACES 2019; 11:33380-33389. [PMID: 31433617 PMCID: PMC7059760 DOI: 10.1021/acsami.9b13111] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Peptides isolated from phage display libraries are powerful reagents for small-molecule immunoassay; however, their application as phage-borne peptides is significantly limited by the biological nature of the phage. Here, we present the use of lysine scaffold to prepare a series of different valence peptides to serve as replacements for phage-borne peptides. Benzothiostrobin was selected as a model analyte, the cyclic benzothiostrobin-peptidomimetic in the form of monomer, dendrimer-like dimer, and tetramer were designed and synthesized. Compared with the monomer, the affinity of dendrimer-like dimer and tetramer increased 1.87 and 13.6 times, respectively, as determined by isothermal titration calorimetry (ITC). A novel inner filter effect immunoassay (IFE-IA) with positive readout was developed for benzothiostrobin detection utilizing the peptidomimetics attached to upconversion nanoparticles (UCNPs) as energy donor and monoclonal antibody (mAb)-labeled urchin-like gold nanoflowers (AuNFs) as energy absorber, respectively. The sensitivity of the assay based on dendrimer-like tetramer was approximately 6 and 3 times higher than monomer and dendrimer-like dimer, respectively. After optimization, 50% saturation of the signal (SC50) and detection range (SC10 to SC90) of the IFE-IA based on dendrimer-like tetramer were 11.81 ng mL-1 and 2.04-106.17 ng mL-1, respectively. The IFE-IA also shows good accuracy for the detection of benzothiostrobin in authentic samples.
Collapse
Affiliation(s)
- He Chen
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
- State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing 210095, China
| | - Yuan Ding
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
- State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing 210095, China
| | - Qian Yang
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
- State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing 210095, China
| | - Bogdan Barnych
- Department of Entomology and Nematomogy and UCD Cancer Center, University of California, 96 Briggs Hall, Davis, California 95616, United States
| | - Gualberto González-Sapienza
- Cátedra de Inmunología, Facultad de Química, Instituto de Higiene, Universidad de la República, Montevideo 11600, Uruguay
| | - Bruce D. Hammock
- Department of Entomology and Nematomogy and UCD Cancer Center, University of California, 96 Briggs Hall, Davis, California 95616, United States
| | - Minghua Wang
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
- State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing 210095, China
| | - Xiude Hua
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
- State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing 210095, China
| |
Collapse
|
8
|
Cao B, Li Y, Yang T, Bao Q, Yang M, Mao C. Bacteriophage-based biomaterials for tissue regeneration. Adv Drug Deliv Rev 2019; 145:73-95. [PMID: 30452949 PMCID: PMC6522342 DOI: 10.1016/j.addr.2018.11.004] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2017] [Revised: 07/24/2018] [Accepted: 11/12/2018] [Indexed: 12/11/2022]
Abstract
Bacteriophage, also called phage, is a human-safe bacteria-specific virus. It is a monodisperse biological nanostructure made of proteins (forming the outside surface) and nucleic acids (encased in the protein capsid). Among different types of phages, filamentous phages have received great attention in tissue regeneration research due to their unique nanofiber-like morphology. They can be produced in an error-free format, self-assemble into ordered scaffolds, display multiple signaling peptides site-specifically, and serve as a platform for identifying novel signaling or homing peptides. They can direct stem cell differentiation into specific cell types when they are organized into proper patterns or display suitable peptides. These unusual features have allowed scientists to employ them to regenerate a variety of tissues, including bone, nerves, cartilage, skin, and heart. This review will summarize the progress in the field of phage-based tissue regeneration and the future directions in this field.
