1
|
Torrisi J, Chvojka M, Jurček P, Zhang X, Zeng H, Šindelář V, Valkenier H. Anion Transport by Bambusuril-Bile Acid Conjugates: Drastic Effect of the Cholesterol Content. Angew Chem Int Ed Engl 2025; 64:e202424754. [PMID: 39791967 PMCID: PMC11848992 DOI: 10.1002/anie.202424754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Revised: 01/10/2025] [Accepted: 01/10/2025] [Indexed: 01/12/2025]
Abstract
Artificial anion transporters offer a potential way to treat deficiencies in cellular anion transport of genetic origins. In contrast to the large variety of mobile anion carriers and self-assembled anion channels reported, unimolecular anion channels are less investigated. Herein, we present a unique example of a unimolecular anion channel based on a bambusuril (BU) macrocycle, a well-established anion receptor. The BU structure was expanded by appending various bile acid residues allowing a single molecule to span the membrane. Chloride transport mediated by BUs through lipid bilayers was investigated in liposomes and these studies revealed a surprisingly high dependence of the anion transport activity on the cholesterol content in the liposomal membrane.
Collapse
Affiliation(s)
- Jacopo Torrisi
- Department of Chemistry, Faculty of ScienceMasaryk UniversityKamenice 5625 00BrnoCzech Republic
- RECETOX, Faculty of ScienceMasaryk UniversityKamenice 5625 00BrnoCzech Republic
| | - Matúš Chvojka
- Department of Chemistry, Faculty of ScienceMasaryk UniversityKamenice 5625 00BrnoCzech Republic
- RECETOX, Faculty of ScienceMasaryk UniversityKamenice 5625 00BrnoCzech Republic
- Engineering of Molecular NanoSystems, École Polytechnique de BruxellesUniversité Libre de BruxellesAvenue F.D. Roosevelt 50, CP165/641050BrusselsBelgium
| | - Pia Jurček
- RECETOX, Faculty of ScienceMasaryk UniversityKamenice 5625 00BrnoCzech Republic
| | - Xinxin Zhang
- College of ChemistryFuzhou UniversityFuzhouFujian350116China
| | - Huaqiang Zeng
- College of ChemistryFuzhou UniversityFuzhouFujian350116China
| | - Vladimír Šindelář
- Department of Chemistry, Faculty of ScienceMasaryk UniversityKamenice 5625 00BrnoCzech Republic
- RECETOX, Faculty of ScienceMasaryk UniversityKamenice 5625 00BrnoCzech Republic
| | - Hennie Valkenier
- Engineering of Molecular NanoSystems, École Polytechnique de BruxellesUniversité Libre de BruxellesAvenue F.D. Roosevelt 50, CP165/641050BrusselsBelgium
| |
Collapse
|
2
|
Dean JLS, Cramer CG, Fournier JA. Interplay between anion-receptor and anion-solvent interactions in halide receptor complexes characterized with ultrafast infrared spectroscopies. Phys Chem Chem Phys 2024; 26:21163-21172. [PMID: 39072495 DOI: 10.1039/d4cp02280g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
The competition between host-guest binding and solvent interactions is a crucial factor in determining the binding affinities and selectivity of molecular receptor species. The interplay between these competing interactions, however, have been difficult to disentangle. In particular, the development of molecular-level descriptions of solute-solvent interactions remains a grand experimental challenge. Herein, we investigate the prototypical halide receptor meso-octamethylcalix[4]pyrrole (OMCP) complexed with either chloride or bromide anions in both dichloromethane (DCM) and chloroform (trichloromethane, TCM) solvent using ultrafast infrared transient absorption and 2D IR spectroscopies. OMCP·Br- complexes in both solvents display slower vibrational relaxation dynamics of the OMCP pyrrole NH stretches, consistent with weaker H-bonding interactions with OMCP compared to chloride and less efficient intermolecular relaxation to the solvent. Further, OMCP·Br- complexes show nearly static spectral diffusion dynamics compared to OMCP·Cl-, indicating larger structural fluctuations occur within chloride complexes. Importantly, distinct differences in the vibrational spectra and dynamics are observed between DCM and TCM solutions. The data are consistent with stronger and more perturbative solvent effects in TCM compared to DCM, despite DCM's larger dielectric constant and smaller reported OMCP·X- binding affinities. These differences are attributed to the presence of weak H-bond interactions between halides and TCM, in addition to competing interactions from the bulky tetrabutylammonium countercation. The data provide important experimental benchmarks for quantifying the role of solvent and countercation interactions in anion host-guest complexes.
Collapse
Affiliation(s)
- Jessika L S Dean
- Department of Chemistry, Washington University in St. Louis, St. Louis, MO 63130, USA.
| | - Caroline G Cramer
- Department of Chemistry, Washington University in St. Louis, St. Louis, MO 63130, USA.
| | - Joseph A Fournier
- Department of Chemistry, Washington University in St. Louis, St. Louis, MO 63130, USA.
| |
Collapse
|
3
|
Rather IA, Ahmad M, Talukdar P, Ali R. Probing and evaluating transmembrane chloride ion transport in double walled trifluorophenyl/phthalimide extended calix[4]pyrrole-based supramolecular receptors. J Mater Chem B 2024; 12:5950-5956. [PMID: 38804847 DOI: 10.1039/d3tb02880a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Therapeutic applications have sparked increased interest in the use of synthetic anion receptors for ion transport across lipid membranes. In this context, the construction of synthetic transmembrane transporters for the physiologically important chloride ion is currently of enormous interest. As a result, considerable effort is being devoted to the design and synthesis of artificial transmembrane chloride ion transporters. However, only inadequate progress has been made in developing macrocyclic chloride ion transporters using the fundamental principles of supramolecular chemistry, and hence this field entails fostering investigations. In this investigation, the synthesis of two new double walled trifluorophenyl/phthalimide extended calix[4]pyrrole (C4P) receptors (3 and 7) has been successfully reported. 1H-NMR titration and HRMS studies confirmed the 1 : 1 binding stoichiometry of the chloride ion with these receptors in the solution phase (only receptor 3b was studied by 1H-NMR). Regarding ion transport of 3b and 7, when studied in the HPTS-based vesicular system, 3b showed better activity with an EC50 value of 0.39 μM. The detailed ion transport studies on 3b have revealed that ion transport occurs through the Cl-/NO3- antiport mode.
Collapse
Affiliation(s)
- Ishfaq Ahmad Rather
- Organic and Supramolecular Functional Materials Research Laboratory, Department of Chemistry, Jamia Millia Islamia, Jamia Nagar, Okhla, New Delhi 110025, India.
| | - Manzoor Ahmad
- Department of Chemistry, Indian Institute of Science Education and Research Pune, Pune 411008, Maharashtra, India.
| | - Pinaki Talukdar
- Department of Chemistry, Indian Institute of Science Education and Research Pune, Pune 411008, Maharashtra, India.
| | - Rashid Ali
- Organic and Supramolecular Functional Materials Research Laboratory, Department of Chemistry, Jamia Millia Islamia, Jamia Nagar, Okhla, New Delhi 110025, India.
| |
Collapse
|
4
|
Giri M, Dash Y, Guchhait T. Does Larger Cavity-Size Really Help Bigger Anions to Bind? A Scrutiny on Core-Expanded Calix[4]pyrroles and Their Properties. Chempluschem 2024; 89:e202300427. [PMID: 37830245 DOI: 10.1002/cplu.202300427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 10/13/2023] [Accepted: 10/13/2023] [Indexed: 10/14/2023]
Abstract
Calix[4]pyrroles are an important class of oligopyrrolic macrocycles and have found applications in many diverse fields including anion recognition. To modulate the properties of the calix[4]pyrrole, several structural modifications are realized. The core-expansion has attracted extra attention as it provides larger cavity-size compared to parent calix[4]pyrrole(s). This review highlights the synthetic development of various core-expanded calix[4]pyrroles and their applications in anion-binding properties. Emphasis is given to the changes in the binding properties observed with expanded versions of calix[4]pyrrole(s) in both solution and the solid states. The expanded versions of calix[4]pyrrole do not always show higher binding affinities for larger anions as anticipated. Rather, they display reduced affinities with the anions. The truncated form or asymmetric nature of the expanded versions of calix[4]pyrrole does not probably allow to access all the available binding sites for the anions and hence reduced binding affinities are observed. The receptors which contain a greater number of binding sites and are somehow rigid or preorganized apparently show enhanced binding affinities for anions. The relative binding constants for halide series indicate that the enlarged molecules are more beneficial for largest iodide among others. However, most of the receptors show selectivity towards smallest fluoride over other anions studied.
Collapse
Affiliation(s)
- Monalisa Giri
- Department of Chemistry, C. V. Raman Global University, Bhubaneswar, Odisha 752054, India
| | - Yashaswini Dash
- Department of Chemistry, C. V. Raman Global University, Bhubaneswar, Odisha 752054, India
| | - Tapas Guchhait
- Department of Chemistry, C. V. Raman Global University, Bhubaneswar, Odisha 752054, India
| |
Collapse
|
5
|
Pamuła M, Bulatov E, Martínez-Crespo L, Kiesilä A, Naulapää J, Kalenius E, Helttunen K. Anion binding and transport with meso-alkyl substituted two-armed calix[4]pyrroles bearing urea and hydroxyl groups. Org Biomol Chem 2023; 21:6595-6603. [PMID: 37530577 DOI: 10.1039/d3ob00919j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/03/2023]
Abstract
Calix[4]pyrroles bearing hydroxyl (1) or urea (3) groups attached to the meso-positions with propyl linkers were synthesized as cis- and trans-isomers. The anion binding properties of cis-1 and cis-3 were screened with ion-mobility mass spectrometry, where cis-1 formed complexes with Cl-, Br- and H2PO4-, whereas cis-3 formed complexes with most of the investigated anions, including Cl-, Br-, I-, NO3-, ClO4-, OTf-, SCN- and PF6-. The structures of the chloride complexes were further elucidated with density functional theory calculations and a crystal structure obtained for cis-1. In solution, chloride and dihydrogenphosphate anion binding with cis-1 and cis-3 were compared using 1H NMR titrations. To assess the suitability of two-armed calix[4]pyrroles as anion transporters, chloride transport studies of cis-1, cis-3 and trans-3 were performed using large unilamellar vesicles. The results revealed that cis-3 had the highest activity among the investigated calix[4]pyrroles, which was related to the improved affinity and isolation of chloride inside the binding cavity of cis-3 in comparison to cis-1. The results indicate that appending calix[4]pyrroles with two hydrogen bonding arms is a feasible strategy to obtain anion transporters and receptors with high anion affinity.
