1
|
Sagadevan A, Murugesan K, Bakr OM, Rueping M. Copper nanoclusters: emerging photoredox catalysts for organic bond formations. Chem Commun (Camb) 2024; 60:13858-13866. [PMID: 39530552 DOI: 10.1039/d4cc04774e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Advancements in fine chemical synthesis and drug discovery continuously demand the development of new and more efficient catalytic systems. In this regard, numerous transition metal-based catalysts have been developed and successfully applied in industrial processes. However, the need for innovative catalyst systems to further enhance the efficiency of chemical transformations and industrial applications persists. Metal nanoclusters (NCs) represent a distinct class of ultra-small nanoparticles (<3 nm) characterized by a precise number of metal atoms coordinated with a defined number of ligands. This structure confers abundant unsaturated active sites and unique electronic and optical properties, setting them apart from conventional nanoparticles or bulk metals. The well-defined structure and monodisperse nature of NCs make them particularly attractive for catalytic applications. Among these, copper-based nanoclusters have emerged as versatile and sustainable catalysts for challenging organic bond-forming reactions. Their unique properties, including natural abundance, accessible oxidation states, diverse ligand architectures, and strong photophysical characteristics, contribute to their growing prominence in this field. In this review, we discuss the photocatalytic activities of Cu-based nanoclusters, focusing on their applications in cross-coupling reactions (C-C and C-N), click reactions, multicomponent couplings, and oxidation reactions.
Collapse
Affiliation(s)
- Arunachalam Sagadevan
- KAUST Catalysis Center (KCC), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia.
| | - Kathiravan Murugesan
- KAUST Catalysis Center (KCC), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia.
| | - Osman M Bakr
- KAUST Catalysis Center (KCC), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia.
| | - Magnus Rueping
- KAUST Catalysis Center (KCC), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia.
| |
Collapse
|
2
|
Pozhydaiev V, Paparesta A, Moran J, Lebœuf D. Iron(II)-Catalyzed 1,2-Diamination of Styrenes Installing a Terminal NH 2 Group Alongside Unprotected Amines. Angew Chem Int Ed Engl 2024; 63:e202411992. [PMID: 39016034 DOI: 10.1002/anie.202411992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 07/15/2024] [Accepted: 07/16/2024] [Indexed: 07/18/2024]
Abstract
1,2-Diamination of alkenes represents an attractive way to generate differentiated vicinal diamines, which are prevalent motifs in biologically active compounds and catalysts. However, existing methods are usually limited in scope and produce diamines where one or both nitrogens are protected, adding synthetic steps for deprotection and further N-functionalization to reach a desired target. Furthermore, the range of amino groups that can be introduced at the internal position is fairly limited. Here we describe a 1,2-diamination of styrenes that directly installs a free amino group at the terminal position and a wide variety of unprotected nitrogen nucleophiles (primary or secondary alkyl or aromatic amines, sulfoximines, N-heterocycles, and ammonia surrogate) at the internal position. Two complementary sets of conditions encompass electronically activated and deactivated styrenes with diverse substitution patterns and functional groups. Moreover, this strategy can be extended to the 1,2-aminothiolation of styrenes.
Collapse
Affiliation(s)
- Valentyn Pozhydaiev
- Institut de Science et d'Ingénierie Supramoléculaires (ISIS), CNRS UMR 7006, Université de Strasbourg, 8 Allée Gaspard Monge, 67000, Strasbourg, France
| | - Antonio Paparesta
- Institut de Science et d'Ingénierie Supramoléculaires (ISIS), CNRS UMR 7006, Université de Strasbourg, 8 Allée Gaspard Monge, 67000, Strasbourg, France
| | - Joseph Moran
- Institut de Science et d'Ingénierie Supramoléculaires (ISIS), CNRS UMR 7006, Université de Strasbourg, 8 Allée Gaspard Monge, 67000, Strasbourg, France
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, Ontario, K1N 6N5, Canada
- Institut Universitaire de France (IUF), 75005, Paris, France
| | - David Lebœuf
- Institut de Science et d'Ingénierie Supramoléculaires (ISIS), CNRS UMR 7006, Université de Strasbourg, 8 Allée Gaspard Monge, 67000, Strasbourg, France
| |
Collapse
|
3
|
Wang Y, Lin X, Ying X, Hu S, Zhu H. Metal-Free Regioselective Direct C(4)-H Amination of Quinazoline with N-fluorobenzenesulfonimide. Chempluschem 2024; 89:e202400397. [PMID: 39021316 DOI: 10.1002/cplu.202400397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 07/15/2024] [Accepted: 07/16/2024] [Indexed: 07/20/2024]
Abstract
A facile C-H amination of quinazoline employing N-fluorobenzenesulfonimide (NFSI) as the amination source has been disclosed in the absence of any metal, oxidant or additive. The methodology shows a board range of quinazolines with different functional groups in moderate to good yields up to 87 %. Furthermore, gram-scale reaction, desulfonylation to amine and synthesis of pharmaceutical intermediate were also investigated, which demonstrates potential applications in medicinal chemistry. A plausible amination mechanism is proposed via F+ transfer accompanied by the removal of one molecule of PhSO2F. DFT studies with experimental work suggest that the mechanism via F+ transfer is more favorable than the free radical one.
Collapse
Affiliation(s)
- Yong Wang
- School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing, 211816, China
| | - Xueying Lin
- School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing, 211816, China
| | - Xianyu Ying
- School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing, 211816, China
| | - Shan Hu
- School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing, 211816, China
| | - Hongjun Zhu
- School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing, 211816, China
| |
Collapse
|
4
|
Bhunia S, Karan G, Snehil S, Maji MS. Direct Asymmetric Synthesis of α-Aminoimines from 1,2-Bis-N-Sulfinylimines by Using Allyl Boronic Acids. Angew Chem Int Ed Engl 2024; 63:e202408886. [PMID: 39078686 DOI: 10.1002/anie.202408886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 07/02/2024] [Accepted: 07/29/2024] [Indexed: 07/31/2024]
Abstract
A unique direct asymmetric synthesis of α-aminoimines is realized, through rapid and exclusive mono-allylation of chiral bis-N-sulfinylimines using allylboronic acids. The highly selective allylation was possible as electrophilic imine functional group in the product α-aminoimines remained unreactive towards allyl boronic acid nucleophiles. Notably, by varying the geometry and chiral auxiliary, all four isomers of the α-aminoimines were accessed from readily available precursors. A range of allyl nucleophiles, which are tricky to generate by other means possessing highly reactive functional groups also took part in this reaction, expanding the scope further. The applicability of the products α-aminoimines were further demonstrated by accessing a range of structurally diverse chiral cyclic and acyclic 1,2-diamines bearing adjacent stereocenters through addition of a second nucleophile or Prins-type cyclization by exploiting the nucleophilicity of the tethered alkene moiety. Moreover, the leaving group aptitude of sulfinyl auxiliary attached to imine, was exploited to access valuable chiral α-aminonitriles under thermal conditions without employing any reagents. Detailed DFT calculation revealed a chair-like transition state, arising from corresponding allylboroxine species, likely operating for the allylboration reaction across imine.
Collapse
Affiliation(s)
- Susanta Bhunia
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur, 721302, India
| | - Ganesh Karan
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur, 721302, India
| | - Shubham Snehil
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur, 721302, India
| | - Modhu Sudan Maji
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur, 721302, India
| |
Collapse
|
5
|
Koronatov A, Sakharov P, Ranolia D, Kaushansky A, Fridman N, Gandelman M. Triazenolysis of alkenes as an aza version of ozonolysis. Nat Chem 2024:10.1038/s41557-024-01653-3. [PMID: 39394263 DOI: 10.1038/s41557-024-01653-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 09/11/2024] [Indexed: 10/13/2024]
Abstract
Alkenes are broadly used in synthetic applications, thanks to their abundance and versatility. Ozonolysis is one of the most canonical transformations that converts alkenes into molecules bearing carbon-oxygen motifs via C=C bond cleavage. Despite its extensive use in both industrial and laboratory settings, the aza version-cleavage of alkenes to form carbon-nitrogen bonds-remains elusive. Here we report the conversion of alkenes into valuable amines via complete C=C bond disconnection. This process, which we have termed 'triazenolysis', is initiated by a (3 + 2) cycloaddition of triazadienium cation to an alkene. The triazolinium salt formed accepts hydride from borohydride anion and spontaneously decomposes to create new C-N motifs upon further reduction. The developed reaction is applicable to a broad range of cyclic alkenes to produce diamines, while various acyclic C=C bonds may be broken to generate two separate amine units. Computational analysis provides insights into the mechanism, including identification of the key step and elucidating the significance of Lewis acid catalysis.
Collapse
Affiliation(s)
- Aleksandr Koronatov
- Schulich Faculty of Chemistry, Technion - Israel Institute of Technology, Technion City, Israel
| | - Pavel Sakharov
- Schulich Faculty of Chemistry, Technion - Israel Institute of Technology, Technion City, Israel
| | - Deepak Ranolia
- Schulich Faculty of Chemistry, Technion - Israel Institute of Technology, Technion City, Israel
| | - Alexander Kaushansky
- Schulich Faculty of Chemistry, Technion - Israel Institute of Technology, Technion City, Israel
| | - Natalia Fridman
- Schulich Faculty of Chemistry, Technion - Israel Institute of Technology, Technion City, Israel
| | - Mark Gandelman
- Schulich Faculty of Chemistry, Technion - Israel Institute of Technology, Technion City, Israel.
| |
Collapse
|
6
|
Ai HJ, Kim ST, Liu C, Buchwald SL. Copper-Catalyzed Amination of Aryl Chlorides under Mild Reaction Conditions. J Am Chem Soc 2024; 146:25949-25955. [PMID: 39283164 PMCID: PMC11917491 DOI: 10.1021/jacs.4c10237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/26/2024]
Abstract
We report a mild method for the copper-catalyzed amination of aryl chlorides. Key to the success of the method was the use of highly sterically encumbered N1,N2-diaryl diamine ligands which resist catalyst deactivation, allowing reactions to proceed at significantly lower temperatures and with a broader scope than current protocols. A sequence of highly chemoselective C-N and C-O cross-coupling reactions were demonstrated, and mechanistic studies indicate that oxidative addition of the Cu catalyst to the aryl chlorides is rate-limiting. We anticipate that the design principles disclosed herein will help motivate further advances in Cu-catalyzed transformations of aryl chlorides.
