1
|
Gupta J, Sharma G. Nanogel: A versatile drug delivery system for the treatment of various diseases and their future perspective. Drug Deliv Transl Res 2024:10.1007/s13346-024-01684-w. [PMID: 39103593 DOI: 10.1007/s13346-024-01684-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/23/2024] [Indexed: 08/07/2024]
Abstract
Nanogel (NG) drug delivery systems have emerged as promising tools for targeted and controlled drug release, revolutionizing treatment approaches across various diseases. Their unique physicochemical properties, such as nano size, high surface area, biocompatibility, stability, and tunable drug release, make them ideal carriers for a wide range of therapeutic agents. Nanogels (NGs), characterized by their 3D network of crosslinked polymers, offer unique edges like high drug loading capacity, controlled release, and targeted delivery. Additionally, the diverse applications of NGs in medical therapeutics highlight their versatility and potential impact on improving patient outcomes. Their application spans cancer treatment, infectious diseases, and chronic conditions, allowing for precise drug delivery to specific tissues or cells, minimizing side effects, and enhancing therapeutic efficacy. Despite their potential, challenges such as scalability, manufacturing reproducibility, and regulatory hurdles must be addressed. Achieving clinical translation requires overcoming these obstacles to ensure therapeutic payloads' safe and efficient delivery. Strategies such as surface modification and incorporating stimuli-responsive elements enhanced NG performance and addressed specific therapeutic challenges. Advances in nanotechnology, biomaterials, and targeted drug design offer opportunities to improve the performance of NGs and address current limitations. Tailoring NGs for exploring combination therapies and integrating diagnostics for real-time monitoring represent promising avenues for future research. In conclusion, NG drug delivery systems have demonstrated tremendous potential in diverse disease applications. Overcoming challenges and leveraging emerging technologies will pave the way for their widespread clinical implementation, ushering in a new era of precision medicine and improved patient care.
Collapse
Affiliation(s)
- Jitendra Gupta
- Institute of Pharmaceutical Research, GLA University, Mathura, 281406, Uttar Pradesh, India.
| | - Gaurang Sharma
- Institute of Pharmaceutical Research, GLA University, Mathura, 281406, Uttar Pradesh, India
| |
Collapse
|
2
|
Zhang D, Chen Y, Hao M, Xia Y. Putting Hybrid Nanomaterials to Work for Biomedical Applications. Angew Chem Int Ed Engl 2024; 63:e202319567. [PMID: 38429227 PMCID: PMC11478030 DOI: 10.1002/anie.202319567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 02/29/2024] [Accepted: 03/01/2024] [Indexed: 03/03/2024]
Abstract
Hybrid nanomaterials have found use in many biomedical applications. This article provides a comprehensive review of the principles, techniques, and recent advancements in the design and fabrication of hybrid nanomaterials for biomedicine. We begin with an introduction to the general concept of material hybridization, followed by a discussion of how this approach leads to materials with additional functionality and enhanced performance. We then highlight hybrid nanomaterials in the forms of nanostructures, nanocomposites, metal-organic frameworks, and biohybrids, including their fabrication methods. We also showcase the use of hybrid nanomaterials to advance biomedical engineering in the context of nanomedicine, regenerative medicine, diagnostics, theranostics, and biomanufacturing. Finally, we offer perspectives on challenges and opportunities.
Collapse
Affiliation(s)
- Dong Zhang
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30332 (USA)
| | - Yidan Chen
- School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA 30332 (USA)
| | - Min Hao
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30332 (USA)
| | - Younan Xia
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30332 (USA); School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA 30332 (USA)
| |
Collapse
|
3
|
Wang Y, Miron RJ, Zhang X, Zeng H, Zhang Y. Nanocages and cell-membrane display technology as smart biomaterials. Periodontol 2000 2024; 94:180-191. [PMID: 37614160 DOI: 10.1111/prd.12514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 07/26/2023] [Accepted: 07/27/2023] [Indexed: 08/25/2023]
Abstract
Gold nanocages (AuNCs) have been invented and developed over two decades as biomaterial in clinical medicine with great application potential. AuNCs have a characteristic structure of porous walls with hollow interior and a compact size. This makes it possible for them to transport biomolecules or drugs with the advantages of their photothermal effects that could help further destroy germs or tumors while also regulating the release of drugs inside. Furthermore, their bioactivity and application can be broadened by using cell-membrane display technology. AuNCs have shown tremendous potential in antibacterial activity, inflammation modulation, and tissue regeneration, which is required in periodontitis and peri-implantitis treatment. Thus, this article provides an overview of AuNCs synthesis, characteristics, surface modifications, and clinical applications, aiming to serve as a reference for the design and fabrication of AuNCs-based smart materials for periodontal or peri-implant application.
Collapse
Affiliation(s)
- Yulan Wang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
- Department of Oral Implantology, Wuhan University, Wuhan, China
| | - Richard J Miron
- Department of Periodontology, School of Dental Medicine, University of Bern, Bern, Switzerland
| | - Xiaoxin Zhang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
- Department of Oral Implantology, Wuhan University, Wuhan, China
| | - Hao Zeng
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
- Department of Oral Implantology, Wuhan University, Wuhan, China
| | - Yufeng Zhang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
- Department of Oral Implantology, Wuhan University, Wuhan, China
- Medical Research Institute, School of Medicine, Wuhan University, Wuhan, China
- Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, China
| |
Collapse
|
4
|
Gu D, Qiao Y, Fu H, Zhao H, Yue X, Wang S, Yin Y, Xi R, Fu X, Zhao X, Meng M. Size-Controllable DNA Origami-Stacked Gold Nanoparticles for Deep Tumor-Penetrating Therapy. ACS APPLIED MATERIALS & INTERFACES 2022; 14:38048-38055. [PMID: 35950900 DOI: 10.1021/acsami.2c05750] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
With the rapid development of nanotechnology, researchers have designed a variety of intelligent nanodelivery systems to enhance tumor targeting of anticancer drugs. However, increased tumor accumulation does not indicate deeper penetration in the tumor tissue, without which the tumor cells in the core area cannot be sufficiently killed. Herein, we develop a size-controllable nanoparticle system for deep-penetrating cancer therapy, which will be programmably disassembled with the decrease of the pH from the normal tissue to the tumor microenvironment and to the intracellular area. The integrated nanoparticle is composed of a gold nanoparticle (GNP, ∼30 nm) and a tetrahedral DNA nanostructure (TDN, ∼25 nm) loaded with doxorubicin (DOX). Initially, the nanoparticles maintain a larger size (∼100 nm) to accumulate in the tumor through the enhanced permeability and retention effect. At a pH of about 6.5 at the tumor microenvironment, with the linkage of DNA sequences converting into a triplex structure, the TDNs detach from the GNP and penetrate deeply into the tumor interstitium and then are internalized into the cells. Finally, in acidic lysosomes with pH 5.0, the TDNs release DOX by forming an i-motif structure. This nanosmart delivery system thus shows effective deep penetration into the tumor core with good antitumor efficacy and satisfactory biocompatibility and provides new insights into the development of intelligent nanosystems for anti-cancer treatment.
Collapse
Affiliation(s)
- Dening Gu
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and KLMDASR of Tianjin, Nankai University, Tongyan Road, Haihe Education Park, Tianjin 300350, China
| | - Yanqi Qiao
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and KLMDASR of Tianjin, Nankai University, Tongyan Road, Haihe Education Park, Tianjin 300350, China
| | - Hongli Fu
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and KLMDASR of Tianjin, Nankai University, Tongyan Road, Haihe Education Park, Tianjin 300350, China
| | - Hongjie Zhao
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and KLMDASR of Tianjin, Nankai University, Tongyan Road, Haihe Education Park, Tianjin 300350, China
| | - Xinmin Yue
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and KLMDASR of Tianjin, Nankai University, Tongyan Road, Haihe Education Park, Tianjin 300350, China
| | - Shuo Wang
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and KLMDASR of Tianjin, Nankai University, Tongyan Road, Haihe Education Park, Tianjin 300350, China
| | - Yongmei Yin
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and KLMDASR of Tianjin, Nankai University, Tongyan Road, Haihe Education Park, Tianjin 300350, China
| | - Rimo Xi
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and KLMDASR of Tianjin, Nankai University, Tongyan Road, Haihe Education Park, Tianjin 300350, China
| | - Xiaoling Fu
- Department of Orthopedics, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, 330006, China
| | - Xiujie Zhao
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and KLMDASR of Tianjin, Nankai University, Tongyan Road, Haihe Education Park, Tianjin 300350, China
| | - Meng Meng
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and KLMDASR of Tianjin, Nankai University, Tongyan Road, Haihe Education Park, Tianjin 300350, China
| |
Collapse
|
5
|
A comprehensive review on different approaches for tumor targeting using nanocarriers and recent developments with special focus on multifunctional approaches. JOURNAL OF PHARMACEUTICAL INVESTIGATION 2022. [DOI: 10.1007/s40005-022-00583-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
|
6
|
Li C, Zhao T, Li L, Hu X, Li C, Chen W, Hu Y. Stimuli-Responsive Gold Nanocages for Cancer Diagnosis and Treatment. Pharmaceutics 2022; 14:1321. [PMID: 35890217 PMCID: PMC9318695 DOI: 10.3390/pharmaceutics14071321] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 06/15/2022] [Accepted: 06/18/2022] [Indexed: 02/01/2023] Open
Abstract
With advances in nanotechnology, various new drug delivery systems (DDSs) have emerged and played a key role in the diagnosis and treatment of cancers. Over the last two decades, gold nanocages (AuNCs) have been attracting considerable attention because of their outstanding properties. This review summarizes current advancements in endogenous, exogenous, and dual/multi-stimuli responsive AuNCs in drug delivery. This review focuses on the properties, clinical translation potential, and limitations of stimuli-responsive AuNCs for cancer diagnosis and treatment.