Collapse
Affiliation(s)
- Małgorzata Pamuła
- University of Jyvaskyla, Department of Chemistry, Nanoscience Center, P.O. Box 35, FI-40014 University of Jyvaskyla, Finland.
| | - Evgeny Bulatov
- University of Jyvaskyla, Department of Chemistry, Nanoscience Center, P.O. Box 35, FI-40014 University of Jyvaskyla, Finland.
| | - Luis Martínez-Crespo
- Department of Chemistry, Universitat de les Illes Balears, Cra. Valldemossa Km. 7.5, 07122 Palma de Mallorca, Spain
| | - Anniina Kiesilä
- University of Jyvaskyla, Department of Chemistry, Nanoscience Center, P.O. Box 35, FI-40014 University of Jyvaskyla, Finland.
| | - Julia Naulapää
- University of Jyvaskyla, Department of Chemistry, Nanoscience Center, P.O. Box 35, FI-40014 University of Jyvaskyla, Finland.
| | - Elina Kalenius
- University of Jyvaskyla, Department of Chemistry, Nanoscience Center, P.O. Box 35, FI-40014 University of Jyvaskyla, Finland.
| | - Kaisa Helttunen
- University of Jyvaskyla, Department of Chemistry, Nanoscience Center, P.O. Box 35, FI-40014 University of Jyvaskyla, Finland.
| |
Collapse
|
6
|
Cataldo A, Norvaisa K, Halgreen L, Bodman SE, Bartik K, Butler SJ, Valkenier H. Transmembrane Transport of Inorganic Phosphate by a Strapped Calix[4]pyrrole. J Am Chem Soc 2023. [PMID: 37471295 DOI: 10.1021/jacs.3c04631] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/22/2023]
Abstract
Synthetic anion receptors are increasingly being explored for the transport of anions across lipid membranes because of their potential therapeutic applications. A considerable amount of research focuses on the transport of chloride, whereas the transmembrane transport of inorganic phosphate has not been reported to date, despite the biological relevance of this anion. Here we present a calix[4]pyrrole with a bisurea strap that functions as a receptor and transporter for H2PO4-, relying on the formation of eight hydrogen bonds and efficient encapsulation of the anion. Using a phosphate-sensitive lanthanide probe and 31P NMR spectroscopy, we demonstrate that this receptor can transport phosphate into vesicles by H2PO4-/Cl- antiport, H2PO4- uniport, and Cs+/H2PO4- symport mechanisms. This first example of inorganic phosphate transport by a neutral receptor opens perspectives for the future development of transporters for various biological phosphates.
Collapse
Affiliation(s)
- Alessio Cataldo
- Engineering of Molecular NanoSystems, Université libre de Bruxelles (ULB), Avenue F.D. Roosevelt 50, CP165/64, B-1050 Brussels, Belgium
| | - Karolis Norvaisa
- Engineering of Molecular NanoSystems, Université libre de Bruxelles (ULB), Avenue F.D. Roosevelt 50, CP165/64, B-1050 Brussels, Belgium
| | - Lau Halgreen
- Engineering of Molecular NanoSystems, Université libre de Bruxelles (ULB), Avenue F.D. Roosevelt 50, CP165/64, B-1050 Brussels, Belgium
| | - Samantha E Bodman
- Department of Chemistry, Loughborough University, Epinal Way, Loughborough, LE11 3TU, U.K
| | - Kristin Bartik
- Engineering of Molecular NanoSystems, Université libre de Bruxelles (ULB), Avenue F.D. Roosevelt 50, CP165/64, B-1050 Brussels, Belgium
| | - Stephen J Butler
- Department of Chemistry, Loughborough University, Epinal Way, Loughborough, LE11 3TU, U.K
| | - Hennie Valkenier
- Engineering of Molecular NanoSystems, Université libre de Bruxelles (ULB), Avenue F.D. Roosevelt 50, CP165/64, B-1050 Brussels, Belgium
| |
Collapse
|
7
|
Rashid A, Mondal S, Ghosh P. Iridium(III) complex of fluorinated cyclometalating ligands and imidazolium-bipyridine as an effective lifetime based phosphates sensor. Inorganica Chim Acta 2023. [DOI: 10.1016/j.ica.2023.121453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
|
8
|
Mondal A, Ahmad M, Mondal D, Talukdar P. Progress and prospects toward supramolecular bioactive ion transporters. Chem Commun (Camb) 2023; 59:1917-1938. [PMID: 36691926 DOI: 10.1039/d2cc06761g] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
The majority of cellular physiological processes depend on natural ion channels, which are pore-forming membrane-embedded proteins that let ions flow across the cell membranes selectively. This selective movement of ions across the membranes balances the osmolality within and outside the cell. However, mutations in the genes that encode essential membrane transport proteins or structural reorganisation of these proteins can cause life-threatening diseases like cystic fibrosis. Artificial ion transport systems have opened up a way to replace dysfunctional natural ion channels to cure such diseases through channel replacement therapy. Moreover, recent research has also demonstrated the ability of these systems to kill cancer cells, reigniting interest in the field among scientists. Our contributions to the recent progress in the design and development of artificial chloride ion transporters and their effect on biological systems have been discussed in this review. This review would provide current vistas and future directions toward the development of novel ion transporters with improved biocompatibility and desired anti-cancer properties. Additionally, it strongly emphasises stimuli-responsive ion transport systems, which are crucial for obtaining target-specificity and may speed up the application of these systems in clinical therapeutics.
Collapse
Affiliation(s)
- Abhishek Mondal
- Chemistry Department, Indian Institute of Science Education and Research Pune, Dr. Homi Bhabha Road, Pashan, Pune 411008, Maharashtra, India.
| | - Manzoor Ahmad
- Chemistry Department, Indian Institute of Science Education and Research Pune, Dr. Homi Bhabha Road, Pashan, Pune 411008, Maharashtra, India. .,Chemistry Research Laboratory, Mansfield Road, Oxford, OX1 3TA, UK
| | - Debashis Mondal
- Chemistry Department, Indian Institute of Science Education and Research Pune, Dr. Homi Bhabha Road, Pashan, Pune 411008, Maharashtra, India. .,Faculty of Chemistry, Biological and Chemical Research Centre, University of Warsaw, Zwirkii Wigury 101, Warsaw 02-089, Poland
| | - Pinaki Talukdar
- Chemistry Department, Indian Institute of Science Education and Research Pune, Dr. Homi Bhabha Road, Pashan, Pune 411008, Maharashtra, India.
| |
Collapse
|
9
|
Docker A, Johnson TG, Kuhn H, Zhang Z, Langton MJ. Multistate Redox-Switchable Ion Transport Using Chalcogen-Bonding Anionophores. J Am Chem Soc 2023; 145:2661-2668. [PMID: 36652378 PMCID: PMC9896566 DOI: 10.1021/jacs.2c12892] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Indexed: 01/19/2023]
Abstract
Synthetic supramolecular transmembrane anionophores have emerged as promising anticancer chemotherapeutics. However, key to their targeted application is achieving spatiotemporally controlled activity. Herein, we report a series of chalcogen-bonding diaryl tellurium-based transporters in which their anion binding potency and anionophoric activity are controlled through reversible redox cycling between Te oxidation states. This unprecedented in situ reversible multistate switching allows for switching between ON and OFF anion transport and is crucially achieved with biomimetic chemical redox couples.