Collapse
Affiliation(s)
- Han-Jun Ai
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, Massachusetts 02139, United States
| | - Seoung-Tae Kim
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, Massachusetts 02139, United States
| | - Cecilia Liu
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, Massachusetts 02139, United States
| | - Stephen L Buchwald
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, Massachusetts 02139, United States
| |
Collapse
|
7
|
Gao P, Wu X, Zhang D, Sun X, Zhang G, Chen F. Mechanochemical Activation of Aryl Diazonium Salts: Synthesis of Polycyclic (Hetero)Aromatics. J Org Chem 2024; 89:12197-12203. [PMID: 39162099 DOI: 10.1021/acs.joc.4c01107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/21/2024]
Abstract
Although the synthesis of polycyclic (hetero)aromatics via the [4 + 2] benzannulation process has been thoroughly explored, the restricted availability of energy sources (including thermal, light, and electrical energy) mandates the utilization of substantial quantities of organic solvents, inevitably leading to environmental pollution, resource wastage, and low reaction efficiency. Herein, we report a new method for the synthesis of polycyclic (hetero)aromatics from diazonium salts and alkynes under ball-milling conditions. This mechanochemical approach requires only substoichiometric amounts of DMSO as a liquid-assisted grinding additive and furnishes the desired product in a short time.
Collapse
Affiliation(s)
- Pan Gao
- College of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, China
| | - Xinyin Wu
- College of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, China
| | - Duo Zhang
- Medicine Center, Guangxi University of Science and Technology, Liushi Road 257, Liuzhou, Guangxi 545006, China
| | - Xiaohuan Sun
- College of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, China
| | - Guodong Zhang
- College of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, China
| | - Feng Chen
- College of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, China
| |
Collapse
|
8
|
Xu J, Liu Y, Wang Q, Tao X, Ni S, Zhang W, Yu L, Pan Y, Wang Y. Electrochemical deoxygenative amination of stabilized alkyl radicals from activated alcohols. Nat Commun 2024; 15:6116. [PMID: 39033147 PMCID: PMC11271281 DOI: 10.1038/s41467-024-50596-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 07/10/2024] [Indexed: 07/23/2024] Open
Abstract
Alkylamine structures represent one of the most functional and widely used in organic synthesis and drug design. However, the general methods for the functionalization of the shielded and deshielded alkyl radicals remain elusive. Here, we report a general deoxygenative amination protocol using alcohol-derived carbazates and nitrobenzene under electrochemical conditions. A range of primary, secondary, and tertiary alkylamines are obtained. This practical procedure can be scaled up through electrochemical continuous flow technique.
Collapse
Affiliation(s)
- Jia Xu
- Jiangsu Key Laboratory of Advanced Organic Materials, State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, China
| | - Yilin Liu
- Jiangsu Key Laboratory of Advanced Organic Materials, State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, China
| | - Qing Wang
- Jiangsu Key Laboratory of Advanced Organic Materials, State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, China
| | - Xiangzhang Tao
- Jiangsu Key Laboratory of Advanced Organic Materials, State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, China
| | - Shengyang Ni
- Jiangsu Key Laboratory of Advanced Organic Materials, State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, China
| | - Weigang Zhang
- Jiangsu Key Laboratory of Advanced Organic Materials, State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, China
| | - Lei Yu
- Jiangsu Key Laboratory of Advanced Organic Materials, State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, China
| | - Yi Pan
- Jiangsu Key Laboratory of Advanced Organic Materials, State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, China
| | - Yi Wang
- Jiangsu Key Laboratory of Advanced Organic Materials, State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, China.
| |
Collapse
|
9
|
Tang MP, Zhu L, Deng Y, Shi YX, Kin-Man Lai S, Mo X, Pang XY, Liu C, Jiang W, Tse ECM, Au-Yeung HY. Water and Air Stable Copper(I) Complexes of Tetracationic Catenane Ligands for Oxidative C-C Cross-Coupling. Angew Chem Int Ed Engl 2024; 63:e202405971. [PMID: 38661248 DOI: 10.1002/anie.202405971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 04/24/2024] [Accepted: 04/25/2024] [Indexed: 04/26/2024]
Abstract
Aqueous soluble and stable Cu(I) molecular catalysts featuring a catenane ligand composed of two dicationic, mutually repelling but mechanically interlocked macrocycles are reported. The ligand interlocking not only fine-tunes the coordination sphere and kinetically stabilizes the Cu(I) against air oxidation and disproportionation, but also buries the hydrophobic portions of the ligands and prevents their dissociation which are necessary for their good water solubility and a sustained activity. These catenane Cu(I) complexes can catalyze the oxidative C-C coupling of indoles and tetrahydroisoquinolines in water, using H2O2 as a green oxidant with a good substrate scope. The successful use of catenane ligands in exploiting aqueous Cu(I) catalysis thus highlights the many unexplored potential of mechanical bond as a design element for exploring transition metal catalysis under challenging conditions.
Collapse
Affiliation(s)
- Man Pang Tang
- Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, P. R. China
| | - Lihui Zhu
- Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, P. R. China
- State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, P. R. China
| | - Yulin Deng
- Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, P. R. China
| | - Yi-Xiang Shi
- Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, P. R. China
| | - Samuel Kin-Man Lai
- Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, P. R. China
| | - Xiaoyong Mo
- Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, P. R. China
| | - Xin-Yu Pang
- Department of Chemistry, South University of Science and Technology of China, Xueyuan Blvd 1088, Shenzhen, 518055, P. R. China
| | - Chunyu Liu
- Key Laboratory of Eco-Textiles, Ministry of Education, Jiangnan University, Wuxi, 100083, P. R. China
| | - Wei Jiang
- Department of Chemistry, South University of Science and Technology of China, Xueyuan Blvd 1088, Shenzhen, 518055, P. R. China
| | - Edmund Chun Ming Tse
- Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, P. R. China
- CAS-HKU Joint Laboratory on New Materials, The University of Hong Kong, Pokfulam Road, Hong Kong, P. R. China
| | - Ho Yu Au-Yeung
- Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, P. R. China
- State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, P. R. China
- CAS-HKU Joint Laboratory on New Materials, The University of Hong Kong, Pokfulam Road, Hong Kong, P. R. China
| |
Collapse
|
10
|
Kumar D, Unnikrishnan U, Kuram MR. Facile access to C-substituted piperazin-2-ones and mianserin derivative enabled by chemoselective carbene insertion and cyclization cascade. Chem Commun (Camb) 2024; 60:5691-5694. [PMID: 38726600 DOI: 10.1039/d4cc00959b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
The chemoselective N-H insertion of unsymmetrical diamines into carbene is a longstanding challenge. A simple copper-catalyzed strategy for synthesizing C-substituted piperazinones is described, employing easily accessible diazo compounds and 1,2-diamines. The reaction proceeded via chemo-selective carbene insertion at the comparatively less nucleophilic amine, followed by instantaneous cyclization. The protocol was further extended to access NH-free piperazinone, and the synthesis of a Mianserin derivative.
Collapse
Affiliation(s)
- Dharmendra Kumar
- Medicinal and Process Chemistry Division, CSIR-Central Drug Research Institute, Lucknow 226031, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Urmila Unnikrishnan
- Medicinal and Process Chemistry Division, CSIR-Central Drug Research Institute, Lucknow 226031, India.
| | - Malleswara Rao Kuram
- Medicinal and Process Chemistry Division, CSIR-Central Drug Research Institute, Lucknow 226031, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| |
Collapse
|
11
|
Ghosh A, Sagadevan A, Murugesan K, Nastase SAF, Maity B, Bodiuzzaman M, Shkurenko A, Hedhili MN, Yin J, Mohammed OF, Eddaoudi M, Cavallo L, Rueping M, Bakr OM. Multiple neighboring active sites of an atomically precise copper nanocluster catalyst for efficient bond-forming reactions. MATERIALS HORIZONS 2024; 11:2494-2505. [PMID: 38477151 DOI: 10.1039/d4mh00098f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/14/2024]
Abstract
Atomically precise copper nanoclusters (NCs) are an emerging class of nanomaterials for catalysis. Their versatile core-shell architecture opens the possibility of tailoring their catalytically active sites. Here, we introduce a core-shell copper nanocluster (CuNC), [Cu29(StBu)13Cl5(PPh3)4H10]tBuSO3 (StBu: tert-butylthiol; PPh3: triphenylphosphine), Cu29NC, with multiple accessible active sites on its shell. We show that this nanocluster is a versatile catalyst for C-heteroatom bond formation (C-O, C-N, and C-S) with several advantages over previous Cu systems. When supported, the cluster can also be reused as a heterogeneous catalyst without losing its efficiency, making it a hybrid homogeneous and heterogeneous catalyst. We elucidated the atomic-level mechanism of the catalysis using density functional theory (DFT) calculations based on the single crystal structure. We found that the cooperative action of multiple neighboring active sites is essential for the catalyst's efficiency. The calculations also revealed that oxidative addition is the rate-limiting step that is facilitated by the neighboring active sites of the Cu29NC, which highlights a unique advantage of nanoclusters over traditional copper catalysts. Our results demonstrate the potential of nanoclusters for enabling the rational atomically precise design and investigation of multi-site catalysts.
Collapse
Affiliation(s)
- Atanu Ghosh
- KAUST Catalysis Center (KCC), Division of Physical Sciences and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia.
| | - Arunachalam Sagadevan
- KAUST Catalysis Center (KCC), Division of Physical Sciences and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia.
| | - Kathiravan Murugesan
- KAUST Catalysis Center (KCC), Division of Physical Sciences and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia.
| | - Stefan Adrian F Nastase
- KAUST Catalysis Center (KCC), Division of Physical Sciences and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia.
| | - Bholanath Maity
- KAUST Catalysis Center (KCC), Division of Physical Sciences and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia.
| | - Mohammad Bodiuzzaman
- KAUST Catalysis Center (KCC), Division of Physical Sciences and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia.
| | - Aleksander Shkurenko
- Advanced Membranes and Porous Materials Center (AMPMC), Physical Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Mohamed Nejib Hedhili
- Core Labs, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Jun Yin
- Department of Applied Physics, The Hong Kong Polytechnic University, Hung Hom, Kowloon, 999077, Hong Kong, China
| | - Omar F Mohammed
- Advanced Membranes and Porous Materials Center (AMPMC), Physical Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Mohamed Eddaoudi
- Advanced Membranes and Porous Materials Center (AMPMC), Physical Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Luigi Cavallo
- KAUST Catalysis Center (KCC), Division of Physical Sciences and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia.
| | - Magnus Rueping
- KAUST Catalysis Center (KCC), Division of Physical Sciences and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia.
| | - Osman M Bakr
- KAUST Catalysis Center (KCC), Division of Physical Sciences and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia.
| |
Collapse
|
12
|
Liu J, Guo L, Chen Z, Guo Y, Zhang W, Peng X, Wang Z, Zeng YF. Photoredox-catalyzed unsymmetrical diamination of alkenes for access to vicinal diamines. Chem Commun (Camb) 2024; 60:3413-3416. [PMID: 38441256 DOI: 10.1039/d4cc00330f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2024]
Abstract
A photoredox-catalyzed unsymmetrical diamination of alkenes by using N-aminopyridinium salts and nitriles as the amination reagents has been developed. Various vicinal diamines were obtained in moderate to excellent yields under mild reaction conditions. Furthermore, this protocol could be applied in the late-stage modification of pharmaceuticals and natural products. Preliminary mechanistic studies suggested that this methodology may undergo a radical pathway followed by a Ritter-type reaction.
