1
|
Kuciel T, Wieczorek P, Rajchel-Mieldzioć P, Wytrwał M, Zapotoczny S, Szuwarzyński M. Surface-grafted macromolecular nanowires with pedant fluorescein chromophores by dense non-aggregated nanoarchitectonics as versatile photoactive platforms. J Colloid Interface Sci 2024; 670:182-190. [PMID: 38761571 DOI: 10.1016/j.jcis.2024.05.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 04/18/2024] [Accepted: 05/06/2024] [Indexed: 05/20/2024]
Abstract
In this paper, we present a facile method of synthesis and modification of poly(glycidyl methacrylate) brushes with 6-aminofluorescein (6AF) molecules. Polymer brushes were obtained using surface-grafted atom transfer radical polymerization (SI-ATRP) and functionalized in the presence of triethylamine (TEA) acting both as a reaction catalyst and an agent preventing aggregation of chromophores. Atomic force microscopy (AFM), FTIR, X-ray photoelectron spectroscopy (XPS) were used to study the structure and formation of obtained photoactive platforms. UV-Vis absorption and emission spectroscopy and confocal microscopy were conducted to investigate photoactivity of chromophores within the macromolecular matrix. Owing to the simplicity of fabrication and good ordering of the chromophore in a thin nanometric layer, the proposed method may open new opportunities for obtaining light sensors, photovoltaic devices, or other light-harvesting systems.
Collapse
Affiliation(s)
- Tomasz Kuciel
- Jagiellonian University, Faculty of Chemistry, Gronostajowa 2, 30-387, Krakow, Poland
| | - Piotr Wieczorek
- Jagiellonian University, Faculty of Chemistry, Gronostajowa 2, 30-387, Krakow, Poland; Doctoral School of Exact and Natural Sciences, Jagiellonian University, Łojasiewicza 11, 30-348 Krakow, Poland
| | - Paulina Rajchel-Mieldzioć
- University of Warsaw, Faculty of Physics, Institute of Experimental Physics, Pasteura 5, 02-093 Warsaw, Poland
| | - Magdalena Wytrwał
- AGH University of Krakow, Academic Centre for Materials and Nanotechnology, Mickiewicza 30, 30-059 Krakow, Poland
| | - Szczepan Zapotoczny
- Jagiellonian University, Faculty of Chemistry, Gronostajowa 2, 30-387, Krakow, Poland; AGH University of Krakow, Academic Centre for Materials and Nanotechnology, Mickiewicza 30, 30-059 Krakow, Poland.
| | - Michał Szuwarzyński
- AGH University of Krakow, Academic Centre for Materials and Nanotechnology, Mickiewicza 30, 30-059 Krakow, Poland.
| |
Collapse
|
2
|
Szuwarzyński M, Wolski K, Kruk T, Zapotoczny S. Macromolecular strategies for transporting electrons and excitation energy in ordered polymer layers. Prog Polym Sci 2021. [DOI: 10.1016/j.progpolymsci.2021.101433] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
3
|
Kretsch J, Kreyenschmidt A, Schillmöller T, Lõkov M, Herbst‐Irmer R, Leito I, Stalke D. Bis(4-benzhydryl-benzoxazol-2-yl)methane - from a Bulky NacNac Alternative to a Trianion in Alkali Metal Complexes. Chemistry 2021; 27:9858-9865. [PMID: 34036637 PMCID: PMC8361911 DOI: 10.1002/chem.202100616] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Indexed: 11/25/2022]
Abstract
A novel sterically demanding bis(4-benzhydryl-benzoxazol-2-yl)methane ligand 6 (4-BzhH2 BoxCH2 ) was gained in a straightforward six-step synthesis. Starting from this ligand monomeric [M(4-BzhH2 BoxCH)] (M=Na (7), K (81 )) and dimeric [{M(4-BzhH2 BoxCH)}2 ] (M=K (82 ), Rb (9), Cs (10)) alkali metal complexes were synthesised by deprotonation. Abstraction of the potassium ion of 8 by reaction with 18-crown-6 resulted in the solvent separated ion pair [{(THF)2 K@(18-crown-6)}{bis(4-benzhydryl-benzoxazol-2-yl)methanide}] (11), including the energetically favoured monoanionic (E,E)-(4-BzhH2 BoxCH) ligand. Further reaction of 4-BzhH2 BoxCH2 with three equivalents KH and two equivalents 18-crown-6 yielded polymeric [{(THF)2 K@(18-crown-6)}{K@(18-crown-6)K(4-Bzh BoxCH)}]n (n→∞) (12) containing a trianionic ligand. The neutral ligand and herein reported alkali complexes were characterised by single X-ray analyses identifying the latter as a promising precursor for low-valent main group complexes.
