1
|
Chen S, Li Z, Zhang C, Wu X, Wang W, Huang Q, Chen W, Shi J, Yuan D. Cation-π Interaction Trigger Supramolecular Hydrogelation of Peptide Amphiphiles. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023:e2301063. [PMID: 36932893 DOI: 10.1002/smll.202301063] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Indexed: 06/18/2023]
Abstract
As an important noncovalent interaction, cation-π interaction plays an essential role in a broad area of biology and chemistry. Despite extensive studies in protein stability and molecular recognition, the utilization of cation-π interaction as a major driving force to construct supramolecular hydrogel remains uncharted. Here, a series of peptide amphiphiles are designed with cation-π interaction pairs that can self-assemble into supramolecular hydrogel under physiological condition. The influence of cation-π interaction is thoroughly investigated on peptide folding propensity, morphology, and rigidity of the resultant hydrogel. Computational and experimental results confirm that cation-π interaction could serve as a major driving force to trigger peptide folding, resultant β-hairpin peptide self-assembled into fibril-rich hydrogel. Furthermore, the designed peptides exhibit high efficacy on cytosolic protein delivery. As the first case of using cation-π interactions to trigger peptide self-assembly and hydrogelation, this work provides a novel strategy to generate supramolecular biomaterials.
Collapse
Affiliation(s)
- Shuang Chen
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, School of Biomedical Sciences, Hunan University Changsha, Hunan, 410082, P. R. China
| | - Zenghui Li
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, School of Biomedical Sciences, Hunan University Changsha, Hunan, 410082, P. R. China
| | - Chunhui Zhang
- College of Biology, Hunan University Changsha, Hunan, 410082, P. R. China
| | - Xia Wu
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, School of Biomedical Sciences, Hunan University Changsha, Hunan, 410082, P. R. China
- Shenzhen International Institute for Biomedical Research, Longhua District Shenzhen, Guangdong, 518116, P. R. China
| | - Wenjie Wang
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, School of Biomedical Sciences, Hunan University Changsha, Hunan, 410082, P. R. China
| | - Qingjun Huang
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, School of Biomedical Sciences, Hunan University Changsha, Hunan, 410082, P. R. China
| | - Weiyu Chen
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, School of Biomedical Sciences, Hunan University Changsha, Hunan, 410082, P. R. China
| | - Junfeng Shi
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, School of Biomedical Sciences, Hunan University Changsha, Hunan, 410082, P. R. China
| | - Dan Yuan
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, School of Biomedical Sciences, Hunan University Changsha, Hunan, 410082, P. R. China
| |
Collapse
|
2
|
pH-Responsive polyethyleneimine hydrogel based on dynamic covalent bonds. JOURNAL OF POLYMER RESEARCH 2023. [DOI: 10.1007/s10965-023-03479-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
3
|
Vanoli V, Delleani S, Casalegno M, Pizzetti F, Makvandi P, Haugen H, Mele A, Rossi F, Castiglione F. Hyaluronic acid-based hydrogels: Drug diffusion investigated by HR-MAS NMR and release kinetics. Carbohydr Polym 2022; 301:120309. [DOI: 10.1016/j.carbpol.2022.120309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 10/17/2022] [Accepted: 11/01/2022] [Indexed: 11/11/2022]
|
4
|
Xiao X, Teng F, Shi C, Chen J, Wu S, Wang B, Meng X, Essiet Imeh A, Li W. Polymeric nanoparticles—Promising carriers for cancer therapy. Front Bioeng Biotechnol 2022; 10:1024143. [PMID: 36277396 PMCID: PMC9585261 DOI: 10.3389/fbioe.2022.1024143] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Accepted: 09/16/2022] [Indexed: 12/03/2022] Open
Abstract
Polymeric nanoparticles (NPs) play an important role in controlled cancer drug delivery. Anticancer drugs can be conjugated or encapsulated by polymeric nanocarriers, which are known as polymeric nanomedicine. Polymeric nanomedicine has shown its potential in providing sustained release of drugs with reduced cytotoxicity and modified tumor retention, but until now, few delivery systems loading drugs have been able to meet clinical demands, so more efforts are needed. This research reviews the current state of the cancer drug-loading system by exhibiting a series of published articles that highlight the novelty and functions from a variety of different architectures including micelles, liposomes, dendrimers, polymersomes, hydrogels, and metal–organic frameworks. These may contribute to the development of useful polymeric NPs to achieve different therapeutic purposes.
Collapse
Affiliation(s)
- Xiao Xiao
- School of Pharmacy, Jilin Medical University, Jilin, China
| | - Fei Teng
- School of Pharmacy, Jilin Medical University, Jilin, China
| | - Changkuo Shi
- School of Pharmacy, Jilin Medical University, Jilin, China
| | - Junyu Chen
- School of Pharmacy, Jilin Medical University, Jilin, China
| | - Shuqing Wu
- School of Pharmacy, Jilin Medical University, Jilin, China
| | - Bao Wang
- School of Chemistry and Environmental Engineering, Changchun University of Science and Technology, Changchun, China
| | - Xiang Meng
- School of Pharmacy, Jilin Medical University, Jilin, China
| | | | - Wenliang Li
- School of Pharmacy, Jilin Medical University, Jilin, China
- Jilin Collaborative Innovation Center for Antibody Engineering, Jilin Medical University, Jilin, China
- *Correspondence: Wenliang Li,
| |
Collapse
|
5
|
Hydrogels: potential aid in tissue engineering—a review. Polym Bull (Berl) 2022. [DOI: 10.1007/s00289-021-03864-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
6
|
Wang YC, Kegel LL, Knoff DS, Deodhar BS, Astashkin AV, Kim M, Pemberton JE. Layered supramolecular hydrogels from thioglycosides. J Mater Chem B 2022; 10:3861-3875. [PMID: 35470365 DOI: 10.1039/d2tb00037g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Low molecular weight hydrogels are made of small molecules that aggregate via noncovalent interactions. Here, comprehensive characterization of the physical and chemical properties of hydrogels made from thioglycolipids of the disaccharides lactose and cellobiose with simple alkyl chains is reported. While thiolactoside hydrogels are robust, thiocellobioside gels are metastable, precipitating over time into fibrous crystals that can be entangled to create pseudo-hydrogels. Rheology confirms the viscoelastic solid nature of these hydrogels with storage moduli ranging from 10-600 kPa. Additionally, thiolactoside hydrogels are thixotropic which is a desirable property for many potential applications. Freeze-fracture electron microscopy of xerogels shows layers of stacked sheets that are entangled into networks. These structures are unique compared to the fibers or ribbons typically reported for hydrogels. Differential scanning calorimetry provides gel-to-liquid phase transition temperatures ranging from 30 to 80 °C. Prodan fluorescence spectroscopy allows assignment of phase transitions in the gels and other lyotropic phases of high concentration samples. Phase diagrams are estimated for all hydrogels at 1-10 wt% from 5 to ≥ 80 °C. These hydrogels represent a series of interesting materials with unique properties that make them attractive for numerous potential applications.
Collapse
Affiliation(s)
- Yu-Cheng Wang
- Department of Chemistry and Biochemistry, University of Arizona, 1306 E University Boulevard, Tucson, Arizona 85721, USA.
| | - Laurel L Kegel
- Department of Chemistry and Biochemistry, University of Arizona, 1306 E University Boulevard, Tucson, Arizona 85721, USA.
| | - David S Knoff
- Department of Biomedical Engineering, University of Arizona, 1127 E James E Rogers Way, Tucson, AZ 85721, USA
| | - Bhushan S Deodhar
- Department of Chemistry and Biochemistry, University of Arizona, 1306 E University Boulevard, Tucson, Arizona 85721, USA.
| | - Andrei V Astashkin
- Department of Chemistry and Biochemistry, University of Arizona, 1306 E University Boulevard, Tucson, Arizona 85721, USA.
| | - Minkyu Kim
- Department of Biomedical Engineering, University of Arizona, 1127 E James E Rogers Way, Tucson, AZ 85721, USA.,Department of Materials Science and Engineering, University of Arizona, 1235 E James E Rogers Way, Tucson, AZ 85721, USA.,BIO5 Institute, University of Arizona, 1657 E Helen Street, Tucson, AZ 85721, USA
| | - Jeanne E Pemberton
- Department of Chemistry and Biochemistry, University of Arizona, 1306 E University Boulevard, Tucson, Arizona 85721, USA.
| |
Collapse
|
7
|
Ullah A, Lim SI. Bioinspired tunable hydrogels: An update on methods of preparation, classification, and biomedical and therapeutic applications. Int J Pharm 2022; 612:121368. [PMID: 34896566 DOI: 10.1016/j.ijpharm.2021.121368] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Revised: 11/26/2021] [Accepted: 12/06/2021] [Indexed: 12/24/2022]
Abstract
Hydrogels exhibit water-insoluble three-dimensional polymeric networks capable of absorbing large amounts of biological fluids. Both natural and synthetic polymers are used for the preparation of hydrogel networks. Such polymeric networks are fabricated through chemical or physical mechanisms of crosslinking. Chemical crosslinking is accomplished mainly through covalent bonding, while physical crosslinking involves self-healing secondary forces like H-bonding, host-guest interactions, and antigen-antibody interactions. The building blocks of the hydrogels play an important role in determining the mechanical, biological, and physicochemical properties. Hydrogels are used in a variety of biomedical applications like diagnostics (biodetection and bioimaging), delivery of therapeutics (drugs, immunotherapeutics, and vaccines), wound dressing and skin materials, cardiac complications, contact lenses, tissue engineering, and cell culture because of the inherent characteristics like enhanced water uptake and structural similarity with the extracellular matrix (ECM). This review highlights the recent trends and advances in the roles of hydrogels in biomedical and therapeutic applications. We also discuss the classification and methods of hydrogels preparation. A brief outlook on the future directions of hydrogels is also presented.