Collapse
Affiliation(s)
- Jie Liu
- School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China.
| | - Lu Guo
- Department of Sports Medicine, Affiliated Nanhua Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Zhang Chen
- School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China.
| | - Yu Guo
- School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China.
| | - Wei Zhang
- School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China.
| | - Xue Peng
- School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China.
| | - Zhen Wang
- School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China.
- MOE Key Lab of Rare Pediatric Diseases, University of South China, Hengyang, Hunan, 421001, China
| | - Yao-Fu Zeng
- School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China.
| |
Collapse
|
13
|
Maity A, Sahoo AK. Copper-Catalyzed Regio- and Stereoselective Hydroarylation of Ynamide. J Org Chem 2024. [PMID: 38170946 DOI: 10.1021/acs.joc.3c01720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Presented herein is a copper-catalyzed trans-hydroarylation of ynamides. The reaction showcases the assembly of boronic acids across the carbon-carbon triple bond of ynamides. The reaction proceeds under mild conditions offering a complementary approach for the versatile synthesis of multifunctional (E)-α,β-disubstituted enamides. Moreover, the hydroarylation process is highly regio- and stereoselective. The transformation shows a broad scope (30 examples) and tolerates a wide range of labile functional groups. Control experiments provide substantive evidence supporting the mechanistic cycle and the observed selectivity.
Collapse
Affiliation(s)
- Avijit Maity
- School of Chemistry, University of Hyderabad, Hyderabad 500046, India
| | - Akhila K Sahoo
- School of Chemistry, University of Hyderabad, Hyderabad 500046, India
| |
Collapse
|
14
|
Kumar R. Transition-Metal-Catalyzed 1,2-Diaminations of Olefins: Synthetic Methodologies and Mechanistic Studies. Chem Asian J 2024; 19:e202300705. [PMID: 37743249 DOI: 10.1002/asia.202300705] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 09/20/2023] [Accepted: 09/20/2023] [Indexed: 09/26/2023]
Abstract
1,2-Diamines are synthetically important motifs in organo-catalysis, natural products, and drug research. Continuous utilization of transition-metal based catalyst in direct 1,2-diamination of olefines, in contrast to metal-free transformations, with numerous impressive advances made in recent years (2015-2023). This review summarized contemporary research on the transition-metal catalyzed/mediated [e. g., Cu(II), Pd(II), Fe(II), Rh(III), Ir(III), and Co(II)] 1,2-diamination (asymmetric and non-asymmetric) especially emphasizing the recent synthetic methodologies and mechanistic understandings. Moreover, up-to-date discussion on (i) paramount role of oxidant and catalyst (ii) key achievements (iii) generality and uniqueness, (iv) synthetic limitations or future challenges, and (v) future opportunities are summarized related to this potential area.
Collapse
Affiliation(s)
- Ravinder Kumar
- Department of Chemistry, MMEC, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala, 133207, Haryana, INDIA
| |
Collapse
|
15
|
Nagamalla S, Thomas AA, Nirpal AK, Mague JT, Sathyamoorthi S. Ring Opening of Aziridines by Pendant Sulfamates Allows for Regioselective and Stereospecific Preparation of Vicinal Diamines. J Org Chem 2023; 88:15989-16006. [PMID: 37903411 PMCID: PMC10799289 DOI: 10.1021/acs.joc.3c01731] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2023]
Abstract
The ring opening of aziridines by pendant sulfamates is a viable strategy for the rapid preparation of vicinal diamines. Our reaction is compatible with both disubstituted cis- and trans-aziridines; unsubstituted, N-alkyl, and N-aryl sulfamates engage effectively. In all cases examined, the cyclization reaction is perfectly regioselective and stereospecific. Once activated, the product oxathiazinane heterocycles can be ring opened with a diverse range of nucleophiles.
Collapse
Affiliation(s)
- Someshwar Nagamalla
- Department of Medicinal Chemistry, University of Kansas, Lawrence, Kansas 66047, United States
| | - Annu Anna Thomas
- Department of Medicinal Chemistry, University of Kansas, Lawrence, Kansas 66047, United States
| | - Appasaheb K. Nirpal
- Department of Medicinal Chemistry, University of Kansas, Lawrence, Kansas 66047, United States
| | - Joel T. Mague
- Department of Chemistry, Tulane University, New Orleans, Louisiana 70118, United States
| | - Shyam Sathyamoorthi
- Department of Medicinal Chemistry, University of Kansas, Lawrence, Kansas 66047, United States
| |
Collapse
|
16
|
Hung TQ, Nguyen BCQ, Phuc BV, Dang Van TD, Trang CM, Anh QTK, Do DV, Nguyen H, Ngo QA, Dang TT. Facile access to 5 H-thiazolo[2',3':2,3]imidazo[4,5- b]indole derivatives by two-fold Cu-catalysed C-N coupling reactions. Org Biomol Chem 2023; 21:8813-8818. [PMID: 37889185 DOI: 10.1039/d3ob01515g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2023]
Abstract
In four simple steps, a series of 5H-thiazolo[2',3':2,3]imidazo[4,5-b]indole and 11H-benzo[4',5']thiazolo[2',3':2,3]imidazo[4,5-b]indole derivatives were prepared with high yields. The key step in this procedure was demonstrated to be two-fold Cu-catalysed C-N coupling reactions of 5-bromo-6-(2-bromophenyl)imidazo[2,1-b]thiazole and 3-bromo-2-(2-bromophenyl)benzo[d]imidazo[2,1-b]thiazole with various amines.
Collapse
Affiliation(s)
- Tran Quang Hung
- Institute of Chemistry, Vietnam Academy of Science and Technology, Viet Nam.
- Graduate University of Science and Technology, Vietnam Academy of Science and Technology, Viet Nam
| | - Bao Chi Quang Nguyen
- Faculty of Chemistry, Hanoi University of Science, Vietnam National University (VNU), Viet Nam.
| | - Ban Van Phuc
- Institute of Chemistry, Vietnam Academy of Science and Technology, Viet Nam.
| | - Tien Dat Dang Van
- Graduate University of Science and Technology, Vietnam Academy of Science and Technology, Viet Nam
| | - Chu Mai Trang
- Faculty of Chemistry, Hanoi University of Science, Vietnam National University (VNU), Viet Nam.
| | - Quang Thi Kim Anh
- Faculty of Chemistry, Hanoi University of Science, Vietnam National University (VNU), Viet Nam.
| | - Dang Van Do
- Faculty of Chemistry, Hanoi University of Science, Vietnam National University (VNU), Viet Nam.
| | - Hien Nguyen
- Faculty of Chemistry, Hanoi National University of Education (HNUE), Viet Nam
| | - Quoc Anh Ngo
- Institute of Chemistry, Vietnam Academy of Science and Technology, Viet Nam.
- Graduate University of Science and Technology, Vietnam Academy of Science and Technology, Viet Nam
| | - Tuan Thanh Dang
- Faculty of Chemistry, Hanoi University of Science, Vietnam National University (VNU), Viet Nam.
| |
Collapse
|
17
|
Horikawa M, Joy ST, Sharninghausen LS, Shao X, Mapp AK, Scott PJH, Sanford MS. C-H radiocyanation of bioactive molecules via sequential iodination/copper-mediated cross-coupling. Chem Sci 2023; 14:12068-12072. [PMID: 37969612 PMCID: PMC10631240 DOI: 10.1039/d3sc03948j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Accepted: 10/20/2023] [Indexed: 11/17/2023] Open
Abstract
This report describes a net C-H radiocyanation reaction for the transformation of electron rich (hetero)aromatic substrates into 11CN-labeled products. Electrophilic C(sp2)-H iodination of the (hetero)arene with N-iodosuccinimide is followed by Cu-mediated radiocyanation with K11CN. This sequence is applied to a variety of substrates, including the nucleobases uracil and cytosine, the amino acids tyrosine and tryptophan, and the peptide LYRAGWRAFS, which undergoes selective C-H radiocyanation at the tryptophan (W) residue.
Collapse
Affiliation(s)
- Mami Horikawa
- Department of Chemistry, University of Michigan 930 North University Avenue Ann Arbor Michigan 48109 USA
| | - Stephen T Joy
- Department of Chemistry, University of Michigan 930 North University Avenue Ann Arbor Michigan 48109 USA
| | - Liam S Sharninghausen
- Department of Chemistry, University of Michigan 930 North University Avenue Ann Arbor Michigan 48109 USA
| | - Xia Shao
- Department of Radiology, University of Michigan 1301 Catherine Ann Arbor Michigan 48109 USA
| | - Anna K Mapp
- Department of Chemistry, University of Michigan 930 North University Avenue Ann Arbor Michigan 48109 USA
| | - Peter J H Scott
- Department of Radiology, University of Michigan 1301 Catherine Ann Arbor Michigan 48109 USA
| | - Melanie S Sanford
- Department of Chemistry, University of Michigan 930 North University Avenue Ann Arbor Michigan 48109 USA
| |
Collapse
|
18
|
Geraci A, Stojiljković U, Antien K, Salameh N, Baudoin O. Iridium(III)-Catalyzed Intermolecular C(sp 3 )-H Amidation for the Synthesis of Chiral 1,2-Diamines. Angew Chem Int Ed Engl 2023; 62:e202309263. [PMID: 37493209 DOI: 10.1002/anie.202309263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/25/2023] [Accepted: 07/26/2023] [Indexed: 07/27/2023]
Abstract
Chiral 1,2-diamines are privileged scaffolds among bioactive natural products, active pharmaceutical ingredients, ligands for transition-metal-based asymmetric catalysis and organocatalysts. Despite this interest, the construction of chiral 1,2-diamine motifs still remains a challenge. To address this, an iridium(III)-catalyzed intermolecular C(sp3 )-H amidation reaction was developed. This method relies on the design of a new, cheap and cleavable exo-protecting/directing group derived from camphorsulfonic acid, which is directly installed from easily accessible precursors, and furnishes scalemic free 1,2-diamines upon cleavage of both nitrogen substituents. It was found applicable to both α-secondary and α-tertiary-1,2-diamines, for which a two-step protocol involving intermolecular olefin hydroamination and C(sp3 )-H amidation was developed. Kinetic and computational studies provided insights into the observed reactivity difference between pairs of diastereoisomeric substrates.