Collapse
Affiliation(s)
- Johannes Kretsch
- Institut für Anorganische ChemieGeorg-August-Universität GöttingenTammannstraße 437077GöttingenGermany
| | | | - Timo Schillmöller
- Institut für Anorganische ChemieGeorg-August-Universität GöttingenTammannstraße 437077GöttingenGermany
| | - Märt Lõkov
- Institute of ChemistryUniversity of TartuRavila 14a50411TartuEstonia
| | - Regine Herbst‐Irmer
- Institut für Anorganische ChemieGeorg-August-Universität GöttingenTammannstraße 437077GöttingenGermany
| | - Ivo Leito
- Institute of ChemistryUniversity of TartuRavila 14a50411TartuEstonia
| | - Dietmar Stalke
- Institut für Anorganische ChemieGeorg-August-Universität GöttingenTammannstraße 437077GöttingenGermany
| |
Collapse
|
4
|
Alekseev A, Efimov A, Chukharev V, Ivanov A, Lemmetyinen H. Electron transfer in oriented donor-acceptor dyads, intralayer charge migration, and formation of interlayer charge separated states in multi-layered Langmuir-Schäfer films. Phys Chem Chem Phys 2020; 22:25195-25205. [PMID: 33125015 DOI: 10.1039/d0cp04372a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Photoinduced intra- and interlayer electron transfer (ET) of doubly bridged donor-acceptor molecule, porphyrin-fullerene dyad (PF), was studied in single- and multi-layered Langmuir-Schäfer (LS) films and in LS films, where PF and an efficient electron donating polymer polyhexyltiophene (PHT) formed a bilayer PHT/PF and multi-layered PHT/PF structures. The ET through layers were investigated by a method, which measures the photovoltaic (PV) response proportional to the number of charge-separated (CS) states and to the CS distance between the electrons and holes formed in pulsed photo-excitation. Primary conclusions were, that ET starts as formations of CS dyads (P+F-) in single-layers, continues as long-range intra-layer charge migrations following interlayer CS between two adjacent monolayers. Quantitative conclusions were, that the interlayer ET efficiency is 100% in the bi-layered PF structure (2PF), where two CS dyads in adjacent layers forms CS complexes (P+F/PF-) and that the probability to form longer or higher order of CS complexes follows an expression of a convergent geometric series, with a converting factor of 2/3. In the PHT/PF bilayer structure the ET efficiency was one order of magnitude higher, than that for the 2PF structure due to the ET from the CS dyads to ground state electron donor PHT, with an acceptor density, much higher than that of (P+F-).
Collapse
Affiliation(s)
- Alexander Alekseev
- Prokhorov General Physics Institute, Russian Academy of Sciences, Vavilova str. 38, 119991 Moscow, Russia
| | | | | | | | | |
Collapse
|
5
|
Gibbons DJ, Farawar A, Mazzella P, Leroy-Lhez S, Williams RM. Making triplets from photo-generated charges: observations, mechanisms and theory. Photochem Photobiol Sci 2020; 19:136-158. [DOI: 10.1039/c9pp00399a] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Photo-excitation of electron donor–acceptor systems can lead to the generation of a charge separated state (CT). Sometimes the charge recombination occurs mainly to the local triplet excited state (T1). How does the spin flip?