Collapse
Affiliation(s)
- Aziz Ullah
- Department of Chemical Engineering, Pukyong National University, Busan 48513, Republic of Korea; Gomal Centre of Pharmaceutical Sciences, Faculty of Pharmacy, Gomal University Dera Ismail Khan 29050, Khyber Pakhtunkhwa, Pakistan
| | - Sung In Lim
- Department of Chemical Engineering, Pukyong National University, Busan 48513, Republic of Korea.
| |
Collapse
|
8
|
Sukul PK, Das P, Dhakar GL, Das L, Malik S. Effect of Tricarboxylic Acids on the Formation of Hydrogels with Melem or Melamine: Morphological, Structural and Rheological Investigations. Gels 2022; 8:gels8010051. [PMID: 35049586 PMCID: PMC8774776 DOI: 10.3390/gels8010051] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 12/25/2021] [Accepted: 12/29/2021] [Indexed: 11/16/2022] Open
Abstract
Herein, aggregation behaviors of melem or melamine in the presence of three symmetric carboxylic acids (1,3,5-tris(4-carboxyphenyl)benzene (TPCA), 1,3,5-benzene-tri-carboxylic acid (BTA) and 1,3,5-cyclohexane-tri-carboxylic acid (CHTA)) have been performed to check the influence of acid on the formation of aggregated structures which have been investigated by optical microscopy, FESEM, FTIR, XRD and viscoelastic properties have been explored with rheological studies. Interestingly, melem, that has limited solubility in aqueous medium, forms aggregation that leads to the formation of hydrogels with TPCA. More significantly, hydrogel is formed here by matching the size selectivity. Melem forms hydrogel with only large tricarboxylic acid, whereas melamine produces hydrogel with any kind of its counterpart from small to large tricarboxylic acid derivatives. Present investigations and results provide the strategy of design of organic self-assembled materials having two component systems.
Collapse
Affiliation(s)
- Pradip Kumar Sukul
- Department of Chemistry, Amity Institute of Applied Sciences, Amity University Kolkata, Action Area-II, Kolkata 700135, India;
- School of Applied and Interdisciplinary Sciences, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Kolkata 700032, India; (P.D.); (G.L.D.); (L.D.)
| | - Puspendu Das
- School of Applied and Interdisciplinary Sciences, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Kolkata 700032, India; (P.D.); (G.L.D.); (L.D.)
| | - Gopal Lal Dhakar
- School of Applied and Interdisciplinary Sciences, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Kolkata 700032, India; (P.D.); (G.L.D.); (L.D.)
| | - Lalmohan Das
- School of Applied and Interdisciplinary Sciences, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Kolkata 700032, India; (P.D.); (G.L.D.); (L.D.)
| | - Sudip Malik
- School of Applied and Interdisciplinary Sciences, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Kolkata 700032, India; (P.D.); (G.L.D.); (L.D.)
- Correspondence:
| |
Collapse
|
9
|
El-Husseiny HM, Mady EA, Hamabe L, Abugomaa A, Shimada K, Yoshida T, Tanaka T, Yokoi A, Elbadawy M, Tanaka R. Smart/stimuli-responsive hydrogels: Cutting-edge platforms for tissue engineering and other biomedical applications. Mater Today Bio 2022; 13:100186. [PMID: 34917924 PMCID: PMC8669385 DOI: 10.1016/j.mtbio.2021.100186] [Citation(s) in RCA: 102] [Impact Index Per Article: 51.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 11/14/2021] [Accepted: 12/08/2021] [Indexed: 02/07/2023] Open
Abstract
Recently, biomedicine and tissue regeneration have emerged as great advances that impacted the spectrum of healthcare. This left the door open for further improvement of their applications to revitalize the impaired tissues. Hence, restoring their functions. The implementation of therapeutic protocols that merge biomimetic scaffolds, bioactive molecules, and cells plays a pivotal role in this track. Smart/stimuli-responsive hydrogels are remarkable three-dimensional (3D) bioscaffolds intended for tissue engineering and other biomedical purposes. They can simulate the physicochemical, mechanical, and biological characters of the innate tissues. Also, they provide the aqueous conditions for cell growth, support 3D conformation, provide mechanical stability for the cells, and serve as potent delivery matrices for bioactive molecules. Many natural and artificial polymers were broadly utilized to design these intelligent platforms with novel advanced characteristics and tailored functionalities that fit such applications. In the present review, we highlighted the different types of smart/stimuli-responsive hydrogels with emphasis on their synthesis scheme. Besides, the mechanisms of their responsiveness to different stimuli were elaborated. Their potential for tissue engineering applications was discussed. Furthermore, their exploitation in other biomedical applications as targeted drug delivery, smart biosensors, actuators, 3D and 4D printing, and 3D cell culture were outlined. In addition, we threw light on smart self-healing hydrogels and their applications in biomedicine. Eventually, we presented their future perceptions in biomedical and tissue regeneration applications. Conclusively, current progress in the design of smart/stimuli-responsive hydrogels enhances their prospective to function as intelligent, and sophisticated systems in different biomedical applications.
Collapse
Affiliation(s)
- Hussein M. El-Husseiny
- Laboratory of Veterinary Surgery, Department of Veterinary Medicine, Faculty of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai Cho, Fuchu-shi, Tokyo, 1838509, Japan
- Department of Surgery, Anesthesiology, and Radiology, Faculty of Veterinary Medicine, Benha University, Moshtohor, Toukh, Elqaliobiya, 13736, Egypt
| | - Eman A. Mady
- Department of Animal Hygiene, Behavior and Management, Faculty of Veterinary Medicine, Benha University, Moshtohor, Toukh, Elqaliobiya, 13736, Egypt
| | - Lina Hamabe
- Laboratory of Veterinary Surgery, Department of Veterinary Medicine, Faculty of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai Cho, Fuchu-shi, Tokyo, 1838509, Japan
| | - Amira Abugomaa
- Faculty of Veterinary Medicine, Mansoura University, Mansoura, Dakahliya, 35516, Egypt
| | - Kazumi Shimada
- Laboratory of Veterinary Surgery, Department of Veterinary Medicine, Faculty of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai Cho, Fuchu-shi, Tokyo, 1838509, Japan
- Division of Research Animal Laboratory and Translational Medicine, Research and Development Center, Osaka Medical College, 2-7 Daigaku-machi, Takatsuki City, Osaka, 569-8686, Japan
| | - Tomohiko Yoshida
- Laboratory of Veterinary Surgery, Department of Veterinary Medicine, Faculty of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai Cho, Fuchu-shi, Tokyo, 1838509, Japan
| | - Takashi Tanaka
- Laboratory of Veterinary Surgery, Department of Veterinary Medicine, Faculty of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai Cho, Fuchu-shi, Tokyo, 1838509, Japan
| | - Aimi Yokoi
- Laboratory of Veterinary Surgery, Department of Veterinary Medicine, Faculty of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai Cho, Fuchu-shi, Tokyo, 1838509, Japan
| | - Mohamed Elbadawy
- Department of Pharmacology, Faculty of Veterinary Medicine, Benha University, Moshtohor, Toukh, Elqaliobiya, 13736, Egypt
| | - Ryou Tanaka
- Laboratory of Veterinary Surgery, Department of Veterinary Medicine, Faculty of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai Cho, Fuchu-shi, Tokyo, 1838509, Japan
| |
Collapse
|
10
|
Ha W, Hou GL, Qin WJ, Fu XK, Zhao XQ, Wei XD, An YL, Shi YP. Supramolecular hydrogel-infiltrated ceramics composite coating with combined antibacterial and self-lubricating performance. J Mater Chem B 2021; 9:9852-9862. [PMID: 34704586 DOI: 10.1039/d1tb01830b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Inspired by the structure and dynamic weeping lubricating mechanism of articular cartilage, a novel composite coating composed of a textured Y2O3-stabilized ZrO2 (YSZ) ceramics reservoir and silver nanoparticles (AgNPs) hybrid supramolecular hydrogel was developed on the basis of a soft/hard combination strategy. The precursor solution including the poly(ethylene glycol) (PEG)-modified AgNPs and α-cyclodextrins (α-CDs) could be infiltrated deep into (50-60 μm) the pores of a textured YSZ ceramics substrate by a vacuum infiltration method, in situ forming a supramolecular hydrogel within the pores through host-guest inclusion between α-CDs and PEG chains distributed onto the surface of AgNPs. The AgNPs hybrid hydrogel showed thixotropic and thermoresponsive gel-sol transition behavior, low cytotoxicity, and excellent drug-loading capacity, as well as significant antibacterial properties. The textured YSZ ceramics not only provided a hard supporting skeleton and stable reservoir to protect the supramolecular hydrogel from destruction under load-bearing or shear condition, but also allowed retaining the stimuli-responsive gel-sol transition property and drug-release capability of the infiltrated hydrogel, endowing the composite coating with excellent antibacterial properties, and self-lubrication and wear-resistance performance. The composite coating in this work brings a new insight into the design of antibacterial and self-lubricating ceramic coatings for artificial joint applications.
