1
|
El-Aassar MR, Tamer TM, El-Sayed MY, Omer AM, Althobaiti IO, Youssef ME, Alolaimi RF, El-Agammy EF, Alruwaili MS, Mohy-Eldin MS. Development of Azo Dye Immobilized Poly (Glycidyl Methacrylate-Co-Methyl Methacrylate) Polymers Composites as Novel Adsorbents for Water Treatment Applications: Methylene Blue-Polymers Composites. Polymers (Basel) 2022; 14:polym14214672. [PMID: 36365665 PMCID: PMC9655475 DOI: 10.3390/polym14214672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 10/28/2022] [Accepted: 10/31/2022] [Indexed: 11/06/2022] Open
Abstract
Methylene blue azo dye (MB) immobilized onto Poly (glycidyl methacrylate-Co-methyl methacrylate), (PGMA-co-PMMA), and sulphonated Poly (glycidyl methacrylate-Co-methyl methacrylate), (SPGMA-co-PMMA), polymers composites have been developed as novel adsorbents for water treatment applications. The effect of copolymer composition and sulphonation on the MB content has been studied. Maximum MB content was correlated to the Polyglycidyl methacrylate content for both native and sulphonated copolymers. Furthermore, the effect of the adsorption conditions on the MB content was studied. Sulfonated Poly (glycidyl methacrylate; SPGMA) was the most efficient formed composite with the highest MB content. The developed composites’ chemical structure and morphology were characterized using characterization tools such as particle size, FTIR, TGA, and SEM analyses. The developed MB-SPGMA composite adsorbent (27 mg/g), for the first time, was tested for the removal of Cr (VI) ions and Mn (VII) metal ions from dichromate and permanganate contaminated waters under mild adsorption conditions, opening a new field of multiuse of the same adsorbent in the removal of more than one contaminants.
Collapse
Affiliation(s)
- Mohamed R. El-Aassar
- Chemistry Department, College of Science, Jouf University, Sakaka 2014, Saudi Arabia
- Correspondence: (M.R.E.-A.); (M.S.M.-E.)
| | - Tamer M. Tamer
- Polymer Materials Research Department, Advanced Technology and New Materials Research Institute (ATNMRI), City of Scientific Research and Technological Applications (SRTA-City), New Borg El-Arab City 21934, Alexandria, Egypt
| | - Mohamed Y. El-Sayed
- Chemistry Department, College of Science, Jouf University, Sakaka 2014, Saudi Arabia
| | - Ahmed M. Omer
- Polymer Materials Research Department, Advanced Technology and New Materials Research Institute (ATNMRI), City of Scientific Research and Technological Applications (SRTA-City), New Borg El-Arab City 21934, Alexandria, Egypt
| | | | - Mohamed E. Youssef
- Computer Based Engineering Applications, Informatic Research Insitute (IRI), City of Scientific Research and Technological Applications (SRTA-City), New Boarg El-Arab City 21934, Alexandria, Egypt
| | - Rawan F. Alolaimi
- Chemistry Department, College of Science, Jouf University, Sakaka 2014, Saudi Arabia
| | - Emam F. El-Agammy
- Physics Department, College of Science, Jouf University, Sakaka 2014, Saudi Arabia
| | - Manar S. Alruwaili
- Chemistry Department, College of Science, Jouf University, Sakaka 2014, Saudi Arabia
| | - Mohamed S. Mohy-Eldin
- Polymer Materials Research Department, Advanced Technology and New Materials Research Institute (ATNMRI), City of Scientific Research and Technological Applications (SRTA-City), New Borg El-Arab City 21934, Alexandria, Egypt
- Correspondence: (M.R.E.-A.); (M.S.M.-E.)
| |
Collapse
|
2
|
Tomazela L, Cruz MAE, Nascimento LA, Fagundes CC, da Veiga MAMS, Zamarioli A, Bottini M, Ciancaglini P, Brassesco MS, Engel EE, Ramos AP. Fabrication and characterization of a bioactive polymethylmethacrylate-based porous cement loaded with strontium/calcium apatite nanoparticles. J Biomed Mater Res A 2021; 110:812-826. [PMID: 34783455 DOI: 10.1002/jbm.a.37330] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 10/24/2021] [Accepted: 11/01/2021] [Indexed: 11/06/2022]
Abstract
Polymethylmethacrylate (PMMA)-based cements are used for bone reparation due to their biocompatibility, suitable mechanical properties, and mouldability. However, these materials suffer from high exothermic polymerization and poor bioactivity, which can cause the formation of fibrous tissue around the implant and aseptic loosening. Herein, we tackled these problems by adding Sr2+ -substituted hydroxyapatite nanoparticles (NPs) and a porogenic compound to the formulations, thus creating a microenvironment suitable for the proliferation of osteoblasts. The NPs resembled the structure of the bone's apatite and enabled the controlled release of Sr2+ . Trends in the X-ray patterns and infrared spectra confirmed that Sr2+ replaced Ca2+ in the whole composition range of the NPs. The inclusion of an effervescent additive reduced the polymerization temperature and lead to the formation of highly porous cement exhibiting mechanical properties comparable to the trabecular bone. The formation of an opened and interconnected matrix allowed osteoblasts to penetrate the cement structure. Most importantly, the gas formation confined the NPs at the surface of the pores, guaranteeing the controlled delivery of Sr2+ within a concentration sufficient to maintain osteoblast viability. Additionally, the cement was able to form apatite when immersed into simulated body fluids, further increasing its bioactivity. Therefore, we offer a formulation of PMMA cement with improved in vitro performance supported by enhanced bioactivity, increased osteoblast viability and deposition of mineralized matrix assigned to the loading with Sr2+ -substituted hydroxyapatite NPs and the creation of an interconnected porous structure. Altogether, our results hold promise for enhanced bone reparation guided by PMMA cements.