Collapse
Affiliation(s)
- Dáire J. Gibbons
- Molecular Photonics Group
- Van't Hoff Institute for Molecular Sciences (HIMS)
- Universiteit van Amsterdam
- 1098 XH Amsterdam
- Netherlands
| | - Aram Farawar
- Molecular Photonics Group
- Van't Hoff Institute for Molecular Sciences (HIMS)
- Universiteit van Amsterdam
- 1098 XH Amsterdam
- Netherlands
| | - Paul Mazzella
- Molecular Photonics Group
- Van't Hoff Institute for Molecular Sciences (HIMS)
- Universiteit van Amsterdam
- 1098 XH Amsterdam
- Netherlands
| | - Stéphanie Leroy-Lhez
- PEIRENE – EA7500
- Faculty of Sciences and Technology – University of Limoges
- 87060 Limoges
- France
| | - René M. Williams
- Molecular Photonics Group
- Van't Hoff Institute for Molecular Sciences (HIMS)
- Universiteit van Amsterdam
- 1098 XH Amsterdam
- Netherlands
| |
Collapse
|
6
|
Chen JS, Li M, Wu Q, Fron E, Tong X, Cotlet M. Layer-Dependent Photoinduced Electron Transfer in 0D-2D Lead Sulfide/Cadmium Sulfide-Layered Molybdenum Disulfide Hybrids. ACS NANO 2019; 13:8461-8468. [PMID: 31276367 DOI: 10.1021/acsnano.9b04367] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
We demonstrate layer-dependent electron transfer between core/shell PbS/CdS quantum dots (QDs) and layered MoS2 via energy band gap engineering of both the donor (QDs) and the acceptor (MoS2) components. We do this by (i) changing the size of the QD or (ii) by changing the number of layers of MoS2, and each of these approaches alters the band gap and/or the donor-acceptor separation distance, thus providing a means of tuning the charge-transfer rate. We find the charge-transfer rate to be maximal for QDs of smallest size and for QDs combined with a 5-layer MoS2 or thicker. We model this layer-dependent charge-transfer rate with a theoretical model derived from Marcus theory previously applied to nonadiabatic electron transfer in weakly coupled systems by considering the QD transferring photogenerated electrons to noninteracting monolayers within a few layers of MoS2.
Collapse
Affiliation(s)
- Jia-Shiang Chen
- Center for Functional Nanomaterials , Brookhaven National Laboratory , Upton , New York 11973 , United States
- Department of Materials Science and Chemical Engineering , Stony Brook University , Stony Brook , New York 11794 , United States
| | - Mingxing Li
- Center for Functional Nanomaterials , Brookhaven National Laboratory , Upton , New York 11973 , United States
| | - Qin Wu
- Center for Functional Nanomaterials , Brookhaven National Laboratory , Upton , New York 11973 , United States
| | - Eduard Fron
- Department of Chemistry , Katholieke Universiteit Leuven , 3001 Leuven , Belgium
| | - Xiao Tong
- Center for Functional Nanomaterials , Brookhaven National Laboratory , Upton , New York 11973 , United States
| | - Mircea Cotlet
- Center for Functional Nanomaterials , Brookhaven National Laboratory , Upton , New York 11973 , United States
| |
Collapse
|
7
|
Chen JS, Li M, Cotlet M. Nanoscale Photoinduced Charge Transfer with Individual Quantum Dots: Tunability through Synthesis, Interface Design, and Interaction with Charge Traps. ACS OMEGA 2019; 4:9102-9112. [PMID: 31459998 PMCID: PMC6648770 DOI: 10.1021/acsomega.9b00803] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Accepted: 05/03/2019] [Indexed: 05/29/2023]
Abstract
Semiconducting colloidal quantum dots (QDs) provide an excellent platform for nanoscale charge-transfer studies. Because of their size-dependent optoelectronic properties, which can be tuned via chemical synthesis and of their versatility in surface ligand exchange, QDs can be coupled with various types of acceptors to create hybrids with controlled type (electron or hole), direction, and rate of charge flow, depending on the foreseen application, either solar harvesting, light emitting, or biosensing. This perspective highlights several examples of QD-based hybrids with controllable (tunable) rate of charge transfer obtained by various approaches, including by changing the QD core size and shell thickness by colloidal synthesis, by the insertion of molecular linkers or dielectric spacers between donor and acceptor components. We also show that subjecting QDs to external factors such as electric fields and alternate optical excitation energy is another approach to bias the internal charge transfer between charges photogenerated in the QD core and QD's surface charge traps. The perspective also provides the reader with various examples of how single nanoparticle spectroscopic studies can help in understanding and quantifying nanoscale charge transfer with QDs.