Collapse
Affiliation(s)
- Andrea Geraci
- University of Basel, Department of Chemistry, St. Johanns-Ring 19, 4056, Basel, Switzerland
| | - Uros Stojiljković
- University of Basel, Department of Chemistry, St. Johanns-Ring 19, 4056, Basel, Switzerland
| | - Kevin Antien
- University of Basel, Department of Chemistry, St. Johanns-Ring 19, 4056, Basel, Switzerland
| | - Nihad Salameh
- University of Basel, Department of Chemistry, St. Johanns-Ring 19, 4056, Basel, Switzerland
| | - Olivier Baudoin
- University of Basel, Department of Chemistry, St. Johanns-Ring 19, 4056, Basel, Switzerland
| |
Collapse
|
19
|
Luo R, Tong J, Ouyang L, Liu L, Liao J. One-pot reductive amination of carbonyl compounds and nitro compounds via Ir-catalyzed transfer hydrogenation. RSC Adv 2023; 13:29607-29612. [PMID: 37818258 PMCID: PMC10561669 DOI: 10.1039/d3ra05736d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 09/25/2023] [Indexed: 10/12/2023] Open
Abstract
The formation of C-N bond is a vital synthetic tool for establishing molecular diversity, which is highly sought after in a wide range of biologically active natural products and drugs. Herein, we present a new strategy for the synthesis of secondary amines via iridium-catalyzed one-pot reductive amination of carbonyl compounds with nitro compounds. This method is demonstrated for a variety of carbonyl compounds, including miscellaneous aldehydes and ketones, which are compatible with this catalytic system, and deliver the desired products in good yields under mild conditions. In this protocol, the reduction of nitro compounds occurs in situ first, followed by reductive amination to form amine products, providing a new one-pot procedure for amine synthesis.
Collapse
Affiliation(s)
- Renshi Luo
- College of Chemistry and Environmental Engineering, Shaoguan University Shaoguan 512005 P. R. China
- School of Pharmaceutical Sciences, Gannan Medical University Ganzhou 341000 Jiangxi Province P. R. China
| | - Jinghui Tong
- School of Pharmaceutical Sciences, Gannan Medical University Ganzhou 341000 Jiangxi Province P. R. China
| | - Lu Ouyang
- School of Pharmaceutical Sciences, Gannan Medical University Ganzhou 341000 Jiangxi Province P. R. China
| | - Liang Liu
- School of Pharmaceutical Sciences, Gannan Medical University Ganzhou 341000 Jiangxi Province P. R. China
| | - Jianhua Liao
- School of Pharmaceutical Sciences, Gannan Medical University Ganzhou 341000 Jiangxi Province P. R. China
| |
Collapse
|
20
|
Hall CGJ, Sneddon HF, Pogány P, Lindsay DM, Kerr WJ. Experimental and computational insights into the mechanism of the copper(i)-catalysed sulfonylative Suzuki-Miyaura reaction. Chem Sci 2023; 14:6738-6755. [PMID: 37350817 PMCID: PMC10284122 DOI: 10.1039/d3sc01337e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 05/30/2023] [Indexed: 06/24/2023] Open
Abstract
A mechanistic study into the copper(i)-catalysed sulfonylative Suzuki-Miyaura reaction, incorporating sulfur dioxide, is described. Utilising spectroscopic and computational techniques, an exploration into the individual components of the competing catalytic cycles is delineated, including identification of the resting state catalyst, transmetalation of arylboronic acid onto copper(i), the sulfur dioxide insertion process, and the oxidative addition of aryl halide to CuI. Studies also investigated prominent side-reactions which were uncovered, including a competing copper(ii)-catalysed mechanism. This led to an additional proposed and connected CuI/CuII/CuIII catalytic cycle to account for by-product formation.
Collapse
Affiliation(s)
- Callum G J Hall
- Medicines Design, GlaxoSmithKline Gunnels Wood Road, Stevenage SG1 2NY England UK
- Department of Pure and Applied Chemistry, University of Strathclyde 295 Cathedral Street, Glasgow G1 1XL Scotland UK
| | - Helen F Sneddon
- Medicines Design, GlaxoSmithKline Gunnels Wood Road, Stevenage SG1 2NY England UK
| | - Peter Pogány
- Medicines Design, GlaxoSmithKline Gunnels Wood Road, Stevenage SG1 2NY England UK
| | - David M Lindsay
- Department of Pure and Applied Chemistry, University of Strathclyde 295 Cathedral Street, Glasgow G1 1XL Scotland UK
| | - William J Kerr
- Department of Pure and Applied Chemistry, University of Strathclyde 295 Cathedral Street, Glasgow G1 1XL Scotland UK
| |
Collapse
|
21
|
Yang P, Širvinskas MJ, Li B, Heller NW, Rong H, He G, Yudin AK, Chen G. Teraryl Braces in Macrocycles: Synthesis and Conformational Landscape Remodeling of Peptides. J Am Chem Soc 2023. [PMID: 37326500 DOI: 10.1021/jacs.3c03512] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
The three-dimensional structure of medium-sized cyclic peptides accounts for their biological activity and other important physiochemical properties. Despite significant advances in the past few decades, chemists' ability to fine-tune the structure, in particular, the backbone conformation, of short peptides made of canonical amino acids is still quite limited. Nature has shown that cross-linking the aromatic side chains of linear peptide precursors via enzyme catalysis can generate cyclophane-braced products with unusual structures and diverse activities. However, the biosynthetic path to these natural products is challenging to replicate in the synthetic laboratory using practical chemical modifications of peptides. Herein, we report a broadly applicable strategy to remodel the structure of homodetic peptides by cross-linking the aromatic side chains of Trp, His, and Tyr residues with various aryl linkers. The aryl linkers can be easily installed via copper-catalyzed double heteroatom-arylation reactions of peptides with aryl diiodides. These aromatic side chains and aryl linkers can be combined to form a large variety of assemblies of heteroatom-linked multi-aryl units. The assemblies can serve as tension-bearable multijoint braces to modulate the backbone conformation of peptides as an entry to previously inaccessible conformational space.
Collapse
Affiliation(s)
- Peng Yang
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | | | - Bo Li
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Nicholas W Heller
- Department of Chemistry, University of Toronto, Toronto M5S 3H4, Canada
| | - Hua Rong
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Gang He
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Andrei K Yudin
- Department of Chemistry, University of Toronto, Toronto M5S 3H4, Canada
| | - Gong Chen
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
- Frontiers Science Center for New Organic Matter, Nankai University, Tianjin 300071, China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin 300192, China
| |
Collapse
|
22
|
Dai JJ, Yin X, Li L, Rivera ME, Wang YC, Dai M. Modular and practical diamination of allenes. Nat Commun 2023; 14:1774. [PMID: 36997504 PMCID: PMC10063549 DOI: 10.1038/s41467-023-37345-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 03/10/2023] [Indexed: 04/01/2023] Open
Abstract
Vicinal diamines are privileged scaffolds in medicine, agrochemicals, catalysis, and other fields. While significant advancements have been made in diamination of olefins, diamination of allenes is only sporadically explored. Furthermore, direct incorporation of acyclic and cyclic alkyl amines onto unsaturated π systems is highly desirable and important, but problematic for many previously reported amination reactions including the diamination of olefins. Herein, we report a modular and practical diamination of allenes, which offers efficient syntheses of β,γ-diamino carboxylates and sulfones. This reaction features broad substrate scope, excellent functional group tolerability, and scalability. Experimental and computational studies support an ionic reaction pathway initiated with a nucleophilic addition of the in situ formed iodoamine to the electron deficient allene substrate. An iodoamine activation mode via a halogen bond with a chloride ion was revealed to substantially increase the nucleophilicity of the iodoamine and lower the activation energy barrier for the nucleophilic addition step.
Collapse
Affiliation(s)
- Jian-Jun Dai
- Department of Chemistry and Center for Cancer Research, Purdue University, West Lafayette, IN, 47907, USA
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Xianglin Yin
- Department of Chemistry and Center for Cancer Research, Purdue University, West Lafayette, IN, 47907, USA
| | - Lei Li
- Department of Chemistry and Center for Cancer Research, Purdue University, West Lafayette, IN, 47907, USA
- Department of Chemistry, Emory University, Atlanta, GA, 30322, USA
| | - Mario E Rivera
- Department of Chemistry and Center for Cancer Research, Purdue University, West Lafayette, IN, 47907, USA
- Department of Chemistry, Emory University, Atlanta, GA, 30322, USA
| | - Ye-Cheng Wang
- Department of Chemistry and Center for Cancer Research, Purdue University, West Lafayette, IN, 47907, USA.
| | - Mingji Dai
- Department of Chemistry and Center for Cancer Research, Purdue University, West Lafayette, IN, 47907, USA.
