1
|
Ali O, Okumura B, Shintani Y, Sugiura S, Shibata A, Higashi SL, Ikeda M. Oxidation-Responsive Supramolecular Hydrogels Based on Glucosamine Derivatives with an Aryl Sulfide Group. Chembiochem 2024; 25:e202400459. [PMID: 38924281 DOI: 10.1002/cbic.202400459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 06/17/2024] [Accepted: 06/24/2024] [Indexed: 06/28/2024]
Abstract
Supramolecular hydrogels can be obtained via self-assembly of small molecules in aqueous environments. In this study, we describe the development of oxidation-responsive supramolecular hydrogels comprising glucosamine derivatives with an aryl sulfide group. We demonstrate that hydrogen peroxide can induce a gel-sol transition through the oxidation of the sulfide group to the corresponding sulfoxide. Furthermore, we show that this oxidation responsiveness can be extended to photo-responsiveness with the aid of a photosensitizer.
Collapse
Affiliation(s)
- Onaza Ali
- United Graduate School of Drug Discovery and Medical Information Sciences, Gifu University, 1-1 Yanagido, Gifu, 501-1193, Japan
| | - Bioru Okumura
- Department of Life Science and Chemistry, Graduate School of Natural Science and Technology, Gifu University, 1-1 Yanagido, Gifu, 501-1193, Japan
| | - Yuki Shintani
- United Graduate School of Drug Discovery and Medical Information Sciences, Gifu University, 1-1 Yanagido, Gifu, 501-1193, Japan
| | - Shintaro Sugiura
- United Graduate School of Drug Discovery and Medical Information Sciences, Gifu University, 1-1 Yanagido, Gifu, 501-1193, Japan
| | - Aya Shibata
- Department of Life Science and Chemistry, Graduate School of Natural Science and Technology, Gifu University, 1-1 Yanagido, Gifu, 501-1193, Japan
| | - Sayuri L Higashi
- United Graduate School of Drug Discovery and Medical Information Sciences, Gifu University, 1-1 Yanagido, Gifu, 501-1193, Japan
- Institute of Advanced Study, Gifu University, 1-1 Yanagido, Gifu, 501-1193, Japan
- Institute of Advanced Study, Center for One Medicine Innovative Translational Research (COMIT), Gifu University, 1-1 Yanagido, Gifu, 501-1193, Japan
| | - Masato Ikeda
- United Graduate School of Drug Discovery and Medical Information Sciences, Gifu University, 1-1 Yanagido, Gifu, 501-1193, Japan
- Department of Life Science and Chemistry, Graduate School of Natural Science and Technology, Gifu University, 1-1 Yanagido, Gifu, 501-1193, Japan
- Institute of Advanced Study, Center for One Medicine Innovative Translational Research (COMIT), Gifu University, 1-1 Yanagido, Gifu, 501-1193, Japan
- Institute for Glyco-core Research (iGCORE), Gifu University, 1-1 Yanagido, Gifu, 501-1193, Japan
- Institute of Nano-Life-Systems, Institutes of Innovation for Future Society, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8603, Japan
| |
Collapse
|
2
|
Castro VIB, Gao Y, Brito A, Chen J, Reis RL, Pashkuleva I, Pires RA. Cooling rate uncovers epimer-dependent supramolecular organization of carbohydrate amphiphiles. J Mater Chem B 2024; 12:6996-7000. [PMID: 38949321 DOI: 10.1039/d4tb00728j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
We show distinct CH-π interactions and assembly pathways for the amphiphile N-(fluorenylmethoxycarbonyl)-galactosamine and its epimer N-(fluorenylmethoxycarbonyl)-glucosamine. These differences result in the formation of supramolecular nanofibrous systems with opposite chirality. Our results showcase the importance of the carbohydrates structural diversity for their specific biointeractions and the opportunity that their ample interactome offers for synthesis of versatile and tunable supramolecular (bio) materials.
Collapse
Affiliation(s)
- Vânia I B Castro
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal.
- ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Yuting Gao
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal.
- ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
- Department of Chemical Engineering, School of Environmental and Chemical Engineering, Shanghai University, Shangda Road 99, Shanghai 200444, P. R. China
| | - Alexandra Brito
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal.
- ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Jie Chen
- Department of Chemical Engineering, School of Environmental and Chemical Engineering, Shanghai University, Shangda Road 99, Shanghai 200444, P. R. China
| | - Rui L Reis
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal.
- ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Iva Pashkuleva
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal.
- ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Ricardo A Pires
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal.
- ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| |
Collapse
|
3
|
Castro VIB, Araújo AR, Duarte F, Sousa-Franco A, Reis RL, Pashkuleva I, Pires RA. Glycopeptide-Based Supramolecular Hydrogels Induce Differentiation of Adipose Stem Cells into Neural Lineages. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 37327399 DOI: 10.1021/acsami.3c05309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
We applied a bottom-up approach to develop biofunctional supramolecular hydrogels from an aromatic glycodipeptide. The self-assembly of the glycopeptide was induced by either temperature manipulation (heating-cooling cycle) or solvent (DMSO to water) switch. The sol-gel transition was salt-triggered in cell culture media and resulted in gels with the same chemical compositions but different mechanical properties. Human adipose derived stem cells (hASCs) cultured on these gels under basal conditions (i.e., without differentiation factors) overexpressed neural markers, such as GFAP, Nestin, MAP2, and βIII-tubulin, confirming the differentiation into neural lineages. The mechanical properties of the gels influenced the number and distribution of the adhered cells. A comparison with gels obtained from the nonglycosylated peptide showed that glycosylation is crucial for the biofunctionality of the hydrogels by capturing and preserving essential growth factors, e.g., FGF-2.
