1
|
Binding of the anticancer Ti(IV) complex phenolaTi to serum proteins: Thermodynamic and kinetic aspects. J Inorg Biochem 2022; 232:111817. [DOI: 10.1016/j.jinorgbio.2022.111817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 03/28/2022] [Accepted: 04/02/2022] [Indexed: 11/20/2022]
|
2
|
Serrano R, Martinez-Argudo I, Fernandez-Sanchez M, Pacheco-Liñan PJ, Bravo I, Cohen B, Calero R, Ruiz MJ. New titanocene derivative with improved stability and binding ability to albumin exhibits high anticancer activity. J Inorg Biochem 2021; 223:111562. [PMID: 34364140 DOI: 10.1016/j.jinorgbio.2021.111562] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 07/23/2021] [Accepted: 07/30/2021] [Indexed: 11/15/2022]
Abstract
Titanium-based therapies have emerged as a promising alternative for the treatment of cancer patients, particularly those with cisplatin resistant tumors. Unfortunately, some titanium compounds show stability and solubility problems that have hindered their use in clinical practice. Here, we designed and synthesized a new titanium complex containing a titanocene fragment, a tridentate ligand to improve its stability in water, and a long aliphatic chain, designed to facilitate a non-covalent interaction with albumin, the most abundant protein in human serum. The stability and human serum albumin affinity of the resulting titanium complex was investigated by UV-Vis absorption and fluorescence spectroscopy techniques. Complex [TiCp2{(OOC)2py-O-myr}] (3) (myr = C14H29, py = pyridine) and its analogous [TiCp2{(OOC)2py-OH}] (4), lacking the aliphatic chain, showed improved stability in phosphate saline buffer compared with [TiCp2Cl2] (1). 3 showed a strong interaction with human serum albumin in a 1:1 stoichiometry. The cytotoxic effect of 3 was higher compared to [TiCp2Cl2] in tumor cell lines and showed potential tumor selectivity when assayed in non-tumor human epithelial cells. Finally, 3 showed an antiproliferative effect on cancer cells, decreasing the population in the S phase, and increasing apoptotic cells in a significant manner. All this makes the novel Ti(IV) compound 3 a firm candidate to continue further studies of its therapeutic potential in vitro and in vivo.
Collapse
Affiliation(s)
- Rosario Serrano
- Universidad de Castilla-La Mancha, Facultad de Ciencias Ambientales y Bioquímica, 45071 Toledo, Spain; Universidad de Castilla-La Mancha, Departamento de Química Orgánica, Inorgánica y Bioquímica, Spain
| | - Isabel Martinez-Argudo
- Universidad de Castilla-La Mancha, Facultad de Ciencias Ambientales y Bioquímica, 45071 Toledo, Spain; Universidad de Castilla-La Mancha, Departamento de Ciencia y Tecnología Agroforestal y Genética, Spain
| | - Miguel Fernandez-Sanchez
- Universidad de Castilla-La Mancha, Facultad de Ciencias Ambientales y Bioquímica, 45071 Toledo, Spain
| | - Pedro J Pacheco-Liñan
- Universidad de Castilla-La Mancha, Facultad de Farmacia, 02071 Albacete, Spain; Universidad de Castilla-La Mancha, Departamento de Química Física, Spain
| | - Ivan Bravo
- Universidad de Castilla-La Mancha, Facultad de Farmacia, 02071 Albacete, Spain; Universidad de Castilla-La Mancha, Departamento de Química Física, Spain
| | - Boiko Cohen
- Universidad de Castilla-La Mancha, Facultad de Ciencias Ambientales y Bioquímica, 45071 Toledo, Spain; Universidad de Castilla-La Mancha, Departamento de Química Física, Spain; Universidad de Castilla-La Mancha, INAMOL, 45071 Toledo, Spain
| | - Raul Calero
- Universidad de Castilla-La Mancha, Facultad de Ciencias Ambientales y Bioquímica, 45071 Toledo, Spain; Universidad de Castilla-La Mancha, Departamento de Química Orgánica, Inorgánica y Bioquímica, Spain.