Collapse
Affiliation(s)
- Andrew Docker
- Department of Chemistry,
Chemistry Research Laboratory, University
of Oxford, Mansfield Road, Oxford OX1 3TA, UK
| | - Toby G. Johnson
- Department of Chemistry,
Chemistry Research Laboratory, University
of Oxford, Mansfield Road, Oxford OX1 3TA, UK
| | - Heike Kuhn
- Department of Chemistry,
Chemistry Research Laboratory, University
of Oxford, Mansfield Road, Oxford OX1 3TA, UK
| | - Zongyao Zhang
- Department of Chemistry,
Chemistry Research Laboratory, University
of Oxford, Mansfield Road, Oxford OX1 3TA, UK
| | - Matthew J. Langton
- Department of Chemistry,
Chemistry Research Laboratory, University
of Oxford, Mansfield Road, Oxford OX1 3TA, UK
| |
Collapse
|
10
|
Groeer S, Garni M, Samanta A, Walther A. Insertion of 3D DNA Origami Nanopores into Block Copolymer Vesicles. CHEMSYSTEMSCHEM 2022. [DOI: 10.1002/syst.202200009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Saskia Groeer
- A3BMS Lab – Active, Adaptive and Autonomous Bioinspired Materials Institute for Macromolecular Chemistry University of Freiburg Stefan-Meier-Straße 31 79104 Freiburg Germany
- Freiburg Materials Research Center (FMF) University of Freiburg Stefan-Meier-Str. 21 79104 Freiburg Germany
- Freiburg Center for Interactive Materials and Bioinspired Technologies (FIT) University of Freiburg Georges-Köhler-Allee 105 79110 Freiburg Germany
| | - Martina Garni
- Chemistry Department University of Basel BPR 1096, Postfach 3350 Mattenstrasse 24a 4002 Basel Switzerland
| | - Avik Samanta
- A3BMS Lab – Active, Adaptive and Autonomous Bioinspired Materials Department of Chemistry University of Mainz 55128 Mainz Germany
| | - Andreas Walther
- Cluster of Excellence livMatS @ FIT 79110 Freiburg Germany
- A3BMS Lab – Active, Adaptive and Autonomous Bioinspired Materials Department of Chemistry University of Mainz 55128 Mainz Germany
| |
Collapse
|
11
|
P. Hill J, Karr PA, Zuñiga Uy RA, Subbaiyan NK, Futera Z, Ariga K, Ishihara S, Labuta J, D’Souza F. Analyte Interactions with Oxoporphyrinogen Derivatives: Computational Aspects. CURR ORG CHEM 2022. [DOI: 10.2174/1385272826666220208101325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Abstract:
The binding of anions by highly-coloured chromophore compounds is of interest from the point-of-view of the development of optical sensors for analyte species. In this review, we have summarised our work on the interactions between oxoporphyrinogen type host compounds and different analyte species using computational methods. The origin of our interest in sensing using oxoporphyrinogens stems from an initial finding involving anion-host interactions involving a conjugated oxoporphyrinogen molecule. This review starts from that point, introducing some additional exemplary anion binding data, which is then elaborated to include descriptions of our synthesis work towards multitopic and ion pair interactions. In all the projects, we have consulted computational data on host structure and host-guest complexes in order to obtain information about the interactions occurring during complexation. Density functional theory and molecular dynamics simulations have been extensively used for these purposes. Oxoporphyrinogens are highly colored synthetically flexible compounds whose interactions with anions, ion pairs, and other species have been modelled using computational methods.
Collapse
Affiliation(s)
- Jonathan P. Hill
- WPI-Center for Materials Nanoarchitectonics, National Institute for Materials Science, Namiki 1-1, Tsukuba, Ibaraki 305-0044, Japan
| | - Paul A. Karr
- Department of Physical Sciences and Mathematics, Wayne State College, 111 Main Street, Wayne, Nebraska 68787, USA
| | - Roxanne A. Zuñiga Uy
- Department of Chemistry, University of North Texas, 1155 Union Circle, 305070 Denton, Texas 76203, USA
| | - Navaneetha K. Subbaiyan
- Department of Chemistry, University of North Texas, 1155 Union Circle, 305070 Denton, Texas 76203, USA
| | - Zdeněk Futera
- Institute of Physics, Faculty of Science, University of South Bohemia, Branišovská 1760, České Budějovice 370 05, Czech Republic
| | - Katsuhiko Ariga
- WPI-Center for Materials Nanoarchitectonics, National Institute for Materials Science, Namiki 1-1, Tsukuba, Ibaraki 305-0044, Japan
| | - Shinsuke Ishihara
- WPI-Center for Materials Nanoarchitectonics, National Institute for Materials Science, Namiki 1-1, Tsukuba, Ibaraki 305-0044, Japan
| | - Jan Labuta
- WPI-Center for Materials Nanoarchitectonics, National Institute for Materials Science, Namiki 1-1, Tsukuba, Ibaraki 305-0044, Japan
| | - Francis D’Souza
- WPI-Center for Materials Nanoarchitectonics, National Institute for Materials Science, Namiki 1-1, Tsukuba, Ibaraki 305-0044, Japan
| |
Collapse
|
12
|
Abstract
Artificial receptors able to recognise biologically relevant molecules or ions have gained interest in the chemical community because they offer a plethora of posibilities. Molecular cage compounds are polycyclic compounds with a cavity designed for the encapsulation of guest species. Once inside the host cavity, the substrate can be transported through membranes and protected from the action of enzymes or other reactive species, thus offering the possibility of interfering with biological systems. Commonly, enzymes have been an inspiration for chemists in the search and design of defined cavities for different purposes. However, the chemical preparation of molecular cages has struggled with many synthetic challenges but this effort is worthwhile as they are a very promising tool for many applications ranging from sensing, delivery, purification or even promotion of/prevention from chemical modifications. Since the early reports at the end of the 60s, this field has experienced a growing interest; this review summarises the progress in the preparation and study of cage-like compounds highlighting their importance in biological applications.
Collapse
Affiliation(s)
- Lucía Tapia
- Department of Biological Chemistry, Institute for Advanced Chemistry of Catalonia, IQAC-CSIC, Jordi Girona 18-26, 08034 Barcelona, Spain.
| | - Ignacio Alfonso
- Department of Biological Chemistry, Institute for Advanced Chemistry of Catalonia, IQAC-CSIC, Jordi Girona 18-26, 08034 Barcelona, Spain.
| | - Jordi Solà
- Department of Biological Chemistry, Institute for Advanced Chemistry of Catalonia, IQAC-CSIC, Jordi Girona 18-26, 08034 Barcelona, Spain.
| |
Collapse
|
13
|
Mondal S, Sarkar K, Ghosh P. Influence of Triazole Substituents of Bis-Heteroleptic Ru(II) Probes toward Selective Sensing of Dihydrogen Phosphate. Inorg Chem 2021; 60:9084-9096. [PMID: 34102838 DOI: 10.1021/acs.inorgchem.1c01084] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
A series of seven new bis-heteroleptic Ru(II) probes (1[PF6]2-7[PF6]2) along with two previously reported probes (8[PF6]2 and 9[PF6]2) containing a similar anion binding triazole unit (hydrogen bond donor) functionalized with various substituents are employed in a detailed comparative investigation for the development of superior selective probes for H2PO4-. Various solution- and solid-state studies, such as 1H-DOSY NMR, dynamic light scattering (DLS), single-crystal X-ray crystallography, and transmission electron microscopy (TEM), have established that the selective sensing of H2PO4- by this series of probes is primarily due to supramolecular aggregation driven enhancement of 3MLCT emission. Intestingly, 1[PF6]2 and 7[PF6]2, having an electron-deficient (π-acidic) aromatic pentafluorophenyl substituent are found to be superior probes for H2PO4- in comparison to the other aryl- and polyaromatic-substituted analogues (2[PF6]2-6[PF6]2, 8[PF6]2, and 9[PF6]2), in terms of a higher enhancement of the 3MLCT emission band, a greater binding constant, and a lower detection limit. The superiority of 1[PF6]2 and 7[PF6]2 could be due to better supramolecular aggregation properties in the cases of pentafluorophenyl analogues via both hydrogen bonding and anion-fluorine/anion-π noncovalent interactions.
Collapse
Affiliation(s)
- Sahidul Mondal
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Kolkata 700032, India
| | - Koushik Sarkar
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Kolkata 700032, India
| | - Pradyut Ghosh
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Kolkata 700032, India
| |
Collapse
|
14
|
Mori M, Sato K, Ekimoto T, Okumura S, Ikeguchi M, Tabata KV, Noji H, Kinbara K. Imidazolinium-based Multiblock Amphiphile as Transmembrane Anion Transporter. Chem Asian J 2021; 16:147-157. [PMID: 33247535 DOI: 10.1002/asia.202001106] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 11/21/2020] [Indexed: 01/13/2023]
Abstract
Transmembrane anion transport is an important biological process in maintaining cellular functions. Thus, synthetic anion transporters are widely developed for their biological applications. Imidazolinium was introduced as anion recognition site to a multiblock amphiphilic structure that consists of octa(ethylene glycol) and aromatic units. Ion transport assay using halide-sensitive lucigenin and pH-sensitive 8-hydroxypyrene-1,3,6-trisulfonate (HPTS) revealed that imidazolinium-based multiblock amphiphile (IMA) transports anions and showed high selectivity for nitrate, which plays crucial roles in many biological events. Temperature-dependent ion transport assay using 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) indicated that IMA works as a mobile carrier. 1 H NMR titration experiments indicated that the C2 proton of the imidazolinium ring recognizes anions via a (C-H)+ ⋅⋅⋅X- hydrogen bond. Furthermore, all-atom molecular dynamics simulations revealed a dynamic feature of IMA within the membranes during ion transportation.
Collapse
Affiliation(s)
- Miki Mori
- School of Life Science and Technology, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa, 226-8501, Japan
| | - Kohei Sato
- School of Life Science and Technology, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa, 226-8501, Japan
| | - Toru Ekimoto
- Graduate School of Medical Life Science, Yokohama City University, 1-7-29 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan
| | - Shinichi Okumura
- Graduate School of Medical Life Science, Yokohama City University, 1-7-29 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan
| | - Mitsunori Ikeguchi
- Graduate School of Medical Life Science, Yokohama City University, 1-7-29 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan.,RIKEN Medical Science Innovation Hub Program, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan
| | - Kazuhito V Tabata
- Graduate School of Engineering, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
| | - Hiroyuki Noji
- Graduate School of Engineering, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
| | - Kazushi Kinbara
- School of Life Science and Technology, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa, 226-8501, Japan
| |
Collapse
|
15
|
Dąbrowa K, Lindner M, Tyszka-Gumkowska A, Jurczak J. Imino-thiolate-templated synthesis of a chloride-selective neutral macrocyclic host with a specific “turn-off–on” fluorescence response for hypochlorite (ClO −). Org Chem Front 2021. [DOI: 10.1039/d1qo00504a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
A precise replacement of one oxygen atom with sulfur allowed a novel thioimidate anion-templated macrocyclization to form a crowded host 2 with the ability to act as a highly selective and sensitive fluorescence probe for hypochlorite (ClO−).