Collapse
Affiliation(s)
- Vânia I B Castro
- 3B's Research Group, I3Bs─Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, 4805-017 Guimarães, Portugal
- ICVS/3B's─PT Government Associated Laboratory, 4805-017 Braga/Guimarães, Portugal
| | - Ana R Araújo
- 3B's Research Group, I3Bs─Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, 4805-017 Guimarães, Portugal
- ICVS/3B's─PT Government Associated Laboratory, 4805-017 Braga/Guimarães, Portugal
| | - Filipa Duarte
- 3B's Research Group, I3Bs─Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, 4805-017 Guimarães, Portugal
- ICVS/3B's─PT Government Associated Laboratory, 4805-017 Braga/Guimarães, Portugal
| | - António Sousa-Franco
- 3B's Research Group, I3Bs─Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, 4805-017 Guimarães, Portugal
- ICVS/3B's─PT Government Associated Laboratory, 4805-017 Braga/Guimarães, Portugal
| | - Rui L Reis
- 3B's Research Group, I3Bs─Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, 4805-017 Guimarães, Portugal
- ICVS/3B's─PT Government Associated Laboratory, 4805-017 Braga/Guimarães, Portugal
| | - Iva Pashkuleva
- 3B's Research Group, I3Bs─Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, 4805-017 Guimarães, Portugal
- ICVS/3B's─PT Government Associated Laboratory, 4805-017 Braga/Guimarães, Portugal
| | - Ricardo A Pires
- 3B's Research Group, I3Bs─Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, 4805-017 Guimarães, Portugal
- ICVS/3B's─PT Government Associated Laboratory, 4805-017 Braga/Guimarães, Portugal
| |
Collapse
|
4
|
Liu J, Zhang Y, van Dongen K, Kennedy C, Schotman MJG, Marín San Román PP, Storm C, Dankers PYW, Sijbesma RP. Hepatic Spheroid Formation on Carbohydrate-Functionalized Supramolecular Hydrogels. Biomacromolecules 2023. [PMID: 37246400 DOI: 10.1021/acs.biomac.2c01390] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Two synthetic supramolecular hydrogels, formed from bis-urea amphiphiles containing lactobionic acid (LBA) and maltobionic acid (MBA) bioactive ligands, are applied as cell culture matrices in vitro. Their fibrillary and dynamic nature mimics essential features of the extracellular matrix (ECM). The carbohydrate amphiphiles self-assemble into long supramolecular fibers in water, and hydrogels are formed by physical entanglement of fibers through bundling. Gels of both amphiphiles exhibit good self-healing behavior, but remarkably different stiffnesses. They display excellent bioactive properties in hepatic cell cultures. Both carbohydrate ligands used are proposed to bind to asialoglycoprotein receptors (ASGPRs) in hepatic cells, thus inducing spheroid formation when seeding hepatic HepG2 cells on both supramolecular hydrogels. Ligand nature, ligand density, and hydrogel stiffness influence cell migration and spheroid size and number. The results illustrate the potential of self-assembled, carbohydrate-functionalized hydrogels as matrices for liver tissue engineering.
Collapse
Affiliation(s)
- Jie Liu
- Institute for Complex Molecular Systems, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, Eindhoven 5600 MB, The Netherlands
| | - Ying Zhang
- Institute for Complex Molecular Systems, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven 5600 MB, The Netherlands
| | - Kim van Dongen
- CytoSMART Technologies B.V., Vrijstraat 9B, Eindhoven 5611 AT, The Netherlands
| | - Chris Kennedy
- Institute for Complex Molecular Systems, Department of Applied Physics, Eindhoven University of Technology, Eindhoven 5600 MB, the Netherlands
| | - Maaike J G Schotman
- Institute for Complex Molecular Systems, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven 5600 MB, The Netherlands
| | - Patricia P Marín San Román
- Institute for Complex Molecular Systems, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, Eindhoven 5600 MB, The Netherlands
| | - Cornelis Storm
- Institute for Complex Molecular Systems, Department of Applied Physics, Eindhoven University of Technology, Eindhoven 5600 MB, the Netherlands
| | - Patricia Y W Dankers
- Institute for Complex Molecular Systems, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven 5600 MB, The Netherlands
| | - Rint P Sijbesma
- Institute for Complex Molecular Systems, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, Eindhoven 5600 MB, The Netherlands
| |
Collapse
|
5
|
Chen S, Li Z, Zhang C, Wu X, Wang W, Huang Q, Chen W, Shi J, Yuan D. Cation-π Interaction Trigger Supramolecular Hydrogelation of Peptide Amphiphiles. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023:e2301063. [PMID: 36932893 DOI: 10.1002/smll.202301063] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Indexed: 06/18/2023]
Abstract
As an important noncovalent interaction, cation-π interaction plays an essential role in a broad area of biology and chemistry. Despite extensive studies in protein stability and molecular recognition, the utilization of cation-π interaction as a major driving force to construct supramolecular hydrogel remains uncharted. Here, a series of peptide amphiphiles are designed with cation-π interaction pairs that can self-assemble into supramolecular hydrogel under physiological condition. The influence of cation-π interaction is thoroughly investigated on peptide folding propensity, morphology, and rigidity of the resultant hydrogel. Computational and experimental results confirm that cation-π interaction could serve as a major driving force to trigger peptide folding, resultant β-hairpin peptide self-assembled into fibril-rich hydrogel. Furthermore, the designed peptides exhibit high efficacy on cytosolic protein delivery. As the first case of using cation-π interactions to trigger peptide self-assembly and hydrogelation, this work provides a novel strategy to generate supramolecular biomaterials.
Collapse
Affiliation(s)
- Shuang Chen
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, School of Biomedical Sciences, Hunan University Changsha, Hunan, 410082, P. R. China
| | - Zenghui Li
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, School of Biomedical Sciences, Hunan University Changsha, Hunan, 410082, P. R. China
| | - Chunhui Zhang
- College of Biology, Hunan University Changsha, Hunan, 410082, P. R. China
| | - Xia Wu
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, School of Biomedical Sciences, Hunan University Changsha, Hunan, 410082, P. R. China
- Shenzhen International Institute for Biomedical Research, Longhua District Shenzhen, Guangdong, 518116, P. R. China
| | - Wenjie Wang
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, School of Biomedical Sciences, Hunan University Changsha, Hunan, 410082, P. R. China
| | - Qingjun Huang
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, School of Biomedical Sciences, Hunan University Changsha, Hunan, 410082, P. R. China
| | - Weiyu Chen
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, School of Biomedical Sciences, Hunan University Changsha, Hunan, 410082, P. R. China
| | - Junfeng Shi
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, School of Biomedical Sciences, Hunan University Changsha, Hunan, 410082, P. R. China
| | - Dan Yuan
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, School of Biomedical Sciences, Hunan University Changsha, Hunan, 410082, P. R. China
| |
Collapse
|
6
|
Yao Y, Meng X, Li C, Bernaerts KV, Zhang K. Tuning the Chiral Structures from Self-Assembled Carbohydrate Derivatives. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023:e2208286. [PMID: 36918751 DOI: 10.1002/smll.202208286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 02/18/2023] [Indexed: 06/18/2023]
Abstract
Carbohydrates have been regarded as one of the most ideally suited candidates for chirality study via self-assembly owning to their unique chemical structures, abundance, and sustainability. Much efforts have been devoted to design and synthesize diverse carbohydrate derivatives and self-assemble them into various supermolecular morphologies. Nevertheless, still inadequate attention is paid to deeply and comprehensively understand how the carbohydrate structures and self-assembly approaches affect the final morphologies and properties for future demands. Herein, to fulfill the need, a range of recently published studies relating to the chirality of carbohydrates is reviewed and discussed. Furthermore, to tune the chirality of carbohydrate-based structures on both molecular and superstructural levels via chirality transfer and chirality expression, the designing of the molecules and choosing of the proper approaches for self-assembly are elucidated.
