1
|
El Harrar T, Davari MD, Jaeger KE, Schwaneberg U, Gohlke H. Critical assessment of structure-based approaches to improve protein resistance in aqueous ionic liquids by enzyme-wide saturation mutagenesis. Comput Struct Biotechnol J 2022; 20:399-409. [PMID: 35070165 PMCID: PMC8752993 DOI: 10.1016/j.csbj.2021.12.018] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Revised: 12/10/2021] [Accepted: 12/11/2021] [Indexed: 12/12/2022] Open
Abstract
Ionic liquids (IL) and aqueous ionic liquids (aIL) are attractive (co-)solvents for green industrial processes involving biocatalysts, but often reduce enzyme activity. Experimental and computational methods are applied to predict favorable substitution sites and, most often, subsequent site-directed surface charge modifications are introduced to enhance enzyme resistance towards aIL. However, almost no studies evaluate the prediction precision with random mutagenesis or the application of simple data-driven filtering processes. Here, we systematically and rigorously evaluated the performance of 22 previously described structure-based approaches to increase enzyme resistance to aIL based on an experimental complete site-saturation mutagenesis library of Bacillus subtilis Lipase A (BsLipA) screened against four aIL. We show that, surprisingly, most of the approaches yield low gain-in-precision (GiP) values, particularly for predicting relevant positions: 14 approaches perform worse than random mutagenesis. Encouragingly, exploiting experimental information on the thermostability of BsLipA or structural weak spots of BsLipA predicted by rigidity theory yields GiP = 3.03 and 2.39 for relevant variants and GiP = 1.61 and 1.41 for relevant positions. Combining five simple-to-compute physicochemical and evolutionary properties substantially increases the precision of predicting relevant variants and positions, yielding GiP = 3.35 and 1.29. Finally, combining these properties with predictions of structural weak spots identified by rigidity theory additionally improves GiP for relevant variants up to 4-fold to ∼10 and sustains or increases GiP for relevant positions, resulting in a prediction precision of ∼90% compared to ∼9% in random mutagenesis. This combination should be applicable to other enzyme systems for guiding protein engineering approaches towards improved aIL resistance.
Collapse
Affiliation(s)
- Till El Harrar
- Institute of Biotechnology, RWTH Aachen University, 52074 Aachen, Germany
- John-von-Neumann-Institute for Computing (NIC), Jülich Supercomputing Centre (JSC), Institute of Biological Information Processing (IBI-7: Structural Biochemistry), and Institute of Bio- and Geosciences (IBG-4: Bioinformatics), Forschungszentrum Jülich GmbH, 52428 Jülich, Germany
| | - Mehdi D. Davari
- Department of Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry, 06120 Halle, Germany
| | - Karl-Erich Jaeger
- Institute of Molecular Enzyme Technology, Heinrich Heine University Düsseldorf, 52428 Jülich, Germany
- Institute of Bio- and Geosciences IBG-1: Biotechnology, Forschungszentrum Jülich GmbH, 52428 Jülich, Germany
| | - Ulrich Schwaneberg
- Institute of Biotechnology, RWTH Aachen University, 52074 Aachen, Germany
- DWI – Leibniz Institute for Interactive Materials e.V., 52074 Aachen, Germany
| | - Holger Gohlke
- John-von-Neumann-Institute for Computing (NIC), Jülich Supercomputing Centre (JSC), Institute of Biological Information Processing (IBI-7: Structural Biochemistry), and Institute of Bio- and Geosciences (IBG-4: Bioinformatics), Forschungszentrum Jülich GmbH, 52428 Jülich, Germany
- Institute for Pharmaceutical and Medicinal Chemistry, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany
- Corresponding author at: John-von-Neumann-Institute for Computing (NIC), Jülich Supercomputing Centre (JSC), Institute of Biological Information Processing (IBI-7: Structural Biochemistry), and Institute of Bio- and Geosciences (IBG-4: Bioinformatics), Forschungszentrum Jülich GmbH, Wilhelm-Johnen-Str., 52428 Jülich, Germany.