Collapse
Affiliation(s)
- Larissa Tomazela
- Departamento de Química, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, São Paulo, Brazil
| | - Marcos Antônio Eufrásio Cruz
- Departamento de Química, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, São Paulo, Brazil
| | - Larissa Aine Nascimento
- Departamento de Biologia, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, São Paulo, Brazil
| | - Cecilia C Fagundes
- Departamento de Biologia, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, São Paulo, Brazil
| | | | - Ariane Zamarioli
- Departamento de Ortopedia e Anestesiologia, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, São Paulo, Brazil
| | - Massimo Bottini
- Department of Experimental Medicine, University of Rome Tor Vergata, Rome, Italy.,Sanford Children's Health Research Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California, USA
| | - Pietro Ciancaglini
- Departamento de Química, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, São Paulo, Brazil
| | - Maria Sol Brassesco
- Departamento de Biologia, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, São Paulo, Brazil
| | - Edgard E Engel
- Departamento de Ortopedia e Anestesiologia, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, São Paulo, Brazil
| | - Ana Paula Ramos
- Departamento de Química, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, São Paulo, Brazil
| |
Collapse
|
3
|
Liu S, de Beer S, Batenburg KM, Gojzewski H, Duvigneau J, Vancso GJ. Designer Core-Shell Nanoparticles as Polymer Foam Cell Nucleating Agents: The Impact of Molecularly Engineered Interfaces. ACS APPLIED MATERIALS & INTERFACES 2021; 13:17034-17045. [PMID: 33784063 PMCID: PMC8153546 DOI: 10.1021/acsami.1c00569] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Accepted: 03/12/2021] [Indexed: 05/27/2023]
Abstract
The interface between nucleating agents and polymers plays a pivotal role in heterogeneous cell nucleation in polymer foaming. We describe how interfacial engineering of nucleating particles by polymer shells impacts cell nucleation efficiency in CO2 blown polymer foams. Core-shell nanoparticles (NPs) with a 80 nm silica core and various polymer shells including polystyrene (PS), poly(dimethylsiloxane) (PDMS), poly(methyl methacrylate) (PMMA), and poly(acrylonitrile) (PAN) are prepared and used as heterogeneous nucleation agents to obtain CO2 blown PMMA and PS micro- and nanocellular foams. Fourier transform infrared spectroscopy, thermogravimetric analysis, and transmission electron microscopy are employed to confirm the successful synthesis of core-shell NPs. The cell size and cell density are determined by scanning electron microscopy. Silica NPs grafted with a thin PDMS shell layer exhibit the highest nucleation efficiency values, followed by PAN. The nucleation efficiency of PS- and PMMA-grafted NPs are comparable with the untreated particles and are significantly lower when compared to PDMS and PAN shells. Molecular dynamics simulations (MDS) are employed to better understand CO2 absorption and nucleation, in particular to study the impact of interfacial properties and CO2-philicity. The MDS results show that the incompatibility between particle shell layers and the polymer matrix results in immiscibility at the interface area, which leads to a local accumulation of CO2 at the interfaces. Elevated CO2 concentrations at the interfaces combined with the high interfacial tension (caused by the immiscibility) induce an energetically favorable cell nucleation process. These findings emphasize the importance of interfacial effects on cell nucleation and provide guidance for designing new, highly efficient nucleation agents in nanocellular polymer foaming.