Collapse
Affiliation(s)
- Kajetan Dąbrowa
- Institute of Organic Chemistry Polish Academy of Sciences, 01-224 Warsaw, Poland
| | - Marcin Lindner
- Institute of Organic Chemistry Polish Academy of Sciences, 01-224 Warsaw, Poland
| | | | - Janusz Jurczak
- Institute of Organic Chemistry Polish Academy of Sciences, 01-224 Warsaw, Poland
| |
Collapse
|
16
|
Recent developments of gallic acid derivatives and their hybrids in medicinal chemistry: A review. Eur J Med Chem 2020; 204:112609. [DOI: 10.1016/j.ejmech.2020.112609] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Revised: 06/18/2020] [Accepted: 06/19/2020] [Indexed: 02/07/2023]
|
17
|
Dąbrowa K, Lindner M, Wasiłek S, Jurczak J. Selective Recognition of Chloride by a 24-Membered Macrocyclic Host with a Hydrophobic Methylenepyrene Substituent. European J Org Chem 2020. [DOI: 10.1002/ejoc.202000662] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Kajetan Dąbrowa
- Institute of Organic Chemistry PAS; Kasprzaka 44/52 01-224 Warsaw Poland
| | - Marcin Lindner
- Institute of Organic Chemistry PAS; Kasprzaka 44/52 01-224 Warsaw Poland
| | - Sylwia Wasiłek
- Institute of Organic Chemistry PAS; Kasprzaka 44/52 01-224 Warsaw Poland
| | - Janusz Jurczak
- Institute of Organic Chemistry PAS; Kasprzaka 44/52 01-224 Warsaw Poland
| |
Collapse
|
18
|
Kulsi G, Sannigrahi A, Mishra S, Das Saha K, Datta S, Chattopadhyay P, Chattopadhyay K. A Novel Cyclic Mobile Transporter Can Induce Apoptosis by Facilitating Chloride Anion Transport into Cells. ACS OMEGA 2020; 5:16395-16405. [PMID: 32685802 PMCID: PMC7364434 DOI: 10.1021/acsomega.0c00438] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 06/03/2020] [Indexed: 06/11/2023]
Abstract
We report here the preparation of an aminoxy amide-based pseudopeptide-derived building block using furanoid sugar molecules. Through the cyclo-oligomerization reaction, we generate a hybrid triazole/aminoxy amide macrocycle using the as-prepared building block. The novel conformation of the macrocycle has been characterized using NMR and molecular modeling studies, which show a strong resemblance of our synthesized compound to d-,l-α-aminoxy acid-based cyclic peptides that contain uniform backbone chirality. We observe that the macrocycle can efficiently and selectively bind Cl- ion and transport Cl- ion across a lipid bilayer. 1H NMR anion binding studies suggest a coherent relationship between the acidity of aminoxy amide N-H and triazole C-H proton binding strength. Using time-based fluorescence assay, we show that the macrocycle acts as a mobile transporter and follows an antiport mechanism. Our synthesized macrocycle imposes cancer cell death by disrupting ionic homeostasis through Cl- ion transport. The macrocycle induced cytochrome c leakage and changes in mitochondrial membrane potential along with activation of family of caspases, suggesting that the cellular apoptosis occurs through a caspase-dependent intrinsic pathway. The present results suggest the possibility of using the macrocycle as a biological tool of high therapeutic value.
Collapse
Affiliation(s)
- Goutam Kulsi
- Structural
Biology and Bioinformatics Division, CSIR-
Indian Institute of Chemical Biology (IICB), Kolkata 700032, India
- Organic
and Medicinal Chemistry Division, CSIR-
Indian Institute of Chemical Biology (IICB), Kolkata 700032, India
| | - Achinta Sannigrahi
- Structural
Biology and Bioinformatics Division, CSIR-
Indian Institute of Chemical Biology (IICB), Kolkata 700032, India
| | - Snehasis Mishra
- Cancer
Biology and Inflammatory Disorder Division, CSIR- Indian Institute of Chemical Biology (IICB), Kolkata 700032, India
- Department
of Chemical Technology, University of Calcutta, Kolkata 700009, India
| | - Krishna Das Saha
- Cancer
Biology and Inflammatory Disorder Division, CSIR- Indian Institute of Chemical Biology (IICB), Kolkata 700032, India
| | - Sriparna Datta
- Department
of Chemical Technology, University of Calcutta, Kolkata 700009, India
| | - Partha Chattopadhyay
- Organic
and Medicinal Chemistry Division, CSIR-
Indian Institute of Chemical Biology (IICB), Kolkata 700032, India
| | - Krishnananda Chattopadhyay
- Structural
Biology and Bioinformatics Division, CSIR-
Indian Institute of Chemical Biology (IICB), Kolkata 700032, India
| |
Collapse
|
19
|
Peng S, He Q, Vargas-Zúñiga GI, Qin L, Hwang I, Kim SK, Heo NJ, Lee CH, Dutta R, Sessler JL. Strapped calix[4]pyrroles: from syntheses to applications. Chem Soc Rev 2020; 49:865-907. [PMID: 31957756 DOI: 10.1039/c9cs00528e] [Citation(s) in RCA: 91] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Supramolecular chemistry is a central topic in modern chemistry. It touches on many traditional disciplines, such as organic chemistry, inorganic chemistry, physical chemistry, materials chemistry, environmental chemistry, and biological chemistry. Supramolecular hosts, inter alia macrocyclic hosts, play critical roles in supramolecular chemistry. Calix[4]pyrroles, non-aromatic tetrapyrrolic macrocycles defined by sp3 hybridized meso bridges, have proved to be versatile receptors for neutral species, anions, and cations, as well as ion pairs. Compared to the parent system, octamethylcalix[4]pyrrole and its derivatives bearing simple appended functionalities, strapped calix[4]pyrroles typically display enhanced binding affinities and selectivities. In this review, we summarize advances in the design and synthesis of strapped calix[4]pyrroles, as well as their broad utility in molecular recognition, supramolecular extraction, separation technology, ion transport, and as agents capable of inhibiting cancer cell proliferation. Future challenges within this sub-field are also discussed.
Collapse
Affiliation(s)
- Sangshan Peng
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. China.
| | - Qing He
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. China.
| | - Gabriela I Vargas-Zúñiga
- Department of Chemistry, The University of Texas at Austin, 105 East 24th Street, Stop A5300, Austin, Texas 78712, USA.
| | - Lei Qin
- Department of Chemistry, The University of Texas at Austin, 105 East 24th Street, Stop A5300, Austin, Texas 78712, USA.
| | - Inhong Hwang
- Department of Chemistry, The University of Texas at Austin, 105 East 24th Street, Stop A5300, Austin, Texas 78712, USA.
| | - Sung Kuk Kim
- Department of Chemistry and Research Institute of Natural Science, Gyeongsang National University, Jinju 660-701, Korea.
| | - Nam Jung Heo
- Department of Chemistry and Research Institute of Natural Science, Gyeongsang National University, Jinju 660-701, Korea.
| | - Chang-Hee Lee
- Department of Chemistry, Kangwon National University and IMSFT, Chun-Cheon 24341, Korea.
| | - Ranjan Dutta
- Department of Chemistry, Kangwon National University and IMSFT, Chun-Cheon 24341, Korea.
| | - Jonathan L Sessler
- Department of Chemistry, The University of Texas at Austin, 105 East 24th Street, Stop A5300, Austin, Texas 78712, USA. and Center for Supramolecular Chemistry and Catalysis, Shanghai University, Shanghai 200444, P. R. China
| |
Collapse
|
20
|
Synthesis and biological evaluation of aza-crown ether–squaramide conjugates as anion/cation symporters. Future Med Chem 2019; 11:1091-1106. [DOI: 10.4155/fmc-2018-0595] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Aim: Anion/cation symport across cellular membranes may lead to cell apoptosis and be developed as a strategy for new anticancer drug discovery. Methodology: Four aza-crown ether–squaramide conjugates were synthesized and characterized. Their anion recognition, anion/cation symport, cytotoxicity and probable mechanism of action were investigated in details. Conclusion: These conjugates are able to form ion-pairing complexes with chloride anions and facilitate the transmembrane transport of anions via an anion/cation symport process. They can disrupt the cellular homeostasis of chloride anions and sodium cations and induce the basification of acidic organelles in live cells. These conjugates exhibit moderate cytotoxicity toward the tested cancer cells and trigger cell apoptosis by mediating the influx of chloride anions and sodium cations into live cells.
Collapse
|
21
|
Martínez-Crespo L, Sun-Wang JL, Ferreira P, Mirabella CFM, Aragay G, Ballester P. Influence of the Insertion Method of Aryl-Extended Calix[4]pyrroles into Liposomal Membranes on Their Properties as Anion Carriers. Chemistry 2019; 25:4775-4781. [PMID: 30830693 PMCID: PMC6593748 DOI: 10.1002/chem.201806169] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Indexed: 01/02/2023]
Abstract
We disclose the results of our investigations on the influence that the insertion method of aryl-extended calix[4]pyrrole into liposomal membranes exerts on their properties as anion carriers. We use the standard HPTS assay to assess the transport properties of the carriers. We show that the post-insertion of the carrier, as DMSO solution, assigns better transport activities to the "two-wall" α,α-aryl-extended calix[4]pyrrole 1 compared to the "four-wall" α,α,α,α-counterpart 2. Notably, opposite results were obtained when the carriers were pre-inserted into the liposomal membranes. We assign this difference to an improved incorporation of carrier 2 into the membrane when delivered by the pre-insertion method. On the other hand, carrier 1 shows comparable levels of transport independently of the method used for its incorporation. Thus, an accurate comparison of the chloride transport activities featured by these two carriers demands their pre-incorporation in the liposomal membranes. In contrast, using the lucigenin assay with the pre-insertion method both carriers displayed similar transport efficiencies.