Collapse
Affiliation(s)
- Chunming Li
- Department of Pharmacy, Chongqing University Cancer Hospital, No. 181 Hanyu Road, Chongqing 400030, China; (C.L.); (L.L.); (X.H.); (C.L.)
| | - Tengyue Zhao
- School of Pharmaceutical Sciences, Zhengzhou University, No. 100 Kexue Avenue, Zhengzhou 450001, China;
| | - Lixian Li
- Department of Pharmacy, Chongqing University Cancer Hospital, No. 181 Hanyu Road, Chongqing 400030, China; (C.L.); (L.L.); (X.H.); (C.L.)
| | - Xiaogang Hu
- Department of Pharmacy, Chongqing University Cancer Hospital, No. 181 Hanyu Road, Chongqing 400030, China; (C.L.); (L.L.); (X.H.); (C.L.)
| | - Chao Li
- Department of Pharmacy, Chongqing University Cancer Hospital, No. 181 Hanyu Road, Chongqing 400030, China; (C.L.); (L.L.); (X.H.); (C.L.)
| | - Wanyi Chen
- Department of Pharmacy, Chongqing University Cancer Hospital, No. 181 Hanyu Road, Chongqing 400030, China; (C.L.); (L.L.); (X.H.); (C.L.)
| | - Yurong Hu
- School of Pharmaceutical Sciences, Zhengzhou University, No. 100 Kexue Avenue, Zhengzhou 450001, China;
| |
Collapse
|
7
|
Gosecka M, Gosecki M, Urbaniak M. Composite Dynamic Hydrogels Constructed on Boronic Ester Cross-Links with NIR-Enhanced Diffusivity. Biomacromolecules 2022; 23:948-959. [PMID: 34986638 DOI: 10.1021/acs.biomac.1c01359] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Dynamic hydrogels with thermosensitive cross-links are highly promising platforms for "on-demand" drug delivery systems. However, there is a problem with triggering a response in their whole volume, which reduces their efficiency. To achieve better thermoresponsiveness, a graphene oxide-filled composite hydrogel based on boronic ester cross-links, composed of hyperbranched polyglycidol, HbPGL, and poly(acrylamide-ran-2-acrylamidephenylboronic acid), poly(AM-ran-2-AAPBA), has been constructed. The homogeneous embedment of graphene oxide (GO) in the network assured near-infrared (NIR)-photothermal response in its bulk due to the rapid light-to-heat conversion. The rate and amplitude of materials response increase with graphene oxide concentration. The temperature of the hydrogel containing graphene oxide at a concentration of 13.2 mg/mL increased from 36.6 to 41 °C in 29 s upon NIR irradiation. The network diffusivity and the extent of its change with temperature can be regulated by the length of the applied boronic acid-based cross-linking agent. The hydrogel constructed on the shorter copolymer (Mn = 23 000 g/mol) displayed a significant increase in diffusivity with temperature. A diffusion ordered NMR study revealed that the diffusion coefficient determined for niacin, a model drug encapsulated in the hydrogel, increased from 6.09 × 10-10 at 25 °C to 1.28 × 10-9 m2/s at 41 °C. In the case of the hydrogel constructed on the longer acrylamide copolymer (Mn = 43 000 g/mol), in which physical entanglements stabilize the network, the change of encapsulated niacin diffusion coefficient was significantly smaller, i.e., from 3.83 × 10-10 at 25 °C to 6.63 × 10-10 m2/s at 41 °C. The possibility of on-demand NIR-regulated diffusivity of the reported boronic ester-based hydrogels makes them promising candidates for controlled drug delivery platforms.
Collapse
Affiliation(s)
- Monika Gosecka
- Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, 90-363 Lodz, Poland
| | - Mateusz Gosecki
- Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, 90-363 Lodz, Poland
| | - Malgorzata Urbaniak
- Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, 90-363 Lodz, Poland
| |
Collapse
|
8
|
Akbarzadeh H, Mehrjouei E, Abbaspour M, Shamkhali AN, Izanloo C, Masoumi A. Pt core confined within an Au skeletal frame: Pt@Void@Au nanoframes in a molecular dynamics Perspective. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.127664] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
9
|
Peters JT, Wechsler ME, Peppas NA. Advanced biomedical hydrogels: molecular architecture and its impact on medical applications. Regen Biomater 2021; 8:rbab060. [PMID: 34925879 PMCID: PMC8678442 DOI: 10.1093/rb/rbab060] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Revised: 09/22/2021] [Accepted: 10/18/2021] [Indexed: 12/13/2022] Open
Abstract
Hydrogels are cross-linked polymeric networks swollen in water, physiological aqueous solutions or biological fluids. They are synthesized by a wide range of polymerization methods that allow for the introduction of linear and branched units with specific molecular characteristics. In addition, they can be tuned to exhibit desirable chemical characteristics including hydrophilicity or hydrophobicity. The synthesized hydrogels can be anionic, cationic, or amphiphilic and can contain multifunctional cross-links, junctions or tie points. Beyond these characteristics, hydrogels exhibit compatibility with biological systems, and can be synthesized to render systems that swell or collapse in response to external stimuli. This versatility and compatibility have led to better understanding of how the hydrogel's molecular architecture will affect their physicochemical, mechanical and biological properties. We present a critical summary of the main methods to synthesize hydrogels, which define their architecture, and advanced structural characteristics for macromolecular/biological applications.
Collapse
Affiliation(s)
- Jonathan T Peters
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, 200 E. Dean Keeton, Austin, TX 78712, USA
- Institute for Biomaterials, Drug Delivery, and Regenerative Medicine, The University of Texas at Austin, 107 W. Dean Keeton, Austin, TX 78712, USA
| | - Marissa E Wechsler
- Department of Biomedical Engineering and Chemical Engineering, The University of Texas at San Antonio, One UTSA Circle, San Antonio, TX, 78249, USA
| | - Nicholas A Peppas
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, 200 E. Dean Keeton, Austin, TX 78712, USA
- Institute for Biomaterials, Drug Delivery, and Regenerative Medicine, The University of Texas at Austin, 107 W. Dean Keeton, Austin, TX 78712, USA
- Department of Biomedical Engineering, The University of Texas at Austin, 107 W. Dean Keeton, Austin, TX 78712, USA
- Division of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, The University of Texas at Austin, 107 W. Dean Keeton, Austin, TX 78712, USA
- Department of Surgery and Perioperative Care, and Department of Pediatrics, Dell Medical School, The University of Texas at Austin, 1601 Trinity St., Bldg. B, Austin, TX 78712, USA
| |
Collapse
|
10
|
Cheng HW, Ou YL, Kuo CC, Tsao HY, Lu HE. Ansamitocin P3-Loaded Gold-NanoCage Conjugated with Immune Checkpoint Inhibitor to Enhance Photo-Chemo-Thermal Maturation of Dendritic Cells for Hepatocellular Carcinoma. Polymers (Basel) 2021; 13:2726. [PMID: 34451265 PMCID: PMC8398096 DOI: 10.3390/polym13162726] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 08/10/2021] [Accepted: 08/10/2021] [Indexed: 12/17/2022] Open
Abstract
Immunotherapy is a newly developed method for cancer treatment, but still generates limited response in partial patients for hepatocellular carcinoma (HCC) because the immunity cycle is limited by the tumor microenvironment (TME). Herein, we introduce multifunctional gold nanocages (AuNCs)-based nanocarriers with Ansamitocin P3 (AP3) loaded and anti-PDL1 binding (AP3-AuNCs-anti-PDL1) which can combine photothermal therapy, chemotherapeutic agent-triggered DCs maturation, and checkpoint immunotherapy in one platform. The AP3-AuNCs-anti-PDL1 using Avidin-biotin to bind anti-PDL1 on the surface of AP3-AuNCs showed specifically cellular targeting compared to AuNCs, which can increase the immune responses. The AP3-AuNCs+NIR-10 min exhibited the highly activated DCs maturation with two-fold higher than control+NIR, which can be attributed to the significant release of AP3. The results illustrated the synergistic effect of tumor-associated antigens (TAAs) and controlled AP3 release under near infrared (NIR) in triggering effective DCs maturation. Among them, AP3 release played the more important role than the TAAs under PTT in promoting T-cell activation. These results illustrate the promising potential of AuNCs-based nanocarriers combined with AP3 and the checkpoint inhibitors to strengthen the positive loop of immunity cycle.
Collapse
Affiliation(s)
- Hung-Wei Cheng
- Department of Materials Science and Engineering, National Yang Ming Chiao Tung University, Hsinchu 30010, Taiwan; (H.-W.C.); (Y.-L.O.); (C.-C.K.); (H.-Y.T.)
| | - Yu-Ling Ou
- Department of Materials Science and Engineering, National Yang Ming Chiao Tung University, Hsinchu 30010, Taiwan; (H.-W.C.); (Y.-L.O.); (C.-C.K.); (H.-Y.T.)
| | - Chia-Chi Kuo
- Department of Materials Science and Engineering, National Yang Ming Chiao Tung University, Hsinchu 30010, Taiwan; (H.-W.C.); (Y.-L.O.); (C.-C.K.); (H.-Y.T.)
| | - Hsin-Yi Tsao
- Department of Materials Science and Engineering, National Yang Ming Chiao Tung University, Hsinchu 30010, Taiwan; (H.-W.C.); (Y.-L.O.); (C.-C.K.); (H.-Y.T.)
| | - Huai-En Lu
- Bioresource Collection and Research Center, Food Industry Research and Development Institute, Hsinchu 300193, Taiwan
| |
Collapse
|
11
|
Pakravan A, Azizi M, Rahimi F, Bani F, Mahmoudzadeh F, Salehi R, Mahkam M. Comparative effect of thermo/pH-responsive polymer-coated gold nanocages and hollow nanostars on chemo-photothermal therapy of breast cancer cells. Cancer Nanotechnol 2021. [DOI: 10.1186/s12645-021-00091-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Abstract
Background
Combination chemo-photothermal therapy appears to be one of the next generations of cancer treatment. In this study hollow gold nanostars (HGNSs) and gold nanocages (GNCs) were synthesized and stabilized with thermo-pH-sensitive thiol-end capped ABC triblock copolymer poly(acrylic acid)-b-poly(N isopropylacrylamide)-b-poly (e-caprolactone)-SH; PAA-b-PNIPAAm-b-PCL-SH (GNSs@Pol). Doxorubicin (Dox) was conjugated to the GNSs@Pol nanostructures via ionic interaction, covalent attachment and hydrogen bonding (GNSs@Dox-Pol). The physicochemical characteristics of prepared GNSs@Pol and GNSs were assessed using dynamic light scattering (DLS), transmission electron microscopy (TEM) and zeta potential techniques. Cytocompatibility of the GNSs@Pol was studied by hemolysis assay and MTT assay. The chemo-photothermal therapy (PTT) potential of GNSs@Dox-Pol was compared on MCF7 cells using MTT assay, cell cycle, DAPI staining and Annexin-V apoptosis assay techniques.
Results
Cell internalization results showed an almost complete uptake of GNSs@Pol by MCF-7 cells in the first 3 h of treatment. The heat generation measurement results showed that both of GNSs have a potential for light to heat conversion (∆T = 23–27 ºC) and HGNSs demonstrated better efficiency than GNCs after 10-min exposure to NIR irradiation. Following chemo-photothermal treatment, the highest cell mortality (90%) and apoptotic effects (97% apoptosis) were observed in HGNSs@Dox-Pol received laser irradiation treatment group.
Conclusions
This work highlights the potential application of designed GNSs@Dox-Pol in a combinational chemo-PTT to treat breast cancer cells.