Collapse
Affiliation(s)
- Shanqiu Liu
- Materials Science and Technology of
Polymers, MESA+ Institute for Nanotechnology, University of Twente, P.O. Box 217, 7500AE Enschede, the Netherlands
| | - Sissi de Beer
- Materials Science and Technology of
Polymers, MESA+ Institute for Nanotechnology, University of Twente, P.O. Box 217, 7500AE Enschede, the Netherlands
| | - Kevin M. Batenburg
- Materials Science and Technology of
Polymers, MESA+ Institute for Nanotechnology, University of Twente, P.O. Box 217, 7500AE Enschede, the Netherlands
| | - Hubert Gojzewski
- Materials Science and Technology of
Polymers, MESA+ Institute for Nanotechnology, University of Twente, P.O. Box 217, 7500AE Enschede, the Netherlands
| | - Joost Duvigneau
- Materials Science and Technology of
Polymers, MESA+ Institute for Nanotechnology, University of Twente, P.O. Box 217, 7500AE Enschede, the Netherlands
| | - G. Julius Vancso
- Materials Science and Technology of
Polymers, MESA+ Institute for Nanotechnology, University of Twente, P.O. Box 217, 7500AE Enschede, the Netherlands
| |
Collapse
|
4
|
Towards the Development of a 3-D Biochip for the Detection of Hepatitis C Virus. SENSORS 2020; 20:s20092719. [PMID: 32397590 PMCID: PMC7249126 DOI: 10.3390/s20092719] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 05/06/2020] [Accepted: 05/06/2020] [Indexed: 02/06/2023]
Abstract
The early diagnostics of hepatitis C virus (HCV) infections is currently one of the most highly demanded medical tasks. This study is devoted to the development of biochips (microarrays) that can be applied for the detection of HCV. The analytical platforms of suggested devices were based on macroporous poly(glycidyl methacrylate-co-di(ethylene glycol) dimethacrylate) monolithic material. The biochips were obtained by the covalent immobilization of specific probes spotted onto the surface of macroporous monolithic platforms. Using the developed biochips, different variants of bioassay were investigated. This study was carried out using hepatitis C virus-mimetic particles (VMPs) representing polymer nanoparticles with a size close to HCV and bearing surface virus antigen (E2 protein). At the first step, the main parameters of bioassay were optimized. Additionally, the dissociation constants were calculated for the pairs “ligand–receptor” and “antigen–antibody” formed at the surface of biochips. As a result of this study, the analysis of VMPs in model buffer solution and human blood plasma was carried out in a format of direct and “sandwich” approaches. It was found that bioassay efficacy appeared to be similar for both the model medium and real biological fluid. Finally, limit of detection (LOD), limit of quantification (LOQ), spot-to-spot and biochip-to-biochip reproducibility for the developed systems were evaluated.
Collapse
|
5
|
Tzoumani I, Lainioti GC, Aletras AJ, Zainescu G, Stefan S, Meghea A, Kallitsis JK. Modification of Collagen Derivatives with Water-Soluble Polymers for the Development of Cross-Linked Hydrogels for Controlled Release. MATERIALS (BASEL, SWITZERLAND) 2019; 12:E4067. [PMID: 31817565 PMCID: PMC6947037 DOI: 10.3390/ma12244067] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 11/22/2019] [Accepted: 11/27/2019] [Indexed: 12/22/2022]
Abstract
Novel cross-linked hydrogels were synthesized as potential materials for the development of smart biofertilizers. For this purpose, hydrogels were prepared using collagen hydrolysate recovered from tannery waste. The water-soluble polymer poly(sodium 4-styrenesulfonate-co-glycidyl methacrylate) (P(SSNa-co-GMAx)) was among others used for the cross-linking reaction that combined hydrophilic nature with epoxide groups. The synthetic procedure was thoroughly investigated in order to ensure high percentage of epoxide groups in combination with water-soluble behavior. The copolymer did not show cytotoxicity against normal lung, skin fibroblasts, or nasal polyps fibroblasts. Through the present work, we also present the ability to control the properties of cross-linked hydrogels by altering copolymer's composition and cross-linking parameters (curing temperature and time). Hydrogels were then studied in terms of water-uptake capacity for a period up to six days. The techniques Proton Nuclear Magnetic Resonance (1H NMR), Thermogravimetric Analysis (TGA), Size Exclusion Chromatography (SEC), and Attenuated Total Reflection Fourier Transform Infrared Spectroscopy (ATR-FTIR) were applied for the characterization of the synthesized copolymers and the cross-linked hydrogels. Three samples of biofertilizers based on collagen hydrolysate functionalized with P(SSNa-co-GMAx) and starch and having nutrients encapsulated (N, P, K) were prepared and characterized by physical-chemical analysis and Energy Dispersive X-ray analysis-Scanning Electron Microscope (EDAX-SEM) in terms of microstructure. Preliminary tests for application as fertilizers were performed including the release degree of oxidable organic compounds.
Collapse
Affiliation(s)
- Ioanna Tzoumani
- Department of Chemistry, University of Patras, GR-265 04 Patras, Greece; (I.T.); (G.C.L.); (A.J.A.)