Collapse
Affiliation(s)
- Yawen Yao
- Sustainable Materials and Chemistry, Department of Wood Technology and Wood-Based Composites, University of Göttingen, Büsgenweg 4, 37077, Göttingen, Germany
- Sustainable Polymer Synthesis, Aachen-Maastricht Institute for Biobased Materials (AMIBM), Maastricht University, Urmonderbaan 22, Geleen, 6167 RD, Netherlands
| | - Xintong Meng
- Sustainable Materials and Chemistry, Department of Wood Technology and Wood-Based Composites, University of Göttingen, Büsgenweg 4, 37077, Göttingen, Germany
| | - Cheng Li
- Sustainable Materials and Chemistry, Department of Wood Technology and Wood-Based Composites, University of Göttingen, Büsgenweg 4, 37077, Göttingen, Germany
| | - Katrien V Bernaerts
- Sustainable Polymer Synthesis, Aachen-Maastricht Institute for Biobased Materials (AMIBM), Maastricht University, Urmonderbaan 22, Geleen, 6167 RD, Netherlands
| | - Kai Zhang
- Sustainable Materials and Chemistry, Department of Wood Technology and Wood-Based Composites, University of Göttingen, Büsgenweg 4, 37077, Göttingen, Germany
| |
Collapse
|
7
|
Leyva-Jiménez FJ, Oliver-Simancas R, Castangia I, Rodríguez-García AM, Alañón ME. Comprehensive review of natural based hydrogels as an upcoming trend for food packing. Food Hydrocoll 2023. [DOI: 10.1016/j.foodhyd.2022.108124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
8
|
Su M, Zhang J, Li Z, Wei Y, Zhang J, Pang Z, Gao Y, Qian S, Heng W. Recent advances on small molecular gels: formation mechanism and their application in pharmaceutical fields. Expert Opin Drug Deliv 2022; 19:1597-1617. [PMID: 36259939 DOI: 10.1080/17425247.2022.2138329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
INTRODUCTION As an essential complement to chemically cross-linked macromolecular gels, drug delivery systems based on small molecular gels formed under the driving forces of non-covalent interactions are attracting considerable research interest due to their potential advantages of high structural functionality, lower biological toxicity, reversible stimulus-response, and so on. AREA COVERED The present review summarizes recent advances in small molecular gels and provides their updates as a comprehensive overview in terms of gelation mechanism, gel properties, and physicochemical characterizations. In particular, this manuscript reviews the effects of drug-based small molecular gels on the drug development and their potential applications in the pharmaceutical fields. EXPERT OPINION Small molecular-based gel systems, constructed by inactive compounds or active pharmaceutical ingredients, have been extensively studied as carriers for drug delivery in pharmaceutical field, such as oral formulations, injectable formulations, and transdermal formulations. However, the construction of such gel systems yet faces several challenges such as rational and efficient design of functional gelators and the great occasionality of drug-based gel formation. Thus, a deeper understanding of the gelation mechanism and its relationship with gel properties will be conducive to the construction of small molecular gels systems and their future application.
Collapse
Affiliation(s)
- Meiling Su
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Jingwen Zhang
- School of Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Zudi Li
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Yuanfeng Wei
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Jianjun Zhang
- School of Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Zunting Pang
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Yuan Gao
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Shuai Qian
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Weili Heng
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| |
Collapse
|
9
|
A combined experimental and theoretical study to demonstrate the importance of V2O4 synthon in the crystal packing of an oxo-bridged dinuclear vanadium(V) complex with V2O4 core. Inorganica Chim Acta 2022. [DOI: 10.1016/j.ica.2022.121279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
10
|
Higashi SL, Shintani Y, Ikeda M. Installing Reduction Responsiveness into Biomolecules by Introducing Nitroaryl Groups. Chemistry 2022; 28:e202201103. [DOI: 10.1002/chem.202201103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Indexed: 11/11/2022]
Affiliation(s)
- Sayuri L. Higashi
- United Graduate School of Drug Discovery and Medical Information Sciences Gifu University 1-1 Yanagido Gifu 501-1193 Japan
- Present address: Institut für Physiologische Chemie und Pathobiochemie Universität Münster Waldeyerstraße 15 48149 Münster Germany
| | - Yuki Shintani
- Department of Life Science and Chemistry Graduate School of Natural Science and Technology Gifu University 1-1 Yanagido Gifu 501-1193 Japan
| | - Masato Ikeda
- United Graduate School of Drug Discovery and Medical Information Sciences Gifu University 1-1 Yanagido Gifu 501-1193 Japan
- Department of Life Science and Chemistry Graduate School of Natural Science and Technology Gifu University 1-1 Yanagido Gifu 501-1193 Japan
- Institute for Glyco-core Research (iGCORE) Gifu University 1-1 Yanagido Gifu 501-1193 Japan
- Institute of Nano-Life-Systems Institutes of Innovation for Future Society Nagoya University Furo-cho, Chikusa-ku Nagoya 464-8603 Japan
| |
Collapse
|
11
|
Omar J, Ponsford D, Dreiss CA, Lee TC, Loh XJ. Supramolecular Hydrogels: Design Strategies and Contemporary Biomedical Applications. Chem Asian J 2022; 17:e202200081. [PMID: 35304978 DOI: 10.1002/asia.202200081] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 03/08/2022] [Indexed: 12/19/2022]
Abstract
Self-assembly of supramolecular hydrogels is driven by dynamic, non-covalent interactions between molecules. Considerable research effort has been exerted to fabricate and optimise supramolecular hydrogels that display shear-thinning, self-healing, and reversibility, in order to develop materials for biomedical applications. This review provides a detailed overview of the chemistry behind the dynamic physicochemical interactions that sustain hydrogel formation (hydrogen bonding, hydrophobic interactions, ionic interactions, metal-ligand coordination, and host-guest interactions). Novel design strategies and methodologies to create supramolecular hydrogels are highlighted, which offer promise for a wide range of applications, specifically drug delivery, wound healing, tissue engineering and 3D bioprinting. To conclude, future prospects are briefly discussed, and consideration given to the steps required to ultimately bring these biomaterials into clinical settings.