Collapse
Affiliation(s)
- Binrui Cao
- Department of Chemistry & Biochemistry, Stephenson Life Science Research Center, Institute for Biomedical Engineering, Science and Technology, University of Oklahoma, 101 Stephenson Parkway, Norman, OK 73019, United States
| | - Yan Li
- Department of Chemistry & Biochemistry, Stephenson Life Science Research Center, Institute for Biomedical Engineering, Science and Technology, University of Oklahoma, 101 Stephenson Parkway, Norman, OK 73019, United States
| | - Tao Yang
- School of Materials Science and Engineering, Zhejiang University, Hangzhou, Zhejiang 310027, China
| | - Qing Bao
- School of Materials Science and Engineering, Zhejiang University, Hangzhou, Zhejiang 310027, China
| | - Mingying Yang
- Institute of Applied Bioresource Research, College of Animal Science, Zhejiang University, Yuhangtang Road 866, Zhejiang, Hangzhou 310058, China.
| | - Chuanbin Mao
- Department of Chemistry & Biochemistry, Stephenson Life Science Research Center, Institute for Biomedical Engineering, Science and Technology, University of Oklahoma, 101 Stephenson Parkway, Norman, OK 73019, United States; School of Materials Science and Engineering, Zhejiang University, Hangzhou, Zhejiang 310027, China.
| |
Collapse
|
9
|
Newman MR, Benoit DSW. In Vivo Translation of Peptide-Targeted Drug Delivery Systems Discovered by Phage Display. Bioconjug Chem 2018; 29:2161-2169. [PMID: 29889510 DOI: 10.1021/acs.bioconjchem.8b00285] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Therapeutic compounds with narrow therapeutic windows and significant systemic side effects benefit from targeted drug delivery strategies. Peptide-protein interactions are often exploited for targeting, with phage display a primary method to identify high-affinity peptide ligands that bind cell surface and matrix bound receptors preferentially expressed in target tissues. After isolating and sequencing high-binding phages, peptides are easily synthesized and chemically modified for incorporation into drug delivery systems, including peptide-drug conjugates, polymers, and nanoparticles. This review describes the phage display methodology to identify targeting peptide sequences, strategies to functionalize drug carriers with phage-derived peptides, specific examples of drug carriers with in vivo translation, and limitations and future applications of phage display to drug delivery.
Collapse
Affiliation(s)
- Maureen R Newman
- Center for Musculoskeletal Research, Department of Orthopaedics , University of Rochester Medical Center , Rochester , New York 14642 , United States
| | - Danielle S W Benoit
- Center for Musculoskeletal Research, Department of Orthopaedics , University of Rochester Medical Center , Rochester , New York 14642 , United States
| |
Collapse
|
10
|
Martins IM, Reis RL, Azevedo HS. Phage Display Technology in Biomaterials Engineering: Progress and Opportunities for Applications in Regenerative Medicine. ACS Chem Biol 2016; 11:2962-2980. [PMID: 27661443 DOI: 10.1021/acschembio.5b00717] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The field of regenerative medicine has been gaining momentum steadily over the past few years. The emphasis in regenerative medicine is to use various in vitro and in vivo approaches that leverage the intrinsic healing mechanisms of the body to treat patients with disabling injuries and chronic diseases such as diabetes, osteoarthritis, and degenerative disorders of the cardiovascular and central nervous system. Phage display has been successfully employed to identify peptide ligands for a wide variety of targets, ranging from relatively small molecules (enzymes, cell receptors) to inorganic, organic, and biological (tissues) materials. Over the past two decades, phage display technology has advanced tremendously and has become a powerful tool in the most varied fields of research, including biotechnology, materials science, cell biology, pharmacology, and diagnostics. The growing interest in and success of phage display libraries is largely due to its incredible versatility and practical use. This review discusses the potential of phage display technology in biomaterials engineering for applications in regenerative medicine.