Collapse
Affiliation(s)
- Wei Ha
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Lanzhou 730000, People's Republic of China.
| | - Guo-Liang Hou
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Lanzhou 730000, People's Republic of China.
| | - Wu-Jun Qin
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Lanzhou 730000, People's Republic of China.
| | - Xiao-Kang Fu
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Lanzhou 730000, People's Republic of China.
| | - Xiao-Qin Zhao
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Lanzhou 730000, People's Republic of China.
| | - Xiao-Dong Wei
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Lanzhou 730000, People's Republic of China.
| | - Yu-Long An
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Lanzhou 730000, People's Republic of China.
| | - Yan-Ping Shi
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Lanzhou 730000, People's Republic of China.
| |
Collapse
|
11
|
Piras CC, Patterson AK, Smith DK. Hybrid Self-Assembled Gel Beads for Tuneable pH-Controlled Rosuvastatin Delivery. Chemistry 2021; 27:13203-13210. [PMID: 34346527 PMCID: PMC8519141 DOI: 10.1002/chem.202101405] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Indexed: 12/11/2022]
Abstract
This article describes the fabrication of new pH-responsive hybrid gel beads combining the polymer gelator calcium alginate with two different low-molecular-weight gelators (LMWGs) based on 1,3 : 2,4-dibenzylidene-d-sorbitol: pH-responsive DBS-COOH and thermally responsive DBS-CONHNH2 , thus clearly demonstrating that different classes of LMWG can be fabricated into gel beads by using this approach. We also demonstrate that self-assembled multicomponent gel beads can be formed by using different combinations of these gelators. The different gel bead formulations exhibit different responsiveness - the DBS-COOH network can disassemble within those beads in which it is present upon raising the pH. To exemplify preliminary data for a potential application for these hybrid gel beads, we explored aspects of the delivery of the lipid-lowering active pharmaceutical ingredient (API) rosuvastatin. The release profile of this statin from the hybrid gel beads is pH-dependent, with greater release at pH 7.4 than at pH 4.0 - primary control of this process results from the pKa of the API. The extent of pH-mediated API release is also significantly further modified according to gel bead composition. The DBS-COOH/alginate beads show rapid, highly effective drug release at pH 7.4, whereas the three-component DBS-COOH/DBS-CONHNH2 /alginate system shows controlled slow release of the API under the same conditions. These initial results indicate that such gel beads constitute a promising, versatile and easily tuned platform suitable for further development for controlled drug-delivery applications.
Collapse
Affiliation(s)
- Carmen C. Piras
- Department of ChemistryUniversity of YorkHeslington, YorkYO10 5DDUK
| | | | - David K. Smith
- Department of ChemistryUniversity of YorkHeslington, YorkYO10 5DDUK
| |
Collapse
|
12
|
Maruyama T, Restu WK. Intracellular self-assembly of supramolecular gelators to selectively kill cells of interest. Polym J 2020. [DOI: 10.1038/s41428-020-0335-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
13
|
Li YF, Li Z, Lin Q, Yang YW. Functional supramolecular gels based on pillar[n]arene macrocycles. NANOSCALE 2020; 12:2180-2200. [PMID: 31916548 DOI: 10.1039/c9nr09532b] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Supramolecular gels constructed from low-molecular-weight gelators via noncovalent interactions have received increasing attention. The rapid development of stimuli-responsive supramolecular gels with attractive properties is highly desirable to meet the ever-growing demand of materials science and chemistry. The inherent reversible and dynamic nature of noncovalent interactions in supramolecular gels endows the materials with sensing, processing, and actuating functions in response to specific environmental changes and offers them great potential in flexible biomaterials and intelligent devices. In particular, pillar[n]arenes with symmetrical pillar-shaped architectures have been recognized as an emerging class of synthetic macrocycles after crown ethers, cyclodextrins, calixarenes, and cucurbiturils, and proven to be excellent candidates for the fabrication of functional supramolecular gels due to their many advantages including facile synthesis, diverse functionalization, and appealing host-guest properties. This review provides a comprehensive overview of recent progress in supramolecular gels involving pillar[n]arenes and their derivatives as synthetic macrocyclic arenes, from the viewpoints of the synthetic approach, controllable assembly, stimuli-responsiveness, and functions. Perspectives of this burgeoning field of research are also given at the end.
Collapse
Affiliation(s)
- Yong-Fu Li
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, International Joint Research Laboratory of Nano-Micro Architecture Chemistry (NMAC), College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, P. R. China.
| | - Zheng Li
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, International Joint Research Laboratory of Nano-Micro Architecture Chemistry (NMAC), College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, P. R. China.
| | - Qi Lin
- Key Laboratory of Eco-Environment-Related Polymer Materials, Ministry of Education of China, Key Laboratory of Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, P. R. China.
| | - Ying-Wei Yang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, International Joint Research Laboratory of Nano-Micro Architecture Chemistry (NMAC), College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, P. R. China. and The State Key Laboratory of Refractories and Metallurgy, School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, P. R. China
| |
Collapse
|
14
|
Castiglione F, Casalegno M, Ferro M, Rossi F, Raos G, Mele A. Evidence of superdiffusive nanoscale motion in anionic polymeric hydrogels: Analysis of PGSE- NMR data and comparison with drug release properties. J Control Release 2019; 305:110-119. [PMID: 31121281 DOI: 10.1016/j.jconrel.2019.05.027] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 04/19/2019] [Accepted: 05/17/2019] [Indexed: 01/28/2023]
Abstract
Polymeric hydrogels are promising candidates for drug delivery applications, thanks to their ability to encapsulate, transport and release a wide range of chemicals. The successful application of these materials requires a deep understanding of the mechanisms governing solute transport at the nanoscale and its impact on release kinetics. In this work, we investigate the translational diffusion of ibuprofen loaded in anionic agarose-carbomer (AC) hydrogels by 1H high resolution magic angle spinning (HR-MAS) NMR spectroscopy, and compare it to its macroscopic release kinetics. The analysis of the experimental NMR data provides the first evidence of superdiffusion for ibuprofen in AC hydrogels. Superdiffusive transport is observed in the majority of our samples, especially those with the smallest mesh size (7 nm) and highest ibuprofen concentrations (90-120 mg/mL). This outcome is rationalized in terms of heavy-tailed distributions of spatial displacements (Lèvy flights) and of waiting times, which depend on the nanoscopic structural heterogeneity of the gels and the strong but reversible association between ibuprofen and the agarose matrix.
Collapse
Affiliation(s)
- Franca Castiglione
- Department of Chemistry, Materials and Chemical Engineering "Giulio Natta", Politecnico di Milano, Via Mancinelli 7, 20131 Milan, Italy.
| | - Mosè Casalegno
- Department of Chemistry, Materials and Chemical Engineering "Giulio Natta", Politecnico di Milano, Via Mancinelli 7, 20131 Milan, Italy.
| | - Monica Ferro
- Department of Chemistry, Materials and Chemical Engineering "Giulio Natta", Politecnico di Milano, Via Mancinelli 7, 20131 Milan, Italy
| | - Filippo Rossi
- Department of Chemistry, Materials and Chemical Engineering "Giulio Natta", Politecnico di Milano, Via Mancinelli 7, 20131 Milan, Italy
| | - Guido Raos
- Department of Chemistry, Materials and Chemical Engineering "Giulio Natta", Politecnico di Milano, Via Mancinelli 7, 20131 Milan, Italy
| | - Andrea Mele
- Department of Chemistry, Materials and Chemical Engineering "Giulio Natta", Politecnico di Milano, Via Mancinelli 7, 20131 Milan, Italy; CNR Istituto di Chimica del Riconoscimento Molecolare, Via Mancinelli 7, 20131 Milan, Italy
| |
Collapse
|
15
|
Feng H, Zheng T, Li M, Wu J, Ji H, Zhang J, Zhao W, Guo J. Droplet-based microfluidics systems in biomedical applications. Electrophoresis 2019; 40:1580-1590. [PMID: 30892714 DOI: 10.1002/elps.201900047] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Revised: 03/10/2019] [Accepted: 03/12/2019] [Indexed: 12/31/2022]
Abstract
Microfluidics has made a very impressive progress in the past decades due to its unique and instinctive advantages. Droplet-based microfluidic systems show excellent compatibility with many chemical and biological reagents and are capable of performing variety of operations that can implement microreactor, complex multiple core-shell structure, and many applications in biomedical research such as drug encapsulation, targeted drug delivery systems, and multifunctionalization on carriers. Droplet-based systems have been directly used to synthesize particles and encapsulate many biological entities for biomedicine applications due to their powerful encapsulation capability and facile versatility. In this paper, we review its origin, deviation, and evolution to draw a clear future, especially for droplet-based biomedical applications. This paper will focus on droplet generation, variations and complication as starter, and logistically lead to the numerous typical applications in biomedical research. Finally, we will summarize both its challenge and future prospects relevant to its droplet-based biomedical applications.