Collapse
Affiliation(s)
- Jasmin Omar
- Institute of Pharmaceutical Science, King's College London, 150 Stamford Street, SE1 9NH, London, UK.,Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), Singapore
| | - Daniel Ponsford
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), Singapore.,Department of Chemistry, University College London, London, WC1H 0AJ, UK.,Institute for Materials Discovery, University College London, London, WC1E 7JE, UK
| | - Cécile A Dreiss
- Institute of Pharmaceutical Science, King's College London, 150 Stamford Street, SE1 9NH, London, UK
| | - Tung-Chun Lee
- Department of Chemistry, University College London, London, WC1H 0AJ, UK.,Institute for Materials Discovery, University College London, London, WC1E 7JE, UK
| | - Xian Jun Loh
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), Singapore.,Department of Materials Science and Engineering, National University of Singapore, Singapore
| |
Collapse
|
12
|
Methanetriyl-pi hydrogen bonding in nonpolar domains of supramolecular nanostructures: An efficient mechanism for extraction of carcinogenic polycyclic aromatic hydrocarbons from soils. J Chromatogr A 2022; 1667:462879. [DOI: 10.1016/j.chroma.2022.462879] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Revised: 02/03/2022] [Accepted: 02/03/2022] [Indexed: 11/23/2022]
|
13
|
Brito A, Dave D, Lampel A, Castro VIB, Kroiss D, Reis RL, Tuttle T, Ulijn RV, Pires RA, Pashkuleva I. Expanding the Conformational Landscape of Minimalistic Tripeptides by Their O-Glycosylation. J Am Chem Soc 2021; 143:19703-19710. [PMID: 34797059 DOI: 10.1021/jacs.1c07592] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
We report on the supramolecular self-assembly of tripeptides and their O-glycosylated analogues, in which the carbohydrate moiety is coupled to a central serine or threonine flanked by phenylalanine residues. The substitution of serine with threonine introduces differential side-chain interactions, which results in the formation of aggregates with different morphology. O-glycosylation decreases the aggregation propensity because of rebalancing of the π interactions. The glycopeptides form aggregates with reduced stiffness but increased thermal stability. Our results demonstrate that the designed minimalistic glycopeptides retain critical functional features of glycoproteins and therefore are promising tools for elucidation of molecular mechanisms involved in the glycoprotein interactome. They can also serve as an inspiration for the design of functional glycopeptide-based biomaterials.
Collapse
Affiliation(s)
- Alexandra Brito
- 3B's Research Group, I3Bs Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, 4805-017 Barco, Portugal.,ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal.,Advanced Science Research Center (ASRC) at the Graduate Center, City University of New York (CUNY), 85 St Nicholas Terrace, New York, New York 10031, United States
| | - Dhwanit Dave
- Advanced Science Research Center (ASRC) at the Graduate Center, City University of New York (CUNY), 85 St Nicholas Terrace, New York, New York 10031, United States.,Department of Chemistry, Hunter College, City University of New York, 695 Park Avenue, New York, New York 10065, United States.,Ph.D. Program in Chemistry, The Graduate Center of the City University of New York, New York, New York 10016, United States
| | - Ayala Lampel
- Advanced Science Research Center (ASRC) at the Graduate Center, City University of New York (CUNY), 85 St Nicholas Terrace, New York, New York 10031, United States
| | - Vânia I B Castro
- 3B's Research Group, I3Bs Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, 4805-017 Barco, Portugal.,ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Daniela Kroiss
- Advanced Science Research Center (ASRC) at the Graduate Center, City University of New York (CUNY), 85 St Nicholas Terrace, New York, New York 10031, United States.,Department of Chemistry, Hunter College, City University of New York, 695 Park Avenue, New York, New York 10065, United States.,Ph.D. Program in Chemistry, The Graduate Center of the City University of New York, New York, New York 10016, United States
| | - Rui L Reis
- 3B's Research Group, I3Bs Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, 4805-017 Barco, Portugal.,ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Tell Tuttle
- Department of Pure and Applied Chemistry, University of Strathclyde, 295 Cathedral Street, Glasgow G1 1XL, United Kingdom
| | - Rein V Ulijn
- Advanced Science Research Center (ASRC) at the Graduate Center, City University of New York (CUNY), 85 St Nicholas Terrace, New York, New York 10031, United States.,Department of Chemistry, Hunter College, City University of New York, 695 Park Avenue, New York, New York 10065, United States.,Ph.D. Program in Chemistry, The Graduate Center of the City University of New York, New York, New York 10016, United States.,Ph.D. program in Biochemistry, The Graduate Center of the City University of New York, New York, New York10016, United States
| | - Ricardo A Pires
- 3B's Research Group, I3Bs Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, 4805-017 Barco, Portugal.,ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Iva Pashkuleva
- 3B's Research Group, I3Bs Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, 4805-017 Barco, Portugal.,ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| |
Collapse
|
14
|
|
15
|
Higashi S, Ikeda M. Development of an Amino Sugar-Based Supramolecular Hydrogelator with Reduction Responsiveness. JACS AU 2021; 1:1639-1646. [PMID: 34723267 PMCID: PMC8549036 DOI: 10.1021/jacsau.1c00270] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Indexed: 06/13/2023]
Abstract
Stimuli-responsive supramolecular hydrogels are a newly emerging class of aqueous soft materials with a wide variety of bioapplications. Here we report a reduction-responsive supramolecular hydrogel constructed from a markedly simple low-molecular-weight hydrogelator, which is developed on the basis of modular molecular design containing a hydrophilic amino sugar and a reduction-responsive nitrophenyl group. The hydrogel formation ability differs significantly between glucosamine- and galactosamine-based self-assembling molecules, which are epimers at the C4 position, and only the glucosamine-based derivative can act as a hydrogelator.