Graphic abstract
Collapse
|
12
|
Almowalad J, Somani S, Laskar P, Meewan J, Tate RJ, Mullin M, Dufès C. Lactoferrin-Bearing Gold Nanocages for Gene Delivery in Prostate Cancer Cells in vitro. Int J Nanomedicine 2021; 16:4391-4407. [PMID: 34234433 PMCID: PMC8256823 DOI: 10.2147/ijn.s316830] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 05/31/2021] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND Gold nanocages have been widely used as multifunctional platforms for drug and gene delivery, as well as photothermal agents for cancer therapy. However, their potential as gene delivery systems for cancer treatment has been reported in combination with chemotherapeutics and photothermal therapy, but not in isolation so far. The purpose of this work was to investigate whether the conjugation of gold nanocages with the cancer targeting ligand lactoferrin, polyethylene glycol and polyethylenimine could lead to enhanced transfection efficiency on prostate cancer cells in vitro, without assistance of external stimulation. METHODS Novel lactoferrin-bearing gold nanocages conjugated to polyethylenimine and polyethylene glycol have been synthesized and characterized. Their transfection efficacy and cytotoxicity were assessed on PC-3 prostate cancer cell line following complexation with a plasmid DNA. RESULTS Lactoferrin-bearing gold nanocages, alone or conjugated with polyethylenimine and polyethylene glycol, were able to condense DNA at conjugate:DNA weight ratios 5:1 and higher. Among all gold conjugates, the highest gene expression was obtained following treatment with gold complex conjugated with polyethylenimine and lactoferrin, at weight ratio 40:1, which was 1.71-fold higher than with polyethylenimine. This might be due to the increased DNA cellular uptake observed with this conjugate, by up to 8.65-fold in comparison with naked DNA. CONCLUSION Lactoferrin-bearing gold nanocages conjugates are highly promising gene delivery systems to prostate cancer cells.
Collapse
Affiliation(s)
- Jamal Almowalad
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, G4 0RE, UK
| | - Sukrut Somani
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, G4 0RE, UK
| | - Partha Laskar
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, G4 0RE, UK
| | - Jitkasem Meewan
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, G4 0RE, UK
| | - Rothwelle J Tate
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, G4 0RE, UK
| | - Margaret Mullin
- College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Christine Dufès
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, G4 0RE, UK
| |
Collapse
|
13
|
Ren WW, Xu SH, Sun LP, Zhang K. Ultrasound-Based Drug Delivery System. Curr Med Chem 2021; 29:1342-1351. [PMID: 34139971 DOI: 10.2174/0929867328666210617103905] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 04/25/2021] [Accepted: 05/01/2021] [Indexed: 12/07/2022]
Abstract
Cancer still represents a leading threat to human health worldwide. The effective usage of anti-cancer drugs can reduce patients' clinical symptoms and extend the life span. Current anti-cancer strategies include chemotherapy, traditional Chinese medicine, biopharmaceuticals, and the latest targeted therapy. However, due to the complexity and heterogeneity of tumors, serious side effects may result from the direct use of anti-cancer drugs. Besides, the current therapeutic strategies failed to effectively alleviate metastasized tumors. Recently, an ultrasound-mediated nano-drug delivery system has become an increasingly important treatment strategy. Due to its ability to enhance efficacy and reduce toxic side effects, it has become a research hotspot in the field of biomedicine. In this review, we introduced the latest research progress of the ultrasound-responsive nano-drug delivery systems and the possible mechanisms of ultrasound acting on the carrier to change the structure or conformation as well as to realize the controlled release. In addition, the progress in ultrasound responsive nano-drug delivery systems will also be briefly summarized.
Collapse
Affiliation(s)
- Wei-Wei Ren
- Department of Medical Ultrasound, Shanghai Tenth People's Hospital, Ultrasound Research and Education Institute, Shanghai Engineering Research Center of Ultrasound Diagnosis and Treatment, Tongji University School of Medicine, Shanghai 200072, China
| | - Shi-Hao Xu
- Department of Ultrasound, The first affiliated hospital of Wenzhou Medical University, WenZhou, 325000, Zhejiang Province, China
| | - Li-Ping Sun
- Department of Medical Ultrasound, Shanghai Tenth People's Hospital, Ultrasound Research and Education Institute, Shanghai Engineering Research Center of Ultrasound Diagnosis and Treatment, Tongji University School of Medicine, Shanghai 200072, China
| | - Kun Zhang
- Department of Medical Ultrasound, Shanghai Tenth People's Hospital, Ultrasound Research and Education Institute, Shanghai Engineering Research Center of Ultrasound Diagnosis and Treatment, Tongji University School of Medicine, Shanghai 200072, China
| |
Collapse
|
14
|
Li D, Xu L, Wang J, Gautrot JE. Responsive Polymer Brush Design and Emerging Applications for Nanotheranostics. Adv Healthc Mater 2021; 10:e2000953. [PMID: 32893474 PMCID: PMC11468394 DOI: 10.1002/adhm.202000953] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 07/11/2020] [Indexed: 12/29/2022]
Abstract
Responsive polymer brushes are a category of polymer brushes that are capable of conformational and chemical changes in response to external stimuli. They offer unique opportunities for the control of bio-nano interactions due to the precise control of chemical and structural parameters such as the brush thickness, density, chemistry, and architecture. The design of responsive brushes at the surface of nanomaterials for theranostic applications has developed rapidly. These coatings can be generated from a very broad range of nanomaterials, without compromising their physical, photophysical, and imaging properties. Although the use of responsive brushes for nanotheranostic remains in its early stages, in this review, the aim is to present how the systems developed to date can be combined to control sensing, imaging, and controlled delivery of therapeutics. The recent developments for such design and associated methods for the synthesis of responsive brushes are discussed. The responsive behaviors of homo polymer brushes and brushes with more complex architectures are briefly reviewed, before the applications of responsive brushes as smart delivery systems are discussed. Finally, the recent work is summarized on the use of responsive polymer brushes as novel biosensors and diagnostic tools for the detection of analytes and biomarkers.
Collapse
Affiliation(s)
- Danyang Li
- School of Cancer and Pharmaceutical SciencesKing's College London150 Stamford StreetLondonSE1 9NHUK
- Institute of BioengineeringQueen MaryUniversity of LondonMile End RoadLondonE1 4NSUK
- School of Engineering and Materials ScienceQueen MaryUniversity of LondonMile End RoadLondonE1 4NSUK
| | - Lizhou Xu
- Department of MaterialsImperial College LondonLondonSW7 2AZUK
| | - Jing Wang
- School of Life SciencesNorthwestern Polytechnical UniversityXi'an710072China
| | - Julien E. Gautrot
- Institute of BioengineeringQueen MaryUniversity of LondonMile End RoadLondonE1 4NSUK
- School of Engineering and Materials ScienceQueen MaryUniversity of LondonMile End RoadLondonE1 4NSUK
| |
Collapse
|
15
|
Yuan P, Luo Y, Luo Y, Ma L. A "sandwich" cell culture platform with NIR-responsive dynamic stiffness to modulate macrophage phenotypes. Biomater Sci 2021; 9:2553-2561. [PMID: 33576368 DOI: 10.1039/d0bm02194f] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Considering the key roles of macrophages in tissue repair and immune therapy, designing smart biomaterials able to harness macrophage phenotypes on demand during the healing process has become a promising strategy. Here, a novel "sandwich" cell culture platform with near-infrared (NIR) responsive dynamic stiffness was fabricated to polarize bone marrow-derived macrophages (BMDMs) in situ for revealing the relationship between the macrophage phenotype and substrate stiffness dynamically. Under NIR irradiation, calcium ions (Ca2+) diffused through the middle layer of the IR780-mixed phase change material (PCM) due to the photothermal effect of IR780, resulting in an increase of hydrogel stiffness in situ by the crosslinking of the upper layer of the hyaluronic acid-sodium alginate hydrogel (MA-HA&SA). The up-regulation of inducible nitric oxide synthase (iNOS) and tumor necrosis factor-α (TNF-α) was quantified by immunostaining and enzyme-linked immune sorbent assay (ELISA), respectively, indicating the transformation of macrophages from the anti-inflammatory to pro-inflammatory phenotype under dynamic stiffness. The nuclear Yes-associated-protein (YAP) ratio positively correlated with the shift of the macrophage phenotype. The modulation of macrophage phenotypes by stiffness-rise without the stimuli of cytokines offers an effective and noninvasive strategy to manipulate immune reactions to achieve optimized healing or therapeutic outcomes.
Collapse
Affiliation(s)
- Peiqi Yuan
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China.
| | | | | | | |
Collapse
|
16
|
Choi W, Kim C. Synergistic agents for tumor-specific therapy mediated by focused ultrasound treatment. Biomater Sci 2021; 9:422-436. [PMID: 33211030 DOI: 10.1039/d0bm01364a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
This minireview highlights the recent advances in the therapeutic agents that aim to provide synergistic enhancements of focused ultrasound treatment of tumors. Even though focused ultrasound therapy itself can bring therapeutic effects in cancers, many biochemical agents have been reported in the literature to enhance the treatment efficacy significantly. Until now, many mechanisms have been researched to advance the therapy, such as sonodynamic-plus-chemo-therapy, microbubble-aided therapy, localized release or delivery of nanomaterials, and multimodal image-guided therapy. Here, the novel materials adopted in each mechanism are briefly reviewed to provide a trend in the field and encourage future research towards the successful deployment of focused ultrasound therapy in real clinical environments.
Collapse
Affiliation(s)
- Wonseok Choi
- Departments of Electrical Engineering, Creative IT Engineering, Mechanical Engineering, Interdisciplinary Bioscience and Bioengineering, and Medical Device Innovation Center, Pohang University of Science and Technology (POSTECH), 37673 Republic of Korea.
| | | |
Collapse
|
17
|
Wang Q, Xiao J, Su Y, Huang J, Li J, Qiu L, Zhan M, He X, Yuan W, Li Y. Fabrication of thermoresponsive magnetic micelles from amphiphilic poly(phenyl isocyanide) and Fe3O4 nanoparticles for controlled drug release and synergistic thermochemotherapy. Polym Chem 2021. [DOI: 10.1039/d1py00022e] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The drug-loaded micelles self-assembled from co-poly(phenyl isocyanide), Fe3O4 and DOX demonstrated thermoresponsiveness and magnetic hyperthermia for synergistic thermochemotherapy.
Collapse
|
18
|
Peng W, Cai Y, Fanslau L, Vana P. Nanoengineering with RAFT polymers: from nanocomposite design to applications. Polym Chem 2021. [DOI: 10.1039/d1py01172c] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Reversible addition–fragmentation chain-transfer (RAFT) polymerization is a powerful tool for the precise formation of macromolecular building blocks that can be used for the construction of well-defined nanocomposites.