- Foundation for Research and Technology-Hellas (FORTH)/Institute of Chemical Engineering Sciences (ICE-HT), Stadiou Str., Platani, P.O. Box 1414, GR-265 04 Rio-Patras, Greece
| | - Georgia Ch. Lainioti
- Department of Chemistry, University of Patras, GR-265 04 Patras, Greece; (I.T.); (G.C.L.); (A.J.A.)
| | - Alexios J. Aletras
- Department of Chemistry, University of Patras, GR-265 04 Patras, Greece; (I.T.); (G.C.L.); (A.J.A.)
| | - Gabriel Zainescu
- National R & D Institute for Textile and Leather-Division: Leather and Footwear Research Institute, 93 Ion Minulescu Str., 031215 Bucharest, Romania;
| | - Simina Stefan
- Faculty of Applied Chemistry and Materials Science, Politehnica University of Bucharest, 1-7 Polizu Str., 011061 Bucharest, Romania;
| | - Aurelia Meghea
- Faculty of Applied Chemistry and Materials Science, Politehnica University of Bucharest, 1-7 Polizu Str., 011061 Bucharest, Romania;
| | - Joannis K. Kallitsis
- Department of Chemistry, University of Patras, GR-265 04 Patras, Greece; (I.T.); (G.C.L.); (A.J.A.)
- Foundation for Research and Technology-Hellas (FORTH)/Institute of Chemical Engineering Sciences (ICE-HT), Stadiou Str., Platani, P.O. Box 1414, GR-265 04 Rio-Patras, Greece
| |
Collapse
|
6
|
Lu X, Khanna A, Luzinov I, Nagatomi J, Harman M. Surface modification of polypropylene surgical meshes for improving adhesion with poloxamine hydrogel adhesive. J Biomed Mater Res B Appl Biomater 2018; 107:1047-1055. [PMID: 30267644 DOI: 10.1002/jbm.b.34197] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2018] [Revised: 05/29/2018] [Accepted: 06/27/2018] [Indexed: 01/18/2023]
Abstract
Tissue adhesive has notable clinical benefits in hernia repair fixation. A novel poloxamine tissue adhesive was previously shown to successfully bond collagen tissue with adequate adhesive strength. In application related to attachment of polypropylene (PP) mesh, the adhesive strength between the mesh and poloxamine hydrogel adhesive is limited by the hydrophobicity of PP monofilaments and lack of covalent bond formation. The purpose of this study was to compare two different surface modifications [bovine serum albumin (BSA) adsorption and poly-glycidyl methacrylate/human serum albumin (PGMA/HSA) grafting] of PP mesh for improving the adhesive strength between poloxamine hydrogel adhesive and PP mesh. The PGMA/HSA surface modification significantly improved the adhesive strength for meshes attached with poloxamine hydrogel tissue adhesive compared with unmodified meshes and meshes modified by BSA adsorption. An area of 1 cm2 adhesive provided for a maximum adhesive strength of 65-70 kPa for meshes modified by PGMA/HSA, 4-13 kPa for meshes modified by BSA, and 22-45 kPa for unmodified meshes. Optical microscopy and infrared spectroscopy (FTIR) confirmed the improved adhesive strength was achieved through mechanical interlock of the hydrogel tissue adhesive into the PP mesh pores and chemical bonding of the albumin after successful PGMA/HSA grafting onto the PP monofilaments. © 2018 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater 107B: 1047-1055, 2019.
Collapse
Affiliation(s)
- Xinyue Lu
- Bioengineering Department, Clemson University, Clemson, South Carolina
| | - Astha Khanna
- Bioengineering Department, Clemson University, Clemson, South Carolina
| | - Igor Luzinov
- Materials Science and Engineering Department, Clemson University, Clemson, South Carolina
| | - Jiro Nagatomi
- Bioengineering Department, Clemson University, Clemson, South Carolina
| | - Melinda Harman
- Bioengineering Department, Clemson University, Clemson, South Carolina
| |
Collapse
|
7
|
Chen D, Mei Y, Hu W, Li CM. Electrochemically enhanced antibody immobilization on polydopamine thin film for sensitive surface plasmon resonance immunoassay. Talanta 2018; 182:470-475. [DOI: 10.1016/j.talanta.2018.02.038] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Revised: 02/02/2018] [Accepted: 02/08/2018] [Indexed: 12/31/2022]
|
8
|
Pikabea A, Forcada J. Novel approaches for the preparation of magnetic nanogels via covalent bonding. ACTA ACUST UNITED AC 2017. [DOI: 10.1002/pola.28740] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- Aintzane Pikabea
- Bionanoparticles Group, Department of Applied Chemistry, UFI 11/56, Faculty of Chemistry; University of the Basque Country UPV/EHU; Apdo. 1072, Donostia-San Sebastián 20080 Spain
| | - Jacqueline Forcada
- Bionanoparticles Group, Department of Applied Chemistry, UFI 11/56, Faculty of Chemistry; University of the Basque Country UPV/EHU; Apdo. 1072, Donostia-San Sebastián 20080 Spain
| |
Collapse
|
9
|