Collapse
Affiliation(s)
- Sayuri
L. Higashi
- United
Graduate School of Drug Discovery and Medical Information Sciences, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan
| | - Masato Ikeda
- United
Graduate School of Drug Discovery and Medical Information Sciences, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan
- Department
of Chemistry and Biomolecular Science, Faculty of Engineering, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan
- Center
for Highly Advanced Integration of Nano and Life Sciences, Gifu University (G-CHAIN), 1-1 Yanagido, Gifu 501-1193, Japan
- Institute
of Nano-Life-Systems, Institutes of Innovation for Future Society, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8603, Japan
- Institute
for Glyco-core Research (iGCORE), Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan
| |
Collapse
|
16
|
Hu L, Li Y, Lin X, Huo Y, Zhang H, Wang H. Structure‐Based Programming of Supramolecular Assemblies in Living Cells for Selective Cancer Cell Inhibition. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202103507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Liangbo Hu
- Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province School of Science Westlake University Institute of Natural Sciences Westlake Institute for Advanced Study 18 Shilongshan Road Hangzhou 310024 Zhejiang Province China
| | - Ying Li
- Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province School of Science Westlake University Institute of Natural Sciences Westlake Institute for Advanced Study 18 Shilongshan Road Hangzhou 310024 Zhejiang Province China
| | - Xinhui Lin
- Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province School of Science Westlake University Institute of Natural Sciences Westlake Institute for Advanced Study 18 Shilongshan Road Hangzhou 310024 Zhejiang Province China
| | - Yucheng Huo
- Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province School of Science Westlake University Institute of Natural Sciences Westlake Institute for Advanced Study 18 Shilongshan Road Hangzhou 310024 Zhejiang Province China
| | - Hongyue Zhang
- Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province School of Science Westlake University Institute of Natural Sciences Westlake Institute for Advanced Study 18 Shilongshan Road Hangzhou 310024 Zhejiang Province China
| | - Huaimin Wang
- Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province School of Science Westlake University Institute of Natural Sciences Westlake Institute for Advanced Study 18 Shilongshan Road Hangzhou 310024 Zhejiang Province China
| |
Collapse
|
17
|
Gim S, Fittolani G, Yu Y, Zhu Y, Seeberger PH, Ogawa Y, Delbianco M. Targeted Chemical Modifications Identify Key Features of Carbohydrate Assemblies and Generate Tailored Carbohydrate Materials. Chemistry 2021; 27:13139-13143. [PMID: 34251709 PMCID: PMC8518775 DOI: 10.1002/chem.202102164] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Indexed: 12/11/2022]
Abstract
The molecular level description of carbohydrate assemblies is hampered by their structural complexity and the lack of suitable analytical methods. Here, we employed systematic chemical modifications to identify key non-covalent interactions that triggered the supramolecular assembly of a disaccharide model. While some modifications disrupted the supramolecular organization, others were tolerated, delivering important information on the aggregation process. The screening identified new geometries, including nanotubes, and twisted ribbons that were characterized with electron tomography and electron diffraction (ED) methods. This work demonstrates that the combination of synthetic chemistry and ED methods is a powerful tool to draw correlations between the molecular structure and the nanoscale architecture of carbohydrate assemblies.
Collapse
Affiliation(s)
- Soeun Gim
- Department of Biomolecular SystemsMax-Planck-Institute of Colloids and InterfacesAm Mühlenberg 114476PotsdamGermany
- Department of Chemistry and BiochemistryFreie Universität BerlinArnimallee 2214195BerlinGermany
| | - Giulio Fittolani
- Department of Biomolecular SystemsMax-Planck-Institute of Colloids and InterfacesAm Mühlenberg 114476PotsdamGermany
- Department of Chemistry and BiochemistryFreie Universität BerlinArnimallee 2214195BerlinGermany
| | - Yang Yu
- Department of Biomolecular SystemsMax-Planck-Institute of Colloids and InterfacesAm Mühlenberg 114476PotsdamGermany
- Simpson Querrey InstituteNorthwestern University2145 Sheridan RoadEvanstonIL 60208USA
| | - Yuntao Zhu
- Department of Biomolecular SystemsMax-Planck-Institute of Colloids and InterfacesAm Mühlenberg 114476PotsdamGermany
| | - Peter H. Seeberger
- Department of Biomolecular SystemsMax-Planck-Institute of Colloids and InterfacesAm Mühlenberg 114476PotsdamGermany
- Department of Chemistry and BiochemistryFreie Universität BerlinArnimallee 2214195BerlinGermany
| | - Yu Ogawa
- Univ. Grenoble AlpesCNRS, CERMAV38000GrenobleFrance
| | - Martina Delbianco
- Department of Biomolecular SystemsMax-Planck-Institute of Colloids and InterfacesAm Mühlenberg 114476PotsdamGermany
| |
Collapse
|
18
|
Yang X, Cao Z, Lu H, Wang H. In Situ Construction of Functional Assemblies in Living Cells for Cancer Therapy. Adv Healthc Mater 2021; 10:e2100381. [PMID: 34050607 DOI: 10.1002/adhm.202100381] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 05/08/2021] [Indexed: 02/06/2023]
Abstract
Peptide-based materials hold great promise for various biomedical applications and have drawn increasing attention over the past five years. Despite the progress in fabrication and handling peptide materials in vitro, manipulating assemblies of peptides in living cells (or animals) is still in its infancy. In this contributing review, recent work is summarized using endogenous triggers to construct functional assemblies of peptides in vivo. After introducing the triggers for inducing peptide assemblies, the recent progress is highlighted of the in situ construction of assemblies for biomedical applications with emphasis on cancer therapy. Finally, a brief perspective is provided to discuss the future promises and challenges of this emerging area of supramolecular chemistry.