Collapse
Affiliation(s)
- Huanhuan Feng
- School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, P. R. China
| | - Tingting Zheng
- Peking University Shenzhen Hospital & Biomedical Research Institute, Shenzhen-PKU-HKUST Medical Center, Shenzhen, P. R. China
| | - Mingyu Li
- School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, P. R. China.,State Key Laboratory of Advanced Welding and Joining, Harbin Institute of Technology (Shenzhen), Shenzhen, P. R. China
| | - Junwei Wu
- School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, P. R. China
| | - Hongjun Ji
- School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, P. R. China
| | - Jiaheng Zhang
- School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, P. R. China
| | - Weiwei Zhao
- School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, P. R. China.,State Key Laboratory of Advanced Welding and Joining, Harbin Institute of Technology (Shenzhen), Shenzhen, P. R. China
| | - Jinhong Guo
- School of Information and Communication Engineering, University of Electronic Science and Technology of China, Chengdu, P. R. China
| |
Collapse
|
16
|
B. N. S, Yam WS, Hegde G. Photoresponsive behavior of hydrophilic/hydrophobic-based novel azobenzene mesogens: synthesis, characterization and their application in optical storage devices. RSC Adv 2019; 9:40588-40606. [PMID: 35542646 PMCID: PMC9076237 DOI: 10.1039/c9ra08211e] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Accepted: 11/10/2019] [Indexed: 11/21/2022] Open
Abstract
Three series of alkoxy chain-bearing azobenzene-derived quaternary ammonium iodides with an alkoxy chain at one end, namely N,N-diethanol-6-(4-((4′-alkyloxyphenyl)diazenyl)phenoxy)hexan-1-ammonium iodides, N-ethyl-N-ethanol-6-(4-((4′-alkyloxyphenyl)diazenyl)phenoxy)hexan-1-ammonium iodides and N,N-diethyl-6-(4-((4′-alkyloxyphenyl)diazenyl)phenoxy)hexan-1-ammonium iodides were synthesized and characterized. Their mesomorphic and photoswitching properties were examined via polarising optical microscopy (POM), differential scanning calorimetry (DSC) and UV-vis spectrophotometry. The liquid crystalline tilted schlieren texture of smectic C, non-tilted natural focal conic texture of smectic A and smectic B phases were observed in the N,N-diethanol- and N-ethyl-N-ethanol-bearing ammonium group substituted at the terminal via the alkoxy chain of the azo moiety. In these azo moieties, the equilibrium time for trans–cis isomerization was about 1 min and cis–trans isomerization occurred at around 590 min, which had the highest alkoxy chain and no hydroxyl group on their head group. The absence of a hydroxyl group on the terminal head group resulted in slow thermal back relaxation, whereas the hydroxyl group-bearing head group showed fast thermal back relaxation. These results suggest that the influence of the substituent on the cationic ammonium head group and alkoxy chain length on the photoisomerization of the azo compounds is vital for optical storage devices. Furthermore, the device fabricated using these materials demonstrated that they are excellent candidates for optical image storage applications. Effect of Photoresponsive behaviour of hydrophilic/hydrophobic based novel azobenzene's. Powerful structure property relationship. Light plays the dominant role in photoisomerization properties.![]()
Collapse
Affiliation(s)
- Sunil B. N.
- Centre for Nano-materials and Displays
- B.M.S. College of Engineering
- Bengaluru 560019
- India
- Department of Chemistry
| | - Wan Sinn Yam
- School of Chemical Sciences
- Universiti Sains Malaysia
- Malaysia
| | - Gurumurthy Hegde
- Centre for Nano-materials and Displays
- B.M.S. College of Engineering
- Bengaluru 560019
- India
| |
Collapse
|
17
|
Dastidar P, Roy R, Parveen R, Sarkar K. Supramolecular Synthon Approach in Designing Molecular Gels for Advanced Therapeutics. ADVANCED THERAPEUTICS 2018. [DOI: 10.1002/adtp.201800061] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Parthasarathi Dastidar
- School of Chemical Sciences; Indian Association for the Cultivation of Science (IACS); 2A and 2B, Raja S. C. Mullick Road, Jadavpur Kolkata 700032 West Bengal India
| | - Rajdip Roy
- School of Chemical Sciences; Indian Association for the Cultivation of Science (IACS); 2A and 2B, Raja S. C. Mullick Road, Jadavpur Kolkata 700032 West Bengal India
| | - Rumana Parveen
- School of Chemical Sciences; Indian Association for the Cultivation of Science (IACS); 2A and 2B, Raja S. C. Mullick Road, Jadavpur Kolkata 700032 West Bengal India
| | - Koushik Sarkar
- School of Chemical Sciences; Indian Association for the Cultivation of Science (IACS); 2A and 2B, Raja S. C. Mullick Road, Jadavpur Kolkata 700032 West Bengal India
| |
Collapse
|
18
|
Sitsanidis ED, Piras CC, Alexander BD, Siligardi G, Jávorfi T, Hall AJ, Edwards AA. Circular dichroism studies of low molecular weight hydrogelators: The use of SRCD and addressing practical issues. Chirality 2018; 30:708-718. [PMID: 29645307 DOI: 10.1002/chir.22850] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Revised: 02/08/2018] [Accepted: 02/14/2018] [Indexed: 11/08/2022]
Abstract
Circular dichroism (CD) spectroscopy has been used extensively for the investigation of the conformation and configuration of chiral molecules, but its use for evaluating the mode of self-assembly in soft materials has been limited. Herein, we report a protocol for the study of such materials by electronic CD spectroscopy using commercial/benchtop instruments and synchrotron radiation (SR) using the B23 beamline available at Diamond Light Source. The use of the B23 beamtime for SRCD was advantageous because of the unique enhanced spatial resolution achieved because of its highly collimated and small beamlight cross section (ca. 250 μm) and higher photon flux in the far UV region (175-250 nm) enhancing the signal-to-noise ratio relative to benchtop CD instruments. A set of low molecular weight (LMW) hydrogelators, comprising two Fmoc-protected enantiomeric monosaccharides and one Fmoc dipeptide (Fmoc-FF), were studied. The research focused on the optimization of sample preparation and handling, which then enabled the characterization of sample conformational homogeneity and thermal stability. CD spectroscopy, in combination with other spectroscopic techniques and microscopy, will allow a better insight into the self-assembly of chiral building blocks into higher order structural architectures.
Collapse
Affiliation(s)
| | - Carmen C Piras
- Medway School of Pharmacy, Universities of Greenwich and Kent at Medway, Kent, UK
| | - Bruce D Alexander
- Department of Pharmaceutical, Chemical and Environmental Sciences, University of Greenwich, Kent, UK
| | | | | | - Andrew J Hall
- Medway School of Pharmacy, Universities of Greenwich and Kent at Medway, Kent, UK
| | - Alison A Edwards
- Medway School of Pharmacy, Universities of Greenwich and Kent at Medway, Kent, UK
| |
Collapse
|
19
|
Ferreira N, Ferreira L, Cardoso V, Boni F, Souza A, Gremião M. Recent advances in smart hydrogels for biomedical applications: From self-assembly to functional approaches. Eur Polym J 2018. [DOI: 10.1016/j.eurpolymj.2017.12.004] [Citation(s) in RCA: 84] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
20
|
Mayr J, Saldías C, Díaz Díaz D. Release of small bioactive molecules from physical gels. Chem Soc Rev 2018; 47:1484-1515. [PMID: 29354818 DOI: 10.1039/c7cs00515f] [Citation(s) in RCA: 129] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Pharmaceutical drugs with low water solubility have always received great attention within the scientific community. The reduced bioavailability and the need of frequent administrations have motivated the investigation of new drug delivery systems. Within this context, drug carriers that release their payload in a sustained way and hence reduce the administration rate are highly demanded. One interesting strategy to meet these requirements is the entrapment of the drugs into gels. So far, the most investigated materials for such drug-loaded gels are derived from polymers and based on covalent linkages. However, over the last decade the use of physical (or supramolecular) gels derived from low molecular weight compounds has experienced strong growth in this field, mainly due to important properties such as injectability, stimuli responsiveness and ease of synthesis. This review summarizes the use of supramolecular gels for the encapsulation and controlled release of small therapeutic molecules.
Collapse
Affiliation(s)
- Judith Mayr
- Institut für Organische Chemie, Universität Regensburg, Universitätsstr. 31, 93040 Regensburg, Germany.
| | - César Saldías
- Departamento de Química Física, Facultad de Química, Pontificia Universidad Católica de Chile, Casella 302, Correo 22, Santiago, Chile
| | - David Díaz Díaz
- Institut für Organische Chemie, Universität Regensburg, Universitätsstr. 31, 93040 Regensburg, Germany. and Institute of Advanced Chemistry of Catalonia (IQAC-CSIC), Jordi Girona 18-26, 08034 Barcelona, Spain
| |
Collapse
|
21
|
Latxague L, Gaubert A, Barthélémy P. Recent Advances in the Chemistry of Glycoconjugate Amphiphiles. Molecules 2018; 23:E89. [PMID: 29301326 PMCID: PMC6017060 DOI: 10.3390/molecules23010089] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Revised: 12/22/2017] [Accepted: 12/28/2017] [Indexed: 11/23/2022] Open
Abstract
Glyconanoparticles essentially result from the (covalent or noncovalent) association of nanometer-scale objects with carbohydrates. Such glyconanoparticles can take many different forms and this mini review will focus only on soft materials (colloids, liposomes, gels etc.) with a special emphasis on glycolipid-derived nanomaterials and the chemistry involved for their synthesis. Also this contribution presents Low Molecular Weight Gels (LMWGs) stabilized by glycoconjugate amphiphiles. Such soft materials are likely to be of interest for different biomedical applications.
Collapse
Affiliation(s)
- Laurent Latxague
- ARNA Laboratory, Inserm U1212, CNRS UMR 5320, Université de Bordeaux, F-33000 Bordeaux, France.
| | - Alexandra Gaubert
- ARNA Laboratory, Inserm U1212, CNRS UMR 5320, Université de Bordeaux, F-33000 Bordeaux, France.
| | - Philippe Barthélémy
- ARNA Laboratory, Inserm U1212, CNRS UMR 5320, Université de Bordeaux, F-33000 Bordeaux, France.
| |
Collapse
|
22
|
He H, Wang H, Zhou N, Yang D, Xu B. Branched peptides for enzymatic supramolecular hydrogelation. Chem Commun (Camb) 2018; 54:86-89. [DOI: 10.1039/c7cc08421h] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The use of protease (e.g., enterokinase) to cut branched peptides generates supramolecular hydrogels, opening a new way to explore soft materials for biomedicine.