Hasan D, Ho C, Lee C. Realization of Fractal-Inspired Thermoresponsive Quasi-3D Plasmonic Metasurfaces with EOT-Like Transmission for Volumetric and Multispectral Detection in the Mid-IR Region. ACS OMEGA 2016; 1:818-831. [PMID: 31457164 PMCID: PMC6640791 DOI: 10.1021/acsomega.6b00201] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2016] [Accepted: 09/28/2016] [Indexed: 05/29/2023]
Abstract
We use a paradigmatic mathematic model known as Sierpiński fractal to reverse-engineer artificial nanostructures that can potentially serve as plasmonic metasurfaces as well as nanogap electrodes. Herein, we particularly demonstrate the possibility of obtaining multispectral extraordinary optical transmission-like transmission peaks from fractal-inspired geometries, which can preserve distinct spatial characteristics. To achieve enhanced volumetric interaction and thermal responsiveness within the framework, we consider a bilayer, quasi-three-dimensional (3D) configuration that relies on the unique approach of combining complementary and noncomplementary surfaces, while avoiding the need for multilayer alignment on the nanoscale. We implement an improved version of the model to (1) increase the volume of quasi-3D nanochannels and enhance the lightening-rod effect of the metasurfaces, (2) harness cross-coupling as a mechanism for achieving better sensitivity, and (3) exploit optical magnetism for pushing the resonances to longer wavelengths on a miniaturized platform. We further demonstrate vertical coupling as an effective route for ultimate miniaturization of such quasi-3D nanostructures. We report a wavelength shift up to 1666 nm/refractive index unit and 2.5 nm/°C, implying the usefulness of the proposed devices for applications such as dielectrophoretic sensing and nanothermodynamic study of molecular reactions in the chemically active mid-IR spectrum.
Collapse
Affiliation(s)
- Dihan Hasan
- Department
of Electrical & Computer Engineering and Center for Intelligent Sensors
and MEMS, National University of Singapore, 4 Engineering Drive 3, Singapore 117576
- NUS
Suzhou Research Institute (NUSRI), Suzhou Industrial Park, Suzhou 215123, P. R. China
| | - Chong
Pei Ho
- Department
of Electrical & Computer Engineering and Center for Intelligent Sensors
and MEMS, National University of Singapore, 4 Engineering Drive 3, Singapore 117576
- NUS
Suzhou Research Institute (NUSRI), Suzhou Industrial Park, Suzhou 215123, P. R. China
| | - Chengkuo Lee
- Department
of Electrical & Computer Engineering and Center for Intelligent Sensors
and MEMS, National University of Singapore, 4 Engineering Drive 3, Singapore 117576
- NUS
Suzhou Research Institute (NUSRI), Suzhou Industrial Park, Suzhou 215123, P. R. China
- Graduate
School for Integrative Science and Engineering, National University of Singapore, 4 Engineering Drive 3, Singapore 117576
| |
Collapse
|
10
|
Priya S, Jeya Jothi G. Orthopedic application of spikenard herbal rhizome decorated microstructured polymer biocomposites and their in vitro cytotoxicity. J Orthop 2016; 13:181-189. [PMID: 27408493 PMCID: PMC4919316 DOI: 10.1016/j.jor.2016.04.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Accepted: 04/24/2016] [Indexed: 11/20/2022] Open
Abstract
The present study explores the synthesis of highly potential polymer biocomposite from Nardostachys jatamansi rhizome extract. The polymer biocomposites were synthesized from methyl methacrylate by free radical polymerization. ATR-IR enunciate the functional groups attributed at 956 cm-1 (aromatic), a peak appeared at 1685 cm-1 (-C[bond, double bond]O), 1186 cm-1 (-O-CH3), 1149 cm-1 (-C-O-C) framework and 1279 cm-1 (-C-O), which are good agreement for the formation composites. The quantitative evaluations of antimicrobial studies were analyzed by serial dilution method and also improved activity in orthopedic infection pathogens. Cytocompatibility was analyzed by keratinocyte cell lines and it may be used for various biomedical applications.
Collapse
Affiliation(s)
- Sahariya Priya
- Department of Plant Biology and Biotechnology, Loyola College, Chennai 600 034, India
| | - Gabriel Jeya Jothi
- Department of Plant Biology and Biotechnology, Loyola College, Chennai 600 034, India
| |
Collapse
|
11
|
Arrieta JS, Richaud E, Fayolle B, Nizeyimana F. Thermal oxidation of vinyl ester and unsaturated polyester resins. Polym Degrad Stab 2016. [DOI: 10.1016/j.polymdegradstab.2016.04.003] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
12
|
Brusotti G, Calleri E, Milanese C, Catenacci L, Marrubini G, Sorrenti M, Girella A, Massolini G, Tripodo G. Rational design of functionalized polyacrylate-based high internal phase emulsion materials for analytical and biomedical uses. Polym Chem 2016. [DOI: 10.1039/c6py01992g] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Functional polyacrylate-based materials rationally designed by high internal phase emulsion (polyHIPE) are reported.
