1
|
Garvas M, Acosta S, Urbančič I, Koklič T, Štrancar J, Nunes LAO, Guttmann P, Umek P, Bittencourt C. Single cell temperature probed by Eu
+3
doped TiO
2
nanoparticles luminescence. NANO SELECT 2021. [DOI: 10.1002/nano.202000207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Affiliation(s)
- Maja Garvas
- Jožef Stefan Institute Ljubljana 1000 Slovenia
| | - Selene Acosta
- Chimie des Interactions Plasma–Surface (ChIPS) Research Institute for Materials Science and Engineering Université de Mons Mons Belgium
| | | | | | | | - Luiz A. O. Nunes
- Instituto de Física de São Carlos Universidade de São Paulo São Carlos São Paulo Brazil
| | - Peter Guttmann
- Department X‐ray Microscopy Helmholtz‐Zentrum Berlin für Materialien und Energie GmbH Berlin D‐12489 Germany
| | - Polona Umek
- Jožef Stefan Institute Ljubljana 1000 Slovenia
| | - Carla Bittencourt
- Chimie des Interactions Plasma–Surface (ChIPS) Research Institute for Materials Science and Engineering Université de Mons Mons Belgium
| |
Collapse
|
2
|
Carney CE, MacRenaris KW, Meade TJ. Water-soluble lipophilic MR contrast agents for cell membrane labeling. J Biol Inorg Chem 2015. [PMID: 26215869 DOI: 10.1007/s00775-015-1280-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Long-term cell tracking using MR imaging necessitates the development of contrast agents that both label and are retained by cells. One promising strategy for long-term cell labeling is the development of lipophilic Gd(III)-based contrast agents that anchor into the cell membrane. We have previously reported the efficacy of monomeric and multimeric lipophilic agents and showed that the monomeric agents have improved labeling and contrast enhancement of cell populations. Here, we report on the synthesis, characterization, and in vitro testing of a series of monomeric lipophilic contrast agents with varied alkyl chain compositions. We show that these agents disperse in water, localize to the cell membrane, and label HeLa and MCF7 cells effectively. Additionally, these agents have up to tenfold improved retention in cells compared to clinically available ProHance(®).
Collapse
Affiliation(s)
- Christiane E Carney
- Department of Chemistry, Molecular Biosciences, Neurobiology, Biomedical Engineering, and Radiology, Northwestern University, 2145 Sheridan Road, Evanston, IL, 60208-3113, USA
| | | | | |
Collapse
|
3
|
Synthesis and fluorescence properties of environment-sensitive 7-(diethylamino)coumarin derivatives. Tetrahedron Lett 2014. [DOI: 10.1016/j.tetlet.2014.09.019] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
4
|
Despras G, Alix A, Urban D, Vauzeilles B, Beau JM. From chitin to bioactive chitooligosaccharides and conjugates: access to lipochitooligosaccharides and the TMG-chitotriomycin. Angew Chem Int Ed Engl 2014; 53:11912-6. [PMID: 25212734 DOI: 10.1002/anie.201406802] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2014] [Indexed: 01/28/2023]
Abstract
The direct and chemoselective N-transacylation of peracetylated chitooligosaccharides (COSs), readily obtained from chitin, to give per-N-trifluoroacetyl derivatives offers an attractive route to size-defined COSs and derived glycoconjugates. It involves the use of various acceptor building blocks and trifluoromethyl oxazoline dimer donors prepared with efficiency and highly reactive in 1,2-trans glycosylation reactions. This method was applied to the preparation of the important symbiotic glycolipids which are highly active on plants and to the TMG-chitotriomycin, a potent and specific inhibitor of insect, fungal, and bacterial N-acetylglucosaminidases.
Collapse
Affiliation(s)
- Guillaume Despras
- Université Paris-Sud and CNRS, Laboratoire de Synthèse de Biomolécules, Institut de Chimie Moléculaire et des Matériaux d'Orsay, UMR 8182, 91405 Orsay (France)
| | | | | | | | | |
Collapse
|
5
|
Despras G, Alix A, Urban D, Vauzeilles B, Beau JM. From Chitin to Bioactive Chitooligosaccharides and Conjugates: Access to Lipochitooligosaccharides and the TMG-chitotriomycin. Angew Chem Int Ed Engl 2014. [DOI: 10.1002/ange.201406802] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
6
|
Ding F, Ji L, William R, Chai H, Liu XW. Design and synthesis of multivalent neoglycoconjugates by click conjugations. Beilstein J Org Chem 2014; 10:1325-32. [PMID: 24991285 PMCID: PMC4077470 DOI: 10.3762/bjoc.10.134] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2014] [Accepted: 05/21/2014] [Indexed: 01/17/2023] Open
Abstract
A highly stereoselective BF3∙OEt2-promoted tandem hydroamination/glycosylation on glycal scaffolds has been developed to form propargyl 3-tosylamino-2,3-dideoxysugars in a one-pot manner. Subsequent construction of multivalent 3-tosylamino-2,3-dideoxyneoglycoconjugates with potential biochemical applications was presented herein involving click conjugations as the key reaction step. The copper-catalyzed regioselective click reaction was tremendously accelerated with assistance of microwave irradiation.