- Department of Chemistry, Emory University, Atlanta, GA, 30322, USA.
| |
Collapse
|
23
|
Kim ST, Strauss MJ, Cabré A, Buchwald SL. Room-Temperature Cu-Catalyzed Amination of Aryl Bromides Enabled by DFT-Guided Ligand Design. J Am Chem Soc 2023; 145:6966-6975. [PMID: 36926889 PMCID: PMC10415864 DOI: 10.1021/jacs.3c00500] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
Abstract
Ullmann-type C-N coupling reactions represent an important alternative to well-established Pd-catalyzed approaches due to the differing reactivity and the lower cost of Cu. While the design of anionic Cu ligands, particularly those by Ma, has enabled the coupling of various classes of aryl halides and alkyl amines, most methods require conditions that can limit their utility on complex substrates. Herein, we disclose the development of anionic N1,N2-diarylbenzene-1,2-diamine ligands that promote the Cu-catalyzed amination of aryl bromides under mild conditions. Guided by DFT calculations, these ligands were designed to (1) increase the electron density on Cu, thereby increasing the rate of oxidative addition of aryl bromides, and (2) stabilize the active anionic CuI complex via a π-interaction. Under optimized conditions, structurally diverse aryl and heteroaryl bromides and a broad range of alkyl amine nucleophiles, including pharmaceuticals bearing multiple functional groups, were efficiently coupled at room temperature. Combined computational and experimental studies support a mechanism of C-N bond formation that follows a catalytic cycle akin to the well-explored Pd-catalyzed variants. Modification of the ligand structure to include a naphthyl residue resulted in a lower energy barrier to oxidative addition, providing a 30-fold rate increase relative to what is seen with other ligands. Collectively, these results establish a new class of anionic ligands for Cu-catalyzed C-N couplings, which we anticipate may be extended to other Cu-catalyzed C-heteroatom and C-C bond-forming reactions.
Collapse
Affiliation(s)
- Seoung-Tae Kim
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, Massachusetts 02139, United States
| | - Michael J Strauss
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, Massachusetts 02139, United States
| | - Albert Cabré
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, Massachusetts 02139, United States
| | - Stephen L Buchwald
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, Massachusetts 02139, United States
| |
Collapse
|
24
|
Rabiei K, Mohammadkhani Z, Keypour H, Kouhdareh J. Palladium Schiff base complex-modified Cu(BDC-NH 2) metal-organic frameworks for C-N coupling. RSC Adv 2023; 13:8114-8129. [PMID: 36926010 PMCID: PMC10014173 DOI: 10.1039/d3ra01020a] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 02/24/2023] [Indexed: 03/18/2023] Open
Abstract
In this study, the synthesis of a novel functionalized metal-organic-framework (MOF) [Cu(BDC-NH2)@Schiff-base-Pd(ii)] catalyst via post-synthetic modification of Cu(BDC-NH2) is reported. The targeted complex was prepared by chemically attaching N,N'-bis(5-formylpyrrol-2-ylmethyl) homopiperazine via a Schiff base reaction followed by complexation with Pd ions. Afterwards, the synthesized solid was applied as a very effective multifunctional catalyst in C-N coupling reactions. The synthesized compounds were identified by suitable techniques including N2 isotherms, EDX spectroscopy, FT-IR spectroscopy, XRD, SEM, ICP-OES and TG-DTA. This nanocatalyst was used in C-N cross-coupling reactions, and it showed its usage in a diverse range of different functional groups with good efficiency. The reasons for introducing this catalyst system are its advantages such as considerably high selectivity, almost complete conversion of products, high yields, and convenient separation of catalysts and products. The results indicate that the highest efficiency of the product in the reaction was obtained in the shortest possible time with the use of [Cu(BDC-NH2)@Schiff-base-Pd(ii)] catalysts. Overall, the high catalytic activity of the [Cu(BDC-NH2)@Schiff-base-Pd(ii)] catalyst may be due to the obtained high surface area and the synergistic features created between Lewis acidic Cu nodes and Pd ions.
Collapse
Affiliation(s)
- Khadijeh Rabiei
- Department of Chemistry, Faculty of Science, Qom University of Technology Qom Iran
| | - Zahra Mohammadkhani
- Department of Chemistry, Faculty of Science, Qom University of Technology Qom Iran
| | - Hassan Keypour
- Department of Inorganic Chemistry, Faculty of Chemistry, Bu-Ali Sina University Hamedan 6517838683 Iran
| | - Jamal Kouhdareh
- Department of Inorganic Chemistry, Faculty of Chemistry, Bu-Ali Sina University Hamedan 6517838683 Iran
| |
Collapse
|
25
|
Keypour H, Kouhdareh J, Maryamabadi A, Babaei S, Alavinia S. Facile synthesis of a new covalent organic framework (COF-AYLIN) based on polyamide links and their application in C N coupling reaction. Inorganica Chim Acta 2023. [DOI: 10.1016/j.ica.2023.121494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
|
26
|
Saikia R, Das S, Almin A, Mahanta A, Sarma B, Thakur AJ, Bora U. N, N′-Dimethylurea as an efficient ligand for the synthesis of pharma-relevant motifs through Chan–Lam cross-coupling strategy. Org Biomol Chem 2023; 21:3143-3155. [PMID: 36987866 DOI: 10.1039/d3ob00176h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
Abstract
The combination of copper and N,N′-dimethylurea is used to showcase the Chan–Lam N-arylation of three different nitrogen nucleophiles. The synthesized catalyst is cheap, chemoselective, and also found to be effective in the N-arylation of target APIs.
Collapse
Affiliation(s)
- Rakhee Saikia
- Department of Chemical Sciences, Tezpur University, Napaam, Tezpur, Assam 784028, India.
| | - Sanghamitra Das
- Department of Chemical Sciences, Tezpur University, Napaam, Tezpur, Assam 784028, India.
| | - Arzu Almin
- Department of Chemical Sciences, Tezpur University, Napaam, Tezpur, Assam 784028, India.
| | - Abhijit Mahanta
- Department of Chemical Sciences, Tezpur University, Napaam, Tezpur, Assam 784028, India.
- Department of Chemistry, Digboi College, Tinsukia, Assam-786171, India
| | - Bipul Sarma
- Department of Chemical Sciences, Tezpur University, Napaam, Tezpur, Assam 784028, India.
| | - Ashim J Thakur
- Department of Chemical Sciences, Tezpur University, Napaam, Tezpur, Assam 784028, India.
| | - Utpal Bora
- Department of Chemical Sciences, Tezpur University, Napaam, Tezpur, Assam 784028, India.
| |
Collapse
|
27
|
Shearer J, Vasiliauskas D, Lancaster KM. Bonding and the role of electrostatics in driving C-C bond formation in high valent organocopper compounds. Chem Commun (Camb) 2022; 59:98-101. [PMID: 36472142 PMCID: PMC10173383 DOI: 10.1039/d2cc05865k] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The electronic structures and contrasting reactivity of [Cu(CF3)4]- and [Cu(CF3)3(CH3)]- were probed using coupled cluster and ab initio valence bond calculations. The Cu-C bonds in these complexes were found to be charge shift bonds. A key finding is that electrostatics likely prevent [Cu(CF3)4]- from accessing a productive transition state for C-C bond formation while promote one for [Cu(CF3)3(CH3)]-. These results therefore highlight essential design criteria for Cu-mediated C-C/C-heteroatom bond formation.
Collapse
Affiliation(s)
- Jason Shearer
- Department of Chemistry, Trinity University, San Antonio, Texas 78212-7200, USA.
| | - Dovydas Vasiliauskas
- Department of Chemistry, Trinity University, San Antonio, Texas 78212-7200, USA.
| | - Kyle M Lancaster
- Department of Chemistry and Chemical Biology, Baker Laboratory, Cornell University, 162 Sciences Drive, Ithaca, NY 14853, USA.
| |
Collapse
|
28
|
Jiang Y, Gu J, Nie W, Lu G, Xin M, Zhu Z, Jiang J, Meng Y, Miao H, Zou Y. Copper‐Catalyzed C(sp
2
)−N Coupling of (
E
)‐3‐(2‐Bromophenysl)‐2‐arylacrylamides for the Synthesis of 3‐Arylquinolin‐2‐ones. ChemistrySelect 2022. [DOI: 10.1002/slct.202204339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Yi Jiang
- School of Pharmaceutical Sciences Sun Yat-sen University Guangzhou 510006 P. R. China
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery Guangzhou 510006 P. R. China
| | - Jiayi Gu
- School of Pharmaceutical Sciences Sun Yat-sen University Guangzhou 510006 P. R. China
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery Guangzhou 510006 P. R. China
| | - Wenxing Nie
- School of Pharmaceutical Sciences Sun Yat-sen University Guangzhou 510006 P. R. China
| | - Guoqing Lu
- School of Pharmaceutical Sciences Sun Yat-sen University Guangzhou 510006 P. R. China
| | - Meixiu Xin
- School of Pharmaceutical Sciences Sun Yat-sen University Guangzhou 510006 P. R. China
| | - Zefeng Zhu
- Department of Pharmacy The Fifth Affiliated Hospital of Jinan University Heyuan 517000 P. R. China
| | - Jiayao Jiang
- School of Pharmaceutical Sciences Sun Yat-sen University Guangzhou 510006 P. R. China
| | - Yingfen Meng
- School of Pharmaceutical Sciences Sun Yat-sen University Guangzhou 510006 P. R. China
| | - Hui Miao
- School of Pharmaceutical Sciences Sun Yat-sen University Guangzhou 510006 P. R. China
| | - Yong Zou
- School of Pharmaceutical Sciences Sun Yat-sen University Guangzhou 510006 P. R. China
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery Guangzhou 510006 P. R. China
| |
Collapse
|
29
|
Tian H, Holyoke CW, Fleming FF. Stereoselective Synthesis of ( E)- and ( Z)-Isocyanoalkenes. Org Lett 2022; 24:8657-8661. [PMID: 36399331 DOI: 10.1021/acs.orglett.2c03461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
(E)- and (Z)-isocyanoalkenes were selectively synthesized via the sequential cross coupling of vinyl iodides with formamide, followed by dehydration. The optimal catalyst, generated in situ from CuII and trans-N,N'-dimethyl-1,2-cyclohexanediamine, rapidly coupled (E)- or (Z)-vinyl iodides with formamide, which minimized the isomerization of the resultant vinyl formamide. The method efficiently provided a range of acyclic, carbocyclic, and heterocyclic isocyanoalkenes; the versatility is illustrated with the selective, stereodivergent syntheses of the diastereomeric isocyanoalkene antibiotics, B371 and E-B371.