Collapse
Affiliation(s)
- Wentao Peng
- Institut für Physikalische Chemie, Georg-August-Universität Göttingen, Tammannstrasse 6, 37077 Göttingen, Germany
| | - Yingying Cai
- Institut für Physikalische Chemie, Georg-August-Universität Göttingen, Tammannstrasse 6, 37077 Göttingen, Germany
| | - Luise Fanslau
- Institut für Physikalische Chemie, Georg-August-Universität Göttingen, Tammannstrasse 6, 37077 Göttingen, Germany
| | - Philipp Vana
- Institut für Physikalische Chemie, Georg-August-Universität Göttingen, Tammannstrasse 6, 37077 Göttingen, Germany
| |
Collapse
|
19
|
Hejmady S, Pradhan R, Alexander A, Agrawal M, Singhvi G, Gorain B, Tiwari S, Kesharwani P, Dubey SK. Recent advances in targeted nanomedicine as promising antitumor therapeutics. Drug Discov Today 2020; 25:2227-2244. [DOI: 10.1016/j.drudis.2020.09.031] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Revised: 05/29/2020] [Accepted: 09/26/2020] [Indexed: 12/18/2022]
|
20
|
Hosseinaee Z, Le M, Bell K, Reza PH. Towards non-contact photoacoustic imaging [review]. PHOTOACOUSTICS 2020; 20:100207. [PMID: 33024694 PMCID: PMC7530308 DOI: 10.1016/j.pacs.2020.100207] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 06/29/2020] [Accepted: 07/10/2020] [Indexed: 05/06/2023]
Abstract
Photoacoustic imaging (PAI) takes advantage of both optical and ultrasound imaging properties to visualize optical absorption with high resolution and contrast. Photoacoustic microscopy (PAM) is usually categorized with all-optical microscopy techniques such as optical coherence tomography or confocal microscopes. Despite offering high sensitivity, novel imaging contrast, and high resolution, PAM is not generally an all-optical imaging method unlike the other microscopy techniques. One of the significant limitations of photoacoustic microscopes arises from their need to be in physical contact with the sample through a coupling media. This physical contact, coupling, or immersion of the sample is undesirable or impractical for many clinical and pre-clinical applications. This also limits the flexibility of photoacoustic techniques to be integrated with other all-optical imaging microscopes for providing complementary imaging contrast. To overcome these limitations, several non-contact photoacoustic signal detection approaches have been proposed. This paper presents a brief overview of current non-contact photoacoustic detection techniques with an emphasis on all-optical detection methods and their associated physical mechanisms.
Collapse
Affiliation(s)
- Zohreh Hosseinaee
- PhotoMedicine Labs, Department of System Design Engineering, University of Waterloo, Ontario, N2L 3G1, Canada
| | - Martin Le
- PhotoMedicine Labs, Department of System Design Engineering, University of Waterloo, Ontario, N2L 3G1, Canada
| | - Kevan Bell
- PhotoMedicine Labs, Department of System Design Engineering, University of Waterloo, Ontario, N2L 3G1, Canada
- IllumiSonics Inc., Department of Systems Design Engineering, University of Waterloo, Waterloo, Ontario, N2L 3G1, Canada
| | - Parsin Haji Reza
- PhotoMedicine Labs, Department of System Design Engineering, University of Waterloo, Ontario, N2L 3G1, Canada
| |
Collapse
|
21
|
Qiu J, Huo D, Xia Y. Phase-Change Materials for Controlled Release and Related Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e2000660. [PMID: 32383215 PMCID: PMC7473464 DOI: 10.1002/adma.202000660] [Citation(s) in RCA: 79] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 03/23/2020] [Accepted: 03/23/2020] [Indexed: 05/07/2023]
Abstract
Phase-change materials (PCMs) have emerged as a novel class of thermo-responsive materials for controlled release, where the payloads encapsulated in a solid matrix are released only upon melting the PCM to trigger a solid-to-liquid phase transition. Herein, the advances over the past 10 years in utilizing PCMs as a versatile platform for the encapsulation and release of various types of therapeutic agents and biological effectors are highlighted. A brief introduction to PCMs in the context of desired properties for controlled release and related applications is provided. Among the various types of PCMs, a specific focus is placed on fatty acids and fatty alcohols for their natural availability, low toxicity, biodegradability, diversity, high abundance, and low cost. Then, various methods capable of processing PCMs, and their mixtures with payloads, into stable suspensions of colloidal particles, and the different means for triggering the solid-to-liquid phase transition are discussed. Finally, a range of applications enabled by the controlled release system based on PCMs are presented together with some perspectives on future directions.
Collapse
Affiliation(s)
- Jichuan Qiu
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, 30332, USA
| | - Da Huo
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, 30332, USA
| | - Younan Xia
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, 30332, USA
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| |
Collapse
|
22
|
Gao Y, Kang J, Lei Z, Li Y, Mei X, Wang G. Use of the Highly Biocompatible Au Nanocages@PEG Nanoparticles as a New Contrast Agent for In Vivo Computed Tomography Scan Imaging. NANOSCALE RESEARCH LETTERS 2020; 15:53. [PMID: 32130549 PMCID: PMC7056796 DOI: 10.1186/s11671-020-3286-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Accepted: 02/18/2020] [Indexed: 05/08/2023]
Abstract
In recent years, contrast agents have been widely used in imaging technology to improve quality. Nanoparticles have better in vivo detection capability than conventional molecular scale contrast agents. In this study, a new type of Au nanocages@PEG nanoparticles (AuNC@PEGs) with a strong X-ray absorption coefficient was synthesized as a contrast agent for computed tomography (CT) scan imaging. Results showed that AuNC@PEGs had good aqueous dispensation, low cytotoxicity, and strong X-ray absorption ability. Furthermore, in vivo studies have shown that the synthesized AuNC@PEGs have an evident contrast enhancement, long circulation time in the blood, and negligible toxicity in vivo. Therefore, the synthesized functionalized AuNC@PEGs in this study have great potential for clinical application in CT scan imaging.
Collapse
Affiliation(s)
- Yan Gao
- The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, 121001, China
| | - Jian Kang
- College of Pharmacy, Jinzhou Medical University, Jinzhou, 121001, China
| | - Zhen Lei
- The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, 121001, China.
| | - Yankun Li
- The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, 121001, China
| | - Xifan Mei
- The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, 121001, China.
| | - Guannan Wang
- College of Pharmacy, Jinzhou Medical University, Jinzhou, 121001, China.
- The Key Laboratory for Medical Tissue Engineering, College of Medical Engineering, Jining Medical University, Jining, 272067, China.
| |
Collapse
|
23
|
Wang M, Yang Q, Li M, Zou H, Wang Z, Ran H, Zheng Y, Jian J, Zhou Y, Luo Y, Ran Y, Jiang S, Zhou X. Multifunctional Nanoparticles for Multimodal Imaging-Guided Low-Intensity Focused Ultrasound/Immunosynergistic Retinoblastoma Therapy. ACS APPLIED MATERIALS & INTERFACES 2020; 12:5642-5657. [PMID: 31940169 DOI: 10.1021/acsami.9b22072] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Retinoblastoma (RB) is prone to delayed diagnosis or treatment and has an increased likelihood of metastasizing. Thus, it is crucial to perform an effective imaging examination and provide optimal treatment of RB to prevent metastasis. Nanoparticles that support diagnostic imaging and targeted therapy are expected to noninvasively integrate tumor diagnosis and treatment. Herein, we report a multifunctional nanoparticle for multimodal imaging-guided low-intensity focused ultrasound (LIFU)/immunosynergistic RB therapy. Magnetic hollow mesoporous gold nanocages (AuNCs) conjugated with Fe3O4 nanoparticles (AuNCs-Fe3O4) were prepared to encapsulate muramyl dipeptide (MDP) and perfluoropentane (PFP). The multimodal imaging capabilities, antitumor effects, and dendritic cell (DC) activation capacity of these nanoparticles combined with LIFU were explored in vitro and in vivo. The biosafety of AuNCs-Fe3O4/MDP/PFP was also evaluated systematically. The multifunctional magnetic nanoparticles enhanced photoacoustic (PA), ultrasound (US), and magnetic resonance (MR) imaging in vivo and in vitro, which was helpful for diagnosis and efficacy evaluation. Upon accumulation in tumors via a magnetic field, the nanoparticles underwent phase transition under LIFU irradiation and MDP was released. A combined effect of AuNCs-Fe3O4/MDP/PFP and LIFU was recorded and verified. AuNCs-Fe3O4/MDP/PFP enhanced the therapeutic effect of LIFU and led to direct apoptosis/necrosis of tumors, while MDP promoted DC maturation and activation and activated the ability of DCs to recognize and clear tumor cells. By enhancing PA/US/MR imaging and inhibiting tumor growth, the multifunctional AuNC-Fe3O4/MDP/PFP nanoparticles show great potential for multimodal imaging-guided LIFU/immunosynergistic therapy of RB. The proposed nanoplatform facilitates cancer theranostics with high biosafety.
Collapse
Affiliation(s)
- Menglei Wang
- Department of Ophthalmology , The Second Affiliated Hospital of Chongqing Medical University , Chongqing 400010 , P. R. China
- Chongqing Key Laboratory of Ultrasound Molecular Imaging , The Second Affiliated Hospital of Chongqing Medical University , Chongqing 400010 , P. R. China
| | - Qiming Yang
- Department of Orthopedic , The First Affiliated Hospital of Chongqing Medical University , Chongqing 400010 , P. R. China
- Chongqing Key Laboratory of Ultrasound Molecular Imaging , The Second Affiliated Hospital of Chongqing Medical University , Chongqing 400010 , P. R. China
| | - Meng Li
- Department of Ophthalmology , The Second Affiliated Hospital of Chongqing Medical University , Chongqing 400010 , P. R. China
| | - Hongmi Zou
- Department of Ophthalmology , The Second Affiliated Hospital of Chongqing Medical University , Chongqing 400010 , P. R. China
| | - Zhigang Wang
- Chongqing Key Laboratory of Ultrasound Molecular Imaging , The Second Affiliated Hospital of Chongqing Medical University , Chongqing 400010 , P. R. China
| | - Haitao Ran
- Chongqing Key Laboratory of Ultrasound Molecular Imaging , The Second Affiliated Hospital of Chongqing Medical University , Chongqing 400010 , P. R. China
| | - Yuanyi Zheng
- Shanghai Institute of Ultrasound in Medicine , Shanghai Jiao Tong University Affiliated Sixth People's Hospital , Shanghai 200233 , P. R. China
| | - Jia Jian
- Department of Ophthalmology , The Second Affiliated Hospital of Chongqing Medical University , Chongqing 400010 , P. R. China
| | - Yu Zhou
- Department of Ophthalmology , The Second Affiliated Hospital of Chongqing Medical University , Chongqing 400010 , P. R. China
| | - Yindeng Luo
- Department of Radiology , The Second Affiliated Hospital of Chongqing Medical University , Chongqing 400010 , P. R. China
| | - Yijun Ran
- Department of Ophthalmology , The Second Affiliated Hospital of Chongqing Medical University , Chongqing 400010 , P. R. China
| | - Shaoqiu Jiang
- Department of Ophthalmology , The Second Affiliated Hospital of Chongqing Medical University , Chongqing 400010 , P. R. China
| | - Xiyuan Zhou
- Department of Ophthalmology , The Second Affiliated Hospital of Chongqing Medical University , Chongqing 400010 , P. R. China
| |
Collapse
|
24
|
Kang C, Kim D. Nanoconfinement-mediated cancer theranostics. Arch Pharm Res 2020; 43:110-117. [PMID: 31989481 DOI: 10.1007/s12272-020-01217-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Accepted: 01/20/2020] [Indexed: 10/25/2022]
Abstract
Despite various therapeutic or diagnostic developments, cancer is still one of the most lethal diseases due to insufficiently adequate treatments and the delay of the early stage of disease detection. An image-guided drug delivery system (IGDDS), as a real-time noninvasive imaging assessment of therapeutic response, has the strong potential to improve the diagnosis and treatment of cancer because its imaging property offers the quantification of nanomedicine at the intended disease sites, the possible assurance of adequate treatment and elimination of undesirable delay of early-stage diagnosis due to low resolution. One of potential modality that overcomes these challenges could be the nanoconfinement of gold (Au) nanoparticles within other nanoparticles called "Particle-in-Particle (PIP)", which is a strong candidate of cancer treatment because of its "theranostic (therapy + diagnostics)" advantages including imaging (e.g., CT) and therapeutic hyperthermia application. In this review, we will elaborate on the current application of theranostic by nanoconfinement. Then, we will narrow down the gold nanoparticle-mediated theranostic application and its nanoconfinement advantages. Finally, the future direction for maximum nanoconfinement mediated cancer therapy will be included.