| |
Collapse
|
2
|
Nutschel C, Fulton A, Zimmermann O, Schwaneberg U, Jaeger KE, Gohlke H. Systematically Scrutinizing the Impact of Substitution Sites on Thermostability and Detergent Tolerance for Bacillus subtilis Lipase A. J Chem Inf Model 2020; 60:1568-1584. [PMID: 31905288 DOI: 10.1021/acs.jcim.9b00954] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Improving an enzyme's (thermo-)stability or tolerance against solvents and detergents is highly relevant in protein engineering and biotechnology. Recent developments have tended toward data-driven approaches, where available knowledge about the protein is used to identify substitution sites with high potential to yield protein variants with improved stability, and subsequently, substitutions are engineered by site-directed or site-saturation (SSM) mutagenesis. However, the development and validation of algorithms for data-driven approaches have been hampered by the lack of availability of large-scale data measured in a uniform way and being unbiased with respect to substitution types and locations. Here, we extend our knowledge on guidelines for protein engineering following a data-driven approach by scrutinizing the impact of substitution sites on thermostability or/and detergent tolerance for Bacillus subtilis lipase A (BsLipA) at very large scale. We systematically analyze a complete experimental SSM library of BsLipA containing all 3439 possible single variants, which was evaluated as to thermostability and tolerances against four detergents under respectively uniform conditions. Our results provide systematic and unbiased reference data at unprecedented scale for a biotechnologically important protein, identify consistently defined hot spot types for evaluating the performance of data-driven protein-engineering approaches, and show that the rigidity theory and ensemble-based approach Constraint Network Analysis yields hot spot predictions with an up to ninefold gain in precision over random classification.
Collapse
Affiliation(s)
- Christina Nutschel
- John von Neumann Institute for Computing (NIC) and Institute for Complex Systems-Structural Biochemistry (ICS-6), Forschungszentrum Jülich GmbH, 52425 Jülich, Germany.,Jülich Supercomputing Centre (JSC), Forschungszentrum Jülich GmbH, 52425 Jülich, Germany
| | - Alexander Fulton
- Institute of Molecular Enzyme Technology, Heinrich Heine University Düsseldorf, 52425 Jülich, Germany
| | - Olav Zimmermann
- Jülich Supercomputing Centre (JSC), Forschungszentrum Jülich GmbH, 52425 Jülich, Germany
| | - Ulrich Schwaneberg
- Institute of Biotechnology, RWTH Aachen University, 52074 Aachen, Germany.,DWI-Leibniz-Institute for Interactive Materials, 52056 Aachen, Germany
| | - Karl-Erich Jaeger
- Institute of Molecular Enzyme Technology, Heinrich Heine University Düsseldorf, 52425 Jülich, Germany.,Institute of Bio- and Geosciences IBG-1: Biotechnology, Forschungszentrum Jülich GmbH, 52425 Jülich, Germany
| | - Holger Gohlke
- John von Neumann Institute for Computing (NIC) and Institute for Complex Systems-Structural Biochemistry (ICS-6), Forschungszentrum Jülich GmbH, 52425 Jülich, Germany.,Jülich Supercomputing Centre (JSC), Forschungszentrum Jülich GmbH, 52425 Jülich, Germany.,Institute for Pharmaceutical and Medicinal Chemistry, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany
| |
Collapse
|
3
|
Herrera-Zúñiga LD, Millán-Pacheco C, Viniegra-González G, Villegas E, Arregui L, Rojo-Domínguez A. Molecular dynamics on laccase from Trametes versicolor to examine thermal stability induced by salt bridges. Chem Phys 2019. [DOI: 10.1016/j.chemphys.2018.10.019] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
4
|
A high-throughput pH-based colorimetric assay: application focus on alpha/beta hydrolases. Anal Biochem 2018; 549:80-90. [DOI: 10.1016/j.ab.2018.03.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Revised: 02/26/2018] [Accepted: 03/12/2018] [Indexed: 11/20/2022]
|
5
|
Abstract
Using structure and sequence based analysis we can engineer proteins to increase their thermal stability.