Collapse
Affiliation(s)
- Ivone M. Martins
- 3B’s Research Group - Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of
the European Institute of Excellence on Tissue Engineering and Regenerative
Medicine, AvePark, 4805-717 Barco, Guimarães, Portugal
- ICVS/3B’s - PT Government Associate Laboratory, Braga/Guimarães, Portugal
- CEB − Centre of Biological Engineering, University of Minho, 4710-057, Braga, Portugal
| | - Rui L. Reis
- 3B’s Research Group - Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of
the European Institute of Excellence on Tissue Engineering and Regenerative
Medicine, AvePark, 4805-717 Barco, Guimarães, Portugal
- ICVS/3B’s - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Helena S. Azevedo
- 3B’s Research Group - Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of
the European Institute of Excellence on Tissue Engineering and Regenerative
Medicine, AvePark, 4805-717 Barco, Guimarães, Portugal
- ICVS/3B’s - PT Government Associate Laboratory, Braga/Guimarães, Portugal
- School of Engineering & Materials Science, Queen Mary University of London, London E1 4NS, United Kingdom
- Institute
of Bioengineering, Queen Mary University of London, London E1 4NS, United Kingdom
| |
Collapse
|
11
|
Rosch JC, Hollmann EK, Lippmann ES. In vitro selection technologies to enhance biomaterial functionality. Exp Biol Med (Maywood) 2016; 241:962-71. [PMID: 27188514 DOI: 10.1177/1535370216647182] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Cells make decisions and fate choices based in part on cues they receive from their external environment. Factors that affect the interpretation of these cues include the soluble proteins that are present at any given time, the cell surface receptors that are available to bind these proteins, and the relative affinities of the soluble proteins for their cognate receptors. Researchers have identified many of the biological motifs responsible for the high-affinity interactions between proteins and their receptors, and subsequently incorporated these motifs into biomaterials to elicit control over cell behavior. Common modes of control include localized sequestration of proteins to improve bioavailability and direct inhibition or activation of a receptor by an immobilized peptide or protein. However, naturally occurring biological motifs often possess promiscuous affinity for multiple proteins and receptors or lack programmable actuation in response to dynamic stimuli, thereby limiting the amount of control they can exert over cellular decisions. These natural motifs only represent a small fraction of the biological diversity that can be assayed by in vitro selection strategies, and the discovery of "artificial" motifs with varying affinity, specificity, and functionality could greatly expand the repertoire of engineered biomaterial properties. This minireview provides a brief summary of classical and emerging techniques in peptide phage display and nucleic acid aptamer selections and discusses prospective applications in the areas of cell adhesion, angiogenesis, neural regeneration, and immune modulation.
Collapse
Affiliation(s)
- Jonah C Rosch
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, TN 37235, USA
| | - Emma K Hollmann
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, TN 37235, USA
| | - Ethan S Lippmann
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, TN 37235, USA
| |
Collapse
|
12
|
Huang T, Hinck AP. Production, Isolation, and Structural Analysis of Ligands and Receptors of the TGF-β Superfamily. Methods Mol Biol 2016; 1344:63-92. [PMID: 26520118 PMCID: PMC4846357 DOI: 10.1007/978-1-4939-2966-5_4] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2023]
Abstract
The ability to understand the molecular mechanisms by which secreted signaling proteins of the TGF-β superfamily assemble their cell surface receptors into complexes to initiate downstream signaling is dependent upon the ability to determine atomic-resolution structures of the signaling proteins, the ectodomains of the receptors, and the complexes that they form. The structures determined to date have revealed major differences in the overall architecture of the signaling complexes formed by the TGF-βs and BMPs, which has provided insights as to how they have evolved to fulfill their distinct functions. Such studies, have however, only been applied to a few members of the TGF-β superfamily, which is largely due to the difficulty of obtaining milligram-scale quantities of highly homogenous preparations of the disulfide-rich signaling proteins and receptor ectodomains of the superfamily. Here we describe methods used to produce signaling proteins and receptor ectodomains of the TGF-β superfamily using bacterial and mammalian expression systems and procedures to purify them to homogeneity.
Collapse
Affiliation(s)
- Tao Huang
- Protein Chemistry, Novo Nordisk Research Center China, 20 Life Science Park Rd, Bldg 2, Beijing, 102206, China
| | - Andrew P Hinck
- Protein Chemistry, Novo Nordisk Research Center China, 20 Life Science Park Rd, Bldg 2, Beijing, 102206, China.