Collapse
Affiliation(s)
- Huan Tian
- Department of Chemistry, Drexel University, 3141 Chestnut Street, Philadelphia, Pennsylvania 19104, United States
| | - Caleb W Holyoke
- Department of Chemistry, Drexel University, 3141 Chestnut Street, Philadelphia, Pennsylvania 19104, United States
| | - Fraser F Fleming
- Department of Chemistry, Drexel University, 3141 Chestnut Street, Philadelphia, Pennsylvania 19104, United States
| |
Collapse
|
30
|
Sumii Y, Iwasaki H, Fujihira Y, Mahmoud EM, Adachi H, Kagawa T, Cahard D, Shibata N. KHMDS/Triglyme Cryptate as an Alternative to Phosphazene Base in Stereodivergent Pentafluoroethylation of N-Sulfinylimines Using HFC-125. J Org Chem 2022; 87:15806-15819. [PMID: 36315641 DOI: 10.1021/acs.joc.2c01821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Abstract
A protocol for the stereodivergent pentafluoroethylation of N-sulfinylimines using HFC-125 with KHMDS/triglyme has been developed. Both diastereomers of the pentafluoroethylated amines can be selectively synthesized based on the presence or absence of triglyme. This additive-controlled protocol allows the KHMDS/triglyme cryptate to be a straightforward and cheap alternative to previously reported base-controlled stereodivergent trifluoromethylation using potassium hexamethyldisilazide (KHMDS) versus P4-tBu.
Collapse
Affiliation(s)
- Yuji Sumii
- Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, Gokiso, Showa-Ku, Nagoya 466-8555, Japan
| | - Hiroto Iwasaki
- Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, Gokiso, Showa-Ku, Nagoya 466-8555, Japan
| | - Yamato Fujihira
- Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, Gokiso, Showa-Ku, Nagoya 466-8555, Japan
| | - Elsayed M Mahmoud
- Department of Nanopharmaceutical Sciences, Nagoya Institute of Technology, Gokiso, Showa-Ku, Nagoya 466-8555, Japan.,Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Zagazig University, Zagazig 44519, Egypt
| | - Hiroaki Adachi
- Tosoh Finechem Corporation, 4988, Kaiseicho, Shunan 746-0006, Japan
| | - Takumi Kagawa
- Tosoh Finechem Corporation, 4988, Kaiseicho, Shunan 746-0006, Japan
| | - Dominique Cahard
- CNRS UMR 6014 COBRA, Normandie Université, 76821 Mont Saint Aignan, France
| | - Norio Shibata
- Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, Gokiso, Showa-Ku, Nagoya 466-8555, Japan.,Department of Nanopharmaceutical Sciences, Nagoya Institute of Technology, Gokiso, Showa-Ku, Nagoya 466-8555, Japan
| |
Collapse
|
31
|
Li X, Yang Q, Lorsbach BA, Buysse A, Niyaz N, Cui L, Ross R. Toward the Development of a Manufacturing Process for the Insecticide Tyclopyrazoflor. Part I. Evaluation of Strategies using Ullmann Coupling of Pyrazole Derivatives. Org Process Res Dev 2022. [DOI: 10.1021/acs.oprd.2c00296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Affiliation(s)
- Xiaoyong Li
- Process Sciences & Technology, Small Molecule Discovery and Development, Corteva Agriscience, 9330 Zionsville Rd., Indianapolis, Indiana 46268, United States
| | - Qiang Yang
- Process Sciences & Technology, Small Molecule Discovery and Development, Corteva Agriscience, 9330 Zionsville Rd., Indianapolis, Indiana 46268, United States
| | - Beth A. Lorsbach
- Process Sciences & Technology, Small Molecule Discovery and Development, Corteva Agriscience, 9330 Zionsville Rd., Indianapolis, Indiana 46268, United States
| | - Ann Buysse
- Discovery Chemistry, Small Molecule Discovery and Development, Corteva Agriscience, 9330 Zionsville Rd., Indianapolis, Indiana 46268, United States
| | - Noormohamed Niyaz
- Discovery Chemistry, Small Molecule Discovery and Development, Corteva Agriscience, 9330 Zionsville Rd., Indianapolis, Indiana 46268, United States
| | - Li Cui
- Engineering & Process Sciences, Dow Chemical, Midland, Michigan 48674, United States
| | - Ronald Ross
- Discovery Chemistry, Small Molecule Discovery and Development, Corteva Agriscience, 9330 Zionsville Rd., Indianapolis, Indiana 46268, United States
| |
Collapse
|
32
|
Talmazan RA, Refugio Monroy J, del Río‐Portilla F, Castillo I, Podewitz M. Encapsulation Enhances the Catalytic Activity of C-N Coupling: Reaction Mechanism of a Cu(I)/Calix[8]arene Supramolecular Catalyst. ChemCatChem 2022; 14:e202200662. [PMID: 36605358 PMCID: PMC9804476 DOI: 10.1002/cctc.202200662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 07/11/2022] [Indexed: 01/07/2023]
Abstract
Development of C-N coupling methodologies based on Earth-abundant metals is a promising strategy in homogeneous catalysis for sustainable processes. However, such systems suffer from deactivation and low catalytic activity. We here report that encapsulation of Cu(I) within the phenanthroyl-containing calix[8]arene derivative 1,5-(2,9-dimethyl-1,10-phenanthroyl)-2,3,4,6,7,8-hexamethyl-p-tert-butylcalix[8]arene (C8PhenMe6 ) significantly enhances C-N coupling activity up to 92 % yield in the reaction of aryl halides and aryl amines, with low catalyst loadings (2.5 % mol). A tailored multiscale computational protocol based on Molecular Dynamics simulations and DFT investigations revealed an oxidative addition/reductive elimination process of the supramolecular catalyst [Cu(C8PhenMe6)I]. The computational investigations uncovered the origins of the enhanced catalytic activity over its molecular analogues: Catalyst deactivation through dimerization is prevented, and product release facilitated. Capturing the dynamic profile of the macrocycle and the impact of non-covalent interactions on reactivity allows for the rationalization of the behavior of the flexible supramolecular catalysts employed.
Collapse
Affiliation(s)
- Radu A. Talmazan
- Institute of Materials ChemistryTU WienGetreidemarkt 91060ViennaAustria
- Institute of General, Inorganic, and Theoretical Chemistry and Center of Molecular BiosciencesUniversity of InnsbruckInnrain 80/826020InnsbruckAustria
| | - J. Refugio Monroy
- Instituto de QuímicaUniversidad Nacional Autónoma de MéxicoCircuito ExteriorCU, Ciudad de México04510México
- Present address: Department of ChemistryHumboldt Universität zu BerlinBrook-Taylor-Strasse 212489BerlinGermany
| | - Federico del Río‐Portilla
- Instituto de QuímicaUniversidad Nacional Autónoma de MéxicoCircuito ExteriorCU, Ciudad de México04510México
| | - Ivan Castillo
- Instituto de QuímicaUniversidad Nacional Autónoma de MéxicoCircuito ExteriorCU, Ciudad de México04510México
| | - Maren Podewitz
- Institute of Materials ChemistryTU WienGetreidemarkt 91060ViennaAustria
| |
Collapse
|
33
|
Sharma D, Tomar V, Sharma C, Nemiwal M, Joshi RK. Direct amidation of ferrocenyl/ phenyl β-chlorocinnamaldehyde assisted by chalcogenide metal carbonyl cluster. Tetrahedron 2022. [DOI: 10.1016/j.tet.2022.133014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
34
|
Gayathri S, Viswanathamurthi P, Bertani R, Sgarbossa P. Ruthenium Complexes Bearing α-Diimine Ligands and Their Catalytic Applications in N-Alkylation of Amines, α-Alkylation of Ketones, and β-Alkylation of Secondary Alcohols. ACS OMEGA 2022; 7:33107-33122. [PMID: 36157732 PMCID: PMC9494662 DOI: 10.1021/acsomega.2c03200] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 08/24/2022] [Indexed: 06/16/2023]
Abstract
New Ru(II) complexes encompassing α-diimine ligands were synthesized by reacting ruthenium precursors with α-diimine hydrazones. The new ligands and Ru(II) complexes were analyzed by analytical and various spectroscopic methods. The molecular structures of L1 and complexes 1, 3, and 4 were determined by single-crystal XRD studies. The results reveal a distorted octahedral geometry around the Ru(II) ion for all complexes. Moreover, the new ruthenium complexes show efficient catalytic activity toward the C-N and C-C coupling reaction involving alcohols. Particularly, complex 3 demonstrates effective conversion in N-alkylation of aromatic amines, α-alkylation of ketones, and β-alkylation of alcohols.
Collapse
Affiliation(s)
- Sekar Gayathri
- Department
of Chemistry, Periyar University, Salem 636 011, Tamil Nadu, India
| | | | - Roberta Bertani
- Department
of Industrial Engineering, University of
Padova, via F. Marzoloa, Padova 35131, Italy
| | - Paolo Sgarbossa
- Department
of Industrial Engineering, University of
Padova, via F. Marzoloa, Padova 35131, Italy
| |
Collapse
|
35
|
Hwang C, Lee Y, Kim M, Seo Y, Cho SH. Diborylmethyl Group as a Transformable Building Block for the Diversification of Nitrogen‐Containing Molecules. Angew Chem Int Ed Engl 2022; 61:e202209079. [DOI: 10.1002/anie.202209079] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Indexed: 01/16/2023]
Affiliation(s)
- Chiwon Hwang
- Department of Chemistry Pohang University of Science and Technology (POSTECH) Pohang 37673 Republic of Korea
| | - Yeosan Lee
- Department of Chemistry Pohang University of Science and Technology (POSTECH) Pohang 37673 Republic of Korea
| | - Minjae Kim
- Department of Chemistry Pohang University of Science and Technology (POSTECH) Pohang 37673 Republic of Korea
| | - Younggyu Seo
- Department of Chemistry Pohang University of Science and Technology (POSTECH) Pohang 37673 Republic of Korea
| | - Seung Hwan Cho
- Department of Chemistry Pohang University of Science and Technology (POSTECH) Pohang 37673 Republic of Korea
- Institute for Convergence Research and Education in Advanced Technology (I-CREATE) Yonsei University Seoul 03722 Republic of Korea
| |
Collapse
|
36
|
Sharma D, Tomar V, Sharma C, Nemiwal M, Joshi RK. Direct Amidation of Ferrocenyl/ Phenyl β- Chlorocinnamaldehyde Assisted by Chalcogenide Metal Carbonyl Cluster. Tetrahedron Lett 2022. [DOI: 10.1016/j.tetlet.2022.154163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
37
|
Kederienė V, Rousseau J, Schuler M, Šačkus A, Tatibouët A. Copper-catalyzed S-arylation of Furanose-Fused Oxazolidine-2-thiones. Molecules 2022; 27:molecules27175597. [PMID: 36080364 PMCID: PMC9457760 DOI: 10.3390/molecules27175597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 08/26/2022] [Accepted: 08/26/2022] [Indexed: 11/16/2022] Open
Abstract
The 1,3-oxazolidine-2-thiones (OZTs) are important chiral molecules, especially in asymmetric synthesis. These compounds serve as important active units in biologically active compounds. Herein, carbohydrate anchored OZTs were explored to develop a copper-catalyzed C-S bond formation with aryl iodides. Chemoselective S-arylation was observed, with copper iodide and dimethylethylenediamine (DMEDA) as the best ligand in dioxane at 60–90 °C. The corresponding chiral oxazolines were obtained in reasonable to good yields under relatively mild reaction conditions. This approach is cheap, as using one of the cheapest transition metals, a simple protocol and various functional group tolerance make it a valuable strategy for getting S-substituted furanose-fused OZT. The structures of the novel carbohydrates were confirmed by NMR spectroscopy and an HRMS analysis.