Collapse
Affiliation(s)
- H. Pezeshgi Modarres
- Molecular Cell Biomechanics Laboratory
- Departments of Bioengineering and Mechanical Engineering
- University of California Berkeley
- Berkeley
- USA
| | - M. R. Mofrad
- Molecular Cell Biomechanics Laboratory
- Departments of Bioengineering and Mechanical Engineering
- University of California Berkeley
- Berkeley
- USA
| | - A. Sanati-Nezhad
- BioMEMS and Bioinspired Microfluidic Laboratory
- Department of Mechanical and Manufacturing Engineering
- University of Calgary
- Calgary
- Canada
| |
Collapse
|
6
|
Pottel J, Moitessier N. Single-Point Mutation with a Rotamer Library Toolkit: Toward Protein Engineering. J Chem Inf Model 2015; 55:2657-71. [PMID: 26623941 DOI: 10.1021/acs.jcim.5b00525] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Protein engineers have long been hard at work to harness biocatalysts as a natural source of regio-, stereo-, and chemoselectivity in order to carry out chemistry (reactions and/or substrates) not previously achieved with these enzymes. The extreme labor demands and exponential number of mutation combinations have induced computational advances in this domain. The first step in our virtual approach is to predict the correct conformations upon mutation of residues (i.e., rebuilding side chains). For this purpose, we opted for a combination of molecular mechanics and statistical data. In this work, we have developed automated computational tools to extract protein structural information and created conformational libraries for each amino acid dependent on a variable number of parameters (e.g., resolution, flexibility, secondary structure). We have also developed the necessary tool to apply the mutation and optimize the conformation accordingly. For side-chain conformation prediction, we obtained overall average root-mean-square deviations (RMSDs) of 0.91 and 1.01 Å for the 18 flexible natural amino acids within two distinct sets of over 3000 and 1500 side-chain residues, respectively. The commonly used dihedral angle differences were also evaluated and performed worse than the state of the art. These two metrics are also compared. Furthermore, we generated a family-specific library for kinases that produced an average 2% lower RMSD upon side-chain reconstruction and a residue-specific library that yielded a 17% improvement. Ultimately, since our protein engineering outlook involves using our docking software, Fitted/Impacts, we applied our mutation protocol to a benchmarked data set for self- and cross-docking. Our side-chain reconstruction does not hinder our docking software, demonstrating differences in pose prediction accuracy of approximately 2% (RMSD cutoff metric) for a set of over 200 protein/ligand structures. Similarly, when docking to a set of over 100 kinases, side-chain reconstruction (using both general and biased conformation libraries) had minimal detriment to the docking accuracy.
Collapse
Affiliation(s)
- Joshua Pottel
- Department of Chemistry, McGill University , 801 Sherbrooke Street West, Montreal, QC, Canada H3A 0B8
| | - Nicolas Moitessier
- Department of Chemistry, McGill University , 801 Sherbrooke Street West, Montreal, QC, Canada H3A 0B8
| |
Collapse
|
7
|
Reilly PJ, Rovira C. Computational Studies of Glycoside, Carboxylic Ester, and Thioester Hydrolase Mechanisms: A Review. Ind Eng Chem Res 2015. [DOI: 10.1021/acs.iecr.5b01312] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Peter J. Reilly
- Department
of Chemical and Biological Engineering, Iowa State University, Ames, Iowa 50011-2230, United States
| | - Carme Rovira
- Departament de Química Orgànica
and Institut de Química Teòrica i Computacional (IQTCUB), Universitat de Barcelona, 08028 Barcelona, Spain
- Institució
Catalana de Recerca i Estudis Avançats (ICREA), 08010 Barcelona, Spain
| |
Collapse
|
8
|
Niu C, Zhu L, Zhu P, Li Q. Lysine-Based Site-Directed Mutagenesis Increased Rigid β-Sheet Structure and Thermostability of Mesophilic 1,3-1,4-β-Glucanase. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2015; 63:5249-5256. [PMID: 25953154 DOI: 10.1021/acs.jafc.5b00480] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
1,3-1,4-β-Glucanase is widely applied in the food industry, while its low thermostability often reduces its performance. In a previous study, chemical modification of surface lysine residues was proved to increase the thermostability of β-glucanase. To improve the thermostability, the mesophilic β-glucanase from Bacillus terquilensis was rationally engineered through site-directed mutagenesis of the 12 lysines into serines. The results showed that the K20S, K117S, and K165S mutants could both enhance the specific activities and thermostability of β-glucanase. The triple mutant (K20S/K117S/K165S) could increase the optimal temperature and T50 value by 15 and 14 °C, respectively. Five percent more structured residues were observed in the mutant, which formed new β-sheet structures in the concave side. Molecular dynamics simulation analysis showed that the flexibility in the mutation regions was decreased, which resulted in the overall rigidity of the β-glucanase. Therefore, the lysine-based site-directed mutagenesis is a simple and effective method for improving the thermostability of β-glucanase.