Collapse
Affiliation(s)
- Xuejiao Yang
- Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province School of Science Westlake University Institute of Natural Sciences Westlake Institute for Advanced Study 18 Shilongshan Road Hangzhou Zhejiang Province 310024 China
| | - Zeyuan Cao
- Department of Bioinformatics Boston University Boston MA 02215 USA
| | - Honglei Lu
- Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province School of Science Westlake University Institute of Natural Sciences Westlake Institute for Advanced Study 18 Shilongshan Road Hangzhou Zhejiang Province 310024 China
| | - Huaimin Wang
- Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province School of Science Westlake University Institute of Natural Sciences Westlake Institute for Advanced Study 18 Shilongshan Road Hangzhou Zhejiang Province 310024 China
| |
Collapse
|
19
|
Hu L, Li Y, Lin X, Huo Y, Zhang H, Wang H. Structure-Based Programming of Supramolecular Assemblies in Living Cells for Selective Cancer Cell Inhibition. Angew Chem Int Ed Engl 2021; 60:21807-21816. [PMID: 34189812 DOI: 10.1002/anie.202103507] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 05/28/2021] [Indexed: 12/12/2022]
Abstract
Here we report on the design, synthesis, and assembly of an enzymatic programmable peptide system inspired by endocytic processes to induce molecular assemblies formation spatiotemporally in living cancer cells, resulting in glioblastoma cell death mainly in necroptosis. Our results indicate the stability and glycosylation of molecules play an essential role in determining the final bioactivity. Detailed mechanistic studies by CLSM, Flow cytometry, western blot, and Bio-EM suggest the site-specific formation of assemblies, which could induce the LMP and activate the downstream cell death pathway. Moreover, we also demonstrate that our strategy can boost the activity of commercial chemotherapy drug by escaping lysosome sequestration. We expected this work would be expanded towards artificial intelligent biomaterials for cancer therapy and imaging precisely.
Collapse
Affiliation(s)
- Liangbo Hu
- Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province, School of Science, Westlake University, Institute of Natural Sciences, Westlake Institute for Advanced Study, 18 Shilongshan Road, Hangzhou, 310024, Zhejiang Province, China
| | - Ying Li
- Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province, School of Science, Westlake University, Institute of Natural Sciences, Westlake Institute for Advanced Study, 18 Shilongshan Road, Hangzhou, 310024, Zhejiang Province, China
| | - Xinhui Lin
- Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province, School of Science, Westlake University, Institute of Natural Sciences, Westlake Institute for Advanced Study, 18 Shilongshan Road, Hangzhou, 310024, Zhejiang Province, China
| | - Yucheng Huo
- Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province, School of Science, Westlake University, Institute of Natural Sciences, Westlake Institute for Advanced Study, 18 Shilongshan Road, Hangzhou, 310024, Zhejiang Province, China
| | - Hongyue Zhang
- Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province, School of Science, Westlake University, Institute of Natural Sciences, Westlake Institute for Advanced Study, 18 Shilongshan Road, Hangzhou, 310024, Zhejiang Province, China
| | - Huaimin Wang
- Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province, School of Science, Westlake University, Institute of Natural Sciences, Westlake Institute for Advanced Study, 18 Shilongshan Road, Hangzhou, 310024, Zhejiang Province, China
| |
Collapse
|
20
|
Arokianathan JF, Ramya KA, Deshpande AP, Leemarose A, Shanmugam G. Supramolecular organogel based on di-Fmoc functionalized unnatural amino acid: An attempt to develop a correlation between molecular structure and ambidextrous gelation. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.126430] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
21
|
Morris J, Bietsch J, Bashaw K, Wang G. Recently Developed Carbohydrate Based Gelators and Their Applications. Gels 2021; 7:24. [PMID: 33652820 PMCID: PMC8006029 DOI: 10.3390/gels7010024] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 02/13/2021] [Accepted: 02/22/2021] [Indexed: 12/11/2022] Open
Abstract
Carbohydrate based low molecular weight gelators have been an intense subject of study over the past decade. The self-assembling systems built from natural products have high significance as biocompatible materials and renewable resources. The versatile structures available from naturally existing monosaccharides have enriched the molecular libraries that can be used for the construction of gelators. The bottom-up strategy in designing low molecular weight gelators (LMWGs) for a variety of applications has been adopted by many researchers. Rational design, along with some serendipitous discoveries, has resulted in multiple classes of molecular gelators. This review covers the literature from 2017-2020 on monosaccharide based gelators, including common hexoses, pentoses, along with some disaccharides and their derivatives. The structure-based design and structure to gelation property relationships are reviewed first, followed by stimuli-responsive gelators. The last section focuses on the applications of the sugar based gelators, including their utilization in environmental remediation, ion sensing, catalysis, drug delivery and 3D-printing. We will also review the available LMWGs and their structure correlations to the desired properties for different applications. This review aims at elucidating the design principles and structural features that are pertinent to various applications and hope to provide certain guidelines for researchers that are working at the interface of chemistry, biochemistry, and materials science.
Collapse
Affiliation(s)
| | | | | | - Guijun Wang
- Department of Chemistry and Biochemistry, Old Dominion University, Norfolk, VA 23529, USA; (J.M.); (J.B.); (K.B.)
| |
Collapse
|
22
|
He C, Wu S, Liu D, Chi C, Zhang W, Ma M, Lai L, Dong S. Glycopeptide Self-Assembly Modulated by Glycan Stereochemistry through Glycan–Aromatic Interactions. J Am Chem Soc 2020; 142:17015-17023. [DOI: 10.1021/jacs.0c06360] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
23
|
Liu S, Li H, Zhang J, Tian X, Li X. A biocompatible supramolecular hydrogel with multivalent galactose ligands inhibiting Pseudomonas aeruginosa virulence and growth. RSC Adv 2020; 10:33642-33650. [PMID: 35519035 PMCID: PMC9056750 DOI: 10.1039/d0ra06718k] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Accepted: 08/29/2020] [Indexed: 01/14/2023] Open
Abstract
In recent years, peptide self-assembly proved to be an efficient strategy to create complex structures or functional materials with nanoscale precision. In this work, we designed and synthesized a novel glycopeptide molecule with a galactose moiety through peptide galactosylation. Then relying on peptide self-assembling strategies, we created a supramolecular hydrogel with multivalent galactose ligands on the surface of self-assembled nanofibers for molecular recognition and interactions. Because of multivalent galactose-LecA interactions, the self-assemblies of glycopeptide could target P. aeruginosa specifically, and acted as anti-virulence and antibacterial agents to inhibit biofilm formation and bacterial growth of P. aeruginosa. Moreover, in association with polymyxin B, a common antibiotic, the glycopeptide hydrogel exhibited a synergistic growth inhibition effect on biofilm colonization of P. aeruginosa.