Collapse
Affiliation(s)
| | - Enrica Calleri
- Department of Drug Sciences
- University of Pavia
- Pavia
- Italy
| | - Chiara Milanese
- C.S.G.I. - Department of Chemistry
- Physical-Chemistry Section
- University of Pavia
- Pavia
- Italy
| | | | | | | | - Alessandro Girella
- C.S.G.I. - Department of Chemistry
- Physical-Chemistry Section
- University of Pavia
- Pavia
- Italy
| | | | | |
Collapse
|
13
|
3-D microarray and its microfabrication-free fluidic immunoassay device. Anal Chim Acta 2015; 889:187-93. [DOI: 10.1016/j.aca.2015.07.044] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2015] [Revised: 07/13/2015] [Accepted: 07/16/2015] [Indexed: 12/12/2022]
|
14
|
Bernardini J, Anguillesi I, Coltelli MB, Cinelli P, Lazzeri A. Optimizing the lignin based synthesis of flexible polyurethane foams employing reactive liquefying agents. POLYM INT 2015. [DOI: 10.1002/pi.4905] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Jacopo Bernardini
- Department of Civil and Industrial Engineering; University of Pisa; Via Diotisalvi 2 56126, Pisa Italy
| | - Irene Anguillesi
- Department of Civil and Industrial Engineering; University of Pisa; Via Diotisalvi 2 56126, Pisa Italy
| | - Maria-Beatrice Coltelli
- Department of Civil and Industrial Engineering; University of Pisa; Via Diotisalvi 2 56126, Pisa Italy
| | - Patrizia Cinelli
- National Interuniversity Consortium of Materials Science and Technology (INSTM); Via G. Giusti, 9 50121, Firenze Italy
| | - Andrea Lazzeri
- Department of Civil and Industrial Engineering; University of Pisa; Via Diotisalvi 2 56126, Pisa Italy
| |
Collapse
|
15
|
Hu W, Liu Y, Chen T, Liu Y, Li CM. Hybrid ZnO nanorod-polymer brush hierarchically nanostructured substrate for sensitive antibody microarrays. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2015; 27:181-185. [PMID: 25366876 DOI: 10.1002/adma.201403712] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2014] [Revised: 09/19/2014] [Indexed: 06/04/2023]
Abstract
A hierarchically nanostructured organic-inorganic hybrid substrate comprising randomly oriented ZnO nanorods on glass slide with coaxially tethered dense polymer brush, POEGMA-co-GMA is reported for highly sensitive antibody microassay, achieving excellent detection specificity, and superior detection limit of as low as 100 fg mL(-1) for biomarkers in human serum within a 1 h assay time.
Collapse
Affiliation(s)
- Weihua Hu
- Institute for Clean energy & Advanced Materials, Faculty of Materials and Energy, Southwest University, Chongqing, 400715, China; Chongqing Key Laboratory for Advanced Materials and Technologies of Clean Energies, Chongqing, 400715, China; Chongqing Engineering Research Center for Rapid diagnosis of Fatal Diseases, Chongqing, 400715, China
| | | | | | | | | |
Collapse
|
16
|
Li H, Zhang X, Zhang X, Wang K, Zhang Q, Wei Y. Fluorescent polymeric nanoparticles with ultra-low CMC for cell imaging. J Mater Chem B 2015; 3:1193-1197. [DOI: 10.1039/c4tb02098g] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Fluorescent polymeric nanoparticles (FPNs) with ultra-low critical micelle concentration were facilely fabricated through radical polymerization and ring-opening crosslinking, and utilized for cell imaging.
Collapse
Affiliation(s)
- Haiyin Li
- College of Chemistry and Pharmaceutical Sciences
- Qingdao Agriculture University
- Qingdao
- P. R. China
| | - Xiqi Zhang
- Department of Chemistry
- The Tsinghua Center for Frontier Polymer Research
- Tsinghua University
- Beijing
- P. R. China
| | - Xiaoyong Zhang
- Department of Chemistry
- The Tsinghua Center for Frontier Polymer Research
- Tsinghua University
- Beijing
- P. R. China
| | - Ke Wang
- Department of Chemistry
- The Tsinghua Center for Frontier Polymer Research
- Tsinghua University
- Beijing
- P. R. China
| | - Qingdong Zhang
- Department of Chemistry
- The Tsinghua Center for Frontier Polymer Research
- Tsinghua University
- Beijing
- P. R. China
| | - Yen Wei
- Department of Chemistry
- The Tsinghua Center for Frontier Polymer Research
- Tsinghua University
- Beijing
- P. R. China
| |
Collapse
|
17
|
Liu Y, Hu W, Lu Z, Li CM. ZnO nanomulberry and its significant nonenzymatic signal enhancement for protein microarray. ACS APPLIED MATERIALS & INTERFACES 2014; 6:7728-7734. [PMID: 24766196 DOI: 10.1021/am501015p] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
It is very challenging to make a highly sensitive protein microarray because of its lack of a universal signal amplification method like PCR used in DNA microarray. The current strategies to improve the sensitivity mainly rely on a unique nanostructured substrate or enzymatically catalyzed signal amplification, of which the former requires a complicated and time-consuming fabrication process while the latter suffers from high cost and poor stability of enzymes as well as downstream biochemical reactions. In this work, an inexpensive ZnO nanomulberry (NMB) decorated glass slide is investigated as a superior substrate to nonenzymatically amplify the signal of protein microarray for sensitive detection, accomplishing a limit of detection (LOD) of 1 pg mL(-1) and a broad dynamic range of 1 pg mL(-1) to 1 μg mL(-1) to detect an important cancer biomarker, carcinoembryonic antigen (CEA) in 10% human serum. The excellent performance is attributed to ZnO NMB possessing high-density loading of capture antibody and intrinsic enhancement of fluorescence emission. The substrate preparation is simple without using any expensive equipment and complicated technique while offering advantages of low autofluorescence, versatility for various fluorophores, and excellent compatibility with existing microarray fabrication techniques. Thus, a ZnO NMB based protein microarray holds great promise for developing a low cost, sensitive, and high throughput protein assay platform for broad applications in both fundamental research and clinical diagnosis.