| |
Collapse
|
13
|
Wangkanont K, Forest KT, Kiessling LL. The non-detergent sulfobetaine-201 acts as a pharmacological chaperone to promote folding and crystallization of the type II TGF-β receptor extracellular domain. Protein Expr Purif 2015; 115:19-25. [PMID: 26073093 PMCID: PMC4669069 DOI: 10.1016/j.pep.2015.06.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2015] [Revised: 05/01/2015] [Accepted: 06/04/2015] [Indexed: 01/07/2023]
Abstract
The roles of the extracellular domain of type II TGF-β receptor (TBRII-ECD) in physiological processes ranging from development to cancer to wound healing render it an attractive target for exploration with chemical tools. For such applications, large amounts of active soluble protein are needed, but the yields of TBRII-ECD we obtained with current folding protocols were variable. To expedite the identification of alternative folding conditions, we developed an on-plate screen. This assay indicated that effective folding additives included the non-detergent sulfobetaine-201 (NDSB-201). Although NDSB-201 can facilitate protein folding, the mode by which it does so is poorly understood. We postulated that specific interactions between NDSB-201 and TBRII-ECD might be responsible. Analysis by X-ray crystallography indicates that the TBRII-ECD possesses a binding pocket for NDSB-201. The pyridinium group of the additive stacks with a phenylalanine side chain in the binding site. The ability of NDSB-201 to occupy a pocket on the protein provides a molecular mechanism for the additive's ability to minimize TBRII-ECD aggregation and stabilize the folded state. NDSB-201 also accelerates TBRII-ECD crystallization, suggesting it may serve as a useful crystallization additive for proteins refolded with it. Our results also suggest there is a site on TBRII-ECD that could be targeted by small-molecule modulators.
Collapse
Affiliation(s)
- Kittikhun Wangkanont
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, WI 53706, United States
| | - Katrina T. Forest
- Department of Bacteriology, University of Wisconsin-Madison, 1550 Linden Dr., Madison, WI 53706, United States
,Corresponding authors at: Tel.: +1 (608) 265 3566 (K.T. Forest). Department of Biochemistry, University of Wisconsin-Madison, 433 Babcock Dr., Madison, WI 53706, United States. Tel.: +1 (608) 262 0541 (L.L. Kiessling). ,
| | - Laura L. Kiessling
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, WI 53706, United States
,Department of Biochemistry, University of Wisconsin-Madison, 433 Babcock Dr., Madison, WI 53706, United States
,Corresponding authors at: Tel.: +1 (608) 265 3566 (K.T. Forest). Department of Biochemistry, University of Wisconsin-Madison, 433 Babcock Dr., Madison, WI 53706, United States. Tel.: +1 (608) 262 0541 (L.L. Kiessling). ,
| |
Collapse
|
14
|
Satav T, Huskens J, Jonkheijm P. Effects of Variations in Ligand Density on Cell Signaling. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2015; 11:5184-5199. [PMID: 26292200 DOI: 10.1002/smll.201500747] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Revised: 05/27/2015] [Indexed: 06/04/2023]
Abstract
Multiple simultaneous interactions between receptors and ligands dictate the extracellular and intracellular activities of cells. The concept of programmable ligand display is generally used to study the interaction between ligands, displayed on surfaces at various densities, with receptors present on cell surfaces. Various strategies are discussed here to display ligands on surfaces to study their effect on cell behavior. Only very few strategies have been reported where this display combines precise control over density with lateral spacing of ligands on surfaces. In this review, selected examples of strategies to control ligand density and spacing and their implications for biological functions of cells are discussed.