| | - Maria Jose Ruiz
- Universidad de Castilla-La Mancha, Facultad de Ciencias Ambientales y Bioquímica, 45071 Toledo, Spain; Universidad de Castilla-La Mancha, Departamento de Química Orgánica, Inorgánica y Bioquímica, Spain
| |
Collapse
|
3
|
Saxena M, Loza-Rosas SA, Gaur K, Sharma S, Pérez Otero SC, Tinoco AD. Exploring titanium(IV) chemical proximity to iron(III) to elucidate a function for Ti(IV) in the human body. Coord Chem Rev 2018; 363:109-125. [PMID: 30270932 PMCID: PMC6159949 DOI: 10.1016/j.ccr.2018.03.006] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Despite its natural abundance and widespread use as food, paint additive, and in bone implants, no specific biological function of titanium is known in the human body. High concentrations of Ti(IV) could result in cellular toxicity, however, the absence of Ti toxicity in the blood of patients with titanium bone implants indicates the presence of one or more biological mechanisms to mitigate toxicity. Similar to Fe(III), Ti(IV) in blood binds to the iron transport protein serum transferrin (sTf), which gives credence to the possibility of its cellular uptake mechanism by transferrin-directed endocytosis. However, once inside the cell, how sTf bound Ti(IV) is released into the cytoplasm, utilized, or stored remain largely unknown. To explain the molecular mechanisms involved in Ti use in cells we have drawn parallels with those for Fe(III). Based on its chemical similarities with Fe(III), we compare the biological coordination chemistry of Fe(III) and Ti(IV) and hypothesize that Ti(IV) can bind to similar intracellular biomolecules. The comparable ligand affinity profiles suggest that at high Ti(IV) concentrations, Ti(IV) could compete with Fe(III) to bind to biomolecules and would inhibit Fe bioavailability. At the typical Ti concentrations in the body, Ti might exist as a labile pool of Ti(IV) in cells, similar to Fe. Ti could exhibit different types of properties that would determine its cellular functions. We predict some of these functions to mimic those of Fe in the cell and others to be specific to Ti. Bone and cellular speciation and localization studies hint toward various intracellular targets of Ti like phosphoproteins, DNA, ribonucleotide reductase, and ferritin. However, to decipher the exact mechanisms of how Ti might mediate these roles, development of innovative and more sensitive methods are required to track this difficult to trace metal in vivo.
Collapse
Affiliation(s)
- Manoj Saxena
- Department of Chemistry, University of Puerto Rico Río Piedras, San Juan, PR 00931
| | - Sergio A. Loza-Rosas
- Department of Chemistry, University of Puerto Rico Río Piedras, San Juan, PR 00931
| | - Kavita Gaur
- Department of Chemistry, University of Puerto Rico Río Piedras, San Juan, PR 00931
| | - Shweta Sharma
- Department of Environmental Sciences, University of Puerto Rico Río Piedras, San Juan, PR 00931
| | - Sofia C. Pérez Otero
- Department of Chemistry, University of Puerto Rico Río Piedras, San Juan, PR 00931
| | - Arthur D. Tinoco
- Department of Chemistry, University of Puerto Rico Río Piedras, San Juan, PR 00931
| |
Collapse
|
4
|
Ravishankar D, Salamah M, Attina A, Pothi R, Vallance TM, Javed M, Williams HF, Alzahrani EMS, Kabova E, Vaiyapuri R, Shankland K, Gibbins J, Strohfeldt K, Greco F, Osborn HMI, Vaiyapuri S. Ruthenium-conjugated chrysin analogues modulate platelet activity, thrombus formation and haemostasis with enhanced efficacy. Sci Rep 2017; 7:5738. [PMID: 28720875 PMCID: PMC5515887 DOI: 10.1038/s41598-017-05936-3] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Accepted: 06/06/2017] [Indexed: 01/28/2023] Open
Abstract