Collapse
Affiliation(s)
- Chengtuo Niu
- †Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, and ‡Synergetic Innovation Center of Food Safety and Nutrition, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Linjiang Zhu
- †Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, and ‡Synergetic Innovation Center of Food Safety and Nutrition, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Pei Zhu
- †Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, and ‡Synergetic Innovation Center of Food Safety and Nutrition, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Qi Li
- †Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, and ‡Synergetic Innovation Center of Food Safety and Nutrition, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
9
|
Pezeshgi Modarres H, Dorokhov BD, Popov VO, Ravin NV, Skryabin KG, Dal Peraro M. Understanding and Engineering Thermostability in DNA Ligase from Thermococcus sp. 1519. Biochemistry 2015; 54:3076-85. [DOI: 10.1021/bi501227b] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Hassan Pezeshgi Modarres
- Institute
of Bioengineering, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne 1015, Switzerland
- Swiss Institute of Bioinformatics (SIB), Lausanne 1015, Switzerland
| | - Boris D. Dorokhov
- Centre
“Bioengineering”, Russian Academy of Sciences, Moscow 117312, Russia
| | - Vladimir O. Popov
- Bach
Institute of Biochemistry, Russian Academy of Sciences, Moscow 119071, Russia
- RSC “Kurchatov Institute”, Moscow 123182, Russia
| | - Nikolai V. Ravin
- Centre
“Bioengineering”, Russian Academy of Sciences, Moscow 117312, Russia
| | - Konstantin G. Skryabin
- Centre
“Bioengineering”, Russian Academy of Sciences, Moscow 117312, Russia
- RSC “Kurchatov Institute”, Moscow 123182, Russia
| | - Matteo Dal Peraro
- Institute
of Bioengineering, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne 1015, Switzerland
- Swiss Institute of Bioinformatics (SIB), Lausanne 1015, Switzerland
| |
Collapse
|
10
|
Cui D, Zhang L, Jiang S, Yao Z, Gao B, Lin J, Yuan YA, Wei D. A computational strategy for altering an enzyme in its cofactor preference to NAD(H) and/or NADP(H). FEBS J 2015; 282:2339-51. [PMID: 25817922 DOI: 10.1111/febs.13282] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2013] [Revised: 03/09/2015] [Accepted: 03/23/2015] [Indexed: 01/19/2023]
Abstract
Coenzyme engineering, especially for altered coenzyme specificity, has been a research hotspot for more than a decade. In the present study, a novel computational strategy that enhances the hydrogen-bond interaction between an enzyme and a coenzyme was developed and utilized to alter the coenzyme preference. This novel computational strategy only required the structure of the target enzyme. No other homologous enzymes were needed to achieve alteration in the coenzyme preference of a certain enzyme. Using our novel strategy, Gox2181 was reconstructed from exhibiting complete NADPH preference to exhibiting dual cofactor specificity for NADH and NADPH. Structure-guided Gox2181 mutants were designed in silico and molecular dynamics simulations were performed to evaluate the strength of hydrogen-bond interactions between the enzyme and the coenzyme NADPH. Three Gox2181 mutants displaying high structure stability and structural compatibility to NADH/NADPH were chosen for experimental confirmation. Among the three Gox2181 mutants, Gox2181-Q20R&D43S showed the highest enzymatic activity by utilizing NADPH as its coenzyme, which was even better than the wild-type enzyme. In addition, isothermal titration calorimetry analysis further verified that Gox2181-Q20R&D43S was able to interact with NADPH but the wild-type enzyme could not. This novel computational strategy represents an insightful approach for altering the cofactor preference of target enzymes.