Collapse
Affiliation(s)
- Vilija Kederienė
- Department of Organic Chemistry, Kaunas University of Technology, Radvilėnų pl. 19, LT-50254 Kaunas, Lithuania
- Correspondence: (V.K.); (A.T.)
| | - Jolanta Rousseau
- Univ. Artois, CNRS, Centrale Lille, Univ. Lille, UMR 8181–UCCS–Unité de Catalyse et Chimie du Solide, Faculty of Science Jean Perrin, Rue Jean Souvraz SP 18, F-62300 Lens, France
| | - Marie Schuler
- Institute de Chimie Organique et Analitique (ICOA), Université d’Orléans, UMR-CNRS 7311, BP 6759, F-45067 Orléans, France
| | - Algirdas Šačkus
- Department of Organic Chemistry, Kaunas University of Technology, Radvilėnų pl. 19, LT-50254 Kaunas, Lithuania
| | - Arnaud Tatibouët
- Institute de Chimie Organique et Analitique (ICOA), Université d’Orléans, UMR-CNRS 7311, BP 6759, F-45067 Orléans, France
- Correspondence: (V.K.); (A.T.)
| |
Collapse
|
38
|
Wang C, Liu B, Shao Z, Zhou J, Shao A, Zou LH, Wen J. Synthesis of 1,2-Diamines from Vinyl Sulfonium Salts and Arylamines. Org Lett 2022; 24:6455-6459. [PMID: 36037330 DOI: 10.1021/acs.orglett.2c02604] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A procedure for the synthesis of 1,2-diamines from vinyl sulfonium salts and arylamines under mild conditions was developed. This present synthetic protocol not only obviates the need for a transition-metal catalyst and an oxidizing reagent but also features a broad substrates scope. The practicability of this protocol is demonstrated by the one-pot synthesis, a scale-up reaction, and transformations of the products to diverse N-heterocyclic compounds. Mechanistic studies indicate that the formation of aziridine plays a key role during this diamination process.
Collapse
Affiliation(s)
- Cheng Wang
- School of Life Science and Health Engineering, Jiangnan University, Wuxi, Jiangsu 214122, P. R. China
| | - Biao Liu
- School of Life Science and Health Engineering, Jiangnan University, Wuxi, Jiangsu 214122, P. R. China
| | - Zeyu Shao
- School of Life Science and Health Engineering, Jiangnan University, Wuxi, Jiangsu 214122, P. R. China
| | - Junqi Zhou
- School of Life Science and Health Engineering, Jiangnan University, Wuxi, Jiangsu 214122, P. R. China
| | - Andong Shao
- School of Life Science and Health Engineering, Jiangnan University, Wuxi, Jiangsu 214122, P. R. China
| | - Liang-Hua Zou
- School of Life Science and Health Engineering, Jiangnan University, Wuxi, Jiangsu 214122, P. R. China
| | - Jian Wen
- School of Life Science and Health Engineering, Jiangnan University, Wuxi, Jiangsu 214122, P. R. China
| |
Collapse
|
39
|
Li S, Huang X, Gao Y, Jin J. Oxalamide/Amide Ligands: Enhanced and Copper-Catalyzed C-N Cross-Coupling for Triarylamine Synthesis. Org Lett 2022; 24:5817-5824. [PMID: 35899986 DOI: 10.1021/acs.orglett.2c02364] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Triarylamines are privileged core structures that are found in versatile optoelectronic materials. New methods are constantly being sought for their preparation. Herein, a new protocol for triarylamine synthesis is presented where a wide range of diarylamines couple smoothly with aryl bromides mediated by a copper oxalamide (or amide) catalytic system. Notably, a new non-C2-symmetric 1-isoquinolinamide-based N,N-/N,O-bidentate ligand was introduced that could tolerate bulky diarylamines. Plenty of known optoelectronic functional molecules could be synthesized in good to excellent yields. The practicality of this C-N cross-coupling was illustrated by the gram-scale synthesis of a patented thermally activated delayed fluorescence emitter for organic light-emitting diodes.
Collapse
Affiliation(s)
- Sasa Li
- CAS Key Laboratory of Synthetic Chemistry of Natural Substances, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Xia Huang
- College of Chemistry and Materials Science, Shanghai Normal University, 100 Guilin Road, Shanghai 200234, China
| | - Yunlong Gao
- College of Chemistry and Materials Science, Shanghai Normal University, 100 Guilin Road, Shanghai 200234, China
| | - Jian Jin
- CAS Key Laboratory of Synthetic Chemistry of Natural Substances, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| |
Collapse
|
40
|
Ravindar L, Hasbullah SA, Hassan NI, Qin HL. Cross‐Coupling of C‐H and N‐H Bonds: a Hydrogen Evolution Strategy for the Construction of C‐N Bonds. European J Org Chem 2022. [DOI: 10.1002/ejoc.202200596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Lekkala Ravindar
- Universiti Kebangsaan Malaysia Fakulti Teknologi dan Sains Maklumat Chemical Sciences Faculty of Science & Technology 43600 Bandar Baru Bangi MALAYSIA
| | - Siti Aishah Hasbullah
- Universiti Kebangsaan Malaysia Fakulti Sains dan Teknologi Chemical Sciences Faculty of Science & Technology 43600 Bandar Baru Bangi MALAYSIA
| | - Nurul Izzaty Hassan
- Universiti Kebangsaan Malaysia Fakulti Sains dan Teknologi Chemical Sciences Faculty of Science & Technology 43600 Bandar Baru Bangi MALAYSIA
| | - Hua-Li Qin
- Wuhan University of Technology School of Chemistry 430070 Hubei CHINA
| |
Collapse
|
41
|
Hwang C, Lee Y, Kim M, Seo Y, Cho SH. Diborylmethyl Group as a Transformable Building Block for the Diversification of Nitrogen‐Containing Molecules. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202209079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Chiwon Hwang
- POSTECH: Pohang University of Science and Technology Chemistry KOREA, REPUBLIC OF
| | - Yeosan Lee
- POSTECH: Pohang University of Science and Technology Chemistry KOREA, REPUBLIC OF
| | - Minjae Kim
- POSTECH: Pohang University of Science and Technology Chemistry KOREA, REPUBLIC OF
| | - Younggyu Seo
- POSTECH: Pohang University of Science and Technology Chemistry KOREA, REPUBLIC OF
| | - Seung Hwan Cho
- Pohang University of Science and Technology (POSTECH) Chemistry San 31, HyojadongNamgu 37673 Pohang KOREA, REPUBLIC OF
| |
Collapse
|
42
|
Frabitore C, Lépeule J, Livinghouse T. Copper(I)-Catalyzed Cross-Coupling of 1-Bromoalkynes with N-Heterocyclic Organozinc Reagents. Molecules 2022; 27:4561. [PMID: 35889434 PMCID: PMC9315687 DOI: 10.3390/molecules27144561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 07/07/2022] [Accepted: 07/08/2022] [Indexed: 11/24/2022] Open
Abstract
Nitrogen-containing heterocycles represent the majority of FDA-approved small-molecule pharmaceuticals. Herein, we describe a synthetic method to produce saturated N-heterocyclic drug scaffolds with an internal alkyne for elaboration. The treatment of N,N-dimethylhydrazinoalkenes with Et2Zn, followed by a Cu(I)-catalyzed cross-coupling with 1-bromoalkynes, results in piperidines and pyrrolidines with a good yield. Five examples are reported and a proposed mechanism for the Cu(I)-catalyzed cross-coupling is presented.
Collapse
Affiliation(s)
| | | | - Tom Livinghouse
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT 59717, USA; (C.F.); (J.L.)