Collapse
Affiliation(s)
- Luis Martínez-Crespo
- Institute of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Science and Technology, Avgda. Països Catalans 16, 43007, Tarragona, Spain
| | - Jia Liang Sun-Wang
- Institute of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Science and Technology, Avgda. Països Catalans 16, 43007, Tarragona, Spain
| | - Pedro Ferreira
- Institute of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Science and Technology, Avgda. Països Catalans 16, 43007, Tarragona, Spain.,Departament de Química Analítica i Química Orgànica, Universitat Rovira i Virgili, c/Marcel⋅lí Domingo, 1, 43007, Tarragona, Spain
| | - Chiara F M Mirabella
- Institute of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Science and Technology, Avgda. Països Catalans 16, 43007, Tarragona, Spain.,Departament de Química Analítica i Química Orgànica, Universitat Rovira i Virgili, c/Marcel⋅lí Domingo, 1, 43007, Tarragona, Spain
| | - Gemma Aragay
- Institute of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Science and Technology, Avgda. Països Catalans 16, 43007, Tarragona, Spain
| | - Pablo Ballester
- Institute of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Science and Technology, Avgda. Països Catalans 16, 43007, Tarragona, Spain.,ICREA, Pg. Lluís Companys, 23, 08018, Barcelona, Spain
| |
Collapse
|
22
|
Affiliation(s)
| | - Philip A. Gale
- School of Chemistry, The University of Sydney, Australia
| |
Collapse
|
23
|
Chen MH, Zheng Y, Cai XJ, Zhang H, Wang FX, Tan CP, Chen WH, Ji LN, Mao ZW. Inhibition of autophagic flux by cyclometalated iridium(iii) complexes through anion transportation. Chem Sci 2019; 10:3315-3323. [PMID: 30996918 PMCID: PMC6428141 DOI: 10.1039/c8sc04520h] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Accepted: 01/28/2019] [Indexed: 12/14/2022] Open
Abstract
We report two phosphorescent cyclometalated iridium(iii) complexes that can inhibit autophagic flux through anion transportation.
Synthetic anion transporters that can interfere with the intracellular pH homeostasis are gaining increasing attention for tumor therapy, however, the biological mechanism of anion transporters remains to be explored. In this work, two phosphorescent cyclometalated Ir(iii) complexes containing 2-phenylpyridine (ppy) as the cyclometalated ligand, and 2,2′-biimidazole (H2biim, Ir1) or 2-(1H-imidazol-2-yl)pyridine (Hpyim, Ir2) as the ancillary ligands have been synthesized and characterized. Due to the protonation and deprotonation process of the N–H groups on H2biim and Hpyim, Ir1 and Ir2 display pH-dependent phosphorescence and can specifically image lysosomes. Both Ir1 and Ir2 can act as anion transporters mainly through the anion exchange mechanism with higher potency observed for Ir1. Mechanism investigation shows that Ir1 and Ir2 can induce caspase-independent cell death through reactive oxygen species (ROS) elevation. As Ir1 and Ir2 can alkalinize lysosomes through anion disturbance, they can inhibit autophagic flux. Our work provides a novel anticancer mechanism of metal complexes, which gives insights into the innovative structure-based design of new metallo-anticancer agents.
Collapse
Affiliation(s)
- Mu-He Chen
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry , School of Chemistry , Sun Yat-Sen University , Guangzhou 510275 , P. R. China . ;
| | - Yue Zheng
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry , School of Chemistry , Sun Yat-Sen University , Guangzhou 510275 , P. R. China . ;
| | - Xiong-Jie Cai
- Guangdong Provincial Key Laboratory of New Drug Screening , School of Pharmaceutical Sciences , Southern Medical University , Guangzhou 510515 , P. R. China .
| | - Hang Zhang
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry , School of Chemistry , Sun Yat-Sen University , Guangzhou 510275 , P. R. China . ;
| | - Fang-Xin Wang
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry , School of Chemistry , Sun Yat-Sen University , Guangzhou 510275 , P. R. China . ;
| | - Cai-Ping Tan
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry , School of Chemistry , Sun Yat-Sen University , Guangzhou 510275 , P. R. China . ;
| | - Wen-Hua Chen
- Guangdong Provincial Key Laboratory of New Drug Screening , School of Pharmaceutical Sciences , Southern Medical University , Guangzhou 510515 , P. R. China .
| | - Liang-Nian Ji
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry , School of Chemistry , Sun Yat-Sen University , Guangzhou 510275 , P. R. China . ;
| | - Zong-Wan Mao
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry , School of Chemistry , Sun Yat-Sen University , Guangzhou 510275 , P. R. China . ;
| |
Collapse
|
24
|
Rather IA, Wagay SA, Hasnain MS, Ali R. New dimensions in calix[4]pyrrole: the land of opportunity in supramolecular chemistry. RSC Adv 2019; 9:38309-38344. [PMID: 35540221 PMCID: PMC9076024 DOI: 10.1039/c9ra07399j] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2019] [Accepted: 11/06/2019] [Indexed: 01/05/2023] Open
Abstract
The quest for receptors endowed with the selective complexation and detection of negatively charged species continues to receive substantial consideration within the scientific community worldwide. This study is encouraged by the utilization of anions in nature in a plethora of biological systems such as chloride channels and proteins and as polyanions for genetic information. The molecular recognition of anionic species is greatly interesting in terms of their favourable interactions. In this comprehensive review, in addition to giving accounts of some selected syntheses, we illustrated diverse applications ranging from molecular containers to ion transporters and drug carriers of a supramolecular receptor named calix[4]pyrrole. We believe that the present review may act as a catalyst in enhancing the novel applications of calix[4]pyrrole and its congeners in the other dimensions of science and technology. The quest for receptors endowed with the selective complexation and detection of negatively charged species continues to receive substantial consideration within the scientific community worldwide.![]()
Collapse
Affiliation(s)
| | | | | | - Rashid Ali
- Department of Chemistry
- Jamia Millia Islamia
- New Delhi-110025
- India
| |
Collapse
|
25
|
AlHaddad N, Rifai A, Kasprowiak A, Cazier-Dennin F, Danjou PE. Solid–liquid extraction of iodide and bromide from aqueous media by a new water-insoluble phenoxycalix[4]pyrrole-epichlorohydrin polymer. Org Biomol Chem 2019; 17:7330-7336. [DOI: 10.1039/c9ob01306g] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A phenoxycalix[4]pyrrole-epichlorohydrin based extractant was easily synthesized for the first time and used for iodide and bromide extraction from aqueous media.
Collapse
Affiliation(s)
- Nancy AlHaddad
- Unité de Chimie Environnementale et Interactions sur le Vivant
- EA 4492
- Université du Littoral Côte d'Opale
- Dunkerque
- France
| | - Ahmad Rifai
- Lebanese Atomic Energy Commission – Lebanese National Council for Scientific Research – B. P. 11-8281
- Beirut
- Lebanon
| | - Amaury Kasprowiak
- Département de Chimie
- Université du Littoral Côte d'Opale
- Dunkerque
- France
| | - Francine Cazier-Dennin
- Unité de Chimie Environnementale et Interactions sur le Vivant
- EA 4492
- Université du Littoral Côte d'Opale
- Dunkerque
- France
| | - Pierre-Edouard Danjou
- Unité de Chimie Environnementale et Interactions sur le Vivant
- EA 4492
- Université du Littoral Côte d'Opale
- Dunkerque
- France
| |
Collapse
|
26
|
Rifai A, AlHaddad N, Noun M, Abbas I, Tabbal M, Shatila R, Cazier-Dennin F, Danjou PE. A click mediated route to a novel fluorescent pyridino-extended calix[4]pyrrole sensor: synthesis and binding studies. Org Biomol Chem 2019; 17:5818-5825. [DOI: 10.1039/c9ob01106d] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This new cali[4]pyrrole entity displays molecular fluorescence recognition capabilities towards iron and mercury which are major environmental contaminants.