Collapse
Affiliation(s)
- Tushar Satav
- Molecular Nanofabrication Group MESA+ Institute for Nanotechnology, University of Twente, 7500AE, Enschede, The Netherlands
| | - Jurriaan Huskens
- Molecular Nanofabrication Group MESA+ Institute for Nanotechnology, University of Twente, 7500AE, Enschede, The Netherlands
| | - Pascal Jonkheijm
- Molecular Nanofabrication Group MESA+ Institute for Nanotechnology, University of Twente, 7500AE, Enschede, The Netherlands
| |
Collapse
|
15
|
Natural velvet antler polypeptide conformation prediction and molecular docking study with TGF-β1 complex. J Mol Model 2013; 19:3671-82. [PMID: 23771398 DOI: 10.1007/s00894-013-1904-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2012] [Accepted: 05/28/2013] [Indexed: 12/25/2022]
Abstract
Based on the chain A structures of hemoglobin (PDB code: 1HDS, 1IBE, 1FAW, 3AT5), the three dimensional (3D) structure of natural velvet antler polypeptide (nVAP) was constructed by homology modeling and molecular dynamics (MD) method. The structural rationality was further checked by Profile-3D and Procheck, both of which confirmed that the 3D structure of nVAP was reasonable. The modeled structure indicates that the stable conformation of nVAP is composed of two α-helixes. The extracellular domains of transforming growth factor-β1 receptor I (TβRI-ED) and II (TβRII-ED) were docked with nVAP, respectively. The results show that both of TβR-EDs have high affinity with nVAP which locates near the active center of TβRII-ED integrating with transforming growth factor-β1 (TGF-β1). Otherwise, nVAP can also insert near the "pre-helix extension" of TβRI-ED, which is the key domain to interact on TGF-β1 and TβRII-ED. With the perturbation of nVAP, TβRI-ED can not be recruited by TGF-β1:TβRII-ED complex rigorously. The intracellular domain of TβRI (TβRI-ID) is not phosphorylated and activated by TβRII. This study shows that nVAP prefers tethering TβRI-ED which is more crucial in TGF-β1:TβRII-ED:TβRI-ED complex. Thus nVAP can disturb the TGF-β1 binding pattern by interacting on TβRs (TβRI and TβRII), further intercepting TGF-β1 pathway downstream.
Collapse
|
16
|
Conidi A, van den Berghe V, Huylebroeck D. Aptamers and their potential to selectively target aspects of EGF, Wnt/β-catenin and TGFβ-smad family signaling. Int J Mol Sci 2013; 14:6690-719. [PMID: 23531534 PMCID: PMC3645661 DOI: 10.3390/ijms14046690] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2013] [Revised: 03/05/2013] [Accepted: 03/12/2013] [Indexed: 02/07/2023] Open
Abstract
The smooth identification and low-cost production of highly specific agents that interfere with signaling cascades by targeting an active domain in surface receptors, cytoplasmic and nuclear effector proteins, remain important challenges in biomedical research. We propose that peptide aptamers can provide a very useful and new alternative for interfering with protein–protein interactions in intracellular signal transduction cascades, including those emanating from activated receptors for growth factors. By their targeting of short, linear motif type of interactions, peptide aptamers have joined nucleic acid aptamers for use in signaling studies because of their ease of production, their stability, their high specificity and affinity for individual target proteins, and their use in high-throughput screening protocols. Furthermore, they are entering clinical trials for treatment of several complex, pathological conditions. Here, we present a brief survey of the use of aptamers in signaling pathways, in particular of polypeptide growth factors, starting with the published as well as potential applications of aptamers targeting Epidermal Growth Factor Receptor signaling. We then discuss the opportunities for using aptamers in other complex pathways, including Wnt/β-catenin, and focus on Transforming Growth Factor-β/Smad family signaling.
Collapse
Affiliation(s)
- Andrea Conidi
- Laboratory of Molecular Biology (Celgen), Department of Development and Regeneration, KU Leuven, Campus Gasthuisberg, Building Ond & Nav4 p.o.box 812, room 05.313, Stem Cell Institute, Herestraat 49, B-3000 Leuven, Belgium.