Collapse
Affiliation(s)
- Jia-Shiang Chen
- Center
for Functional Nanomaterials, Brookhaven
National Laboratory, Upton, New York 11973, United States
- Department
of Materials Science and Chemical Engineering, Stony Brook University, Stony
Brook, New York 11794, United States
| | - Mingxing Li
- Center
for Functional Nanomaterials, Brookhaven
National Laboratory, Upton, New York 11973, United States
| | - Mircea Cotlet
- Center
for Functional Nanomaterials, Brookhaven
National Laboratory, Upton, New York 11973, United States
| |
Collapse
|
8
|
Kielesiński Ł, Morawski OW, Sobolewski AL, Gryko DT. The synthesis and photophysical properties of tris-coumarins. Phys Chem Chem Phys 2019; 21:8314-8325. [PMID: 30951072 DOI: 10.1039/c9cp00978g] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A structurally unique cyclic tris-coumarin possessing three identical coumarin units bridged by amide linkers as well as two linear analogs has been synthesized. There is a remarkable agreement between crystallographic data, 1H NMR and results of calculations for the cyclic tris-coumarin, showing in all cases a non-symmetric arrangement of identical coumarin moieties. Weak polarization of the coumarin subunits, resulting from the presence of only CONH- groups as electron-donors, results in a hypsochromic shift of both absorption and emission in this dye. We have proven that in non-cyclic, head-to-tail linked tris-coumarins, the photophysics is controlled not only by the substituents but also by the conformation of the molecule, which in turn depends on the nature of the linker's interactions. These can be controlled by the presence/absence of an amide-type hydrogen atom responsible for the formation of intramolecular hydrogen bonds. The presence of a hydrogen bond favors a stretched trans conformation of the dye, while in its absence, folding of the molecule occurs leading to a more compact conformation. Although, the increased number of covalently linked coumarin units does not drastically change the preferred conformation, the fluorescence quantum yields of tris-coumarins are significantly lower than for analogous bis-coumarins composed of the same units.
Collapse
Affiliation(s)
- Łukasz Kielesiński
- Institute of Organic Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland.
| | | | | | | |
Collapse
|
9
|
Zhang XF, Yang X, Xu B. PET-based bisBODIPY photosensitizers for highly efficient excited triplet state and singlet oxygen generation: tuning photosensitizing ability by dihedral angles. Phys Chem Chem Phys 2018; 19:24792-24804. [PMID: 28868533 DOI: 10.1039/c7cp02645e] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Herein, four covalent BODIPY heterodimers that differ by dihedral angles were shown to be highly efficient excited triplet state (T1) photosensitizers (PSs) for singlet oxygen formation with a quantum yield (ΦΔ) of up to 0.94 as compared to their respective monomers, which had only negligible ΦΔ of ca. 0.060. More interestingly, these PSs generate T1via charge recombination mechanism rather than traditional inter-system crossing. The photosensitizing ability of dimers is easily tuned by either the dihedral angle (between the two linked BODIPYs) or solvent polarity. Laser flash photolysis, time-resolved and steady state fluorescence, quantum chemical calculation, as well as thermodynamic analysis were employed to study the associated photophysical process to reveal the T1 formation mechanism: photo-induced electron transfer (PET) followed by charge recombination. Due to its heavy-atom-free nature, polarity selectivity, high efficiency, and easy tunability, this PET-based PS and its mechanism are very useful in developing new PS for photodynamic therapy of tumors, photobiology, and organic photochemistry.