Collapse
Affiliation(s)
- Hongjian He
- Department of Chemistry
- Brandeis University
- Waltham
- USA
| | - Huaimin Wang
- Department of Chemistry
- Brandeis University
- Waltham
- USA
| | - Ning Zhou
- Department of Chemistry
- Brandeis University
- Waltham
- USA
| | - Dongsik Yang
- Department of Chemistry
- Brandeis University
- Waltham
- USA
| | - Bing Xu
- Department of Chemistry
- Brandeis University
- Waltham
- USA
| |
Collapse
|
23
|
Wang H, Ji X, Li Y, Li Z, Tang G, Huang F. An ATP/ATPase responsive supramolecular fluorescent hydrogel constructedviaelectrostatic interactions between poly(sodiump-styrenesulfonate) and a tetraphenylethene derivative. J Mater Chem B 2018; 6:2728-2733. [DOI: 10.1039/c8tb00366a] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
We report a supramolecular fluorescent hydrogel based on poly(sodiump-styrenesulfonate) and a tetraphenylethene derivative.
Collapse
Affiliation(s)
- Hu Wang
- State Key Laboratory of Chemical Engineering
- Center for Chemistry of High-Performance & Novel Materials
- Department of Chemistry
- Zhejiang University
- Hangzhou 310027
| | - Xiaofan Ji
- State Key Laboratory of Chemical Engineering
- Center for Chemistry of High-Performance & Novel Materials
- Department of Chemistry
- Zhejiang University
- Hangzhou 310027
| | - Yang Li
- Department of Chemistry
- Institute of Chemical Biology and Pharmaceutical Chemistry
- Zhejiang University
- Hangzhou 310027
- P. R. China
| | - Zhengtao Li
- State Key Laboratory of Chemical Engineering
- Center for Chemistry of High-Performance & Novel Materials
- Department of Chemistry
- Zhejiang University
- Hangzhou 310027
| | - Guping Tang
- Department of Chemistry
- Institute of Chemical Biology and Pharmaceutical Chemistry
- Zhejiang University
- Hangzhou 310027
- P. R. China
| | - Feihe Huang
- State Key Laboratory of Chemical Engineering
- Center for Chemistry of High-Performance & Novel Materials
- Department of Chemistry
- Zhejiang University
- Hangzhou 310027
| |
Collapse
|
24
|
Wang Z, Wu H, Liu P, Zeng F, Wu S. A self-immolative prodrug nanosystem capable of releasing a drug and a NIR reporter for in vivo imaging and therapy. Biomaterials 2017; 139:139-150. [PMID: 28614754 DOI: 10.1016/j.biomaterials.2017.06.002] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2017] [Revised: 05/15/2017] [Accepted: 06/03/2017] [Indexed: 10/19/2022]
Abstract
In vivo monitoring of the biodistribution and activation of prodrugs is highly attractive, and the self-immolative dendritic architecture is deemed as a promising approach for constructing theranostic prodrug in which the release/activation of different payloads is needed. Herein, A GSH-triggered and self-immolative dendritic platform comprising an anticancer drug camptothecin (CPT), a cleavable linker and a two-photon NIR fluorophore (dicyanomethylene-4H-pyran, DCM) has been developed for in situ tracking of drug release and antitumour therapy. In vitro experiments demonstrate that, the presence of glutathione (GSH) induces the cleavage of the self-immolative linker, resulting in comitant release of the drug and the dye. Upon cell internalization and under one- or two-photon excitation, prominent intracellular fluorescence can be observed, indicating the release of the payloads in live cells. Upon loaded in phospholipid vesicles, the prodrug has also been successfully utilized for in vivo and in situ tracking of drug release and cancer therapy in a mouse model. Several hours post injection, the prodrug generates strong fluorescence on tumour sites, demonstrating the prodrug's capability of monitoring the on-site drug release. Moreover, the prodrug shows considerable high activity and exerts obvious inhibition towards tumour growth. This work suggests that the prodrug with self-immolative dendritic structure can work well in vivo and this strategy may provide an alternative approach for designing theranostic drug delivery systems.
Collapse
Affiliation(s)
- Ziqian Wang
- State Key Laboratory of Luminescent Materials and Devices, College of Materials Science and Engineering, South China University of Technology (SCUT), Guangzhou, 510640, China
| | - Hao Wu
- State Key Laboratory of Luminescent Materials and Devices, College of Materials Science and Engineering, South China University of Technology (SCUT), Guangzhou, 510640, China
| | - Peilian Liu
- State Key Laboratory of Luminescent Materials and Devices, College of Materials Science and Engineering, South China University of Technology (SCUT), Guangzhou, 510640, China
| | - Fang Zeng
- State Key Laboratory of Luminescent Materials and Devices, College of Materials Science and Engineering, South China University of Technology (SCUT), Guangzhou, 510640, China.
| | - Shuizhu Wu
- State Key Laboratory of Luminescent Materials and Devices, College of Materials Science and Engineering, South China University of Technology (SCUT), Guangzhou, 510640, China.
| |
Collapse
|
25
|
Zhou J, Li J, Du X, Xu B. Supramolecular biofunctional materials. Biomaterials 2017; 129:1-27. [PMID: 28319779 PMCID: PMC5470592 DOI: 10.1016/j.biomaterials.2017.03.014] [Citation(s) in RCA: 161] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Revised: 03/09/2017] [Accepted: 03/10/2017] [Indexed: 12/27/2022]
Abstract
This review discusses supramolecular biofunctional materials, a novel class of biomaterials formed by small molecules that are held together via noncovalent interactions. The complexity of biology and relevant biomedical problems not only inspire, but also demand effective molecular design for functional materials. Supramolecular biofunctional materials offer (almost) unlimited possibilities and opportunities to address challenging biomedical problems. Rational molecular design of supramolecular biofunctional materials exploit powerful and versatile noncovalent interactions, which offer many advantages, such as responsiveness, reversibility, tunability, biomimicry, modularity, predictability, and, most importantly, adaptiveness. In this review, besides elaborating on the merits of supramolecular biofunctional materials (mainly in the form of hydrogels and/or nanoscale assemblies) resulting from noncovalent interactions, we also discuss the advantages of small peptides as a prevalent molecular platform to generate a wide range of supramolecular biofunctional materials for the applications in drug delivery, tissue engineering, immunology, cancer therapy, fluorescent imaging, and stem cell regulation. This review aims to provide a brief synopsis of recent achievements at the intersection of supramolecular chemistry and biomedical science in hope of contributing to the multidisciplinary research on supramolecular biofunctional materials for a wide range of applications. We envision that supramolecular biofunctional materials will contribute to the development of new therapies that will ultimately lead to a paradigm shift for developing next generation biomaterials for medicine.
Collapse
Affiliation(s)
- Jie Zhou
- Department of Chemistry, Brandeis University, 415 South Street, Waltham, MA 02453, USA
| | - Jie Li
- Department of Chemistry, Brandeis University, 415 South Street, Waltham, MA 02453, USA
| | - Xuewen Du
- Department of Chemistry, Brandeis University, 415 South Street, Waltham, MA 02453, USA
| | - Bing Xu
- Department of Chemistry, Brandeis University, 415 South Street, Waltham, MA 02453, USA.
| |
Collapse
|
26
|
Shigemitsu H, Hamachi I. Design Strategies of Stimuli-Responsive Supramolecular Hydrogels Relying on Structural Analyses and Cell-Mimicking Approaches. Acc Chem Res 2017; 50:740-750. [PMID: 28252940 DOI: 10.1021/acs.accounts.7b00070] [Citation(s) in RCA: 130] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Stimuli-responsive hydrogels are intriguing biomaterials useful for spatiotemporal controlled release of drugs, cells, and biological cues, cell engineering for various applications, and medical diagnosis. To date, many physical and chemical stimuli-responsive polymer hydrogels have been developed by chemical modification of polymer chains and cross-linking points. In particular, conjugation with biomolecules to polymers produced promising biomolecule-responsive hydrogels. These examples clearly indicate high potentials of stimuli-responsive hydrogels as promising biomaterials. In addition to polymer hydrogels, supramolecular hydrogels formed by the assembly of small molecules (hydrogelators) via noncovalent interactions have also been regarded as unique and promising soft materials due to their flexible programmability in rendering them stimuli-responsive with the larger macroscopic change (i.e., gel-sol transition). This Account describes our strategies for the rational design of stimuli-responsive supramolecular hydrogels and their biological applications. Following the detailed structural analysis of a lead hydrogelator that clearly indicates the appropriate sites for incorporation of stimuli-responsive modules, we designed supramolecular hydrogels capable of responding to simple physical (thermal and light) and chemical (pH and metal ions) stimuli. More importantly, biomolecule-responsive hydrogels were successfully developed by supramolecularly mimicking the complex yet well-ordered structures and functions of live cells containing multiple components (a cell-mimicking approach). Development of biomolecule-responsive supramolecular hydrogels has been difficult as the conventional strategy relies on the chemical incorporation of stimuli-responsive modules, owing to the lack of modules that can effectively respond to structurally diverse and complicated biomolecules. Inspired by natural systems where functional compartments (e.g., cell organelles) sophisticatedly interact with each other, we sought to integrate the two distinct microenvironments of supramolecular hydrogels (the aqueous cavity surrounded by fibers and the fluidic hydrophobic fiber domain) with other functional materials (e.g., enzymes, peptides or proteins, fluorescent chemosensors, or inorganic porous or layered nanomaterials) for biomolecule responses. In situ fluorescence microscopy imaging clearly demonstrated that chemical isolation and crosstalk are highly successful between the integrated microenvironments in supramolecular hydrogels, similar to organelles in living cells, which allow for the construction of unique optical response and sensing systems for biomolecules. Furthermore, programmed hybridization of our chemically reactive hydrogels with appropriate enzymes can provide an unprecedented universal platform for biomolecule-degradable supramolecular hydrogels. Such biomolecule-responsive hydrogels are a potentially promising tool for user-friendly early diagnostics and on-demand drug-releasing soft materials. We expect that our rational design strategies for stimuli-responsive supramolecular hydrogels by modification of chemical structures and hybridization with functional materials will inspire scientists in various fields and lead to development of novel soft materials for biological applications.