| | | | | |
Collapse
|
17
|
Klim JR, Fowler AJ, Courtney AH, Wrighton PJ, Sheridan RTC, Wong ML, Kiessling LL. Small-molecule-modified surfaces engage cells through the αvβ3 integrin. ACS Chem Biol 2012; 7:518-25. [PMID: 22201290 DOI: 10.1021/cb2004725] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Integrins play myriad and vital roles in development and disease. They connect a cell with its surroundings and transmit chemical and mechanical signals across the plasma membrane to the cell's interior. Dissecting their roles in cell behavior is complicated by their overlapping ligand specificity and shared downstream signaling components. In principle, immobilized synthetic peptides can mimic extracellular matrix proteins by supporting integrin-mediated adhesion, but most short peptide sequences lack selectivity for one integrin over others. In contrast, synthetic integrin antagonists can be highly selective. We hypothesized that this selectivity could be exploited if antagonists, when immobilized, could support cellular adhesion and activate signaling by engaging specific cell-surface integrins. To investigate this possibility, we designed a bifunctional (RGD)-based peptidomimetic for surface presentation. Our conjugate combines a high affinity integrin ligand with a biotin moiety; the former engages the α(v)β(3) integrin, and the latter allows for presentation on streptavidin-coated surfaces. Surfaces decorated with this ligand promote both cellular adhesion and integrin activation. Moreover, the selectivity of these surfaces for the α(v)β(3) integrin can be exploited to capture a subset of cells from a mixed population. We anticipate that surfaces displaying highly selective small molecule ligands can reveal the contributions of specific integrin heterodimers to cell adhesion and signaling.
Collapse
Affiliation(s)
- Joseph R. Klim
- Cell
and Molecular Biology Program, ‡Department of Chemistry, and §Department of Biochemistry, University of Wisconsin−Madison, Madison, Wisconsin 53706, United States
| | - Anthony J. Fowler
- Cell
and Molecular Biology Program, ‡Department of Chemistry, and §Department of Biochemistry, University of Wisconsin−Madison, Madison, Wisconsin 53706, United States
| | - Adam H. Courtney
- Cell
and Molecular Biology Program, ‡Department of Chemistry, and §Department of Biochemistry, University of Wisconsin−Madison, Madison, Wisconsin 53706, United States
| | - Paul J. Wrighton
- Cell
and Molecular Biology Program, ‡Department of Chemistry, and §Department of Biochemistry, University of Wisconsin−Madison, Madison, Wisconsin 53706, United States
| | - Rachael T. C. Sheridan
- Cell
and Molecular Biology Program, ‡Department of Chemistry, and §Department of Biochemistry, University of Wisconsin−Madison, Madison, Wisconsin 53706, United States
| | - Margaret L. Wong
- Cell
and Molecular Biology Program, ‡Department of Chemistry, and §Department of Biochemistry, University of Wisconsin−Madison, Madison, Wisconsin 53706, United States
| | - Laura L. Kiessling
- Cell
and Molecular Biology Program, ‡Department of Chemistry, and §Department of Biochemistry, University of Wisconsin−Madison, Madison, Wisconsin 53706, United States
| |
Collapse
|
18
|
Benseny-Cases N, Klementieva O, Cladera J. Dendrimers antiamyloidogenic potential in neurodegenerative diseases. NEW J CHEM 2012. [DOI: 10.1039/c1nj20469f] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
19
|
Dudak FC, Kılıç N, Demir K, Yaşar F, Boyacı İH. Enhancing the affinity of SEB-binding peptides by repeating their sequence. Biopolymers 2011; 98:145-54. [DOI: 10.1002/bip.22012] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2011] [Revised: 09/29/2011] [Accepted: 11/04/2011] [Indexed: 11/08/2022]
|
20
|
Spatial control of cell fate using synthetic surfaces to potentiate TGF-beta signaling. Proc Natl Acad Sci U S A 2011; 108:11745-50. [PMID: 21719709 DOI: 10.1073/pnas.1101454108] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
In organisms, cell-fate decisions result from external cues presented by the extracellular microenvironment or the niche. In principle, synthetic niches can be engineered to give rise to patterned cell signaling, an advance that would transform the fields of tissue engineering and regenerative medicine. Biomaterials that display adhesive motifs are critical steps in this direction, but promoting localized signaling remains a major obstacle. We sought to exert precise spatial control over activation of TGF-β signaling. TGF-β signaling, which plays fundamental roles in development, tissue homeostasis, and cancer, is initiated by receptor oligomerization. We therefore hypothesized that preorganizing the transmembrane receptors would potentiate local TGF-β signaling. To generate surfaces that would nucleate the signaling complex, we employed defined self-assembled monolayers that present peptide ligands to TGF-β receptors. These displays of nondiffusible ligands do not compete with the growth factor but rather sensitize bound cells to subpicomolar concentrations of endogenous TGF-β. Cells adhering to the surfaces undergo TGF-β-mediated growth arrest and the epithelial to mesenchymal transition. Gene expression profiles reveal that the surfaces selectively regulate TGF-β responsive genes. This strategy provides access to tailored surfaces that can deliver signals with spatial control.