Collapse
Affiliation(s)
- Ahmad Rifai
- Lebanese Atomic Energy Commission
- National Council for Scientific Research
- 2260 Beirut
- Lebanon
| | - Nancy AlHaddad
- Unité de Chimie Environnementale et Interactions sur le Vivant (UCEIV)
- Université du Littoral Côte d'Opale
- 59140 Dunkerque
- France
- Lebanese Atomic Energy Commission
| | - Manale Noun
- Lebanese Atomic Energy Commission
- National Council for Scientific Research
- 2260 Beirut
- Lebanon
| | - Ismail Abbas
- Faculty of Sciences 1
- Lebanese University
- Hadath
- Lebanon
| | | | | | - Francine Cazier-Dennin
- Unité de Chimie Environnementale et Interactions sur le Vivant (UCEIV)
- Université du Littoral Côte d'Opale
- 59140 Dunkerque
- France
| | - Pierre-Edouard Danjou
- Unité de Chimie Environnementale et Interactions sur le Vivant (UCEIV)
- Université du Littoral Côte d'Opale
- 59140 Dunkerque
- France
| |
Collapse
|
27
|
Yuvayapan S, Aydogan A. Counter Cation Dependent and Stimuli Responsive Supramolecular Polymers Constructed by Calix[4]pyrrole Based Host–Guest Interactions. European J Org Chem 2018. [DOI: 10.1002/ejoc.201801663] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Samet Yuvayapan
- Department of Chemistry Istanbul Technical University Maslak 34469 Istanbul Turkey
| | - Abdullah Aydogan
- Department of Chemistry Istanbul Technical University Maslak 34469 Istanbul Turkey
| |
Collapse
|
28
|
Wu X, Howe ENW, Gale PA. Supramolecular Transmembrane Anion Transport: New Assays and Insights. Acc Chem Res 2018; 51:1870-1879. [PMID: 30063324 DOI: 10.1021/acs.accounts.8b00264] [Citation(s) in RCA: 101] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Transmembrane anion transport has been the focus of a number of supramolecular chemistry research groups for a number of years. Much of this research is driven by the biological relevance of anion transport and the search to find new treatments for diseases such as cystic fibrosis, which is caused by genetic problems leading to faulty cystic fibrosis transmembrane conductance regulator (CFTR) channels, which in turn lead to reduced chloride and bicarbonate transport through epithelial cell membranes. Considerable effort has been devoted to the development of new transporters, and our group along with others have been searching for combinations of organic scaffolds and anion binding groups that produce highly effective transporters that work at low concentration. These compounds may be used in the future as "channel replacement therapies", restoring the flux of anions through epithelial cell membranes and ameliorating the symptoms of cystic fibrosis. Less effort has been put into gaining a fundamental understanding of anion transport processes. Over the last 3 years, our group has developed a number of new transport assays that allow anion transport mechanisms to be determined. This Account covers the latest developments in this area, providing a concise review of the new techniques we can use to study anion transport processes individually without resorting to measurement of exchange processes and the new insights that these assays provide. The Account provides an overview of the effects of anion transporters on cells and an explanation of why many systems perturb pH gradients within cells in addition to transporting chloride. We discuss assays to determine whether anionophores facilitate chloride or HCl transport and how this latter assay can be modified to determine chloride versus proton selectivity in small-molecule anion receptors. We show how molecular design can be used to produce receptors that are capable of transporting chloride without perturbing pH gradients. We cover the role that anion transporters in the presence of fatty acids play in dissipating pH gradients across lipid bilayer membranes and the effect that this process has on chloride-selective transport. We also discuss how coupling of anion transport to cation transport by natural cationophores can be used to determine whether anion transport is electrogenic or electroneutral. In addition, we compare these new assays to the previously used chloride/nitrate exchange assay and show how this exchange assay can underestimate the chloride transport ability of certain receptors that are rate-limited by nitrate transport.
Collapse
Affiliation(s)
- Xin Wu
- School of Chemistry (F11), The University of Sydney, Sydney, NSW 2006, Australia
| | - Ethan N. W. Howe
- School of Chemistry (F11), The University of Sydney, Sydney, NSW 2006, Australia
| | - Philip A. Gale
- School of Chemistry (F11), The University of Sydney, Sydney, NSW 2006, Australia
| |
Collapse
|
29
|
Lichosyt D, Wasiłek S, Dydio P, Jurczak J. The Influence of Binding Site Geometry on Anion-Binding Selectivity: A Case Study of Macrocyclic Receptors Built on the Azulene Skeleton. Chemistry 2018; 24:11683-11692. [PMID: 29770986 DOI: 10.1002/chem.201801460] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Indexed: 11/07/2022]
Abstract
An understanding of host-guest noncovalent interactions lies at the very heart of supramolecular chemistry. Often a minute change to the structure of a host molecule's binding site can have a dramatic impact on a prospective host-guest binding event, changing the relative selectivity for potential guest molecules. With the overall goal of aiding the rational design of selective and effective receptors for anions, we have studied the influence of small perturbations in binding site geometry for a series of five closely related 20-membered macrocyclic tetra-amide receptors, constructed from two building blocks from a pool of azulene-5,7-bisamide, azulene-1,3-bisamide, and dipicolinic bisamide units. The solid-state structures revealed that the conformational preferences of the free receptors are driven by the inherent preferences of the building blocks, yet in some cases the macrocyclic topology is able to over-ride these to promote pre-organized conformations favorable for anion binding. The solid-state structures of the chloride complexes of these receptors revealed that although all the receptors can adapt to binding to the challenging small Cl- guest with all the NH groups, only receptors containing azulene-5,7-bisamide units form short and linear, and therefore strong, hydrogen-bonding interactions. These conclusions are further supported by studies in solution. Although all the receptors showed high affinities toward a series of anions (H2 PO4- , PhCO2- , Cl- , and Br- ), even in a highly competitive polar medium (DMSO/25 % MeOH), only receptors containing azulene-5,7-bisamide units exhibited non-inherent selectivity for Cl- over PhCO2- , breaking the Hofmeister trend of selectivity. The data presented herein highlight the privileged properties of the azulene-5,7-bisamide building block for binding to chloride anions and provide guidelines for the construction of selective and efficient anion receptors with prospective practical applications.
Collapse
Affiliation(s)
- Dawid Lichosyt
- Institute of Organic Chemistry, Polish Academy of Science, Kasprzaka 44/52, 01-224, Warsaw, Poland
| | - Sylwia Wasiłek
- Institute of Organic Chemistry, Polish Academy of Science, Kasprzaka 44/52, 01-224, Warsaw, Poland
| | - Paweł Dydio
- University of Strasbourg, CNRS, Institute of Science and Supramolecular Engineering (ISIS), UMR 7006, F-67000, Strasbourg, France
| | - Janusz Jurczak
- Institute of Organic Chemistry, Polish Academy of Science, Kasprzaka 44/52, 01-224, Warsaw, Poland
| |
Collapse
|
30
|
Andersen NN, Lisbjerg M, Eriksen K, Pittelkow M. Hemicucurbit[n
]urils and Their Derivatives - Synthesis and Applications. Isr J Chem 2018. [DOI: 10.1002/ijch.201700129] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Nicolaj N. Andersen
- Department of Chemistry; University of Copenhagen; Universitetsparken 5 DK-2100 Copenhagen Ø Denmark
| | - Micke Lisbjerg
- Department of Chemistry; University of Copenhagen; Universitetsparken 5 DK-2100 Copenhagen Ø Denmark
| | - Kristina Eriksen
- Department of Chemistry; University of Copenhagen; Universitetsparken 5 DK-2100 Copenhagen Ø Denmark
| | - Michael Pittelkow
- Department of Chemistry; University of Copenhagen; Universitetsparken 5 DK-2100 Copenhagen Ø Denmark
| |
Collapse
|
31
|
Ghosh TK, Ghosh P. Balancing the acidity of the pendant urea arm of bis-heteroleptic ruthenium(ii) complex containing pyridyl triazole for improved oxyanion recognition. Dalton Trans 2018; 47:7561-7570. [DOI: 10.1039/c8dt01023d] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The effect of the acidity of the pendant urea –NH protons on oxyanion recognition, luminiscence OFF–ON sensing and extraction is demonstrated.
Collapse
Affiliation(s)
- Tamal Kanti Ghosh
- Tamal Kanti Ghosh and Pradyut Ghosh
- Department of Inorganic Chemistry
- Indian Association for the Cultivation of Science
- Kolkata 700032
- India
| | - Pradyut Ghosh
- Tamal Kanti Ghosh and Pradyut Ghosh
- Department of Inorganic Chemistry
- Indian Association for the Cultivation of Science
- Kolkata 700032
- India
| |
Collapse
|
32
|
Kim H, Hong KI, Lee JH, Kang P, Choi MG, Jang WD. Triazole-bearing calixpyrroles: strong halide binding affinities through multiple N–H and C–H hydrogen bonds. Chem Commun (Camb) 2018; 54:10863-10865. [DOI: 10.1039/c8cc06385k] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Triazole-bearing calixpyrroles (TCPs) were synthesized as artificial anion binding receptors.
Collapse
Affiliation(s)
| | - Kyeong-Im Hong
- Department of Chemistry
- Yonsei University
- Seoul 03722
- Korea
| | - Jeong Heon Lee
- Department of Chemistry
- Yonsei University
- Seoul 03722
- Korea
| | - Philjae Kang
- Department of Chemistry
- Yonsei University
- Seoul 03722
- Korea
| | - Moon-Gun Choi
- Department of Chemistry
- Yonsei University
- Seoul 03722
- Korea
| | - Woo-Dong Jang
- Department of Chemistry
- Yonsei University
- Seoul 03722
- Korea
| |
Collapse
|
33
|
Marques I, Costa PMR, Q. Miranda M, Busschaert N, Howe ENW, Clarke HJ, Haynes CJE, Kirby IL, Rodilla AM, Pérez-Tomás R, Gale PA, Félix V. Full elucidation of the transmembrane anion transport mechanism of squaramides using in silico investigations. Phys Chem Chem Phys 2018; 20:20796-20811. [DOI: 10.1039/c8cp02576b] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The anion carrier mechanism promoted by squaramide-based molecules has been elucidated by molecular dynamics and chloride efflux studies.
Collapse
Affiliation(s)
- Igor Marques
- Department of Chemistry
- CICECO – Aveiro Institute of Materials
- University of Aveiro
- Aveiro
- Portugal
| | - Pedro M. R. Costa
- Department of Chemistry
- CICECO – Aveiro Institute of Materials
- University of Aveiro
- Aveiro
- Portugal
| | - Margarida Q. Miranda
- Department of Chemistry
- CICECO – Aveiro Institute of Materials
- University of Aveiro
- Aveiro
- Portugal
| | | | - Ethan N. W. Howe
- Chemistry
- University of Southampton
- Southampton
- UK
- School of Chemistry
| | | | | | | | - Ananda M. Rodilla
- University of Barcelona
- Faculty of Medicine
- Dept. Pathology and Experimental Therapeutics
- CCBRG
- Barcelona
| | - Ricardo Pérez-Tomás
- University of Barcelona
- Faculty of Medicine
- Dept. Pathology and Experimental Therapeutics
- CCBRG
- Barcelona
| | - Philip A. Gale
- Chemistry
- University of Southampton
- Southampton
- UK
- School of Chemistry
| | - Vítor Félix
- Department of Chemistry
- CICECO – Aveiro Institute of Materials
- University of Aveiro
- Aveiro
- Portugal
| |
Collapse
|
34
|
Ghosh TK, Chakraborty S, Chowdhury B, Ghosh P. Bis-Heteroleptic Ruthenium(II) Complex of Pendant Urea Functionalized Pyridyl Triazole and Phenathroline for Recognition, Sensing, and Extraction of Oxyanions. Inorg Chem 2017; 56:5371-5382. [DOI: 10.1021/acs.inorgchem.7b00473] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Tamal Kanti Ghosh
- Department of Inorganic Chemistry, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Kolkata 700032, India
| | - Sourav Chakraborty
- Department of Inorganic Chemistry, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Kolkata 700032, India
| | - Bijit Chowdhury
- Department of Inorganic Chemistry, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Kolkata 700032, India
| | - Pradyut Ghosh
- Department of Inorganic Chemistry, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Kolkata 700032, India
| |
Collapse
|
35
|
Li Z, Chen Y, Yuan DQ, Chen WH. Synthesis of a dimeric 3α-hydroxy-7α,12α-diamino-5β-cholan-24-oate conjugate and its derivatives, and the effect of lipophilicity on their anion transport efficacy. Org Biomol Chem 2017; 15:2831-2840. [DOI: 10.1039/c7ob00289k] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
A dimeric 3α-hydroxy-7α,12α-diamino-5β-cholan-24-oate conjugate and its derivatives were synthesized, and lipophilicity was found to significantly affect their anion transport efficacy.