Collapse
Affiliation(s)
- Hajime Shigemitsu
- Department of Synthetic
Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Kyoto 615-8510, Japan
| | - Itaru Hamachi
- Department of Synthetic
Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Kyoto 615-8510, Japan
- Core Research for Evolutional Science and Technology, Japan Science and Technology Agency, 5 Sanbancho, Chiyoda-ku, Tokyo 102-0075, Japan
| |
Collapse
|
27
|
Ji D, Wang H, Ge J, Zhang L, Li J, Bai D, Chen J, Li Z. Label-free and rapid detection of ATP based on structure switching of aptamers. Anal Biochem 2017; 526:22-28. [PMID: 28315316 DOI: 10.1016/j.ab.2017.03.011] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Revised: 03/08/2017] [Accepted: 03/13/2017] [Indexed: 12/18/2022]
Abstract
In this work, an aptamer-based fluorescent strategy for label-free detection of ATP was developed by using Thioflavin T (ThT) as a fluorescence indicator, which can specifically bind with G-quadruplex DNAs to generate enhanced fluorescence intensity. In the absence of ATP, the folded structure of ATP aptamer allows the intercalation of ThT to produce strong fluorescence signal. However, upon ATP binding to the aptamer where ThT intercalated, the conformational change or distortion of the aptamer is large enough to cause much less intercalation of ThT and consequently drastic suppression of the fluorescence intensity. As such, the concentration of ATP could be identified very easily by observing fluorescence changes of this sensing system. This label-free assay could be accomplished very easily and quickly with a "mix-and-detect" detection method and exhibits high sensitivity to ATP with a detection limit of 33 nM in a wide range of 0.1-1000 μM. Furthermore, this proposed method is capable of detecting ATP in human serum and cell extracts. This method offers several advantages such as simplicity, rapidity, low cost, good stability and excellent selectivity, which make it hold great potential for the detection of ATP in bioanalytical and biological studies.
Collapse
Affiliation(s)
- Danyang Ji
- College of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou 450001, PR China
| | - Hongqi Wang
- Institute of Quality Standard and Testing Technology for Agroproducts, Henan Academy of Agricultural Science, Zhengzhou 450002, PR China
| | - Jia Ge
- College of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou 450001, PR China
| | - Lin Zhang
- College of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou 450001, PR China
| | - Jianjun Li
- College of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou 450001, PR China.
| | - Dongmei Bai
- College of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou 450001, PR China
| | - Juan Chen
- College of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou 450001, PR China
| | - Zhaohui Li
- College of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou 450001, PR China; Institute of Chemical Biology and Nanomedicine, Hunan University, Changsha 410082, PR China.
| |
Collapse
|
28
|
Li Z, Wang H, Chu M, Guan P, Zhao Y, Zhao Y, Wang J. Photo-isomerization and light-modulated aggregation behavior of azobenzene-based ionic liquids in aqueous solutions. RSC Adv 2017. [DOI: 10.1039/c7ra08419f] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
ILs with an azobenzene-group at the end of the alkyl chain could form micelles; UV/vis irradiation only changed the size of the aggregates.
Collapse
Affiliation(s)
- Zhiyong Li
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals
- Key Laboratory of Green Chemical Media and Reactions
- Ministry of Education
- School of Chemistry and Chemical Engineering
- Henan Normal University
| | - Huiyong Wang
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals
- Key Laboratory of Green Chemical Media and Reactions
- Ministry of Education
- School of Chemistry and Chemical Engineering
- Henan Normal University
| | - Mengen Chu
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals
- Key Laboratory of Green Chemical Media and Reactions
- Ministry of Education
- School of Chemistry and Chemical Engineering
- Henan Normal University
| | - Pengxin Guan
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals
- Key Laboratory of Green Chemical Media and Reactions
- Ministry of Education
- School of Chemistry and Chemical Engineering
- Henan Normal University
| | - Yang Zhao
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals
- Key Laboratory of Green Chemical Media and Reactions
- Ministry of Education
- School of Chemistry and Chemical Engineering
- Henan Normal University
| | - Yuling Zhao
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals
- Key Laboratory of Green Chemical Media and Reactions
- Ministry of Education
- School of Chemistry and Chemical Engineering
- Henan Normal University
| | - Jianji Wang
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals
- Key Laboratory of Green Chemical Media and Reactions
- Ministry of Education
- School of Chemistry and Chemical Engineering
- Henan Normal University
| |
Collapse
|
29
|
Malik N, Baur B, Winter G, Reske SN, Beer AJ, Solbach C. Radiofluorination of PSMA-HBED via Al(18)F(2+) Chelation and Biological Evaluations In Vitro. Mol Imaging Biol 2016; 17:777-85. [PMID: 25869080 DOI: 10.1007/s11307-015-0844-6] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
PURPOSE Ga-68-labeled prostate-specific membrane antigen (PSMA) ligands have been used clinically for positron emission tomography (PET) imaging of prostate cancer. However, F-18-labeled compounds offer several advantages, including the potential for delayed imaging, high starting activities enabling multidose preparation, and improved spatial resolution in PET. For F-18 labeling of peptides conjugated with a suitable chelator, a fast and feasible method is the use of [Al(18)F](2+). In the present study, the radiofluorinations of a well-known PSMA ligand Glu-NH-CO-NH-Lys(Ahx)-HBED-CC (PSMA-HBED) via [Al(18)F](2+) were performed with respect to various reaction parameters, along with the biological evaluations in a cell experiment. PROCEDURES [Al(18)F]PSMA-HBED was prepared by adding Na[(18)F]F into a vial containing 0.026 μmol peptide (in 0.05 M NaOAc buffer) and 0.03 μmol AlCl3⋅6H2O (in 0.05 M NaOAc buffer). Then, it was stirred at different temperatures from 1 to 30 min. Afterwards, purification was carried out by solid phase extraction. Biological evaluations were performed in PSMA-positive cell lines LNCaP C4-2, along with a negative control using PC-3 cell lines. RESULTS The best labeling results (81 ± 0.5 %, n = 4) were observed with 0.026 μmol peptide (30 °C, 5 min). For preclinical experiments, the production of [Al(18)F]PSMA-HBED at 35 °C including purification by solid phase extraction (SPE) succeeded within 45 min, resulting in a radiochemical yield of 49 ± 1.2 % (decay-corrected, n = 6, radiochemical purity ≥98 %) at EOS. The labeled peptide revealed serum stability for 4 h as well as a promising binding coefficient (K D) value of 10.3 ± 2.2 nM in cell experiments with PSMA-positive LNCaP C4-2 cells. CONCLUSION An efficient and one-pot method for the radiosynthesis of [Al(18)F]PSMA-HBED was developed (0.26 μmol of precursor at 35 °C). In cell culture studies, the K D suggests [Al(18)F]PSMA-HBED as a potential PSMA ligand for future investigations in vivo and clinical applications afterwards.
Collapse
Affiliation(s)
- Noeen Malik
- Clinic for Nuclear Medicine, University Hospital Ulm, Ulm, Germany.
| | - Benjamin Baur
- Clinic for Nuclear Medicine, University Hospital Ulm, Ulm, Germany
| | - Gordon Winter
- Clinic for Nuclear Medicine, University Hospital Ulm, Ulm, Germany
| | - Sven N Reske
- Clinic for Nuclear Medicine, University Hospital Ulm, Ulm, Germany
| | - Ambros J Beer
- Clinic for Nuclear Medicine, University Hospital Ulm, Ulm, Germany
| | | |
Collapse
|
30
|
Shi Y, Xiong D, Wang H, Zhao Y, Wang J. Reversible Switching of Amphiphilic Self-Assemblies of Ionic Liquids between Micelle and Vesicle by CO2. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2016; 32:6895-6901. [PMID: 27315131 DOI: 10.1021/acs.langmuir.6b01167] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
The creation of CO2-responsive materials that undergo structural transition between micelle and vesicle is of great importance from both theoretical and practical points of view. In this work, we have developed a series of CO2-responsive single-tailed amphiphilic ionic liquids (ILs) composed of N-alkyl-N-methyldiethanolamine cation [CnMDEA](+) (n = 8, 10, 12, 14, 16, 18) and 2-pyrrolidinone [2-Pyr](-) anion. The aggregation behavior and self-assembly structures of the ILs in aqueous solution have been investigated by conductivity, surface tension, dynamic light scattering, cryogenic transmission electron microscopy, small-angle X-ray scattering, and nuclear magnetic resonance spectroscopy. For the first time, CO2 driven reversible switching of self-assembly between spherical micelle and unilamellar vesicle is found for [CnMDEA][2-Pyr] (n = 16, 18) in aqueous solutions at 20 °C and atmospheric pressure. It is shown that the mechanism behind the reversible micelle to vesicle transition involves the formation of carbamate anion from the reaction between [2-Pyr](-) and CO2.
Collapse
Affiliation(s)
- Yunlei Shi
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University , Xinxiang, Henan 453007, P. R. China
| | - Dazhen Xiong
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University , Xinxiang, Henan 453007, P. R. China
| | - Huiyong Wang
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University , Xinxiang, Henan 453007, P. R. China
| | - Yang Zhao
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University , Xinxiang, Henan 453007, P. R. China
| | - Jianji Wang
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University , Xinxiang, Henan 453007, P. R. China
| |
Collapse
|
31
|
|
32
|
Guo Y, Sun X, Yang G, Liu J. Ultrasensitive detection of ATP based on ATP regeneration amplification and its application in cell homogenate and human serum. Chem Commun (Camb) 2015; 50:7659-62. [PMID: 24898261 DOI: 10.1039/c4cc01458h] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
A conformation-switching aptamer molecule that could be circularized without ligation DNA was designed. Pyrophosphate (PPi) was converted to ATP, resulting in higher signals for ATP detection. Meanwhile, the method has significant implications for real applications.