The constant increase in cardiovascular disease rate coupled with significant drawbacks of existing therapies emphasise the necessity to improve therapeutic strategies. Natural flavonoids exert innumerable pharmacological effects in humans. Here, we demonstrate the effects of chrysin, a natural flavonoid found largely in honey and passionflower on the modulation of platelet function, haemostasis and thrombosis. Chrysin displayed significant inhibitory effects on isolated platelets, however, its activity was substantially reduced under physiological conditions. In order to increase the efficacy of chrysin, a sulfur derivative (thio-chrysin), and ruthenium-complexes (Ru-chrysin and Ru-thio-chrysin) were synthesised and their effects on the modulation of platelet function were evaluated. Indeed, Ru-thio-chrysin displayed a 4-fold greater inhibition of platelet function and thrombus formation in vitro than chrysin under physiologically relevant conditions such as in platelet-rich plasma and whole blood. Notably, Ru-thio-chrysin exhibited similar efficacy to chrysin in the modulation of haemostasis in mice. Increased bioavailability and cell permeability of Ru-thio-chrysin compared to chrysin were found to be the basis for its enhanced activity. Together, these results demonstrate that Ru-thio-coupled natural compounds such as chrysin may serve as promising templates for the development of novel anti-thrombotic agents.
Collapse
Affiliation(s)
| | | | - Alda Attina
- School of Pharmacy, University of Reading, Reading, UK
| | - Radhika Pothi
- School of Pharmacy, University of Reading, Reading, UK
| | | | | | | | | | - Elena Kabova
- School of Pharmacy, University of Reading, Reading, UK
| | | | | | - Jonathan Gibbins
- Institute for Cardiovascular and Metabolic Research, School of Biological Sciences, University of Reading, Reading, UK
| | | | | | | | | |
Collapse
|
5
|
Güette-Fernández JR, Meléndez E, Maldonado-Rojas W, Ortega-Zúñiga C, Olivero-Verbel J, Parés-Matos EI. A molecular docking study of the interactions between human transferrin and seven metallocene dichlorides. J Mol Graph Model 2017; 75:250-265. [PMID: 28609757 DOI: 10.1016/j.jmgm.2017.05.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2016] [Revised: 05/08/2017] [Accepted: 05/09/2017] [Indexed: 02/08/2023]
Abstract
Human Transferrin (hTf) is a metal-binding protein found in blood plasma and is well known for its role in iron delivery. With only a 30% of its capacity for Fe+3 binding, this protein has the potential ability to transport other metal ions or organometallic compounds from the blood stream to all cell tissues. In this perspective, recent studies have described seven metallocene dichlorides (Cp2M(IV)Cl2, M(IV)=V, Mo, W, Nb, Ti, Zr, Hf) suitable as anticancer drugs and less secondary effects than cisplatin. However, these studies have not provided enough data to clearly explain how hTf binds and transports these organometallic compounds into the cells. Thus, a computational docking study with native apo-hTf using Sybyl-X 2.0 program was conducted to explore the binding modes of these seven Cp2M(IV)Cl2 after their optimization and minimization using Gaussian 09. Our model showed that the first three Cp2M(IV)Cl2 (M(IV)=V, Mo, W) can interact with apo-hTf on a common binding site with the amino acid residues Leu-46, Ile-49, Arg-50, Leu-66, Asp-69, Ala-70, Leu-72, Ala-73, Pro-74 and Asn-75, while the next four Cp2M(IV)Cl2 (M(IV)=Nb, Ti, Zr, Hf) showed different binding sites, unknown until now. A decreasing order in the total score (equal to -log Kd) was observed from these docking studies: W (5.4356), Mo (5.2692), Nb (5.1672), V (4.5973), Ti (3.6529), Zr (2.0054) and Hf (1.8811). High and significant correlation between the affinity of these seven ligands (metallocenes) for apo-hTf and their bond angles CpMCp (r=0.94, p<0.01) and Cl-M-Cl (r=0.95, p<0.01) were observed, thus indicating the important role that these bond angles can play in ligand-protein interactions. Fluorescence spectra of apo-hTf, measured at pH 7.4, had a decrease in the fluorescence emission spectrum with increasing concentration of Cp2M(IV)Cl2. Experimental data has a good correlation between KA (r=0.84, p=0.027) and Kd (r=0.94, p=0.0014) values and the calculated total scores obtained from our docking experiments. In conclusion, these results suggest that the seven Cp2M(IV)Cl2 used for this study can interact with apo-hTf, and their affinity was directly and inversely proportional to their bond angles CpMCp and ClMCl, respectively. Our docking studies also suggest that the binding of the first three Cp2M(IV)Cl2 (M(IV)=V, Mo, W) to hTf could abrogate the formation of the hTf-receptor complex, and as a consequence the metallocene-hTf complex might require another transport mechanism in order to get into the cell.