Collapse
Affiliation(s)
- Shengnan Liu
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University Suzhou 215123 China
| | - Hang Li
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University Suzhou 215123 China
| | - Jikun Zhang
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University Suzhou 215123 China
| | - Xin Tian
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Soochow University Suzhou 215123 China
| | - Xinming Li
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University Suzhou 215123 China
| |
Collapse
|
24
|
Kapros A, Balázs A, Harmat V, Háló A, Budai L, Pintér I, Menyhárd DK, Perczel A. Configuration-Controlled Crystal and/or Gel Formation of Protected d-Glucosamines Supported by Promiscuous Interaction Surfaces and a Conformationally Heterogeneous Solution State. Chemistry 2020; 26:11643-11655. [PMID: 32333713 DOI: 10.1002/chem.202000882] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 04/17/2020] [Indexed: 11/10/2022]
Abstract
The configuration-dependent self-association mode of the two anomers of O-Ac,N-Fmoc-d-glucosamine, a foldamer building block, leading to gel and/or single crystal formation is described. The β-anomer of the sugar amino acid (2) forms a gel from various solvents (confirmed by SEM, rheology measurements, NMR, and ECD spectroscopy), whereas the α-anomer (1) does not form a gel with any solvent tested. Transition from the solution state to a gel is coupled to a concurrent shift of the Fmoc-groups: from a freely rotating (almost symmetrical) to a specific, asymmetric orientation. Whereas the crystal structure of the α-anomer is built as an evenly packed 3D system, the β-anomer forms a looser superstructure of well-packed 2D layers. Modeling indicates that in the lowest energy, but scarcely sampled conformer of the β-anomer, the Fmoc-group bends above the sugar moiety, stabilized by intramolecular CH↔π interactions between the aromatic rings. It is concluded that possessing an extended and promiscuous interaction surface and a conformationally heterogeneous solution state are among the basic requirements of gel formation for a candidate molecule.
Collapse
Affiliation(s)
- Anita Kapros
- Laboratory of Structural Chemistry and Biology, Institute of Chemistry, Eötvös Loránd University, Pázmány P. stny. 1/A, Budapest, 1117, Hungary
| | - Attila Balázs
- Laboratory of Structural Chemistry and Biology, Institute of Chemistry, Eötvös Loránd University, Pázmány P. stny. 1/A, Budapest, 1117, Hungary
| | - Veronika Harmat
- Laboratory of Structural Chemistry and Biology, Institute of Chemistry, Eötvös Loránd University, Pázmány P. stny. 1/A, Budapest, 1117, Hungary.,MTA-ELTE Protein Modelling Research Group, Pázmány P. stny. 1/A, Budapest, 1117, Hungary
| | - Adrienn Háló
- Laboratory of Structural Chemistry and Biology, Institute of Chemistry, Eötvös Loránd University, Pázmány P. stny. 1/A, Budapest, 1117, Hungary
| | - Lívia Budai
- Department of Pharmaceutics, Semmelweis University, Hőgyes Endre utca 7, Budapest, 1092, Hungary
| | - István Pintér
- Laboratory of Structural Chemistry and Biology, Institute of Chemistry, Eötvös Loránd University, Pázmány P. stny. 1/A, Budapest, 1117, Hungary
| | - Dóra K Menyhárd
- Laboratory of Structural Chemistry and Biology, Institute of Chemistry, Eötvös Loránd University, Pázmány P. stny. 1/A, Budapest, 1117, Hungary.,MTA-ELTE Protein Modelling Research Group, Pázmány P. stny. 1/A, Budapest, 1117, Hungary
| | - András Perczel
- Laboratory of Structural Chemistry and Biology, Institute of Chemistry, Eötvös Loránd University, Pázmány P. stny. 1/A, Budapest, 1117, Hungary.,MTA-ELTE Protein Modelling Research Group, Pázmány P. stny. 1/A, Budapest, 1117, Hungary
| |
Collapse
|
25
|
Chakravarthy RD, Mohammed M, Lin HC. Enzyme Instructed Self-assembly of Naphthalimide-dipeptide: Spontaneous Transformation from Nanosphere to Nanotubular Structures that Induces Hydrogelation. Chem Asian J 2020; 15:2696-2705. [PMID: 32652888 DOI: 10.1002/asia.202000575] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Revised: 07/06/2020] [Indexed: 11/08/2022]
Abstract
Understanding the structure-morphology relationships of self-assembled nanostructures is crucial for developing materials with the desired chemical and biological functions. Here, phosphate-based naphthalimide (NI) derivatives have been developed for the first time to study the enzyme-instructed self-assembly process. Self-assembly of simple amino acid derivative NI-Yp resulted in non-specific amorphous aggregates in the presence of alkaline phosphatase enzyme. On the other hand, NI-FYp dipeptide forms spherical nanoparticles under aqueous conditions which slowly transformed into partially unzipped nanotubular structures during the enzymatic catalytic process through multiple stages which subsequently resulted in hydrogelation. The self-assembly is driven by the formation of β-sheet type structures stabilized by offset aromatic stacking of NI core and hydrogen bonding interactions which is confirmed with PXRD, Congo-red staining and molecular mechanical calculations. We propose a mechanism for the self-assembly process based on TEM and spectroscopic data. The nanotubular structures of NI-FYp precursor exhibited higher cytotoxicity to human breast cancer cells and human cervical cancer cells when compared to the nanofiber structures of the similar Fmoc-derivative. Overall this study provides a new understanding of the supramolecular self-assembly of small-molecular-weight hydrogelators.