Collapse
Affiliation(s)
- Changsun Kang
- Department of Pharmaceutical Sciences, Rangel College of Pharmacy, Texas A&M University, College Station, USA
| | - Dongin Kim
- Department of Pharmaceutical Sciences, Rangel College of Pharmacy, Texas A&M University, College Station, USA.
| |
Collapse
|
25
|
Brush-modified materials: Control of molecular architecture, assembly behavior, properties and applications. Prog Polym Sci 2020. [DOI: 10.1016/j.progpolymsci.2019.101180] [Citation(s) in RCA: 88] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
26
|
Yang M, Wang W, Qiu J, Bai M, Xia Y. Direct Visualization and Semi‐Quantitative Analysis of Payload Loading in the Case of Gold Nanocages. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201911163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Miaoxin Yang
- School of Chemistry and Biochemistry Georgia Institute of Technology Atlanta GA 30332 USA
| | - Wenxia Wang
- The Wallace H. Coulter Department of Biomedical Engineering Georgia Institute of Technology and Emory University Atlanta GA 30332 USA
| | - Jichuan Qiu
- The Wallace H. Coulter Department of Biomedical Engineering Georgia Institute of Technology and Emory University Atlanta GA 30332 USA
| | - Meng‐Yi Bai
- Graduate Institute of Biomedical Engineering National Taiwan University of Science and Technology Taipei, Taiwan 10673 R. O. C
| | - Younan Xia
- School of Chemistry and Biochemistry Georgia Institute of Technology Atlanta GA 30332 USA
- The Wallace H. Coulter Department of Biomedical Engineering Georgia Institute of Technology and Emory University Atlanta GA 30332 USA
| |
Collapse
|
27
|
Yang M, Wang W, Qiu J, Bai MY, Xia Y. Direct Visualization and Semi-Quantitative Analysis of Payload Loading in the Case of Gold Nanocages. Angew Chem Int Ed Engl 2019; 58:17671-17674. [PMID: 31545542 DOI: 10.1002/anie.201911163] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2019] [Indexed: 12/11/2022]
Abstract
Upon incubation with Au nanocages, pyrrole (Py) molecules can enter the cavities by diffusing through the porous walls and then be polymerized to generate a polypyrrole (PPy) coating on the inner surface. The thicknesses of the PPy coating can serve as a direct indicator for the amount of Py molecules that diffuse into the cavity. Py molecules are able to diffuse into the cavities throughout the polymerization process, while a prolonged incubation time increases the amount of Py accumulated on both inner and outer surfaces of the nanocages. Furthermore, it is demonstrated that the dimensions of the cavity and the size of the pores in the wall are not critical parameters in determining the loading efficiency, as they do not affect the thickness of the PPy coating on the inner surface. These findings offer direct evidence to support the applications of Au nanocages as carriers for drug delivery and controlled release.
Collapse
Affiliation(s)
- Miaoxin Yang
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Wenxia Wang
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, 30332, USA
| | - Jichuan Qiu
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, 30332, USA
| | - Meng-Yi Bai
- Graduate Institute of Biomedical Engineering, National Taiwan University of Science and Technology, Taipei, Taiwan, 10673, R. O. C
| | - Younan Xia
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA, 30332, USA.,The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, 30332, USA
| |
Collapse
|
28
|
Huang W, Zhao H, Wan J, Zhou Y, Xu Q, Zhao Y, Yang X, Gan L. pH- and photothermal-driven multistage delivery nanoplatform for overcoming cancer drug resistance. Theranostics 2019; 9:3825-3839. [PMID: 31281516 PMCID: PMC6587350 DOI: 10.7150/thno.33958] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2019] [Accepted: 05/08/2019] [Indexed: 01/04/2023] Open
Abstract
Reversing multidrug resistance (MDR) remains a big challenge in cancer therapy. Combining the hyperthermia and chemotherapy is a promising strategy for efficient cancer treatment with MDR reversal. Gold nanocages (GNCs) are an ideal photothermal (PTT)-chemotherapy integration platform due to their good photothermal conversion efficiency and the unique hollow interiors. However, insufficient tumor cell internalization and in vivo premature drug leakage restrict the anticancer activity of GNCs-based drug delivery systems. Methods: pH low insertion peptide (pHLIP)- and thermoresponsive poly(di(ethylene glycol) methyl ether methacrylate-co-oligo(ethylene glycol) methyl ether methacrylate) polymer-conjugated GNCs were rationally constructed to load anticancer drug doxorubicin (DOX@pPGNCs). Tumor acidic environment-responsive tumor cell internalization, and near-infrared (NIR) laser-induced tumor accumulation, penetration and on-demand drug release were systematically examined. Results: DOX@pPGNCs display good photothermal efficacy and thermoresponsive property. NIR laser irradiations at the tumor site significantly enhance tumor accumulation and penetration. Once DOX@pPGNCs reach the tumor site, the conformational transformation of pHLIP at the acidic tumor microenvironment contributes to the enhanced cellular internalization. Furthermore, NIR laser-triggered photothermal effects induce the shrinkage of thermoresponsive polymer, resulting in the opening of the pores of GNCs and a rapid intracellular DOX release to the nuclei. DOX@pPGNCs exhibit synergistic antitumor effect with MDR reversal in vitro and in vivo. Conclusion: DOX@pPGNCs present strong potential to overcome MDR in cancer.
Collapse
Affiliation(s)
- Wenjing Huang
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Hao Zhao
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Jiangshan Wan
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Yang Zhou
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Qingbo Xu
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Yanbing Zhao
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
- Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Xiangliang Yang
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
- Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Lu Gan
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
- Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, Huazhong University of Science and Technology, Wuhan 430074, China
| |
Collapse
|
29
|
Yildirim A, Blum NT, Goodwin AP. Colloids, nanoparticles, and materials for imaging, delivery, ablation, and theranostics by focused ultrasound (FUS). Theranostics 2019; 9:2572-2594. [PMID: 31131054 PMCID: PMC6525987 DOI: 10.7150/thno.32424] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Accepted: 03/25/2019] [Indexed: 12/15/2022] Open
Abstract
This review focuses on different materials and contrast agents that sensitize imaging and therapy with Focused Ultrasound (FUS). At high intensities, FUS is capable of selectively ablating tissue with focus on the millimeter scale, presenting an alternative to surgical intervention or management of malignant growth. At low intensities, FUS can be also used for other medical applications such as local delivery of drugs and blood brain barrier opening (BBBO). Contrast agents offer an opportunity to increase selective acoustic absorption or facilitate destructive cavitation processes by converting incident acoustic energy into thermal and mechanical energy. First, we review the history of FUS and its effects on living tissue. Next, we present different colloidal or nanoparticulate approaches to sensitizing FUS, for example using microbubbles, phase-shift emulsions, hollow-shelled nanoparticles, or hydrophobic silica surfaces. Exploring the science behind these interactions, we also discuss ways to make stimulus-responsive, or "turn-on" contrast agents for improved selectivity. Finally, we discuss acoustically-active hydrogels and membranes. This review will be of interest to those working in materials who wish to explore new applications in acoustics and those in acoustics who are seeking new agents to improve the efficacy of their approaches.
Collapse
Affiliation(s)
- Adem Yildirim
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, CO 80303 USA
- Present address: CEDAR, Knight Cancer Institute, Oregon Health and Science University, Portland, OR, 97239 USA
| | - Nicholas T. Blum
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, CO 80303 USA
| | - Andrew P. Goodwin
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, CO 80303 USA
| |
Collapse
|
30
|
Raveendran S, Sen A, Ito-Tanaka H, Kato K, Maekawa T, Kumar DS. Advanced microscopic evaluation of parallel type I and type II cell deaths induced by multi-functionalized gold nanocages in breast cancer. NANOSCALE ADVANCES 2019; 1:989-1001. [PMID: 36133203 PMCID: PMC9473243 DOI: 10.1039/c8na00222c] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Accepted: 12/08/2018] [Indexed: 06/16/2023]
Abstract
Despite aggressive surgical resections and combinatorial chemoradiations, certain highly malignant populations of tumor cells resurrect and metastasize. Mixed-grade cancer cells fail to respond to standard-of-care therapies by developing intrinsic chemoresistance and subsequently result in tumor relapse. Macroautophagy is a membrane trafficking process that underlies drug resistance and tumorigenesis in most breast cancers. Manipulating cellular homeostasis by a combinatorial nanotherapeutic model, one can evaluate the crosstalk between type I and type II cell death and decipher the fate of cancer therapy. Here, we present a multi-strategic approach in cancer targeting to mitigate the autophagic flux with subcellular toxicity via lysosome permeation, accompanied by mitochondrial perturbation and apoptosis. In this way, a nanoformulation is developed with a unique blend of a lysosomotropic agent, an immunomodulating sulfated-polysaccharide, an adjuvant chemotherapeutic agent, and a monoclonal antibody as a broad-spectrum complex for combinatorial nanotherapy of all breast cancers. To the best of our knowledge, this manuscript illustrates for the first time the applications of advanced microscopic techniques such as electron tomography, three-dimensional rendering and segmentation of subcellular interactions, and fate of the multifunctional therapeutic gold nanocages specifically targeted toward breast cancer cells.