Collapse
Affiliation(s)
- Jorge R Güette-Fernández
- Department of Chemistry at Mayagüez, University of Puerto Rico, Mayagüez, PR 00681; Environmental and Computational Chemistry Group, School of Pharmaceutical Sciences, Zaragocilla Campus, University of Cartagena, 130014, Cartagena, Colombia
| | - Enrique Meléndez
- Department of Chemistry at Mayagüez, University of Puerto Rico, Mayagüez, PR 00681
| | - Wilson Maldonado-Rojas
- Environmental and Computational Chemistry Group, School of Pharmaceutical Sciences, Zaragocilla Campus, University of Cartagena, 130014, Cartagena, Colombia
| | - Carlos Ortega-Zúñiga
- Department of Chemistry at Mayagüez, University of Puerto Rico, Mayagüez, PR 00681; Environmental and Computational Chemistry Group, School of Pharmaceutical Sciences, Zaragocilla Campus, University of Cartagena, 130014, Cartagena, Colombia
| | - Jesus Olivero-Verbel
- Environmental and Computational Chemistry Group, School of Pharmaceutical Sciences, Zaragocilla Campus, University of Cartagena, 130014, Cartagena, Colombia
| | - Elsie I Parés-Matos
- Department of Chemistry at Mayagüez, University of Puerto Rico, Mayagüez, PR 00681.
| |
Collapse
|
6
|
Laiva AL, Venugopal JR, Karuppuswamy P, Navaneethan B, Gora A, Ramakrishna S. Controlled release of titanocene into the hybrid nanofibrous scaffolds to prevent the proliferation of breast cancer cells. Int J Pharm 2015; 483:115-23. [DOI: 10.1016/j.ijpharm.2015.02.025] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Revised: 01/20/2015] [Accepted: 02/10/2015] [Indexed: 10/24/2022]
|
7
|
Fujiwara SI, Amisaki T. Fatty acid binding to serum albumin: Molecular simulation approaches. Biochim Biophys Acta Gen Subj 2013; 1830:5427-34. [DOI: 10.1016/j.bbagen.2013.03.032] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2013] [Revised: 03/26/2013] [Accepted: 03/28/2013] [Indexed: 02/02/2023]
|
8
|
Computer-aided identification of novel protein targets of bisphenol A. Toxicol Lett 2013; 222:312-20. [PMID: 23973438 DOI: 10.1016/j.toxlet.2013.08.010] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2013] [Revised: 08/07/2013] [Accepted: 08/11/2013] [Indexed: 11/20/2022]
Abstract
The xenoestrogen bisphenol A (2,2-bis-(p-hydroxyphenyl)-2-propane, BPA) is a known endocrine-disrupting chemical used in the fabrication of plastics, resins and flame retardants, that can be found throughout the environment and in numerous every day products. Human exposure to this chemical is extensive and generally occurs via oral route because it leaches from the food and beverage containers that contain it. Although most of the effects related to BPA exposure have been linked to the activation of the estrogen receptor (ER), the mechanisms of the interaction of BPA with protein targets different from ER are still unknown. Therefore, the objective of this work was to use a bioinformatics approach to identify possible new targets for BPA. Docking studies were performed between the optimized structure of BPA and 271 proteins related to different biochemical processes, as selected by text-mining. Refinement docking experiments and conformational analyses were carried out using LigandScout 3.0 for the proteins selected through the affinity ranking (lower than -8.0kcal/mol). Several proteins including ERR gamma (-9.9kcal/mol), and dual specificity protein kinases CLK-4 (-9.5kcal/mol), CLK-1 (-9.1kcal/mol) and CLK-2 (-9.0kcal/mol) presented great in silico binding affinities for BPA. The interactions between those proteins and BPA were mostly hydrophobic with the presence of some hydrogen bonds formed by leucine and asparagine residues. Therefore, this study suggests that this endocrine disruptor may have other targets different from the ER.