Collapse
Affiliation(s)
- Xian-Fu Zhang
- Institute of Applied Photochemistry & Center of Analysis and Measurements, Hebei Normal University of Science and Technology, Qinhuangdao, Hebei Province 066004, China.
| | | | | |
Collapse
|
10
|
Bertocchi MJ, Bajpai A, Moorthy JN, Weiss RG. New Insights into an Old Problem. Fluorescence Quenching of Sterically-Graded Pyrenes by Tertiary Aliphatic Amines. J Phys Chem A 2017; 121:458-470. [DOI: 10.1021/acs.jpca.6b11382] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
| | - Alankriti Bajpai
- Department
of Chemistry, Indian Institute of Technology Kanpur, Kanpur 208 016, India
| | - Jarugu N. Moorthy
- Department
of Chemistry, Indian Institute of Technology Kanpur, Kanpur 208 016, India
| | | |
Collapse
|
11
|
Thakare S, Stachelek P, Mula S, More AB, Chattopadhyay S, Ray AK, Sekar N, Ziessel R, Harriman A. Solvent-Driven Conformational Exchange for Amide-Linked Bichromophoric BODIPY Derivatives. Chemistry 2016; 22:14356-66. [DOI: 10.1002/chem.201602354] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Indexed: 01/09/2023]
Affiliation(s)
- Shrikant Thakare
- Department of Dyestuff Technology; Institute of Chemical Technology; Mumbai 400019 India
| | - Patrycja Stachelek
- Molecular Photonics Laboratory; School of Chemistry; Newcastle University; Bedson Building Newcastle upon Tyne NE1 7RU UK
| | - Soumyaditya Mula
- Bio-Organic Division; Bhabha Atomic Research Centre; Mumbai 400085 India
| | - Ankush B. More
- Department of Dyestuff Technology; Institute of Chemical Technology; Mumbai 400019 India
| | | | - Alok K. Ray
- Laser and Plasma Technology Division; Bhabha Atomic Research Centre; Mumbai 400085 India
| | - Nagaiyan Sekar
- Department of Dyestuff Technology; Institute of Chemical Technology; Mumbai 400019 India
| | - Raymond Ziessel
- Laboratoire de Chimie Organique et Spectroscopies Avancées (LCOSA); Ecole Européenne de Chimie; Polymères et Matériaux; Université de Strasbourg; 25 rue Becquerel 67087 Strasbourg Cedex 02 France
| | - Anthony Harriman
- Molecular Photonics Laboratory; School of Chemistry; Newcastle University; Bedson Building Newcastle upon Tyne NE1 7RU UK
| |
Collapse
|
12
|
Paulus B, Bajzath C, Melin F, Heidinger L, Kromm V, Herkersdorf C, Benz U, Mann L, Stehle P, Hellwig P, Weber S, Schleicher E. Spectroscopic characterization of radicals and radical pairs in fruit fly cryptochrome - protonated and nonprotonated flavin radical-states. FEBS J 2015; 282:3175-89. [PMID: 25879256 DOI: 10.1111/febs.13299] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Revised: 03/21/2015] [Accepted: 04/14/2015] [Indexed: 01/05/2023]
Abstract
Drosophila melanogaster cryptochrome is one of the model proteins for animal blue-light photoreceptors. Using time-resolved and steady-state optical spectroscopy, we studied the mechanism of light-induced radical-pair formation and decay, and the photoreduction of the FAD cofactor. Exact kinetics on a microsecond to minutes timescale could be extracted for the wild-type protein using global analysis. The wild-type exhibits a fast photoreduction reaction from the oxidized FAD to the FAD(•-) state with a very positive midpoint potential of ~ +125 mV, although no further reduction could be observed. We could also demonstrate that the terminal tryptophan of the conserved triad, W342, is directly involved in electron transfer; however, photoreduction could not be completely inhibited in a W342F mutant. The investigation of another mutation close to the FAD cofactor, C416N, rather unexpectedly reveals accumulation of a protonated flavin radical on a timescale of several seconds. The obtained data are critically discussed with the ones obtained from another protein, Escherichia coli photolyase, and we conclude that the amino acid opposite N(5) of the isoalloxazine moiety of FAD is able to (de)stabilize the protonated FAD radical but not to significantly modulate the kinetics of any light-inducted reactions.