Collapse
Affiliation(s)
- Dongbing Cui
- State Key Laboratory of Bioreactor Engineering, New World Institute of Biotechnology, East China University of Science and Technology, Shanghai, China
| | - Lujia Zhang
- State Key Laboratory of Bioreactor Engineering, New World Institute of Biotechnology, East China University of Science and Technology, Shanghai, China
| | - Shuiqin Jiang
- State Key Laboratory of Bioreactor Engineering, New World Institute of Biotechnology, East China University of Science and Technology, Shanghai, China
| | - Zhiqiang Yao
- State Key Laboratory of Bioreactor Engineering, New World Institute of Biotechnology, East China University of Science and Technology, Shanghai, China
| | - Bei Gao
- State Key Laboratory of Bioreactor Engineering, New World Institute of Biotechnology, East China University of Science and Technology, Shanghai, China
| | - Jinping Lin
- State Key Laboratory of Bioreactor Engineering, New World Institute of Biotechnology, East China University of Science and Technology, Shanghai, China
| | - Y Adam Yuan
- Department of Biological Sciences, National University of Singapore, Singapore
| | - Dongzhi Wei
- State Key Laboratory of Bioreactor Engineering, New World Institute of Biotechnology, East China University of Science and Technology, Shanghai, China
| |
Collapse
|
11
|
Recent advances in engineering proteins for biocatalysis. Biotechnol Bioeng 2014; 111:1273-87. [DOI: 10.1002/bit.25240] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2013] [Revised: 02/10/2014] [Accepted: 03/19/2014] [Indexed: 01/14/2023]
|
12
|
Enhancement of proteolytic activity of a thermostable papain-like protease by structure-based rational design. PLoS One 2013; 8:e62619. [PMID: 23671614 PMCID: PMC3643963 DOI: 10.1371/journal.pone.0062619] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2012] [Accepted: 03/22/2013] [Indexed: 11/19/2022] Open
Abstract
Ervatamins (A, B and C) are papain-like cysteine proteases from the plant Ervatamia coronaria. Among Ervatamins, Ervatamin-C is a thermostable protease, but it shows lower catalytic efficiency. In contrast, Ervatamin-A which has a high amino acid sequence identity (∼90%) and structural homology (Cα rmsd 0.4 Å) with Ervatamin-C, has much higher catalytic efficiency (∼57 times). From the structural comparison of Ervatamin-A and -C, two residues Thr32 and Tyr67 in the catalytic cleft of Ervatamin-A have been identified whose contributions for higher activity of Ervatamin-A are established in our earlier studies. In this study, these two residues have been introduced in Ervatamin-C by site directed mutagenesis to enhance the catalytic efficiency of the thermostable protease. Two single mutants (S32T and A67Y) and one double mutant (S32T/A67Y) of Ervatamin-C have been generated and characterized. All the three mutants show ∼ 8 times higher catalytic efficiency (k cat/K m) than the wild-type. The thermostability of all the three mutant enzymes remained unchanged. The double mutant does not achieve the catalytic efficiency of the template enzyme Ervatamin-A. By modeling the structure of the double mutant and probing the role of active site residues by docking a substrate, the mechanistic insights of higher activity of the mutant protease have been addressed. The in-silico study demonstrates that the residues beyond the catalytic cleft also influence the substrate binding and positioning of the substrate at the catalytic centre, thus controlling the catalytic efficiency of an enzyme.