Collapse
Affiliation(s)
- Yingshuai Liu
- Institute for Clean Energy and Advanced Materials, Southwest University , No. 2 Tiansheng Road, Chongqing 400715, China
| | | | | | | |
Collapse
|
18
|
Hosseini S, Ibrahim F, Djordjevic I, Koole LH. Recent advances in surface functionalization techniques on polymethacrylate materials for optical biosensor applications. Analyst 2014; 139:2933-43. [DOI: 10.1039/c3an01789c] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
19
|
Hu W, Lu Z, Liu Y, Chen T, Zhou X, Li CM. A portable flow-through fluorescent immunoassay lab-on-a-chip device using ZnO nanorod-decorated glass capillaries. LAB ON A CHIP 2013; 13:1797-1802. [PMID: 23483058 DOI: 10.1039/c3lc41382a] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
We report a portable flow-through fluorescent immunoassay lab-on-a-chip device using inexpensive disposable glass capillaries for medical diagnostics. The device is made up of a number of serially connected glass capillaries, of which each interior surface is grown using zinc oxide (ZnO) nanorods, which different probe antibodies are attached to. The ZnO nanorods not only provide a large surface area for high density probe attachment, but also enhance the fluorescent signals to significantly improve the detection signal responses. The glass capillary also allows for convenient flow-through detection. Coupled with a homemade handheld analyzer integrated with an automatic pump system and a fluorescence readout module, a portable immunoassay capillary device enables quantitative detection of multiple biomarkers in 30 min with detection limits of 1-5 ng mL(-1) and wide dynamic ranges for prostate specific antigen (PSA), α-Fetoprotein (AFP) and carcinoembryonic antigen (CEA) in serum. This new conceptual lab-on-a-chip device eliminates the need for expensive micro-fabrication processes, while offering inexpensive and disposable, but replaceable tube-type "microchannels" for multiplexed detection in portable clinical diagnostics.
Collapse
Affiliation(s)
- Weihua Hu
- Institute of Clean Energy & Advanced Materials, Southwest University, Chongqing, P R China
| | | | | | | | | | | |
Collapse
|
20
|
Liu Y, Li X, Bao S, Lu Z, Li Q, Li CM. Plastic protein microarray to investigate the molecular pathways of magnetic nanoparticle-induced nanotoxicity. NANOTECHNOLOGY 2013; 24:175501. [PMID: 23558511 DOI: 10.1088/0957-4484/24/17/175501] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Superparamagnetic iron oxide nanoparticles (SPIONs) (about 15 nm) were synthesized via a hydrothermal method and characterized by field emission scanning electron microscopy, transmission electron microscopy, dynamic light scattering, x-ray diffraction, and vibrating sample magnetometer. The molecular pathways of SPIONs-induced nanotoxicity was further investigated by protein microarrays on a plastic substrate from evaluation of cell viability, reactive oxygen species (ROS) generation and cell apoptosis. The experimental results reveal that 50 μg ml(-1) or higher levels of SPIONs cause significant loss of cell viability, considerable generation of ROS and cell apoptosis. It is proposed that high level SPIONs could induce cell apoptosis via a mitochondria-mediated intrinsic pathway by activation of caspase 9 and caspase 3, an increase of the Bax/Bcl-2 ratio, and down-regulation of HSP70 and HSP90 survivor factors.