Collapse
Affiliation(s)
- Sreejith Raveendran
- Bio-Nano Electronics Research Centre, Graduate School of Interdisciplinary New Science, Toyo University 2100, Kujirai, Kawagoe Saitama 350-8585 Japan +81 49 234 2502 +81 49 239 1375
| | - Anindito Sen
- JEOL Ltd. 13F, Ohtemachi Nomura Building, 2-1-1 Ohtemachi Chiyoda-Ku Tokyo Japan
| | - Hiromi Ito-Tanaka
- Department of Biomedical Engineering, Research Centre for BME, Toyo University 2100, Kujirai, Kawagoe Saitama 350-8585 Japan
| | - Kazunori Kato
- Department of Biomedical Engineering, Research Centre for BME, Toyo University 2100, Kujirai, Kawagoe Saitama 350-8585 Japan
| | - Toru Maekawa
- Bio-Nano Electronics Research Centre, Graduate School of Interdisciplinary New Science, Toyo University 2100, Kujirai, Kawagoe Saitama 350-8585 Japan +81 49 234 2502 +81 49 239 1375
| | - D Sakthi Kumar
- Bio-Nano Electronics Research Centre, Graduate School of Interdisciplinary New Science, Toyo University 2100, Kujirai, Kawagoe Saitama 350-8585 Japan +81 49 234 2502 +81 49 239 1375
| |
Collapse
|
31
|
Hood ZD, Kubelick KP, Gilroy KD, Vanderlaan D, Yang X, Yang M, Chi M, Emelianov SY, Xia Y. Photothermal transformation of Au-Ag nanocages under pulsed laser irradiation. NANOSCALE 2019; 11:3013-3020. [PMID: 30698179 DOI: 10.1039/c8nr10002k] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Pulsed laser irradiation has emerged as an effective means to photothermally transform plasmonic nanostructures after their use in different biomedical applications. However, the ability to predict the products after photothermal transformation requires extensive ex situ studies. Here, we report a systematic study of the photothermal transformation of Au-Ag nanocages with a localized surface plasmon resonance at ca. 750 nm under pulsed laser irradiation at different fluences and a pulse duration of 5 ns. At biologically relevant laser energies, the pulsed laser transforms Au-Ag nanocages into pseudo-spherical, solid nanoparticles. The solid nanoparticles contained similar numbers of Au and Ag atoms to the parent Au-Ag nanocages. At increased laser fluences (>16 mJ cm-2) and number of pulses (>150), the average diameter of the resulting pseudo-spherical particles increased due to the involvement of Ostwald ripening and/or attachment-based growth. The changes in optical properties as a result of the transformation were validated using simulations based on the discrete dipole approximation method, where the spectral profiles and peak positions of the initial and final states matched well with the experimentally derived data. The results may have implications for the future use of Au-Ag nanocages in biomedicine, catalysis, and sensing.
Collapse
Affiliation(s)
- Zachary D Hood
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Karmakar P, Gaitonde V. Promising Recent Strategies with Potential Clinical Translational Value to Combat Antibacterial Resistant Surge. MEDICINES (BASEL, SWITZERLAND) 2019; 6:E21. [PMID: 30709019 PMCID: PMC6473725 DOI: 10.3390/medicines6010021] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Revised: 01/10/2019] [Accepted: 01/26/2019] [Indexed: 12/27/2022]
Abstract
Multiple drug resistance (MDR) for the treatment of bacterial infection has been a significant challenge since the beginning of the 21st century. Many of the small molecule-based antibiotic treatments have failed on numerous occasions due to a surge in MDR, which has claimed millions of lives worldwide. Small particles (SPs) consisting of metal, polymer or carbon nanoparticles (NPs) of different sizes, shapes and forms have shown considerable antibacterial effect over the past two decades. Unlike the classical small-molecule antibiotics, the small particles are less exposed so far to the bacteria to trigger a resistance mechanism, and hence have higher chances of fighting the challenge of the MDR process. Until recently, there has been limited progress of clinical treatments using NPs, despite ample reports of in vitro antibacterial efficacy. In this review, we discuss some recent and unconventional strategies that have explored the antibacterial efficacy of these small particles, alone and in combination with classical small molecules in vivo, and demonstrate possibilities that are favorable for clinical translations in near future.
Collapse
Affiliation(s)
- Partha Karmakar
- Department of Radiology, Washington University School of Medicine, St. Louis, MO 63110, USA.
| | | |
Collapse
|
33
|
Wang C, Wang Y, Zhang L, Miron RJ, Liang J, Shi M, Mo W, Zheng S, Zhao Y, Zhang Y. Pretreated Macrophage-Membrane-Coated Gold Nanocages for Precise Drug Delivery for Treatment of Bacterial Infections. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2018; 30:e1804023. [PMID: 30285289 DOI: 10.1002/adma.201804023] [Citation(s) in RCA: 203] [Impact Index Per Article: 33.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Revised: 08/21/2018] [Indexed: 05/29/2023]
Abstract
Pathogenic bacterial infections and drug resistance make it urgent to develop new antibacterial agents with targeted delivery. Here, a new targeting delivery nanosystem is designed based on the potential interaction between bacterial recognizing receptors on macrophage membranes and distinct pathogen-associated molecular patterns in bacteria. Interestingly, the expression of recognizing receptors on macrophage membranes increases significantly when cultured with specific bacteria. Therefore, by coating pretreated macrophage membrane onto the surface of a gold-silver nanocage (GSNC), the nanosystem targets bacteria more efficiently. Previously, it has been shown that GSNC alone can serve as an effective antibacterial agent owing to its photothermal effect under near-infrared (NIR) laser irradiation. Furthermore, the nanocage can be utilized as a delivery vehicle for antibacterial drugs since the gold-silver nanocage presents a hollow interior and porous wall structure. With significantly improved bacterial adherence, the Sa-M-GSNC nanosystem, developed within this study, is effectively delivered and retained at the infection site both via local or systemic injections; the system also shows greatly prolonged blood circulation time and excellent biocompatibility. The present work described here is the first to utilize bacterial pretreated macrophage membrane receptors in a nanosystem to achieve specific bacterial-targeted delivery, and provides inspiration for future therapy based on this concept.
Collapse
Affiliation(s)
- Can Wang
- State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, 430079, China
- Medical Research Institute, School of Medicine, Wuhan University, Wuhan, 430071, China
| | - Yulan Wang
- State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, 430079, China
- Medical Research Institute, School of Medicine, Wuhan University, Wuhan, 430071, China
| | - Lingling Zhang
- State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, 430079, China
- Medical Research Institute, School of Medicine, Wuhan University, Wuhan, 430071, China
| | - Richard J Miron
- State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, 430079, China
- Medical Research Institute, School of Medicine, Wuhan University, Wuhan, 430071, China
| | - Jianfei Liang
- State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, 430079, China
- Medical Research Institute, School of Medicine, Wuhan University, Wuhan, 430071, China
| | - Miusi Shi
- State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, 430079, China
- Medical Research Institute, School of Medicine, Wuhan University, Wuhan, 430071, China
| | - Wenting Mo
- State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, 430079, China
- Medical Research Institute, School of Medicine, Wuhan University, Wuhan, 430071, China
| | - Shihang Zheng
- State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, 430079, China
- Medical Research Institute, School of Medicine, Wuhan University, Wuhan, 430071, China
| | - Yanbing Zhao
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Yufeng Zhang
- State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, 430079, China
- Medical Research Institute, School of Medicine, Wuhan University, Wuhan, 430071, China
| |
Collapse
|
34
|
Xu Q, Wan J, Bie N, Song X, Yang X, Yong T, Zhao Y, Yang X, Gan L. A Biomimetic Gold Nanocages-Based Nanoplatform for Efficient Tumor Ablation and Reduced Inflammation. Am J Cancer Res 2018; 8:5362-5378. [PMID: 30555552 PMCID: PMC6276087 DOI: 10.7150/thno.27631] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2018] [Accepted: 10/04/2018] [Indexed: 02/04/2023] Open
Abstract
Gold nanocages (AuNCs), with high photothermal conversion efficiency and unique hollow interiors, have become a promising nanoplatform for synergistic phototheraml therapy (PTT)-chemotherapy. However, the insufficient tumor targeting, in vivo premature drug leakage and low drug loading efficiency responsible for the spatial-temporal un-synchronization of PTT-chemotherapy, as well as inflammatory response might compromise the anticancer treatment of AuNCs-based drug delivery systems. Methods: Cancer cell membrane (CCM)-coated AuNCs were developed to load anticancer drug doxorubicin (DOX@CAuNCs) by transmembrane ammonium sulfate gradient method. In vitro and in vivo analysis, including characterization, macrophage phagocytosis and tumor targeting capacity, near-infrared (NIR) laser-induced drug release, antitumor efficacy and inflammation response were systematically performed. Results: DOX@CAuNCs showed a high DOX loading capacity and on-demand NIR laser-triggered DOX release compared with CAuNCs passively loading DOX by electrostatic adsorption, a commonly used method to load drug to AuNCs. Meanwhile, in view of the properties of CCM coated on AuNCs, DOX@CAuNCs exhibited decreased macrophage phagocytosis, prolonged blood circulation and enhanced internalization by cancer cells, generating preferable tumor targeting ability. With these integrated advantages, DOX@CAuNCs demonstrated highly efficient and precise spatial-temporal synchronization of PTT-chemotherapy, achieving complete tumor ablation with no obvious side effects. Besides, coating with CCM significantly alleviated AuNCs-induced inflammatory response. Conclusion: This biomimetic AuNCs-based platform might be a prospective drug delivery system for precision PTT and chemotherapy, acquiring desired cancer treatment efficacy and low inflammatory response.
Collapse
|
35
|
Hajfathalian M, Amirshaghaghi A, Naha PC, Chhour P, Hsu JC, Douglas K, Dong Y, Sehgal CM, Tsourkas A, Neretina S, Cormode DP. Wulff in a cage gold nanoparticles as contrast agents for computed tomography and photoacoustic imaging. NANOSCALE 2018; 10:18749-18757. [PMID: 30276391 PMCID: PMC6190607 DOI: 10.1039/c8nr05203d] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Nanostructures have potential for use in biomedical applications such as sensing, imaging, therapeutics, and drug delivery. Among nanomaterials, gold nanostructures are of considerable interest for biomedical research, owing to their bio-inertness, controllable surface chemistry, X-ray opacity, and optical properties. Gold nanocages are particularly attractive for imaging and therapeutic applications, because they strongly absorb light in the near infra-red region which has high light transmission in tissue. However, the X-ray attenuation of nanocages is relatively low due to their hollow structure. In this study, for the first time, we sought to combine the attractive optical properties of nanoshells with the high payloads of solid nanoparticles and investigated their biomedical applications. Here, we report the engineering of Wulff in a cage nanoparticles via converting gold Wulff-shaped seeds into gold-silver core-shell structures and then performing a galvanic replacement reaction. The structure of these nanoparticles was determined using transition electron microscopy. This morphological transformation of gold nanoparticles shaped as truncated octahedrons into a complex Wulff in a cage nanoparticles during the reaction resulted in extensive changes in their optical properties that made these unique structures a potential contrast agent for photoacoustic imaging. We found that the Wulff in a cage nanoparticles had no adverse effects on the viabilities of J774A.1, Renca, and HepG2 cells at any of the concentrations tested. In vitro and in vivo experiments showed robust signals in both photoacoustic imaging and computed tomography. To the best of our knowledge, this is the first report of Wulff in a cage nanoparticles serving as a platform for multiple imaging modalities. This unique multifunctional nanostructure, which integrates the competencies of both core and shell structures, allows their use as contrast agents for photoacoustic imaging, computed tomography and as a potential agent for photothermal therapy.