Collapse
Affiliation(s)
- Zhi Li
- Guangdong Provincial Key Laboratory of New Drug Screening
- School of Pharmaceutical Sciences
- Southern Medical University
- Guangzhou 510515
- P. R. China
| | - Yun Chen
- Guangdong Provincial Key Laboratory of New Drug Screening
- School of Pharmaceutical Sciences
- Southern Medical University
- Guangzhou 510515
- P. R. China
| | - De-Qi Yuan
- Faculty of Pharmaceutical Sciences
- Kobe Gakuin University
- Kobe 650-8586
- Japan
| | - Wen-Hua Chen
- Guangdong Provincial Key Laboratory of New Drug Screening
- School of Pharmaceutical Sciences
- Southern Medical University
- Guangzhou 510515
- P. R. China
| |
Collapse
|
36
|
Dabrowa K, Ulatowski F, Lichosyt D, Jurczak J. Catching the chloride: searching for non-Hofmeister selectivity behavior in systematically varied polyamide macrocyclic receptors. Org Biomol Chem 2017; 15:5927-5943. [DOI: 10.1039/c7ob01385j] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Searching for regularities in the large set of structurally diverse macrocyclic probes allowed us to determine the structural requirements for the selective recognition of chloride over more basic anions such as H2PO4− or RCO2− by a putative anion receptor.
Collapse
Affiliation(s)
- Kajetan Dabrowa
- Institute of Organic Chemistry
- Polish Academy of Sciences
- 01-224 Warsaw
- Poland
| | - Filip Ulatowski
- Institute of Organic Chemistry
- Polish Academy of Sciences
- 01-224 Warsaw
- Poland
| | - Dawid Lichosyt
- Institute of Organic Chemistry
- Polish Academy of Sciences
- 01-224 Warsaw
- Poland
| | - Janusz Jurczak
- Institute of Organic Chemistry
- Polish Academy of Sciences
- 01-224 Warsaw
- Poland
| |
Collapse
|
37
|
Gale PA, Davis JT, Quesada R. Anion transport and supramolecular medicinal chemistry. Chem Soc Rev 2017; 46:2497-2519. [DOI: 10.1039/c7cs00159b] [Citation(s) in RCA: 219] [Impact Index Per Article: 27.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
New approaches to the transmembrane transport of anions are discussed in this review.
Collapse
Affiliation(s)
- Philip A. Gale
- School of Chemistry (F11)
- The University of Sydney
- Australia
| | - Jeffery T. Davis
- Department of Chemistry and Biochemistry
- University of Maryland
- College Park
- USA
| | - Roberto Quesada
- Departmento de Química
- Universidad de Burgos
- 09001 Burgos
- Spain
| |
Collapse
|
38
|
Clarke HJ, Howe ENW, Wu X, Sommer F, Yano M, Light ME, Kubik S, Gale PA. Transmembrane Fluoride Transport: Direct Measurement and Selectivity Studies. J Am Chem Soc 2016; 138:16515-16522. [PMID: 27998094 DOI: 10.1021/jacs.6b10694] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Fluoride has been overlooked as a target in the development of synthetic anion transporters despite natural fluoride transport channels being recently discovered. In this paper we report the direct measurement of fluoride transport across lipid bilayers facilitated by a series of strapped calix[4]pyrroles and show that these compounds facilitate transport via an electrogenic mechanism (determined using valinomycin and monensin coupled transport assays and an additional osmotic response assay). An HPTS transport assay was used to quantify this electrogenic process and assess the interference of naturally occurring fatty acids with the transport process and Cl- over H+/OH- transport selectivity.
Collapse
Affiliation(s)
- Harriet J Clarke
- Chemistry, University of Southampton , Southampton SO17 1BJ, U.K
| | - Ethan N W Howe
- Chemistry, University of Southampton , Southampton SO17 1BJ, U.K
| | - Xin Wu
- Chemistry, University of Southampton , Southampton SO17 1BJ, U.K
| | - Fabian Sommer
- Department of Chemistry-Organic Chemistry, Kaiserslautern University of Technology , Erwin-Schrödinger-Straße, 67663 Kaiserslautern, Germany
| | - Masafumi Yano
- Chemistry, University of Southampton , Southampton SO17 1BJ, U.K
| | - Mark E Light
- Chemistry, University of Southampton , Southampton SO17 1BJ, U.K
| | - Stefan Kubik
- Department of Chemistry-Organic Chemistry, Kaiserslautern University of Technology , Erwin-Schrödinger-Straße, 67663 Kaiserslautern, Germany
| | - Philip A Gale
- Chemistry, University of Southampton , Southampton SO17 1BJ, U.K
| |
Collapse
|
39
|
Bagwill C, Anderson C, Sullivan E, Manohara V, Murthy P, Kirkpatrick CC, Stalcup A, Lewis M. Predicting the Strength of Anion−π Interactions of Substituted Benzenes: the Development of Anion−π Binding Substituent Constants. J Phys Chem A 2016; 120:9235-9243. [DOI: 10.1021/acs.jpca.6b06276] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
- Christina Bagwill
- Department
of Chemistry, Saint Louis University, 3501 Laclede Avenue, St. Louis, Missouri 63103, United States
| | - Christa Anderson
- Department
of Chemistry, Saint Louis University, 3501 Laclede Avenue, St. Louis, Missouri 63103, United States
| | - Elizabeth Sullivan
- Department
of Chemistry, Saint Louis University, 3501 Laclede Avenue, St. Louis, Missouri 63103, United States
| | - Varun Manohara
- Department
of Chemistry, Saint Louis University, 3501 Laclede Avenue, St. Louis, Missouri 63103, United States
| | - Prithvi Murthy
- Department
of Chemistry, Saint Louis University, 3501 Laclede Avenue, St. Louis, Missouri 63103, United States
| | - Charles C. Kirkpatrick
- Department
of Chemistry, Saint Louis University, 3501 Laclede Avenue, St. Louis, Missouri 63103, United States
| | - Apryll Stalcup
- Irish
Separation Science Cluster, National Centre for Sensor Research, Dublin City University, Glasnevin, Dublin 9, Ireland
| | - Michael Lewis
- Department
of Chemistry, Saint Louis University, 3501 Laclede Avenue, St. Louis, Missouri 63103, United States
| |
Collapse
|
40
|
Zurro M, Mancheño OG. 1,2,3,-Triazole-Based Catalysts: From Metal- to Supramolecular Organic Catalysis. CHEM REC 2016; 17:485-498. [DOI: 10.1002/tcr.201600104] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2016] [Accepted: 09/12/2016] [Indexed: 12/22/2022]
Affiliation(s)
- Mercedes Zurro
- Institute for Organic Chemistry; University of Regensburg; Universitätsstrasse 31 93053 Regensburg Germany
| | - Olga García Mancheño
- Institute for Organic Chemistry; University of Regensburg; Universitätsstrasse 31 93053 Regensburg Germany
- Straubing Center of Science for Renewable Resources (WZS); Schulgasse 16 94315 Straubing Germany
| |
Collapse
|
41
|
Li Z, Deng LQ, Chen Y, Wu T, Chen WH. Efficient transmembrane anion transport mediated by a bis(imidazolyl)-functionalized bis(choloyl) conjugate. Bioorg Med Chem Lett 2016; 26:3665-8. [DOI: 10.1016/j.bmcl.2016.05.089] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2016] [Revised: 05/29/2016] [Accepted: 05/31/2016] [Indexed: 11/25/2022]
|
42
|
Shi S, Zhu Y, Li X, Yuan X, Ma T, Yuan WL, Tao GH, Feng W, Yuan L. Ion-pair recognition of amidinium salts by partially hydrogen-bonded heteroditopic cyclo[6]aramide. RSC Adv 2016. [DOI: 10.1039/c6ra08202e] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Convergent heteroditopic cyclo[6]aramide is able to serve as ion-pair receptor for binding biologically important types of amidinium hydrochlorides as contact ion pair through host–guest interactions.