Collapse
Affiliation(s)
- Yingshu Guo
- School of Chemistry and Chemical Engineering, Linyi University, Linyi 276005, China.
| | | | | | | |
Collapse
|
33
|
Yoshii T, Onogi S, Shigemitsu H, Hamachi I. Chemically Reactive Supramolecular Hydrogel Coupled with a Signal Amplification System for Enhanced Analyte Sensitivity. J Am Chem Soc 2015; 137:3360-5. [DOI: 10.1021/ja5131534] [Citation(s) in RCA: 101] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Tatsuyuki Yoshii
- Department
of Synthetic Chemistry and Biological Chemistry, Kyoto University, Katsura, Nishikyo-Ku, Kyoto 615-8510, Japan
| | - Shoji Onogi
- Department
of Synthetic Chemistry and Biological Chemistry, Kyoto University, Katsura, Nishikyo-Ku, Kyoto 615-8510, Japan
| | - Hajime Shigemitsu
- Department
of Synthetic Chemistry and Biological Chemistry, Kyoto University, Katsura, Nishikyo-Ku, Kyoto 615-8510, Japan
| | - Itaru Hamachi
- Department
of Synthetic Chemistry and Biological Chemistry, Kyoto University, Katsura, Nishikyo-Ku, Kyoto 615-8510, Japan
- Japan Science and Technology Agency (JST), CREST, Gobancho, Chiyoda-ku, Tokyo 102-0075, Japan
| |
Collapse
|
34
|
Dong R, Pang Y, Su Y, Zhu X. Supramolecular hydrogels: synthesis, properties and their biomedical applications. Biomater Sci 2015. [PMID: 26221932 DOI: 10.1039/c4bm00448e] [Citation(s) in RCA: 170] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
As a novel class of three-dimensional (3D) hydrophilic cross-linked polymers, supramolecular hydrogels not only display unique physicochemical properties (e.g., water-retention ability, drug loading capacity, biodegradability and biocompatibility, biostability) as well as specific functionalities (e.g., optoelectronic properties, bioactivity, self-healing ability, shape memory ability), but also have the capability to undergo reversible gel-sol transition in response to various environmental stimuli inherent to the noncovalent cross-linkages, thereby showing great potential as promising biomaterial scaffolds for diagnosis and therapy. In this Review, we summarized the recent progress in the design and synthesis of supramolecular hydrogels through specific, directional noncovalent interactions, with particular emphasis on the structure-property relationship, as well as their wide-ranging applications in disease diagnosis and therapy including bioimaging, biodetection, therapeutic delivery, and tissue engineering. We believe that these current achievements in supramolecular hydrogels will greatly stimulate new ideas and inspire persistent efforts in this hot topic area in future.
Collapse
Affiliation(s)
- Ruijiao Dong
- School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, People's Republic of China.
| | | | | | | |
Collapse
|
35
|
Qin L, Xie F, Duan P, Liu M. A Peptide Dendron-Based Shrinkable Metallo-Hydrogel for Charged Species Separation and Stepwise Release of Drugs. Chemistry 2014; 20:15419-25. [DOI: 10.1002/chem.201404035] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2014] [Indexed: 12/24/2022]
|
36
|
Yoshii T, Ikeda M, Hamachi I. Two‐Photon‐Responsive Supramolecular Hydrogel for Controlling Materials Motion in Micrometer Space. Angew Chem Int Ed Engl 2014; 53:7264-7. [DOI: 10.1002/anie.201404158] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2014] [Indexed: 11/08/2022]
Affiliation(s)
- Tatsuyuki Yoshii
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Kyoto 615‐8510, (Japan)
| | - Masato Ikeda
- Department of Biomolecular Science, Graduate School of Engineering, Gifu University, Gifu 501‐1193 (Japan)
- United Graduate School of Drug Discovery and Medical Information Sciences, Gifu University, Gifu 501‐1193 (Japan)
| | - Itaru Hamachi
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Kyoto 615‐8510, (Japan)
- Japan Science and Technology Agency (JST), CREST, 5 Sanbancho, Chiyoda‐ku, Tokyo 102‐0075 (Japan)
| |
Collapse
|
37
|
Du X, Zhou J, Xu B. Supramolecular hydrogels made of basic biological building blocks. Chem Asian J 2014; 9:1446-72. [PMID: 24623474 PMCID: PMC4024374 DOI: 10.1002/asia.201301693] [Citation(s) in RCA: 92] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2013] [Indexed: 12/31/2022]
Abstract
As a consequence of the self-assembly of small organic molecules in water, supramolecular hydrogels are evolving from serendipitous events during organic synthesis to become a new type of materials that hold promise for applications in biomedicine. In this Focus Review, we describe recent advances in the use of basic biological building blocks for creating molecules that act as hydrogelators and the potential applications of the corresponding hydrogels. After introducing the concept of supramolecular hydrogels and defining the scope of this review, we briefly describe the methods for making and characterizing supramolecular hydrogels. We then discuss representative hydrogelators according to the categories of their building blocks, such as amino acids, nucleobases, and saccharides, and highlight the applications of the hydrogels when necessary. Finally, we offer our perspective and outlook on this fast-growing field at the interface of organic chemistry, materials, biology, and medicine. By providing a snapshot for chemists, engineers, and medical scientists, we hope that this Focus Review will contribute to the development of multidisciplinary research on supramolecular hydrogels for a wide range of applications in different fields.
Collapse
Affiliation(s)
- Xuewen Du
- Department of Chemistry, Brandeis University, 415 South St., Waltham, MA 02454, USA, Fax: (01)781 736 2516
| | - Jie Zhou
- Department of Chemistry, Brandeis University, 415 South St., Waltham, MA 02454, USA, Fax: (01)781 736 2516
| | - Bing Xu
- Department of Chemistry, Brandeis University, 415 South St., Waltham, MA 02454, USA, Fax: (01)781 736 2516
| |
Collapse
|
38
|
Yoshii T, Ikeda M, Hamachi I. Two‐Photon‐Responsive Supramolecular Hydrogel for Controlling Materials Motion in Micrometer Space. Angew Chem Int Ed Engl 2014. [DOI: 10.1002/ange.201404158] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- Tatsuyuki Yoshii
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Kyoto 615‐8510, (Japan)
| | - Masato Ikeda
- Department of Biomolecular Science, Graduate School of Engineering, Gifu University, Gifu 501‐1193 (Japan)
- United Graduate School of Drug Discovery and Medical Information Sciences, Gifu University, Gifu 501‐1193 (Japan)
| | - Itaru Hamachi
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Kyoto 615‐8510, (Japan)
- Japan Science and Technology Agency (JST), CREST, 5 Sanbancho, Chiyoda‐ku, Tokyo 102‐0075 (Japan)
| |
Collapse
|
39
|
Yuan C, Guo J, Tan M, Guo M, Qiu L, Yan F. Multistimuli Responsive and Electroactive Supramolecular Gels Based on Ionic Liquid Gemini Guest. ACS Macro Lett 2014; 3:271-275. [PMID: 35590519 DOI: 10.1021/mz500113n] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Electroactive supramolecular gels with multistimuli responsiveness were fabricated through host-guest interactions between a host polymer containing β-cyclodextrin (CD) and an ionic liquid (IL) type asymmetric gemini guest, which contains both ferrocene (Fc) and bis(trifluoromethyl-sulfonyl)imide (TFSI-) as the respective α- and ω-guest groups. Owing to the multiple stimuli-responsiveness of the host-guest interactions, reversible sol-gel phase transition could be triggered by various stimuli, including temperature, electrochemical/chemical redox and anion-exchange reactions. Due to the intrinsically conductive properties of the IL gemini guest, the sol-gel transition behavior could be electrochemically controlled by the applied voltage, without using additional supporting electrolyte.
Collapse
Affiliation(s)
- Chao Yuan
- Jiangsu Key Laboratory of
Advanced Functional Polymer Design and Application, Department of
Polymer Science and Engineering, College of Chemistry, Chemical Engineering
and Materials Science, Soochow University, Suzhou, 215123, China
| | - Jiangna Guo
- Jiangsu Key Laboratory of
Advanced Functional Polymer Design and Application, Department of
Polymer Science and Engineering, College of Chemistry, Chemical Engineering
and Materials Science, Soochow University, Suzhou, 215123, China
| | - Mei Tan
- Jiangsu Key Laboratory of
Advanced Functional Polymer Design and Application, Department of
Polymer Science and Engineering, College of Chemistry, Chemical Engineering
and Materials Science, Soochow University, Suzhou, 215123, China
| | - Mingyu Guo
- Jiangsu Key Laboratory of
Advanced Functional Polymer Design and Application, Department of
Polymer Science and Engineering, College of Chemistry, Chemical Engineering
and Materials Science, Soochow University, Suzhou, 215123, China
| | - Lihua Qiu
- Jiangsu Key Laboratory of
Advanced Functional Polymer Design and Application, Department of
Polymer Science and Engineering, College of Chemistry, Chemical Engineering
and Materials Science, Soochow University, Suzhou, 215123, China
| | - Feng Yan
- Jiangsu Key Laboratory of
Advanced Functional Polymer Design and Application, Department of
Polymer Science and Engineering, College of Chemistry, Chemical Engineering
and Materials Science, Soochow University, Suzhou, 215123, China
| |
Collapse
|
40
|
Bai S, Debnath S, Gibson K, Schlicht B, Bayne L, Zagnoni M, Ulijn RV. Biocatalytic self-assembly of nanostructured peptide microparticles using droplet microfluidics. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2014; 10:285-293. [PMID: 23913836 DOI: 10.1002/smll.201301333] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2013] [Revised: 06/08/2013] [Indexed: 06/02/2023]
Abstract
Uniformly-sized, nanostructured peptide microparticles are generated by exploiting the ability of enzymes to serve (i) as catalysts, to control self-assembly within monodisperse, surfactant-stabilized water-in-oil microdroplets, and (ii) as destabilizers of emulsion interfaces, to enable facile transfer of the produced microparticles to water. This approach combines the advantages of biocatalytic self-assembly with the compartmentalization properties enabled by droplet microfluidics. Firstly, using microfluidic techniques, precursors of self-assembling peptide derivatives and enzymes are mixed in the microdroplets which upon catalytic conversion undergo molecular self-assembly into peptide particles, depending on the chemical nature of the precursors. Due to their amphiphilic nature, enzymes adsorb at the water-surfactant-oil interface of the droplets, inducing the transfer of peptide microparticles from the oil to the aqueous phase. Ultimately, through washing steps, enzymes can be removed from the microparticles which results in uniformely-sized particles composed of nanostructured aromatic peptide amphiphiles.