Collapse
Affiliation(s)
- Maryam Hajfathalian
- Department of Radiology, Perelman School of Medicine of the University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Roper DK, Berry KR, Dunklin JR, Chambers C, Bejugam V, Forcherio GT, Lanier M. Effects of geometry and composition of soft polymer films embedded with nanoparticles on rates for optothermal heat dissipation. NANOSCALE 2018; 10:11531-11543. [PMID: 29892737 DOI: 10.1039/c8nr00977e] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Embedding soft matter with nanoparticles (NPs) can provide electromagnetic tunability at sub-micron scales for a growing number of applications in healthcare, sustainable energy, and chemical processing. However, the use of NP-embedded soft material in temperature-sensitive applications has been constrained by difficulties in validating the prediction of rates for energy dissipation from thermally insulating to conducting behavior. This work improved the embedment of monodisperse NPs to stably decrease the inter-NP spacings in polydimethylsiloxane (PDMS) to nano-scale distances. Lumped-parameter and finite element analyses were refined to apportion the effects of the structure and composition of the NP-embedded soft polymer on the rates for conductive, convective, and radiative heat dissipation. These advances allowed for the rational selection of PDMS size and NP composition to optimize measured rates of internal (conductive) and external (convective and radiative) heat dissipation. Stably reducing the distance between monodisperse NPs to nano-scale intervals increased the overall heat dissipation rate by up to 29%. Refined fabrication of NP-embedded polymer enabled the tunability of the dynamic thermal response (the ratio of internal to external dissipation rate) by a factor of 3.1 to achieve a value of 0.091, the largest reported to date. Heat dissipation rates simulated a priori were consistent with 130 μm resolution thermal images across 2- to 15-fold changes in the geometry and composition of NP-PDMS. The Nusselt number was observed to increase with the fourth root of the Rayleigh number across thermally insulative and conductive regimes, further validating the approach. These developments support the model-informed design of soft media embedded with nano-scale-spaced NPs to optimize the heat dissipation rates for evolving temperature-sensitive diagnostic and therapeutic modalities, as well as emerging uses in flexible bioelectronics, cell and tissue culture, and solar-thermal heating.
Collapse
Affiliation(s)
- D Keith Roper
- Ralph E. Martin Department of Chemical Engineering, University of Arkansas, Fayetteville, AR 72701, USA.
| | | | | | | | | | | | | |
Collapse
|
37
|
Ji M, Qiu X, Hou L, Huang S, Li Y, Liu Y, Duan S, Hu Y. Construction and application of a liver cancer-targeting drug delivery system based on core-shell gold nanocages. Int J Nanomedicine 2018; 13:1773-1789. [PMID: 29606870 PMCID: PMC5868592 DOI: 10.2147/ijn.s151043] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Background In order to achieve drug targeting and controlled release, we have successfully developed a novel drug release system DOX/AuNCs-PM-HA with gold nanocages (AuNCs) as photothermal cores, thermally responsive copolymer P(NIPAM-co-Am) (PM) as the near-infrared (NIR) stimuli gatekeeper and hyaluronic acid as a targeting ligand as well as a capping agent. Methods Cell uptake and cell viability were investigated. In vivo photoacoustic tomography imaging in H22 tumor bearing mice was analyzed for the tumor targeting effect of the nanocomplexes. Antitumor efficacy and the tissue distribution in vivo were investigated. Results In vitro results demonstrated that the DOX/AuNCs-PM-HA had significant anticancer activity against SMMC-7721 cells under NIR irradiation. Furthermore, in vivo photoacoustic tomography imaging of the nanocomplexes in H22 tumor bearing mice could indicate effective tumor targeting. Our studies on antitumor efficacy and the tissue distribution in vivo showed that many DOX/AuNCs-PM-HA nanocomplexes could efficiently accumulate at the tumor site so that they could inhibit the tumor growth effectively with limited side effects. The in vitro and in vivo results confirmed that the tumor-targeting and controlled-release drug system DOX/AuNCs-PM-HA with the combination of chemotherapy and photothermal therapy showed strong anti-tumor effect and would have great potential for future cancer therapy. Conclusion This tumor targeting DOX/AuNCs-PM-HA nanocomplex responded not only to the external stimuli of NIR, but also the internal stimuli of hyaluronidase, providing the potential for pinpointed and multi-stimuli responsive intracellular drug release.
Collapse
Affiliation(s)
- Mengfei Ji
- Henan Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, People's Republic of China
| | - Xiaojing Qiu
- Henan Eye Institute, Henan Provincial People's Hospital, Zhengzhou, People's Republic of China
| | - Lin Hou
- Henan Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, People's Republic of China
| | - Shengnan Huang
- Henan Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, People's Republic of China
| | - Yuanmin Li
- Henan Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, People's Republic of China
| | - Yang Liu
- Henan Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, People's Republic of China
| | - Shaofeng Duan
- College of Pharmacy, Henan University, Kaifeng, People's Republic of China.,Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, People's Republic of China
| | - Yurong Hu
- Henan Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, People's Republic of China.,Key Laboratory of Key Technology of Drug Preparation, Ministry of Education, Institute of Drug Discovery & Development, Zhengzhou University, Zhengzhou, People's Republic of China
| |
Collapse
|
38
|
Wang W, Hou X, Li X, Chen C, Luo X. An ultra-sensitive fluorescent “Turn On” biosensor for glutathione and its application in living cells. Anal Chim Acta 2018; 998:45-51. [DOI: 10.1016/j.aca.2017.10.024] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Revised: 10/15/2017] [Accepted: 10/21/2017] [Indexed: 11/26/2022]
|
39
|
Yang X, Gilroy KD, Vara M, Zhao M, Zhou S, Xia Y. Gold icosahedral nanocages: Facile synthesis, optical properties, and fragmentation under ultrasonication. Chem Phys Lett 2017. [DOI: 10.1016/j.cplett.2017.01.040] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
40
|
Karimi M, Zangabad PS, Mehdizadeh F, Malekzad H, Ghasemi A, Bahrami S, Zare H, Moghoofei M, Hekmatmanesh A, Hamblin MR. Nanocaged platforms: modification, drug delivery and nanotoxicity. Opening synthetic cages to release the tiger. NANOSCALE 2017; 9:1356-1392. [PMID: 28067384 PMCID: PMC5300024 DOI: 10.1039/c6nr07315h] [Citation(s) in RCA: 98] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Nanocages (NCs) have emerged as a new class of drug-carriers, with a wide range of possibilities in multi-modality medical treatments and theranostics. Nanocages can overcome such limitations as high toxicity caused by anti-cancer chemotherapy or by the nanocarrier itself, due to their unique characteristics. These properties consist of: (1) a high loading-capacity (spacious interior); (2) a porous structure (analogous to openings between the bars of the cage); (3) enabling smart release (a key to unlock the cage); and (4) a low likelihood of unfavorable immune responses (the outside of the cage is safe). In this review, we cover different classes of NC structures such as virus-like particles (VLPs), protein NCs, DNA NCs, supramolecular nanosystems, hybrid metal-organic NCs, gold NCs, carbon-based NCs and silica NCs. Moreover, NC-assisted drug delivery including modification methods, drug immobilization, active targeting, and stimulus-responsive release mechanisms are discussed, highlighting the advantages, disadvantages and challenges. Finally, translation of NCs into clinical applications, and an up-to-date assessment of the nanotoxicology considerations of NCs are presented.
Collapse
Affiliation(s)
- Mahdi Karimi
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran
- Department of Medical Nanotechnology, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA, 02114, USA
| | - Parham Sahandi Zangabad
- Research Center for Pharmaceutical Nanotechnology (RCPN), Tabriz University of Medical Science (TUOMS), Tabriz, Iran
- Advanced Nanobiotechnology and Nanomedicine Research Group (ANNRG), Iran University of Medical Sciences, Tehran, Iran
- Department of Materials Science and Engineering, Sharif University of Technology, 11365-9466, Tehran, Iran
- Nanomedicine Research Association (NRA), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | | | - Hedieh Malekzad
- Advanced Nanobiotechnology and Nanomedicine Research Group (ANNRG), Iran University of Medical Sciences, Tehran, Iran
- Faculty of Chemistry, Kharazmi University of Tehran, Tehran, Iran
| | - Alireza Ghasemi
- Department of Materials Science and Engineering, Sharif University of Technology, 11365-9466, Tehran, Iran
| | - Sajad Bahrami
- Department of Medical Nanotechnology, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Hossein Zare
- Biomaterials Group, Materials Science & Engineering Department, Iran University of Science & Technology, P.O. Box 1684613114 Tehran, Iran
| | - Mohsen Moghoofei
- Department of Virology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Amin Hekmatmanesh
- Laboratory of Intelligent Machines, Lappeenranta University of Technology, 53810, Finland
| | - Michael R Hamblin
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA, 02114, USA
- Department of Dermatology, Harvard Medical School, Boston, MA 02115, USA
- Harvard-MIT Division of Health Sciences and Technology, Cambridge, MA, 02139, USA
| |
Collapse
|
41
|
Chen W, Zhang S, Yu Y, Zhang H, He Q. Structural-Engineering Rationales of Gold Nanoparticles for Cancer Theranostics. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2016; 28:8567-8585. [PMID: 27461909 DOI: 10.1002/adma.201602080] [Citation(s) in RCA: 83] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Revised: 06/02/2016] [Indexed: 05/20/2023]
Abstract
Personalized theranostics of cancer is increasingly desired, and can be realized by virtue of multifunctional nanomaterials with possible high performances. Gold nanoparticles (GNPs) are a type of especially promising candidate for cancer theranostics, because their synthesis and modification are facile, their structures and physicochemical properties are flexibly controlled, and they are also biocompatible. Especially, the localized surface plasmon resonance and multivalent coordination effects on the surface endow them with NIR light-triggered photothermal imaging and therapy, controlled drug release, and targeted drug delivery. Although the structure, properties, and theranostic application of GNPs are considerably plentiful, no expert review systematically explains the relationships among their structure, property. and application and induces the engineering rationales of GNPs for cancer theranostics. Hence, there are no clear rules to guide the facile construction of optimal GNP structures aiming at a specific theranostic application. A series of structural-engineering rationales of GNPs for cancer theranostics is proposed through digging out the deep relationships between the structure and properties of GNPs. These rationales will be inspiring for guiding the engineering of specific and advanced GNPs for personalized cancer theranostics.
Collapse
Affiliation(s)
- Wenwen Chen
- National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Shenzhen University, No. 3688 Nanhai Road, Nanshan District, Shenzhen, 518060, Guangdong, P. R. China
| | - Shaohua Zhang
- Department of Breast Cancer, Affiliated Hospital of Academy of Military Medical Sciences, No. 8 Dongdajie, Beijing, 100071, P. R. China
| | - Yangyang Yu
- National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Shenzhen University, No. 3688 Nanhai Road, Nanshan District, Shenzhen, 518060, Guangdong, P. R. China
| | - Huisheng Zhang
- National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Shenzhen University, No. 3688 Nanhai Road, Nanshan District, Shenzhen, 518060, Guangdong, P. R. China
| | - Qianjun He
- National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Shenzhen University, No. 3688 Nanhai Road, Nanshan District, Shenzhen, 518060, Guangdong, P. R. China.
| |
Collapse
|
42
|
|
43
|
Tian L, Lu L, Qiao Y, Ravi S, Salatan F, Melancon MP. Stimuli-Responsive Gold Nanoparticles for Cancer Diagnosis and Therapy. J Funct Biomater 2016. [PMID: 27455336 PMCID: PMC5040992 DOI: 10.3390/jfb7030019] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
An emerging concept is that cancers strongly depend on both internal and external signals for growth and invasion. In this review, we will discuss pathological and physical changes in the tumor microenvironment and how these changes can be exploited to design gold nanoparticles for cancer diagnosis and therapy. These intrinsic changes include extracellular and intracellular pH, extracellular matrix enzymes, and glutathione concentration. External stimuli include the application of laser, ultrasound and X-ray. The biology behind these changes and the chemistry behind the responding mechanisms to these changes are reviewed. Examples of recent in vitro and in vivo studies are also presented, and the clinical implications of these findings are discussed.