Collapse
Affiliation(s)
- Shanshan Shi
- College of Chemistry
- Key Laboratory for Radiation Physics and Technology of Ministry of Education
- Institute of Nuclear Science and Technology
- Sichuan University
- Chengdu 610064
| | - Yumin Zhu
- College of Chemistry
- Key Laboratory for Radiation Physics and Technology of Ministry of Education
- Institute of Nuclear Science and Technology
- Sichuan University
- Chengdu 610064
| | - Xiaowei Li
- College of Chemistry
- Key Laboratory for Radiation Physics and Technology of Ministry of Education
- Institute of Nuclear Science and Technology
- Sichuan University
- Chengdu 610064
| | - Xiangyang Yuan
- College of Chemistry
- Key Laboratory for Radiation Physics and Technology of Ministry of Education
- Institute of Nuclear Science and Technology
- Sichuan University
- Chengdu 610064
| | - Teng Ma
- College of Chemistry
- Key Laboratory for Radiation Physics and Technology of Ministry of Education
- Institute of Nuclear Science and Technology
- Sichuan University
- Chengdu 610064
| | - Wen-Li Yuan
- College of Chemistry
- Key Laboratory for Radiation Physics and Technology of Ministry of Education
- Institute of Nuclear Science and Technology
- Sichuan University
- Chengdu 610064
| | - Guo-Hong Tao
- College of Chemistry
- Key Laboratory for Radiation Physics and Technology of Ministry of Education
- Institute of Nuclear Science and Technology
- Sichuan University
- Chengdu 610064
| | - Wen Feng
- College of Chemistry
- Key Laboratory for Radiation Physics and Technology of Ministry of Education
- Institute of Nuclear Science and Technology
- Sichuan University
- Chengdu 610064
| | - Lihua Yuan
- College of Chemistry
- Key Laboratory for Radiation Physics and Technology of Ministry of Education
- Institute of Nuclear Science and Technology
- Sichuan University
- Chengdu 610064
| |
Collapse
|
43
|
Shang J, Zhao W, Li X, Wang Y, Jiang H. Aryl-triazole foldamers incorporating a pyridinium motif for halide anion binding in aqueous media. Chem Commun (Camb) 2016; 52:4505-8. [DOI: 10.1039/c5cc10422j] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Aryl-triazole foldamers incorporating a pyridinium motif are shown to be strongly halide anion binding in aqueous solvent mixtures.
Collapse
Affiliation(s)
- Jie Shang
- Key Laboratory of Radiopharmaceuticals
- Ministry of Education
- College of Chemistry
- Beijing Normal University
- Beijing 100875
| | - Wei Zhao
- Key Laboratory of Radiopharmaceuticals
- Ministry of Education
- College of Chemistry
- Beijing Normal University
- Beijing 100875
| | - Xichen Li
- Key Laboratory of Radiopharmaceuticals
- Ministry of Education
- College of Chemistry
- Beijing Normal University
- Beijing 100875
| | - Ying Wang
- Key Laboratory of Radiopharmaceuticals
- Ministry of Education
- College of Chemistry
- Beijing Normal University
- Beijing 100875
| | - Hua Jiang
- Key Laboratory of Radiopharmaceuticals
- Ministry of Education
- College of Chemistry
- Beijing Normal University
- Beijing 100875
| |
Collapse
|
44
|
Van Rossom W, Asby DJ, Tavassoli A, Gale PA. Perenosins: a new class of anion transporter with anti-cancer activity. Org Biomol Chem 2016; 14:2645-50. [DOI: 10.1039/c6ob00002a] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A new class of anion transporter named ‘perenosins’ consisting of a pyrrole linked through an imine to either an indole, benzimidazole or indazole is reported.
Collapse
Affiliation(s)
- Wim Van Rossom
- Department of Chemistry
- University of Southampton
- Southampton
- UK
| | - Daniel J. Asby
- Department of Chemistry
- University of Southampton
- Southampton
- UK
| | - Ali Tavassoli
- Department of Chemistry
- University of Southampton
- Southampton
- UK
| | - Philip A. Gale
- Department of Chemistry
- University of Southampton
- Southampton
- UK
| |
Collapse
|
45
|
Wang XD, Li S, Ao YF, Wang QQ, Huang ZT, Wang DX. Oxacalix[2]arene[2]triazine based ion-pair transporters. Org Biomol Chem 2016; 14:330-4. [DOI: 10.1039/c5ob02291f] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Heteracalixaromatics are a new generation of macrocyclic hosts showing a unique structure and versatile recognition properties towards various guests.
Collapse
Affiliation(s)
- Xu-Dong Wang
- Beijing National Laboratory for Molecular Sciences
- CAS Key Laboratory of Molecular Recognition and Function
- Institute of Chemistry
- Beijing
- China
| | - Sen Li
- Beijing National Laboratory for Molecular Sciences
- CAS Key Laboratory of Molecular Recognition and Function
- Institute of Chemistry
- Beijing
- China
| | - Yu-Fei Ao
- Beijing National Laboratory for Molecular Sciences
- CAS Key Laboratory of Molecular Recognition and Function
- Institute of Chemistry
- Beijing
- China
| | - Qi-Qiang Wang
- Beijing National Laboratory for Molecular Sciences
- CAS Key Laboratory of Molecular Recognition and Function
- Institute of Chemistry
- Beijing
- China
| | - Zhi-Tang Huang
- Beijing National Laboratory for Molecular Sciences
- CAS Key Laboratory of Molecular Recognition and Function
- Institute of Chemistry
- Beijing
- China
| | - De-Xian Wang
- Beijing National Laboratory for Molecular Sciences
- CAS Key Laboratory of Molecular Recognition and Function
- Institute of Chemistry
- Beijing
- China
| |
Collapse
|
46
|
Busschaert N, Caltagirone C, Van Rossom W, Gale PA. Applications of Supramolecular Anion Recognition. Chem Rev 2015; 115:8038-155. [PMID: 25996028 DOI: 10.1021/acs.chemrev.5b00099] [Citation(s) in RCA: 894] [Impact Index Per Article: 89.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
| | - Claudia Caltagirone
- ‡Dipartimento di Scienze Chimiche e Geologiche, Università degli Studi di Cagliari, S.S. 554 Bivio per Sestu, 09042 Monserrato, Cagliari, Italy
| | - Wim Van Rossom
- †Chemistry, University of Southampton, Southampton SO17 1BJ, United Kingdom
| | - Philip A Gale
- †Chemistry, University of Southampton, Southampton SO17 1BJ, United Kingdom
| |
Collapse
|
47
|
Merckx T, Haynes CJE, Karagiannidis LE, Clarke HJ, Holder K, Kelly A, Tizzard GJ, Coles SJ, Verwilst P, Gale PA, Dehaen W. Anion binding and transport properties of cyclic 2,6-bis(1,2,3-triazol-1-yl)pyridines. Org Biomol Chem 2015; 13:1654-61. [PMID: 25435029 DOI: 10.1039/c4ob02236j] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
A series of cyclic 2,6-bis-(1,2,3-triazolyl)-pyridine anion receptors with thiourea functionalities were synthesized by click reaction of 2,6-diazidopyridine with protected propargylamine followed by condensation of a bisthiocyanate derivative with a series of diamines. Their chloride binding affinities as well as their transport properties in POPC bilayers were examined. These receptors were found to function as anion carriers, which can mediate both Cl(-)/NO3(-) antiport and H(+)/Cl(-) symport, and the transport activity of these hosts were dominated by their lipophilicity.
Collapse
Affiliation(s)
- Tamara Merckx
- Molecular Design and Synthesis, Department of Chemistry, KU Leuven, Celestijnenlaan 200F, 3001 Leuven, Belgium.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Lisbjerg M, Valkenier H, Jessen BM, Al-Kerdi H, Davis AP, Pittelkow M. Biotin[6]uril Esters: Chloride-Selective Transmembrane Anion Carriers Employing C-H···Anion Interactions. J Am Chem Soc 2015; 137:4948-51. [PMID: 25851041 DOI: 10.1021/jacs.5b02306] [Citation(s) in RCA: 111] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Biotin[6]uril hexaesters represent a new class of anionophores which operate solely through C-H···anion interactions. The use of soft H-bond donors favors the transport of less hydrophilic anions (e.g., Cl(-), NO3(-)) over hard, stongly hydrated anions (e.g., HCO3(-) and SO4(2-)). Especially relevant is the selectivity between chloride and bicarbonate, the major inorganic anions in biological systems.
Collapse
Affiliation(s)
- Micke Lisbjerg
- †Department of Chemistry, University of Copenhagen, Universitetsparken 5, DK-2100 Copenhagen Ø, Denmark.,‡School of Chemistry, University of Bristol, Cantock's Close, Bristol BS8 1TS, United Kingdom
| | - Hennie Valkenier
- ‡School of Chemistry, University of Bristol, Cantock's Close, Bristol BS8 1TS, United Kingdom
| | - Bo M Jessen
- †Department of Chemistry, University of Copenhagen, Universitetsparken 5, DK-2100 Copenhagen Ø, Denmark
| | - Hana Al-Kerdi
- †Department of Chemistry, University of Copenhagen, Universitetsparken 5, DK-2100 Copenhagen Ø, Denmark
| | - Anthony P Davis
- ‡School of Chemistry, University of Bristol, Cantock's Close, Bristol BS8 1TS, United Kingdom
| | - Michael Pittelkow
- †Department of Chemistry, University of Copenhagen, Universitetsparken 5, DK-2100 Copenhagen Ø, Denmark
| |
Collapse
|
49
|
Saha I, Lee JT, Lee CH. Recent Advancements in Calix[4]pyrrole-Based Anion-Receptor Chemistry. European J Org Chem 2015. [DOI: 10.1002/ejoc.201403701] [Citation(s) in RCA: 75] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
50
|
Deng LQ, Li Z, Lu YM, Chen JX, Zhou CQ, Wang B, Chen WH. Synthesis and transmembrane anion/cation symport activity of a rigid bis(choloyl) conjugate functionalized with guanidino groups. Bioorg Med Chem Lett 2015; 25:745-8. [DOI: 10.1016/j.bmcl.2015.01.015] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2014] [Revised: 01/06/2015] [Accepted: 01/08/2015] [Indexed: 11/27/2022]
|