Collapse
Affiliation(s)
- Yingshuai Liu
- Institute for Clean Energy and Advanced Materials, Southwest University, Chongqing, People's Republic of China
| | | | | | | | | | | |
Collapse
|
21
|
Han JH, Sudheendra L, Kim HJ, Gee SJ, Hammock BD, Kennedy IM. Ultrasensitive on-chip immunoassays with a nanoparticle-assembled photonic crystal. ACS NANO 2012; 6:8570-82. [PMID: 22957818 PMCID: PMC3479307 DOI: 10.1021/nn301656c] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Electrophoretic particle entrapment system (EPES) is employed to generate 2D array of nanoparticles coated with biological molecules (i.e., antibodies). Phase matching of the excitation and the emission in the 2D arrays with particles produces a highly enhanced fluorescence signal that was shown to improve the limit of detection in immunoassays. The phase matching is achieved when the particle are in the sub-100 nm range. A comparison between different size particles shows that the sensitivity of an immunoassay is extended to a range that is difficult to achieve with standard technology (e.g., enzyme-linked immunosorbent assay-ELISA). The effectiveness of this novel configuration of particle-in-a-well was demonstrated with an assay for human epidermal growth factor receptor 2 (HER2; breast cancer biomarker), with a detection limit as low as 10 attomolar (aM) in less than 10 μL of serum-based sample. The limit of detection of HER2 indicated far superior assay performance compared to the corresponding standard 96-well plate-based ELISA. The particle-based photonic platform reduces the reagent volume and the time for performing an assay in comparison to competing methods. The simplicity of operation and the level of sensitivity demonstrated here can be used for rapid and early stage detection of biomarkers.
Collapse
Affiliation(s)
- Jin-Hee Han
- Department of Mechanical and Aerospace Engineering, University of California, Davis, California 95616, USA
| | - L. Sudheendra
- Department of Mechanical and Aerospace Engineering, University of California, Davis, California 95616, USA
| | - Hee-Joo Kim
- Department of Entomology, University of California, Davis, California 95616, USA
| | - Shirley J. Gee
- Department of Entomology, University of California, Davis, California 95616, USA
| | - Bruce D. Hammock
- Department of Entomology, University of California, Davis, California 95616, USA
| | - Ian M. Kennedy
- Department of Mechanical and Aerospace Engineering, University of California, Davis, California 95616, USA
| |
Collapse
|
22
|
|
23
|
Gubala V, Harris LF, Ricco AJ, Tan MX, Williams DE. Point of Care Diagnostics: Status and Future. Anal Chem 2011; 84:487-515. [DOI: 10.1021/ac2030199] [Citation(s) in RCA: 832] [Impact Index Per Article: 64.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Vladimir Gubala
- Biomedical Diagnostics Institute, Dublin City University, Dublin 9, Ireland
| | - Leanne F. Harris
- Biomedical Diagnostics Institute, Dublin City University, Dublin 9, Ireland
| | - Antonio J. Ricco
- Biomedical Diagnostics Institute, Dublin City University, Dublin 9, Ireland
| | - Ming X. Tan
- Biomedical Diagnostics Institute, Dublin City University, Dublin 9, Ireland
| | - David E. Williams
- Biomedical Diagnostics Institute, Dublin City University, Dublin 9, Ireland
| |
Collapse
|
24
|
Liu Y, Guo CX, Hu W, Lu Z, Li CM. Sensitive protein microarray synergistically amplified by polymer brush-enhanced immobilizations of both probe and reporter. J Colloid Interface Sci 2011; 360:593-9. [PMID: 21640998 DOI: 10.1016/j.jcis.2011.05.030] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2011] [Revised: 05/09/2011] [Accepted: 05/10/2011] [Indexed: 01/28/2023]
Abstract
Great challenge remains to continuously improve sensitivity of protein microarrays for broad applications. A copolymer brush is in situ synthesized on both substrate and silica nanoparticle (SNP) surface to efficiently immobilize probe and reporter protein respectively for synergistic amplification of protein microarray signals. As a demonstration, sandwich immunoassay for a cancer biomarker carcinoembryonic antigen (CEA) detection is performed on microarray platform, showing a limit of detection (LOD) of 10 pg/ml and dynamic range of 10 pg/ml to 100 ng/ml. Two orders improvement of LOD is achieved in comparison to the small crosslinker-activated substrate. The improved sensitivity is attributed to not only the high immobilization amount of both probe and reporter but also the favorite protein binding orientations offered by the flexible brushes. This work provides a universal approach to inexpensively and significantly improve protein microarray sensitivity.
Collapse
Affiliation(s)
- Yingshuai Liu
- Institute for Clean Energy & Advanced Materials, Southwest University, Chongqing 400715, PR China
| | | | | | | | | |
Collapse
|
25
|
Highly sensitive poly[glycidyl methacrylate-co-poly(ethylene glycol) methacrylate] brush-based flow-through microarray immunoassay device. Biomed Microdevices 2011; 13:769-77. [DOI: 10.1007/s10544-011-9547-1] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
26
|
Hu W, Liu Y, Yang H, Zhou X, Li CM. ZnO nanorods-enhanced fluorescence for sensitive microarray detection of cancers in serum without additional reporter-amplification. Biosens Bioelectron 2011; 26:3683-7. [DOI: 10.1016/j.bios.2011.01.045] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2010] [Revised: 01/13/2011] [Accepted: 01/29/2011] [Indexed: 11/26/2022]
|