Collapse
|
13
|
Larrimore KE, Barcus M, Kannan L, Gao Y, Zhan CG, Brimijoin S, Mor T. Plants as a source of butyrylcholinesterase variants designed for enhanced cocaine hydrolase activity. Chem Biol Interact 2013; 203:217-20. [PMID: 23000451 PMCID: PMC3552022 DOI: 10.1016/j.cbi.2012.09.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2012] [Revised: 08/13/2012] [Accepted: 09/04/2012] [Indexed: 11/18/2022]
Abstract
Cocaine addiction affects millions of people with disastrous personal and social consequences. Cocaine is one of the most reinforcing of all drugs of abuse, and even those who undergo rehabilitation and experience long periods of abstinence have more than 80% chance of relapse. Yet there is no FDA-approved treatment to decrease the likelihood of relapse in rehabilitated addicts. Recent studies, however, have demonstrated a promising potential treatment option with the help of the serum enzyme butyrylcholinesterase (BChE), which is capable of breaking down naturally occurring (-)-cocaine before the drug can influence the reward centers of the brain or affect other areas of the body. This activity of wild-type (WT) BChE, however, is relatively low. This prompted the design of variants of BChE which exhibit significantly improved catalytic activity against (-)-cocaine. Plants are a promising means to produce large amounts of these cocaine hydrolase variants of BChE, cheaply, safely with no concerns regarding human pathogens and functionally equivalent to enzymes derived from other sources. Here, in expressing cocaine-hydrolyzing mutants of BChE in Nicotiana benthamiana using the MagnICON virus-assisted transient expression system, and in reporting their initial biochemical analysis, we provide proof-of-principle that plants can express engineered BChE proteins with desired properties.
Collapse
Affiliation(s)
- Katherine E Larrimore
- School of Life Sciences and The Biodesign Institute, PO Box 874501, Arizona State University, Tempe, AZ 85287-4501, USA
| | | | | | | | | | | | | |
Collapse
|
14
|
Sousa IT, Lourenço NMT, Afonso CAM, Taipa MA. Protein stabilization with a dipeptide-mimic triazine-scaffolded synthetic affinity ligand. J Mol Recognit 2013; 26:104-12. [DOI: 10.1002/jmr.2252] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2012] [Revised: 10/10/2012] [Accepted: 10/18/2012] [Indexed: 11/10/2022]
Affiliation(s)
- I. T. Sousa
- Institute for Biotechnology and Bioengineering, Centro de Engenharia Biológica e Química, Instituto Superior Técnico; Av. Rovisco Pais; 1049-001; Lisboa; Portugal
| | - N. M. T. Lourenço
- Institute for Biotechnology and Bioengineering, Centro de Engenharia Biológica e Química, Instituto Superior Técnico; Av. Rovisco Pais; 1049-001; Lisboa; Portugal
| | - C. A. M. Afonso
- Centro de Química Física Molecular and IN-Institute of Nanoscience and Nanotechnology, Instituto Superior Técnico; Technical University of Lisbon; Av. Rovisco Pais; 1049-001; Lisboa; Portugal
| | | |
Collapse
|
15
|
|
16
|
Liu J, Zhan CG. Reaction Pathway and Free Energy Profile for Cocaine Hydrolase-Catalyzed Hydrolysis of (-)-Cocaine. J Chem Theory Comput 2012; 8:1426-1435. [PMID: 23066354 PMCID: PMC3469271 DOI: 10.1021/ct200810d] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Reaction pathway of (-)-cocaine hydrolysis catalyzed by our recently discovered most efficient cocaine hydrolase, which is the A199S/F227A/S287G/A328W/Y332G mutant of human butyrylcholinesterase (BChE), and the corresponding free energy profile have been studied by performing first-principles pseudobond quantum mechanical/molecular mechanical (QM/MM)-free energy (FE) calculations. Based on the QM/MM-FE results, the catalytic hydrolysis process consists of four major reaction steps, including the nucleophilic attack on carbonyl carbon of (-)-cocaine benzoyl ester by hydroxyl group of S198, dissociation of (-)-cocaine benzoyl ester, nucleophilic attack on carbonyl carbon of (-)-cocaine benzoyl ester by water, and finally the dissociation between (-)-cocaine benzoyl group and S198 of the enzyme. The second reaction step is rate-determining. The calculated free energy barrier associated with the transition state for the rate-determining step is ~15.0 kcal/mol, which is in excellent agreement with the experimentally-derived activation free energy of ~14.7 kcal/mol. The mechanistic insights obtained from the present study will be valuable for rational design of more active cocaine hydrolase against (-)-cocaine. In particular, future efforts aiming at further increasing the catalytic activity of the enzyme against (-)-cocaine should focus on stabilization of the transition state for the second reaction step in which the benzoyl ester of (-)-cocaine dissociates.