Collapse
|
9
|
Domínguez-García M, Ortega-Zúñiga C, Meléndez E. New tungstenocenes containing 3-hydroxy-4-pyrone ligands: antiproliferative activity on HT-29 and MCF-7 cell lines and binding to human serum albumin studied by fluorescence spectroscopy and molecular modeling methods. J Biol Inorg Chem 2013; 18:195-209. [PMID: 23212785 PMCID: PMC3565000 DOI: 10.1007/s00775-012-0964-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2012] [Accepted: 11/14/2012] [Indexed: 01/12/2023]
Abstract
Three new water-soluble tungstenocene derivatives were synthesized and characterized using 3-hydroxy-4-pyrone ligands, which provide aqueous stability to the complexes. The antiproliferative activities of the complexes on HT-29 colon cancer and MCF-7 breast cancer cell lines were evaluated by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay and showed the new tungstenocene derivatives have higher antiproliferative action than tungstenocene dichloride (Cp(2)WCl(2), where Cp is cyclopentadienyl). The binding interactions of the tungstenocenes with human serum albumin (HSA) were investigated using fluorescence spectroscopy and molecular modeling methods. Analysis of the fluorescence quenching spectra indicates that the tungstenocene complexes bind HSA by hydrophobic interactions and hydrogen bonding at fatty acid binding site 6 and drug binding site II. Docking studies provided a description of the hydrophobic interactions and hydrogen bonding by which the tungstenocenes become engaged with HSA. It was determined that the binding affinity of the tungstenoecenes for HSA is in the order Cp(2)WCl(2) < [Cp(2)W(ethyl maltolato)]Cl < [Cp(2)W(maltolato)]Cl < [Cp(2)W(kojato)]Cl, consistent with the hydrophobic interactions and the number of hydrogen bonds involved.
Collapse
Affiliation(s)
| | - Carlos Ortega-Zúñiga
- Department of Chemistry, University of Puerto Rico, PO Box 9019, Mayagüez, PR 00681, USA
| | - Enrique Meléndez
- Department of Chemistry, University of Puerto Rico, PO Box 9019, Mayagüez, PR 00681, USA
| |
Collapse
|
10
|
Meermann B, Sperling M. Hyphenated techniques as tools for speciation analysis of metal-based pharmaceuticals: developments and applications. Anal Bioanal Chem 2012; 403:1501-22. [DOI: 10.1007/s00216-012-5915-9] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2011] [Revised: 02/28/2012] [Accepted: 02/28/2012] [Indexed: 10/28/2022]
|
11
|
Noffke AL, Habtemariam A, Pizarro AM, Sadler PJ. Designing organometallic compounds for catalysis and therapy. Chem Commun (Camb) 2012; 48:5219-46. [DOI: 10.1039/c2cc30678f] [Citation(s) in RCA: 311] [Impact Index Per Article: 23.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
12
|
Affiliation(s)
- Katherine M. Buettner
- Department of Chemistry, Yale University, New Haven, Connecticut 06520-8107, United States
| | - Ann M. Valentine
- Department of Chemistry, Temple University, Philadelphia, Pennsylvania 19122, United States
| |
Collapse
|
13
|
González-Pantoja JF, Stern M, Jarzecki AA, Royo E, Robles-Escajeda E, Varela-Ramírez A, Aguilera RJ, Contel M. Titanocene-phosphine derivatives as precursors to cytotoxic heterometallic TiAu2 and TiM (M = Pd, Pt) compounds. Studies of their interactions with DNA. Inorg Chem 2011; 50:11099-110. [PMID: 21958150 PMCID: PMC3205237 DOI: 10.1021/ic201647h] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