Collapse
Affiliation(s)
- Shuo Bai
- WestCHEM/Department of Pure and Applied Chemistry, University of Strathclyde, Glasgow, G1 1XL, UK
| | | | | | | | | | | | | |
Collapse
|
41
|
Liu Y, Wang T, Li Z, Liu M. Copper(II) ion selective and strong acid-tolerable hydrogels formed by an L-histidine ester terminated bolaamphiphile: from single molecular thick nanofibers to single-wall nanotubes. Chem Commun (Camb) 2013; 49:4767-9. [PMID: 23589838 DOI: 10.1039/c3cc41786g] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
An L-histidine ester terminated bolaamphiphile (BolaHis) was found to form hydrogels and self-assemble into single-wall nanotubes and single molecular thick fibers triggered by proton and copper ions, respectively. The hydrogels showed good tolerance to a concentrated acid environment and excellent selectivity towards Cu(2+) over other metal ions.
Collapse
Affiliation(s)
- Yaqing Liu
- Beijing National Laboratory for Molecular Science (BNLMS), Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, People's Republic of China
| | | | | | | |
Collapse
|
42
|
Kuang Y, Yuan D, Zhang Y, Kao A, Du X, Xu B. Interactions between cellular proteins and morphologically different nanoscale aggregates of small molecules. RSC Adv 2013; 3:7704-7707. [PMID: 23766892 PMCID: PMC3677794 DOI: 10.1039/c3ra41523f] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Depending on the methods of preparation, amphiphilic small molecules aggregate to form nanostructures with different morphologies that interact with cytosol proteins in a drastically different manner, thus illustrating the first example of morphological dependent protein binding of nanoscale molecular aggregates.
Collapse
Affiliation(s)
| | | | | | | | | | - Bing Xu
- Department of Chemistry, Brandeis University, 415 South St., Waltham, MA 02454, USA. Fax: 781-736-2516; Tel: 781-736-5201
| |
Collapse
|
43
|
Ikeda M. Bioinspired Supramolecular Materials. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2013. [DOI: 10.1246/bcsj.20120254] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Masato Ikeda
- Department of Biomolecular Science, Graduate School of Engineering, Gifu University
- United Graduate School of Drug Discovery and Medical Information Science, Gifu University
| |
Collapse
|
44
|
Ochi R, Kurotani K, Ikeda M, Kiyonaka S, Hamachi I. Supramolecular hydrogels based on bola-amphiphilic glycolipids showing color change in response to glycosidases. Chem Commun (Camb) 2012; 49:2115-7. [PMID: 23258236 DOI: 10.1039/c2cc37908b] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
We developed supramolecular hydrogels exhibiting reversible thermochromism concurrently with gel-to-sol transition from four glycolipids. In addition, these gels showed the similar color change in response to glycosidases, which can be employed to construct a colorimetric sensor array chip for sensing glycosidases with the naked eye.
Collapse
Affiliation(s)
- Rika Ochi
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Kyoto, 615-8510, Japan
| | | | | | | | | |
Collapse
|
45
|
Ikeda M, Ochi R, Kurita YS, Pochan DJ, Hamachi I. Heat-Induced Morphological Transformation of Supramolecular Nanostructures by Retro-Diels-Alder Reaction. Chemistry 2012; 18:13091-6. [DOI: 10.1002/chem.201201670] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2012] [Revised: 07/04/2012] [Indexed: 11/11/2022]
|
46
|
Zheng XT, Chen P, Li CM. Anticancer efficacy and subcellular site of action investigated by real-time monitoring of cellular responses to localized drug delivery in single cells. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2012; 8:2670-2674. [PMID: 22736525 DOI: 10.1002/smll.201102636] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2011] [Revised: 03/20/2012] [Indexed: 06/01/2023]
Abstract
Subcellular-targeted drug delivery has much potential to defeat infectious diseases and cancers. Medical and/or biochemical effects of drugs/bioactive molecules delivered to subcellular compartments and their subcellular sites of action need to be investigated but have not been explored. Here the subcellular location-dependent biochemical responses of a potent anticancer drug, β-lapachone (β-lap), is investigated by a reduced graphene oxide (rGO)-functionalized optical nanoprobe, which can deliver and simultaneously monitor the drug effects at nanoscales. For the first time, distinct oxidative responses and calcium alterations in three selected subcellular domains are observed and clearly pinpoint that the perinuclear region is the optimal subcellular site for β-lap to have the best anticancer efficacy. The results presented here provide not only scientific insights of subcellular drug-cell interaction that is not obtainable from conventional methods, but they also provide valuable knowledge for rational design of subcellular-targeted delivery or spatially resolved signal intervention.
Collapse
Affiliation(s)
- Xin Ting Zheng
- Institute for Clean Energy & Advanced Materials, Southwest University, Chongqing, PR China
| | | | | |
Collapse
|
47
|
Li Y, Rodrigues J, Tomás H. Injectable and biodegradable hydrogels: gelation, biodegradation and biomedical applications. Chem Soc Rev 2012; 41:2193-221. [PMID: 22116474 DOI: 10.1039/c1cs15203c] [Citation(s) in RCA: 968] [Impact Index Per Article: 80.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Injectable hydrogels with biodegradability have in situ formability which in vitro/in vivo allows an effective and homogeneous encapsulation of drugs/cells, and convenient in vivo surgical operation in a minimally invasive way, causing smaller scar size and less pain for patients. Therefore, they have found a variety of biomedical applications, such as drug delivery, cell encapsulation, and tissue engineering. This critical review systematically summarizes the recent progresses on biodegradable and injectable hydrogels fabricated from natural polymers (chitosan, hyaluronic acid, alginates, gelatin, heparin, chondroitin sulfate, etc.) and biodegradable synthetic polymers (polypeptides, polyesters, polyphosphazenes, etc.). The review includes the novel naturally based hydrogels with high potential for biomedical applications developed in the past five years which integrate the excellent biocompatibility of natural polymers/synthetic polypeptides with structural controllability via chemical modification. The gelation and biodegradation which are two key factors to affect the cell fate or drug delivery are highlighted. A brief outlook on the future of injectable and biodegradable hydrogels is also presented (326 references).
Collapse
Affiliation(s)
- Yulin Li
- CQM-Centro de Química da Madeira, MMRG, Universidade da Madeira, Campus da Penteada 9020-105 Funchal, Portugal.
| | | | | |
Collapse
|
48
|
Kuang Y, Gao Y, Xu B. Supramolecular hydrogelators of N-terminated dipeptides selectively inhibit cancer cells. Chem Commun (Camb) 2011; 47:12625-7. [PMID: 22037699 PMCID: PMC3235792 DOI: 10.1039/c1cc15577f] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Consisting of N-terminated diphenylalanine, a new type of supramolecular hydrogelators forms hydrogels within a narrow pH window (pH 5.0 to 6.0) and selectively inhibits growth of HeLa cells, which provides important and useful insights for designing molecular nanofibers as potential nanomedicines.
Collapse
Affiliation(s)
- Yi Kuang
- Department of Chemistry, Brandeis University, 415 South St., Waltham, MA 02454, USA
| | | | | |
Collapse
|
49
|
Yin BC, Ye BC, Wang H, Zhu Z, Tan W. Colorimetric logic gates based on aptamer-crosslinked hydrogels. Chem Commun (Camb) 2011; 48:1248-50. [PMID: 22158758 DOI: 10.1039/c1cc15639j] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We have developed a novel molecular logic gate system based on the incorporation of aptamer-crosslinked hydrogels. Modified gold nanoparticles are used as the output signal, which is visible to the naked eye. This system is designed for AND and OR operations using two chemicals as stimulus inputs.
Collapse
Affiliation(s)
- Bin-Cheng Yin
- Lab of Biosystem and Microanalysis, State Key Laboratory of Bioreactor Engineering, East China University of Science & Technology, Shanghai 200237, P.R. China
| | | | | | | | | |
Collapse
|
50
|
Zhou W, Kobayashi T, Zhu H, Yu H. Electrically conductive hybrid nanofibers constructed with two amphiphilic salt components. Chem Commun (Camb) 2011; 47:12768-70. [PMID: 21986664 DOI: 10.1039/c1cc14145g] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Electrical conductivity was obtained in hybrid organic nanofibers fabricated with low-molecular-weight amphiphilic azopyridinium and dodecylbenzenesulfonic acid or its salt.
Collapse
Affiliation(s)
- Weimin Zhou
- Top Runner Incubation Center for Academia-Industry Fusion, and Department of Materials Science and Technology, Nagaoka University of Technology, 1603-1 Kamitomioka, Nagaoka, 940-2188, Japan
| | | | | | | |
Collapse
|