Collapse
Affiliation(s)
- Junjun Liu
- Tongji School of Pharmacy, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, Hubei 430030, P.R. China
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, 789 South Limestone Street, Lexington, KY 40536
| | - Chang-Guo Zhan
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, 789 South Limestone Street, Lexington, KY 40536
| |
Collapse
|
17
|
Huang X, Zhao X, Zheng F, Zhan CG. Cocaine esterase-cocaine binding process and the free energy profiles by molecular dynamics and potential of mean force simulations. J Phys Chem B 2012; 116:3361-8. [PMID: 22385120 DOI: 10.1021/jp2111605] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The combined molecular dynamics (MD) and potential of mean force (PMF) simulations have been performed to determine the free energy profiles for the binding process of (-)-cocaine interacting with wild-type cocaine esterase (CocE) and its mutants (T172R/G173Q and L119A/L169K/G173Q). According to the MD simulations, the general protein-(-)-cocaine binding mode is not affected by the mutations; e.g.. the benzoyl group of (-)-cocaine is always bound in a subsite composed of aromatic residues W151, W166, F261, and F408 and hydrophobic residue L407, while the carbonyl oxygen on the benzoyl group of (-)-cocaine is hydrogen-bonded with the oxyanion-hole residues Y44 and Y118. According to the PMF-calculated free energy profiles for the binding process, the binding free energies for (-)-cocaine with the wild-type, T172R/G173Q, and L119A/L169K/G173Q CocEs are predicted to be -6.4, -6.2, and -5.0 kcal/mol, respectively. The computational predictions are supported by experimental kinetic data, as the calculated binding free energies are in good agreement with the experimentally derived binding free energies, i.e., -7.2, -6.7, and -4.8 kcal/mol for the wild-type, T172R/G173Q, and L119A/L169K/G173Q, respectively. The reasonable agreement between the computational and experimental data suggests that the PMF simulations may be used as a valuable tool in new CocE mutant design that aims to decrease the Michaelis-Menten constant of the enzyme for (-)-cocaine.
Collapse
Affiliation(s)
- Xiaoqin Huang
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, 789 South Limestone Street, Lexington, Kentucky 40536, USA
| | | | | | | |
Collapse
|
18
|
Abstract
The pharmacokinetic treatment strategy targets the drug molecule itself, aiming to reduce drug concentration at the site of action, thereby minimizing any pharmacodynamic effect. This approach might be useful in the treatment of acute drug toxicity/overdose and in the long-term treatment of addiction. Phase IIa controlled clinical trials with anticocaine and antinicotine vaccines have shown good tolerability and some efficacy, but Phase IIb and III trials have been disappointing because of the failure to generate adequate antibody titers in most participants. Monoclonal antibodies against cocaine, methamphetamine and phencyclidine have shown promise in animal studies, as has enhancing cocaine metabolism with genetic variants of human butyrylcholinesterase, with a bacterial esterase, and with catalytic monoclonal antibodies. Pharmacokinetic treatments offer potential advantages in terms of patient adherence, absence of medication interactions and benefit for patients who cannot take standard medications.
Collapse
Affiliation(s)
- David A Gorelick
- Chemistry & Drug Metabolism Section Intramural Research Program, National Institute on Drug Abuse, NIH, 251 Bayview Boulevard, Baltimore, MD 21224, USA.
| |
Collapse
|