Collapse
Affiliation(s)
- Feiqing Ding
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371
| | - Li Ji
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371
| | - Ronny William
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371
| | - Hua Chai
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371
| | - Xue-Wei Liu
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371
| |
Collapse
|
7
|
Carney CE, MacRenaris KW, Mastarone DJ, Kasjanski DR, Hung AH, Meade TJ. Cell labeling via membrane-anchored lipophilic MR contrast agents. Bioconjug Chem 2014; 25:945-54. [PMID: 24787689 PMCID: PMC4033656 DOI: 10.1021/bc500083t] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
![]()
Cell tracking in vivo with MR imaging requires
the development of contrast agents with increased sensitivity that
effectively label and are retained by cells. Most
clinically approved Gd(III)-based contrast agents require high incubation
concentrations and prolonged incubation times for cellular internalization.
Strategies to increase contrast agent permeability have included conjugating
Gd(III) complexes to cell penetrating peptides, nanoparticles, and
small molecules which have greatly improved cell labeling but have
not resulted in improved cellular retention. To overcome these challenges,
we have synthesized a series of lipophilic Gd(III)-based MR contrast
agents that label cell membranes in vitro. Two of
the agents were synthesized with a multiplexing strategy to contain
three Gd(III) chelates (1 and 2) while the
third contains a single Gd(III) chelate (3). These new
agents exhibit significantly enhanced labeling and retention in HeLa
and MDA-MB-231-mcherry cells compared to agents that are internalized
by cells (4 and Prohance).
Collapse
Affiliation(s)
- Christiane E Carney
- Department of Chemistry, Molecular Biosciences, Neurobiology, Biomedical Engineering, and Radiology, Northwestern University , 2145 Sheridan Road, Evanston, Illinois 60208-3113, United States
| | | | | | | | | | | |
Collapse
|
8
|
Urbančič I, Ljubetič A, Arsov Z, Strancar J. Coexistence of probe conformations in lipid phases-a polarized fluorescence microspectroscopy study. Biophys J 2014; 105:919-27. [PMID: 23972844 DOI: 10.1016/j.bpj.2013.07.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2013] [Revised: 07/04/2013] [Accepted: 07/08/2013] [Indexed: 01/14/2023] Open
Abstract
Several well-established fluorescence methods depend on environment-sensitive probes that report about molecular properties of their local environment. For reliable interpretation of experiments, careful characterization of probes' behavior is required. In this study, bleaching-corrected polarized fluorescence microspectroscopy with nanometer spectral peak position resolution was applied to characterize conformations of two alkyl chain-labeled 7-nitro-2-1,3-benzoxadiazol-4-yl phospholipids in three model membranes, representing the three main lipid phases. The combination of polarized and spectral detection revealed two main probe conformations with their preferential fluorophore dipole orientations roughly parallel and perpendicular to membrane normal. Their peak positions were separated by 2-6 nm because of different local polarities and depended on lipid environment. The relative populations of conformations, estimated by a numerical model, indicated a specific sensitivity of the two probes to molecular packing with cholesterol. The coexistence of probe conformations could be further exploited to investigate membrane organization below microscopy spatial resolution, such as lipid rafts. With the addition of polarized excitation or detection to any environment-sensitive fluorescence imaging technique, the conformational analysis can be directly applied to explore local membrane complexity.
