1
|
Tang J, Zhao C, Li S, Zhang J, Zheng X, Yuan M, Fu H, Li R, Chen H. Tandem Ring-Contraction/Regioselective C-H Iodination Reaction of Pyridinium Salts. J Org Chem 2023. [PMID: 36757877 DOI: 10.1021/acs.joc.2c02472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Abstract
A facile route for direct access to the 4-iodopyrrole-2-carbaldehydes from pyridinium salts has been successfully developed, which undergoes cascade pyrrole-2-carbaldehydes construction/selective C4 position iodination process. Using Na2S2O8 as an oxidant and readily available sodium iodide as an iodine source, a variety of 4-iodopyrrole-2-carbaldehydes were obtained in good to excellent yields. Atom- and step-economy, good functional group tolerance, high regioselectivity, as well as mild conditions entail this transformation an alternative strategy for enriching pyrroles library.
Collapse
Affiliation(s)
- Juan Tang
- Key Laboratory of Green Chemistry & Technology, Ministry of Education College of Chemistry, Sichuan University, Chengdu 610064, P. R. China.,Analytical & Testing Center, Sichuan University, Chengdu, Sichuan 610064, P. R. China
| | - Chaoqun Zhao
- Key Laboratory of Green Chemistry & Technology, Ministry of Education College of Chemistry, Sichuan University, Chengdu 610064, P. R. China.,Analytical & Testing Center, Sichuan University, Chengdu, Sichuan 610064, P. R. China
| | - Shun Li
- Key Laboratory of Green Chemistry & Technology, Ministry of Education College of Chemistry, Sichuan University, Chengdu 610064, P. R. China.,Analytical & Testing Center, Sichuan University, Chengdu, Sichuan 610064, P. R. China
| | - Jing Zhang
- Key Laboratory of Green Chemistry & Technology, Ministry of Education College of Chemistry, Sichuan University, Chengdu 610064, P. R. China.,Analytical & Testing Center, Sichuan University, Chengdu, Sichuan 610064, P. R. China
| | - Xueli Zheng
- Key Laboratory of Green Chemistry & Technology, Ministry of Education College of Chemistry, Sichuan University, Chengdu 610064, P. R. China.,Analytical & Testing Center, Sichuan University, Chengdu, Sichuan 610064, P. R. China
| | - Maolin Yuan
- Key Laboratory of Green Chemistry & Technology, Ministry of Education College of Chemistry, Sichuan University, Chengdu 610064, P. R. China.,Analytical & Testing Center, Sichuan University, Chengdu, Sichuan 610064, P. R. China
| | - Haiyan Fu
- Key Laboratory of Green Chemistry & Technology, Ministry of Education College of Chemistry, Sichuan University, Chengdu 610064, P. R. China.,Analytical & Testing Center, Sichuan University, Chengdu, Sichuan 610064, P. R. China
| | - Ruixiang Li
- Key Laboratory of Green Chemistry & Technology, Ministry of Education College of Chemistry, Sichuan University, Chengdu 610064, P. R. China.,Analytical & Testing Center, Sichuan University, Chengdu, Sichuan 610064, P. R. China
| | - Hua Chen
- Key Laboratory of Green Chemistry & Technology, Ministry of Education College of Chemistry, Sichuan University, Chengdu 610064, P. R. China.,Analytical & Testing Center, Sichuan University, Chengdu, Sichuan 610064, P. R. China
| |
Collapse
|
2
|
García-Ramírez J, González-Cortés LA, Miranda LD. A Modular Synthesis of the Rhazinilam Family of Alkaloids and Analogs Thereof. Org Lett 2022; 24:8093-8097. [PMID: 36095152 DOI: 10.1021/acs.orglett.2c02446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A short, modular strategy for synthesizing three representative alkaloids of the (±)-rhazinilam family and 10 non-natural analogs is described. The protocol involves a radical addition/cyclization cascade reaction that assembles the tetrahydroindolizine system decorated with appropriate groups for a subsequent Pd-mediated cyclization, which generates the nine-membered lactam.
Collapse
Affiliation(s)
- Jazmín García-Ramírez
- Instituto de Química, Universidad Nacional Autónoma de México, Circuito Exterior S. N., Ciudad Universitaria, Ciudad de México, 04510, Mexico
| | - Luis A González-Cortés
- Instituto de Química, Universidad Nacional Autónoma de México, Circuito Exterior S. N., Ciudad Universitaria, Ciudad de México, 04510, Mexico
| | - Luis D Miranda
- Instituto de Química, Universidad Nacional Autónoma de México, Circuito Exterior S. N., Ciudad Universitaria, Ciudad de México, 04510, Mexico
| |
Collapse
|
3
|
Sirindil F, Weibel JM, Pale P, Blanc A. Rhazinilam-leuconolam family of natural products: a half century of total synthesis. Nat Prod Rep 2022; 39:1574-1590. [PMID: 35699109 DOI: 10.1039/d2np00026a] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Covering: 1972 to 2021The rhazinilam family of natural products exhibits a main structure with a stereogenic quaternary carbon and a tetrahydroindolizine core imbedded within a 9-membered macrocycle, imposing axial chirality. This unique architecture combined with their taxol-like antimitotic activities have attracted various attention, especially from synthetic chemists, notably in the past decade. The present review describes the known total and formal syntheses of the members of the rhazinilam family (rhazinilam, rhazinal, leuconolam and kopsiyunnanines), according to the strategy developed.