Collapse
|
21
|
Bastings MMC, Helms BA, van Baal I, Hackeng TM, Merkx M, Meijer EW. From phage display to dendrimer display: insights into multivalent binding. J Am Chem Soc 2011; 133:6636-41. [PMID: 21473586 DOI: 10.1021/ja110700x] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Phage display is widely used for the selection of target-specific peptide sequences. Presentation of phage peptides on a multivalent platform can be used to (partially) restore the binding affinity. Here, we present a detailed analysis of the effects of valency, linker choice, and receptor density on binding affinity of a multivalent architecture, using streptavidin (SA) as model multivalent receptor. For surfaces with low receptor densities, the SA binding affinity of multivalent dendritic phage peptide constructs increases over 2 orders of magnitude over the monovalent species (e.g., K(d,mono) = 120 μM vs K(d,tetra) = 1 μM), consistent with previous work. However, the affinity of the SA-binding phage presenting the exact same peptides was 16 pM when dense receptor surfaces used for initial phage display were used in assays. The phage affinity for SA-coated surfaces weakens severely toward the nanomolar regime when surface density of SA is decreased. A similarly strong dependence in this respect was observed for dendritic phage analogues. When presented with a dense SA-coated surface, dendrimer display affords up to a 10(4)-fold gain in affinity over the monovalent peptide. The interplay between ligand valency and receptor density is a fundamental aspect of multivalent targeting strategies in biological systems. The perspective offered here suggests that in vivo targeting schemes might best be served to conduct ligand selection under physiologically relevant receptor density surfaces, either by controlling the receptor density placed at the selection surface or by using more biologically relevant intact cells and tissues.
Collapse
Affiliation(s)
- Maartje M C Bastings
- Institute for Complex Molecular Systems, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
| | | | | | | | | | | |
Collapse
|
22
|
Derda R, Tang SKY, Li SC, Ng S, Matochko W, Jafari MR. Diversity of phage-displayed libraries of peptides during panning and amplification. Molecules 2011; 16:1776-803. [PMID: 21339712 PMCID: PMC6259649 DOI: 10.3390/molecules16021776] [Citation(s) in RCA: 141] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2010] [Revised: 02/10/2011] [Accepted: 02/17/2011] [Indexed: 01/15/2023] Open
Abstract
The amplification of phage-displayed libraries is an essential step in the selection of ligands from these libraries. The amplification of libraries, however, decreases their diversity and limits the number of binding clones that a screen can identify. While this decrease might not be a problem for screens against targets with a single binding site (e.g., proteins), it can severely hinder the identification of useful ligands for targets with multiple binding sites (e.g., cells). This review aims to characterize the loss in the diversity of libraries during amplification. Analysis of the peptide sequences obtained in several hundred screens of peptide libraries shows explicitly that there is a significant decrease in library diversity that occurs during the amplification of phage in bacteria. This loss during amplification is not unique to specific libraries: it is observed in many of the phage display systems we have surveyed. The loss in library diversity originates from competition among phage clones in a common pool of bacteria. Based on growth data from the literature and models of phage growth, we show that this competition originates from growth rate differences of only a few percent for different phage clones. We summarize the findings using a simple two-dimensional "phage phase diagram", which describes how the collapse of libraries, due to panning and amplification, leads to the identification of only a subset of the available ligands. This review also highlights techniques that allow elimination of amplification-induced losses of diversity, and how these techniques can be used to improve phage-display selection and enable the identification of novel ligands.
Collapse
Affiliation(s)
- Ratmir Derda
- Department of Chemistry, University of Alberta, Edmonton, AB T6G2G2, Canada.
| | | | | | | | | | | |
Collapse
|