Collapse
Affiliation(s)
- Iztok Urbančič
- Laboratory of Biophysics, Condensed Matter Physics Department, Jožef Stefan Institute, Ljubljana, Slovenia
| | | | | | | |
Collapse
|
9
|
Urbančič I, Arsov Z, Ljubetič A, Biglino D, Strancar J. Bleaching-corrected fluorescence microspectroscopy with nanometer peak position resolution. OPTICS EXPRESS 2013; 21:25291-25306. [PMID: 24150370 DOI: 10.1364/oe.21.025291] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Fluorescence microspectroscopy (FMS) with environmentally sensitive dyes provides information about local molecular surroundings at microscopic spatial resolution. Until recently, only probes exhibiting large spectral shifts due to local changes have been used. For filter-based experimental systems, where signal at different wavelengths is acquired sequentially, photostability has been required in addition. Herein, we systematically analyzed our spectral fitting models and bleaching correction algorithms which mitigate both limitations. We showed that careful analysis of data acquired by stochastic wavelength sampling enables nanometer spectral peak position resolution even for highly photosensitive fluorophores. To demonstrate how small spectral shifts and changes in bleaching rates can be exploited, we analyzed vesicles in different lipid phases. Our findings suggest that a wide range of dyes, commonly used in bulk spectrofluorimetry but largely avoided in microspectroscopy due to the above-mentioned restrictions, can be efficiently applied also in FMS.
Collapse
|
10
|
Mravljak J, Ojsteršek T, Pajk S, Sollner Dolenc M. Coumarin-based dual fluorescent spin-probes. Tetrahedron Lett 2013. [DOI: 10.1016/j.tetlet.2013.07.084] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
11
|
Application of NBD-Labeled Lipids in Membrane and Cell Biology. SPRINGER SERIES ON FLUORESCENCE 2012. [DOI: 10.1007/4243_2012_43] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
12
|
Arsov Z, Urbančič I, Garvas M, Biglino D, Ljubetič A, Koklič T, Štrancar J. Fluorescence microspectroscopy as a tool to study mechanism of nanoparticles delivery into living cancer cells. BIOMEDICAL OPTICS EXPRESS 2011; 2:2083-2095. [PMID: 21833349 PMCID: PMC3149510 DOI: 10.1364/boe.2.2083] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/21/2011] [Revised: 06/03/2011] [Accepted: 06/27/2011] [Indexed: 05/31/2023]
Abstract
Lack of better understanding of nanoparticles targeted delivery into cancer cells calls for advanced optical microscopy methodologies. Here we present a development of fluorescence microspectroscopy (spectral imaging) based on a white light spinning disk confocal microscope with emission wavelength selection by a liquid crystal tunable filter. Spectral contrasting of images was used to localize polymer nanoparticles and cell membranes labeled with fluorophores that have substantially overlapping spectra. In addition, fluorescence microspectroscopy enabled spatially-resolved detection of small but significant effects of local molecular environment on the properties of environment-sensitive fluorescent probe. The observed spectral shift suggests that the delivery of suitably composed cancerostatic alkylphospholipid nanoparticles into living cancer cells might rely on the fusion with plasma cell membrane.
Collapse
Affiliation(s)
- Zoran Arsov
- Laboratory of Biophysics, Department of Solid State Physics, Jožef Stefan Institute, Jamova 39, 1000 Ljubljana, Slovenia
- Center of Excellence NAMASTE, Jamova 39, 1000 Ljubljana, Slovenia
| | - Iztok Urbančič
- Laboratory of Biophysics, Department of Solid State Physics, Jožef Stefan Institute, Jamova 39, 1000 Ljubljana, Slovenia
| | - Maja Garvas
- Laboratory of Biophysics, Department of Solid State Physics, Jožef Stefan Institute, Jamova 39, 1000 Ljubljana, Slovenia
| | - Daniele Biglino
- Laboratory of Biophysics, Department of Solid State Physics, Jožef Stefan Institute, Jamova 39, 1000 Ljubljana, Slovenia
- Center of Excellence NAMASTE, Jamova 39, 1000 Ljubljana, Slovenia
| | - Ajasja Ljubetič
- Laboratory of Biophysics, Department of Solid State Physics, Jožef Stefan Institute, Jamova 39, 1000 Ljubljana, Slovenia
| | - Tilen Koklič
- Laboratory of Biophysics, Department of Solid State Physics, Jožef Stefan Institute, Jamova 39, 1000 Ljubljana, Slovenia
- Center of Excellence NAMASTE, Jamova 39, 1000 Ljubljana, Slovenia
| | - Janez Štrancar
- Laboratory of Biophysics, Department of Solid State Physics, Jožef Stefan Institute, Jamova 39, 1000 Ljubljana, Slovenia
- Center of Excellence NAMASTE, Jamova 39, 1000 Ljubljana, Slovenia
| |
Collapse
|