Collapse
Affiliation(s)
- Fatih Sirindil
- Laboratoire de Synthèse, Réactivité Organiques et Catalyse, Institut de Chimie, UMR 7177 - CNRS, Université de Strasbourg, 4 Rue Blaise Pascal, 67070 Strasbourg, France.
| | - Jean-Marc Weibel
- Laboratoire de Synthèse, Réactivité Organiques et Catalyse, Institut de Chimie, UMR 7177 - CNRS, Université de Strasbourg, 4 Rue Blaise Pascal, 67070 Strasbourg, France.
| | - Patrick Pale
- Laboratoire de Synthèse, Réactivité Organiques et Catalyse, Institut de Chimie, UMR 7177 - CNRS, Université de Strasbourg, 4 Rue Blaise Pascal, 67070 Strasbourg, France.
| | - Aurélien Blanc
- Laboratoire de Synthèse, Réactivité Organiques et Catalyse, Institut de Chimie, UMR 7177 - CNRS, Université de Strasbourg, 4 Rue Blaise Pascal, 67070 Strasbourg, France.
| |
Collapse
|
4
|
Hernández‐Lladó P, Garrec K, Schmitt DC, Burton JW. Transition Metal‐Free, Visible Light‐Mediated Radical Cyclisation of Malonyl Radicals onto 5‐Ring Heteroaromatics. Adv Synth Catal 2022. [DOI: 10.1002/adsc.202101451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Pol Hernández‐Lladó
- Department of Chemistry Chemistry Research Laboratory University of Oxford Mansfield Road Oxford OX1 3TA UK
| | - Kilian Garrec
- Department of Chemistry Chemistry Research Laboratory University of Oxford Mansfield Road Oxford OX1 3TA UK
| | - Daniel C. Schmitt
- Medicine Design Pfizer Worldwide Research Development and Medical Groton Connecticut 06340 United States
| | - Jonathan W. Burton
- Department of Chemistry Chemistry Research Laboratory University of Oxford Mansfield Road Oxford OX1 3TA UK
| |
Collapse
|
6
|
Olivier WJ, Smith JA, Bissember AC. Methods for the synthesis of annulated pyrroles via cyclisation strategies. Org Biomol Chem 2018; 16:1216-1226. [DOI: 10.1039/c7ob03144k] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
In this report, we review the methods that have been employed to synthesise annulated pyrroles.
Collapse
Affiliation(s)
- Wesley J. Olivier
- School of Physical Sciences – Chemistry
- University of Tasmania
- Hobart
- Australia
| | - Jason A. Smith
- School of Physical Sciences – Chemistry
- University of Tasmania
- Hobart
- Australia
| | - Alex C. Bissember
- School of Physical Sciences – Chemistry
- University of Tasmania
- Hobart
- Australia
| |
Collapse
|
8
|
Gao S, Zhang Y, Dong J, Chen N, Xu J. Synthesis of functionalized 5-substituted thiazolidine-2-thiones via adscititious xanthate-promoted radical cyclization of allyl(alkyl/aryl)dithiocarbamates. Org Biomol Chem 2016; 14:1002-12. [DOI: 10.1039/c5ob02297e] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An adscititious radical precursor-promoted cyclization is designed and realized in efficient synthesis of functionalized 5-substituted thiazolidine-2-thiones from alkyl allyl(alkyl/aryl)dithiocarbamates.
Collapse
Affiliation(s)
- Simiao Gao
- State Key Laboratory of Chemical Resource Engineering
- Department of Organic Chemistry
- Faculty of Science
- Beijing University of Chemical Technology
- Beijing 100029
| | - Yu Zhang
- State Key Laboratory of Chemical Resource Engineering
- Department of Organic Chemistry
- Faculty of Science
- Beijing University of Chemical Technology
- Beijing 100029
| | - Jun Dong
- State Key Laboratory of Chemical Resource Engineering
- Department of Organic Chemistry
- Faculty of Science
- Beijing University of Chemical Technology
- Beijing 100029
| | - Ning Chen
- State Key Laboratory of Chemical Resource Engineering
- Department of Organic Chemistry
- Faculty of Science
- Beijing University of Chemical Technology
- Beijing 100029
| | - Jiaxi Xu
- State Key Laboratory of Chemical Resource Engineering
- Department of Organic Chemistry
- Faculty of Science
- Beijing University of Chemical Technology
- Beijing 100029
| |
Collapse
|
11
|
Chen DYK, Youn SW. C-H activation: a complementary tool in the total synthesis of complex natural products. Chemistry 2012; 18:9452-74. [PMID: 22736530 DOI: 10.1002/chem.201201329] [Citation(s) in RCA: 451] [Impact Index Per Article: 37.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2012] [Indexed: 02/05/2023]
Abstract
The recent advent of transition-metal mediated C-H activation is revolutionizing the synthetic field and gradually infusing a "C-H activation mind-set" in both students and practitioners of organic synthesis. As a powerful testament of this emerging synthetic tool, applications of C-H activation in the context of total synthesis of complex natural products are beginning to blossom. Herein, recently completed total syntheses showcasing creative and ingenious incorporation of C-H activation as a strategic manoeuver are compared with their "non-C-H activation" counterparts, illuminating a new paradigm in strategic synthetic design.
Collapse
Affiliation(s)
- David Y-K Chen
- Department of Chemistry, Seoul National University, Gwanak-ro, Gwanak-gu, Seoul 151-742, South Korea.
| | | |
Collapse
|