| |
Collapse
|
43
|
Adlington NK, Siedlecki PS, Derrick I, Yates SD, Campbell AD, Tomlin P, Langer T. Development and Scale-Up of a Copper-Catalyzed Sulfamidation Coupling Reaction. Org Process Res Dev 2022. [DOI: 10.1021/acs.oprd.1c00475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Neil K. Adlington
- Chemical Development, Pharmaceutical Technology and Development, Operations, AstraZeneca, Macclesfield Campus, Macclesfield SK10 2NA, U.K
| | - Paul S. Siedlecki
- Chemical Development, Pharmaceutical Technology and Development, Operations, AstraZeneca, Macclesfield Campus, Macclesfield SK10 2NA, U.K
| | - Ian Derrick
- Chemical Development, Pharmaceutical Technology and Development, Operations, AstraZeneca, Macclesfield Campus, Macclesfield SK10 2NA, U.K
| | - Simon D. Yates
- Chemical Development, Pharmaceutical Technology and Development, Operations, AstraZeneca, Macclesfield Campus, Macclesfield SK10 2NA, U.K
| | - Andrew D. Campbell
- Chemical Development, Pharmaceutical Technology and Development, Operations, AstraZeneca, Macclesfield Campus, Macclesfield SK10 2NA, U.K
| | - Paula Tomlin
- Chemical Development, Pharmaceutical Technology and Development, Operations, AstraZeneca, Macclesfield Campus, Macclesfield SK10 2NA, U.K
| | - Thomas Langer
- Chemical Development, Pharmaceutical Technology and Development, Operations, AstraZeneca, Macclesfield Campus, Macclesfield SK10 2NA, U.K
| |
Collapse
|
44
|
Elwahy AHM, Shaaban MR, Abdelhamid IA. Recent Advances in the Functionalization of Azulene Through Rh‐, Ir‐, Ru‐, Au‐, Fe‐, Ni‐, and Cu‐catalyzed Reactions. Appl Organomet Chem 2022. [DOI: 10.1002/aoc.6772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
| | - Mohamed R. Shaaban
- Chemistry Department, Faculty of Applied Sciences, Makkah Almukkarramah, Umm AL‐Qura University Saudi Arabia
| | | |
Collapse
|
45
|
Boronat M, Climent MJ, Concepción P, Díaz U, García H, Iborra S, Leyva-Pérez A, Liu L, Martínez A, Martínez C, Moliner M, Pérez-Pariente J, Rey F, Sastre E, Serna P, Valencia S. A Career in Catalysis: Avelino Corma. ACS Catal 2022. [DOI: 10.1021/acscatal.2c01043] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Mercedes Boronat
- Instituto de Tecnología Química, Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas (UPV-CSIC), Av. de los Naranjos s/n, Valencia 46022, Spain
| | - Maria J. Climent
- Instituto de Tecnología Química, Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas (UPV-CSIC), Av. de los Naranjos s/n, Valencia 46022, Spain
| | - Patricia Concepción
- Instituto de Tecnología Química, Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas (UPV-CSIC), Av. de los Naranjos s/n, Valencia 46022, Spain
| | - Urbano Díaz
- Instituto de Tecnología Química, Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas (UPV-CSIC), Av. de los Naranjos s/n, Valencia 46022, Spain
| | - Hermenegildo García
- Instituto de Tecnología Química, Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas (UPV-CSIC), Av. de los Naranjos s/n, Valencia 46022, Spain
| | - Sara Iborra
- Instituto de Tecnología Química, Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas (UPV-CSIC), Av. de los Naranjos s/n, Valencia 46022, Spain
| | - Antonio Leyva-Pérez
- Instituto de Tecnología Química, Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas (UPV-CSIC), Av. de los Naranjos s/n, Valencia 46022, Spain
| | - Lichen Liu
- Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Agustin Martínez
- Instituto de Tecnología Química, Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas (UPV-CSIC), Av. de los Naranjos s/n, Valencia 46022, Spain
| | - Cristina Martínez
- Instituto de Tecnología Química, Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas (UPV-CSIC), Av. de los Naranjos s/n, Valencia 46022, Spain
| | - Manuel Moliner
- Instituto de Tecnología Química, Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas (UPV-CSIC), Av. de los Naranjos s/n, Valencia 46022, Spain
| | - Joaquín Pérez-Pariente
- Instituto de Catálisis y Petroleoquímica, Consejo Superior de Investigaciones Científicas, Marie Curie 2, Madrid 28049, Spain
| | - Fernando Rey
- Instituto de Tecnología Química, Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas (UPV-CSIC), Av. de los Naranjos s/n, Valencia 46022, Spain
| | - Enrique Sastre
- Instituto de Catálisis y Petroleoquímica, Consejo Superior de Investigaciones Científicas, Marie Curie 2, Madrid 28049, Spain
| | - Pedro Serna
- ExxonMobil Technology and Engineering Company, Catalysis Fundamentals, Annandale, New Jersey 08801, United States
| | - Susana Valencia
- Instituto de Tecnología Química, Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas (UPV-CSIC), Av. de los Naranjos s/n, Valencia 46022, Spain
| |
Collapse
|
46
|
Sharma D, Arora A, Oswal P, Bahuguna A, Datta A, Kumar A. Organosulphur and organoselenium compounds as emerging building blocks for catalytic systems for O-arylation of phenols, a C-O coupling reaction. Dalton Trans 2022; 51:8103-8132. [PMID: 35535745 DOI: 10.1039/d1dt04371d] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Diaryl ethers form an important class of organic compounds. The classic copper-mediated Ullmann diaryl ether synthesis has been known for many years and involves the coupling of phenols with aryl halides. However, the use of high reaction temperature, high catalyst loading and expensive ligands has created a need for the development of alternative catalytic systems. In the recent past, organosulphur and organoselenium compounds have been used as building blocks for developing homogeneous, heterogeneous and nanocatalysts for this C-O coupling reaction. Homogeneous catalytic systems include preformed complexes of metals with organosulphur and organoselenium ligands. The performance of such complexes is influenced dramatically by the nature of the chalcogen (S or Se) donor site of the ligand. Nanocatalytic systems (including Pd17Se15, Pd16S7 and Cu1.8S) have been designed using a single-source precursor route. Heterogeneous catalytic systems contain either metal (Cu or Pd) or metal chalcogenides (Pd17Se15 or Cu1.8S) as catalytically active species. This article aims to cover the simple and straightforward methodologies and approaches that are adopted for developing catalytically relevant organosulfur and organoselenium ligands, their homogeneous metal complexes, heterogeneous and nanocatalysts. The effects of chalcogen (S or Se) donor, halogen (Cl/Br/I) of aryl halide, nature (electron withdrawing or electron donating) of substituents present on the aromatic ring of aryl halides or substituted phenols and position (ortho or para) of substitution on the results of catalytic reactions have been critically analyzed and summarized. The effect of composition (Pd17Se15 or Pd16S7) on the performance of nanocatalytic systems is also highlighted. Substrate scope has also been discussed in all three types of catalysis. The superiority of heterogeneous catalytic systems (e.g., Pd17Se15 immobilised on graphene oxide) indicates the bright future possibilities for the development of efficient catalytic systems using similar or tailored ligands for this reaction.
Collapse
Affiliation(s)
- Deepali Sharma
- Department of Chemistry, School of Physical Sciences, Doon University, Dehradun, 248012 India.
| | - Aayushi Arora
- Department of Chemistry, School of Physical Sciences, Doon University, Dehradun, 248012 India.
| | - Preeti Oswal
- Department of Chemistry, School of Physical Sciences, Doon University, Dehradun, 248012 India.
| | - Anurag Bahuguna
- Department of Chemistry, School of Physical Sciences, Doon University, Dehradun, 248012 India.
| | - Anupama Datta
- Institute of Nuclear Medicine and Allied Sciences (INMAS), India
| | - Arun Kumar
- Department of Chemistry, School of Physical Sciences, Doon University, Dehradun, 248012 India.
| |
Collapse
|
47
|
Yang Q, Zhao Y, Ma D. Cu-Mediated Ullmann-Type Cross-Coupling and Industrial Applications in Route Design, Process Development, and Scale-up of Pharmaceutical and Agrochemical Processes. Org Process Res Dev 2022. [DOI: 10.1021/acs.oprd.2c00050] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Qiang Yang
- Synthetic Molecule Design and Development, Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana 46285, United States
| | - Yinsong Zhao
- Department of Chemistry, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Dawei Ma
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| |
Collapse
|
48
|
Visible-light-induced direct C–N coupling of benzofurans and thiophenes with diarylsulfonimides promoted by DDQ and TBN. Tetrahedron 2022. [DOI: 10.1016/j.tet.2022.132853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
49
|
Sharninghausen LS, Preshlock S, Joy ST, Horikawa M, Shao X, Winton WP, Stauff J, Kaur T, Koeppe RA, Mapp AK, Scott PJH, Sanford MS. Copper-Mediated Radiocyanation of Unprotected Amino Acids and Peptides. J Am Chem Soc 2022; 144:7422-7429. [PMID: 35437016 PMCID: PMC9887455 DOI: 10.1021/jacs.2c01959] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
This report describes a copper-mediated radiocyanation of aryl halides that is applicable to complex molecules. This transformation tolerates an exceptionally wide range of functional groups, including unprotected amino acids. As such, it enables the site-specific introduction of [11C]CN into peptides at an iodophenylalanine residue. The use of a diamine-ligated copper(I) mediator is crucial for achieving high radiochemical yield under relatively mild conditions, thus limiting racemization and competing side reactions of other amino acid side chains. The reaction has been scaled and automated to deliver radiolabeled peptides, including analogues of adrenocorticotropic hormone 1-27 (ACTH) and nociceptin (NOP). For instance, this Cu-mediated radiocyanation was leveraged to prepare >40 mCi of [11C]cyano-NOP to evaluate biodistribution in a primate using positron emission tomography. This investigation provides preliminary evidence that nociceptin crosses the blood-brain barrier and shows uptake across all brain regions (SUV > 1 at 60 min post injection), consistent with the known distribution of NOP receptors in the rhesus brain.
Collapse
Affiliation(s)
- Liam S. Sharninghausen
- Department of Chemistry, University of Michigan, 930 North University Avenue, Ann Arbor, Michigan 48109, United States
| | - Sean Preshlock
- Department of Radiology, University of Michigan, 1301 Catherine, Ann Arbor, Michigan 48109, United States
| | - Stephen T. Joy
- Department of Chemistry, University of Michigan, 930 North University Avenue, Ann Arbor, Michigan 48109, United States
| | - Mami Horikawa
- Department of Chemistry, University of Michigan, 930 North University Avenue, Ann Arbor, Michigan 48109, United States
| | - Xia Shao
- Department of Radiology, University of Michigan, 1301 Catherine, Ann Arbor, Michigan 48109, United States
| | - Wade P. Winton
- Department of Radiology, University of Michigan, 1301 Catherine, Ann Arbor, Michigan 48109, United States
| | - Jenelle Stauff
- Department of Radiology, University of Michigan, 1301 Catherine, Ann Arbor, Michigan 48109, United States
| | - Tanpreet Kaur
- Department of Radiology, University of Michigan, 1301 Catherine, Ann Arbor, Michigan 48109, United States
| | - Robert A. Koeppe
- Department of Radiology, University of Michigan, 1301 Catherine, Ann Arbor, Michigan 48109, United States
| | - Anna K. Mapp
- Department of Chemistry, University of Michigan, 930 North University Avenue, Ann Arbor, Michigan 48109, United States,Corresponding Author: Peter J. H. Scott. . Melanie S. Sanford. . Anna K. Mapp.
| | - Peter J. H. Scott
- Department of Radiology, University of Michigan, 1301 Catherine, Ann Arbor, Michigan 48109, United States,Corresponding Author: Peter J. H. Scott. . Melanie S. Sanford. . Anna K. Mapp.
| | - Melanie S. Sanford
- Department of Chemistry, University of Michigan, 930 North University Avenue, Ann Arbor, Michigan 48109, United States,Corresponding Author: Peter J. H. Scott. . Melanie S. Sanford. . Anna K. Mapp.
| |
Collapse
|
50
|
Hu X, Hao S, Wei Y, Wang ZL, Wang H, Feng Y, Qin Q. De novo synthesis of polysubstituted β-naphthylamines via Tf2O-mediated [4+2] annulation of amides with alkynes. Tetrahedron Lett 2022. [DOI: 10.1016/j.tetlet.2022.153731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|