Collapse
Affiliation(s)
- Li Tian
- Department of Interventional Radiology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, USA; (L.T.); (Y.Q.); (F.S.)
| | - Linfeng Lu
- Department of Interventional Radiology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, USA; (L.T.); (Y.Q.); (F.S.)
- Department of Chemical and Biomolecular Engineering, Rice University, 6100 Main Street, Houston, TX 77005, USA;
| | - Yang Qiao
- Department of Interventional Radiology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, USA; (L.T.); (Y.Q.); (F.S.)
| | - Saisree Ravi
- Department of Interventional Radiology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, USA; (L.T.); (Y.Q.); (F.S.)
- Department of BioSciences, Rice University, 6100 Main Street, Houston, TX 77005, USA;
| | - Ferandre Salatan
- Department of Interventional Radiology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, USA; (L.T.); (Y.Q.); (F.S.)
| | - Marites P. Melancon
- Department of Interventional Radiology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, USA; (L.T.); (Y.Q.); (F.S.)
- Graduate School for Biomedical Science, University of Texas Health Science Center at Houston, 6767 Bertner Ave., Houston, TX 77030, USA
- Correspondence: ; Tel.: +1-713-794-5387
| |
Collapse
|
44
|
Tian L, Lu L, Qiao Y, Ravi S, Salatan F, Melancon MP. Stimuli-Responsive Gold Nanoparticles for Cancer Diagnosis and Therapy. J Funct Biomater 2016; 7:E19. [PMID: 27455336 PMCID: PMC5040992 DOI: 10.3390/jfb7020019] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Revised: 07/13/2016] [Accepted: 07/15/2016] [Indexed: 01/03/2023] Open
Abstract
An emerging concept is that cancers strongly depend on both internal and external signals for growth and invasion. In this review, we will discuss pathological and physical changes in the tumor microenvironment and how these changes can be exploited to design gold nanoparticles for cancer diagnosis and therapy. These intrinsic changes include extracellular and intracellular pH, extracellular matrix enzymes, and glutathione concentration. External stimuli include the application of laser, ultrasound and X-ray. The biology behind these changes and the chemistry behind the responding mechanisms to these changes are reviewed. Examples of recent in vitro and in vivo studies are also presented, and the clinical implications of these findings are discussed.
Collapse
Affiliation(s)
- Li Tian
- Department of Interventional Radiology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, USA; (L.T.); (Y.Q.); (F.S.)
| | - Linfeng Lu
- Department of Interventional Radiology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, USA; (L.T.); (Y.Q.); (F.S.)
- Department of Chemical and Biomolecular Engineering, Rice University, 6100 Main Street, Houston, TX 77005, USA;
| | - Yang Qiao
- Department of Interventional Radiology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, USA; (L.T.); (Y.Q.); (F.S.)
| | - Saisree Ravi
- Department of Interventional Radiology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, USA; (L.T.); (Y.Q.); (F.S.)
- Department of BioSciences, Rice University, 6100 Main Street, Houston, TX 77005, USA;
| | - Ferandre Salatan
- Department of Interventional Radiology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, USA; (L.T.); (Y.Q.); (F.S.)
| | - Marites P. Melancon
- Department of Interventional Radiology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, USA; (L.T.); (Y.Q.); (F.S.)
- Graduate School for Biomedical Science, University of Texas Health Science Center at Houston, 6767 Bertner Ave., Houston, TX 77030, USA
| |
Collapse
|
45
|
Pang B, Yang X, Xia Y. Putting gold nanocages to work for optical imaging, controlled release and cancer theranostics. Nanomedicine (Lond) 2016; 11:1715-28. [PMID: 27348546 PMCID: PMC5827786 DOI: 10.2217/nnm-2016-0109] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Accepted: 05/03/2016] [Indexed: 01/02/2023] Open
Abstract
Gold nanocages are hollow nanostructures with ultrathin, porous walls. They are bio-inert and their surface can be readily modified with functional groups to specifically interact with the biological system of interest. They have remarkable optical properties, including localized surface plasmon resonance peaks tunable to the near-infrared region, strong absorption and scattering, as well as two- and three-photon luminescence. With the establishment of robust protocols for both synthesis and surface functionalization, Au nanocages have been extensively explored for various biomedical applications. In this review, we begin with a brief account of the synthesis and properties of Au nanocages, and then highlight some of the recent developments in applying them to an array of biomedical applications related to optical imaging, controlled release and cancer theranostics.
Collapse
Affiliation(s)
- Bo Pang
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology & Emory University, Atlanta, GA 30332, USA
- Department of Biomedical Engineering, College of Engineering, Peking University, Beijing 100871, China
| | - Xuan Yang
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology & Emory University, Atlanta, GA 30332, USA
| | - Younan Xia
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology & Emory University, Atlanta, GA 30332, USA
- School of Chemistry & Biochemistry, School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
| |
Collapse
|
46
|
Kim K, Jo MC, Jeong S, Palanikumar L, Rotello VM, Ryu JH, Park MH. Externally controlled drug release using a gold nanorod contained composite membrane. NANOSCALE 2016; 8:11949-55. [PMID: 27240476 DOI: 10.1039/c6nr00362a] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Versatile drug delivery devices using nanoporous membranes consisting of gold nanorods and dendrimers have been demonstrated to provide light-triggered on-demand pulsatile release from a reservoir containing highly enriched therapeutics for a real patient's needs. The drug release rate is directly correlated with the temperature increase and irradiated energy of a near-IR laser in both static and fluidic devices. This biocompatible platform for on-demand control was further confirmed by in vitro experiments. Interestingly, different responses to stimuli were obtained from each drug in the absence and presence of NIR light, indicating the versatile potential of our on-demand drug delivery system in less-invasive therapies requiring multi-drug delivery strategies. The enhanced delivery system will improve therapeutic efficacy and reduce side effects through regulation of plasma drug profiles.
Collapse
Affiliation(s)
- Kibeom Kim
- Department of Chemistry, Sahmyook University, Seoul, 01795, Korea. and Department of Chemistry, Ulsan National Institute of Science and Technology, Ulsan, 44919, Korea.
| | - Min-Chul Jo
- Department of Chemistry, Sahmyook University, Seoul, 01795, Korea.
| | - Sundo Jeong
- Department of Chemistry, Sahmyook University, Seoul, 01795, Korea.
| | - L Palanikumar
- Department of Chemistry, Ulsan National Institute of Science and Technology, Ulsan, 44919, Korea.
| | - Vincent M Rotello
- Department of Chemistry, University of Massachusetts, Amherst, MA 01003, USA
| | - Ja-Hyoung Ryu
- Department of Chemistry, Ulsan National Institute of Science and Technology, Ulsan, 44919, Korea.
| | - Myoung-Hwan Park
- Department of Chemistry, Sahmyook University, Seoul, 01795, Korea.
| |
Collapse
|
47
|
Zhang B, Wang Y, Zhai G. Biomedical applications of the graphene-based materials. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2016; 61:953-64. [DOI: 10.1016/j.msec.2015.12.073] [Citation(s) in RCA: 140] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Revised: 12/20/2015] [Accepted: 12/28/2015] [Indexed: 01/09/2023]
|
48
|
Ordeig O, Chin SY, Kim S, Chitnis PV, Sia SK. An implantable compound-releasing capsule triggered on demand by ultrasound. Sci Rep 2016; 6:22803. [PMID: 26965207 PMCID: PMC4786798 DOI: 10.1038/srep22803] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Accepted: 02/19/2016] [Indexed: 12/27/2022] Open
Abstract
Implantable devices have a large potential to improve human health, but they are often made of biofouling materials that necessitate special coatings, rely on electrical connections for external communication, and require a continuous power source. This paper demonstrates an alternative platform, which we call iTAG (implantable thermally actuated gel), where an implanted capsule can be wirelessly controlled by ultrasound to trigger the release of compounds. We constructed a millimeter-sized capsule containing a co-polymer gel (NiPAAm-co-AAm) that contracts above body temperature (i.e. at 45 °C) to release compounds through an opening. This gel-containing capsule is biocompatible and free of toxic electronic or battery components. An ultrasound hardware, with a focused ultrasound (FUS) transducer and a co-axial A-mode imaging transducer, was used to image the capsule (to monitor in real time its position, temperature, and effectiveness of dose delivery), as well as to trigger a rapid local rise in temperature, contraction of gel, and release of compounds in vitro and in vivo. The combination of this gel-based capsule and compact ultrasound hardware can serve as a platform for triggering local release of compounds, including potentially in deep tissue, to achieve tailored personalized therapy.
Collapse
Affiliation(s)
- Olga Ordeig
- Department of Biomedical Engineering, Columbia University, 351 Engineering Terrace, 1210 Amsterdam Avenue, New York, NY 10027, United States
| | - Sau Yin Chin
- Department of Biomedical Engineering, Columbia University, 351 Engineering Terrace, 1210 Amsterdam Avenue, New York, NY 10027, United States
| | - Sohyun Kim
- Department of Biomedical Engineering, Columbia University, 351 Engineering Terrace, 1210 Amsterdam Avenue, New York, NY 10027, United States
| | - Parag V. Chitnis
- Department of Bioengineering, George Mason University, 4400 University Drive, Fairfax, VA 22032, United States
- F. L. Lizzi Center for Biomedical Engineering, Riverside Research, New York, NY 10038, United States
| | - Samuel K. Sia
- Department of Biomedical Engineering, Columbia University, 351 Engineering Terrace, 1210 Amsterdam Avenue, New York, NY 10027, United States
| |
Collapse
|
49
|
Kuroiwa K, Koga Y, Ishimaru Y, Nakashima T, Hachisako H, Sakurai S. Morphological control of hybrid amphiphilic poly(N-isopropylacrylamide)/metal cyanide complexes. Polym J 2016. [DOI: 10.1038/pj.2016.13] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
50
|
Wang W, Chen C, Li X, Wang S, Luo X. A bioresponsive controlled-release bioassay based on aptamer-gated Au nanocages and its application in living cells. Chem Commun (Camb) 2016; 51:9109-12. [PMID: 25939588 DOI: 10.1039/c5cc02452h] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
A novel controlled-release bioassay for highly sensitive and selective detection of intracellular ATP was developed based on positive charge-modified Au nanocages capped with an aptamer molecular gate, and it was used successfully for fluorescence microscopy imaging of ATP in living cells.
Collapse
Affiliation(s)
- Wei Wang
- Key Laboratory of Sensor Analysis of Tumor Marker, Ministry of Education, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China.
| | | | | | | | | |
Collapse
|