Collapse
Affiliation(s)
- Bernd Paulus
- Institut für Physikalische Chemie, Albert-Ludwigs-Universität Freiburg, Germany
| | - Csaba Bajzath
- Institut für Physikalische Chemie, Albert-Ludwigs-Universität Freiburg, Germany
| | - Frédéric Melin
- Laboratoire de Bioélectrochimie et Spectroscopie Université de Strasbourg, France
| | - Lorenz Heidinger
- Institut für Physikalische Chemie, Albert-Ludwigs-Universität Freiburg, Germany
| | - Viktoria Kromm
- Institut für Physikalische Chemie, Albert-Ludwigs-Universität Freiburg, Germany
| | | | - Ulrike Benz
- Institut für Physikalische Chemie, Albert-Ludwigs-Universität Freiburg, Germany
| | - Lisa Mann
- Institut für Physikalische Chemie, Albert-Ludwigs-Universität Freiburg, Germany
| | - Patricia Stehle
- Institut für Physikalische Chemie, Albert-Ludwigs-Universität Freiburg, Germany
| | - Petra Hellwig
- Laboratoire de Bioélectrochimie et Spectroscopie Université de Strasbourg, France
| | - Stefan Weber
- Institut für Physikalische Chemie, Albert-Ludwigs-Universität Freiburg, Germany
| | - Erik Schleicher
- Institut für Physikalische Chemie, Albert-Ludwigs-Universität Freiburg, Germany
| |
Collapse
|
13
|
Benniston AC, Yang S, Lemmetyinen H, Tkachenko NV. Complexation Enhanced Excited-State Deactivation by Lithium Ion Coordination to a Borondipyrromethene (Bodipy) Donor-Bridge-Acceptor Dyad. European J Org Chem 2013. [DOI: 10.1002/ejoc.201300867] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
14
|
Angulo G, Cuetos A, Rosspeintner A, Vauthey E. Experimental Evidence of the Relevance of Orientational Correlations in Photoinduced Bimolecular Reactions in Solution. J Phys Chem A 2013; 117:8814-25. [DOI: 10.1021/jp407203r] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Gonzalo Angulo
- Institute
of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224
Warsaw, Poland
| | - Alejandro Cuetos
- Department of Physical,
Chemical and Natural Systems, Universidad Pablo Olavide, 41013 Sevilla, Spain
| | - Arnulf Rosspeintner
- Department of Physical
Chemistry, University of Geneva, 30 Quai Ernest-Ansermet, 1211 Geneva 4, Switzerland
| | - Eric Vauthey
- Department of Physical
Chemistry, University of Geneva, 30 Quai Ernest-Ansermet, 1211 Geneva 4, Switzerland
| |
Collapse
|
15
|
van Walree CA, van der Wiel BC, Williams RM. Photoinduced charge transport over branched conjugation pathways: donor–acceptor substituted 1,1-diphenylethene and 2,3-diphenylbutadiene. Phys Chem Chem Phys 2013; 15:15234-42. [DOI: 10.1039/c3cp52148f] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
16
|
Biskup T, Hitomi K, Getzoff ED, Krapf S, Koslowski T, Schleicher E, Weber S. Identifikation unerwarteter Elektronentransferpfade im Cryptochrom durch zeitaufgelöste Elektronenspinresonanz-Spektroskopie. Angew Chem Int Ed Engl 2011. [DOI: 10.1002/ange.201104321] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
17
|
Biskup T, Hitomi K, Getzoff ED, Krapf S, Koslowski T, Schleicher E, Weber S. Unexpected electron transfer in cryptochrome identified by time-resolved EPR spectroscopy. Angew Chem Int Ed Engl 2011; 50:12647-51. [PMID: 22086606 DOI: 10.1002/anie.201104321] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2011] [Indexed: 11/05/2022]
Abstract
Subtle differences in the local sequence and conformation of amino acids can result in diversity and specificity in electron transfer (ET) in proteins, despite structural conservation of the redox partners. For individual ET steps, distance is not necessarily the decisive parameter; orientation and solvent accessibility of the ET partners, and thus the stabilization of the charge-separated states, contribute substantially.
Collapse
Affiliation(s)
- Till Biskup
- Fachberich Physik, Freie Universität Berlin, Germany
| | | | | | | | | | | | | |
Collapse
|
18
|
Lemmetyinen H, Tkachenko NV, Efimov A, Niemi M. Photoinduced intra- and intermolecular electron transfer in solutions and in solid organized molecular assemblies. Phys Chem Chem Phys 2011; 13:397-412. [DOI: 10.1039/c0cp01106a] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|