A series of tri- and bimetallic titanium-gold, titanium-palladium, and titanium-platinum derivatives of the general formulas [Ti{η(5)-C(5)H(4)(CH(2))(n)PPh(2)(AuCl)}(2)]·2THF [n = 0 (1); n = 2 (2); n = 3 (3)] and [TiCl(2){η(5)-C(5)H(4)κ-(CH(2))(n)PPh(2)}(2)(MCl(2))]·2THF [M = Pd, n = 0 (4); n = 2 (5); n = 3 (6) ; M = Pt, n = 0 (7); n = 2 (8); n = 3 (9)] have been synthesized and characterized by different spectroscopic techniques and mass spectrometry. The molecular structures of compounds 1-9 have been investigated by means of density functional theory calculations. The calculated IR spectra of the optimized structures fit well with the experimental IR data obtained for 1-9. The stability of the heterometallic compounds in deuterated solvents [CDCl(3), dimethyl sulfoxide (DMSO)-d(6), and mixtures 50:50 DMSO-d(6)/D(2)O and 1:99 DMSO-d(6)/D(2)O at acidic and neutral pH] has been evaluated by (31)P and (1)H NMR spectroscopy showing a higher stability for these compounds than for Cp(2)TiCl(2) or precursors [Ti{η(5)-C(5)H(4)(CH(2))(n)PPh(2)}(2)]. The new compounds display a lower acidity (1-2 units) than Cp(2)TiCl(2). The decomposition products have been identified over time. Complexes 1-9 have been tested as potential anticancer agents, and their cytotoxicity properties were evaluated in vitro against HeLa human cervical carcinoma and DU-145 human prostate cancer cells. TiAu(2) and TiPd compounds were highly cytotoxic for these two cell lines. The interactions of the compounds with calf thymus DNA have been evaluated by thermal denaturation (1-9) and by circular dichroism (1, 3, 4, and 7) spectroscopic methods. All of these complexes show a stronger interaction with DNA than that displayed by Cp(2)TiCl(2) at neutral pH. The data are consistent with electrostatic interactions with DNA for TiAu(2) compounds and for a covalent binding mode for TiM (M = Pd, Pt) complexes.
Collapse
Affiliation(s)
- Jose F. González-Pantoja
- Department of Chemistry, Brooklyn College and The Graduate Center, The City University of New York, Brooklyn, NY, 11210, US
| | - Michael Stern
- Department of Chemistry, Brooklyn College and The Graduate Center, The City University of New York, Brooklyn, NY, 11210, US
| | - Andrzej A. Jarzecki
- Department of Chemistry, Brooklyn College and The Graduate Center, The City University of New York, Brooklyn, NY, 11210, US
| | - Eva Royo
- Departamento de Química Inorgánica, Facultad de Ciencias, Universidad de Alcalá, 28871 Alcalá de Henares, Madrid, Spain
| | - Elisa Robles-Escajeda
- Department of Biological Sciences, The University of Texas at El Paso, El Paso, TX 79968, US
| | - Armando Varela-Ramírez
- Department of Biological Sciences, The University of Texas at El Paso, El Paso, TX 79968, US
| | - Renato J. Aguilera
- Department of Biological Sciences, The University of Texas at El Paso, El Paso, TX 79968, US
| | - María Contel
- Department of Chemistry, Brooklyn College and The Graduate Center, The City University of New York, Brooklyn, NY, 11210, US
| |
Collapse
|