Collapse
Affiliation(s)
- Rajan Deepan Chakravarthy
- Department of Materials Science and Engineering, National Chiao Tung University, Hsinchu, Taiwan, 300, Republic of China
| | - Mohiuddin Mohammed
- Department of Materials Science and Engineering, National Chiao Tung University, Hsinchu, Taiwan, 300, Republic of China
| | - Hsin-Chieh Lin
- Department of Materials Science and Engineering, National Chiao Tung University, Hsinchu, Taiwan, 300, Republic of China
| |
Collapse
|
26
|
Xiong Y, Li X, Li M, Qin H, Chen C, Wang D, Wang X, Zheng X, Liu Y, Liang X, Qing G. What Is Hidden Behind Schiff Base Hydrolysis? Dynamic Covalent Chemistry for the Precise Capture of Sialylated Glycans. J Am Chem Soc 2020; 142:7627-7637. [DOI: 10.1021/jacs.0c01970] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Yuting Xiong
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, P. R. China
- Jiangxi Province Key Laboratory of Polymer Micro/Nano Manufacturing and Devices, East China University of Technology, 418 Guanglan Avenue, Nanchang 330013, P. R. China
| | - Xiuling Li
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, P. R. China
| | - Minmin Li
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, P. R. China
- Jiangxi Province Key Laboratory of Polymer Micro/Nano Manufacturing and Devices, East China University of Technology, 418 Guanglan Avenue, Nanchang 330013, P. R. China
| | - Haijuan Qin
- Research Centre of Modern Analytical Technology, Tianjin University of Science and Technology, Tianjin 300457, P. R. China
| | - Cheng Chen
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, P. R. China
| | - Dongdong Wang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, P. R. China
| | - Xue Wang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, P. R. China
| | - Xintong Zheng
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, P. R. China
| | - Yunhai Liu
- Jiangxi Province Key Laboratory of Polymer Micro/Nano Manufacturing and Devices, East China University of Technology, 418 Guanglan Avenue, Nanchang 330013, P. R. China
| | - Xinmiao Liang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, P. R. China
| | - Guangyan Qing
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, P. R. China
| |
Collapse
|
27
|
Brito A, Pereira PMR, Soares da Costa D, Reis RL, Ulijn RV, Lewis JS, Pires RA, Pashkuleva I. Inhibiting cancer metabolism by aromatic carbohydrate amphiphiles that act as antagonists of the glucose transporter GLUT1. Chem Sci 2020; 11:3737-3744. [PMID: 34094062 PMCID: PMC8152665 DOI: 10.1039/d0sc00954g] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Accepted: 03/09/2020] [Indexed: 12/24/2022] Open
Abstract
We report on aromatic N-glucosides that inhibit selectively the cancer metabolism via two coexistent mechanisms: by initial deprivation of the glucose uptake through competitive binding in the glucose binding pocket of GLUT1 and by formation of a sequestering nanoscale supramolecular network at the cell surface through localized (biocatalytic) self-assembly. We demonstrate that the expression of the cancer associated GLUT1 and alkaline phosphatase are crucial for the effectiveness of this combined approach: cancer cells that overexpress both proteins are prompter to cell death when compared to GLUT1 overexpressing cells. Overall, we showcase that the synergism between physical and biochemical deprivation of cancer metabolism is a powerful approach for development of effective anticancer therapies.
Collapse
Affiliation(s)
- Alexandra Brito
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia Zona Industrial da Gandra 4805-017 Barco Guimarães Portugal
- ICVS/3Bs - PT Government Associate Laboratory Braga/Guimarães Portugal
- Department of Radiology, Memorial Sloan Kettering Cancer Center New York NY 10065 USA
- Advanced Science Research Center (ASRC) at the Graduate Center, City University of New York (CUNY) 85 St Nicholas Terrace, New York New York 10031 USA
| | - Patrícia M R Pereira
- Department of Radiology, Memorial Sloan Kettering Cancer Center New York NY 10065 USA
| | - Diana Soares da Costa
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia Zona Industrial da Gandra 4805-017 Barco Guimarães Portugal
- ICVS/3Bs - PT Government Associate Laboratory Braga/Guimarães Portugal
| | - Rui L Reis
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia Zona Industrial da Gandra 4805-017 Barco Guimarães Portugal
- ICVS/3Bs - PT Government Associate Laboratory Braga/Guimarães Portugal
- The Discoveries Centre for Regenerative and Precision Medicine Headquarters at University of Minho, Avepark 4805-017 Barco Guimarães Portugal
| | - Rein V Ulijn
- Advanced Science Research Center (ASRC) at the Graduate Center, City University of New York (CUNY) 85 St Nicholas Terrace, New York New York 10031 USA
- Department of Chemistry, Hunter College, City University of New York 695 Park Avenue New York 10065 USA
- PhD Programs in Biochemistry and Chemistry, The Graduate Center of the City University of New York New York 10016 USA
| | - Jason S Lewis
- Department of Radiology, Memorial Sloan Kettering Cancer Center New York NY 10065 USA
- Department of Radiology, Weill Cornell Medical College New York NY 10065 USA
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center New York NY 10065 USA
- Department of Pharmacology, Weill Cornell Medical College New York NY 10065 USA
- Radiochemistry and Molecular Imaging Probes Core, Memorial Sloan Kettering Cancer Center New York NY 10065 USA
| | - Ricardo A Pires
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia Zona Industrial da Gandra 4805-017 Barco Guimarães Portugal
- ICVS/3Bs - PT Government Associate Laboratory Braga/Guimarães Portugal
- The Discoveries Centre for Regenerative and Precision Medicine Headquarters at University of Minho, Avepark 4805-017 Barco Guimarães Portugal
| | - Iva Pashkuleva
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia Zona Industrial da Gandra 4805-017 Barco Guimarães Portugal
- ICVS/3Bs - PT Government Associate Laboratory Braga/Guimarães Portugal
| |
Collapse
|
28
|
Lotfallah AH, Isabel Burguete M, Alfonso I, Luis SV. Synthesis of second-generation self-assembling Gemini Amphiphilic Pseudopeptides. J Colloid Interface Sci 2020; 564:52-64. [DOI: 10.1016/j.jcis.2019.12.109] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 12/23/2019] [Accepted: 12/24/2019] [Indexed: 01/11/2023]
|
29
|
Yu J, Chen X, Yang Y, Zhao X, Chen X, Jing T, Zhou Y, Xu J, Zhang Y, Cheng Y. Construction of supramolecular hydrogels using imidazolidinyl urea as hydrogen bonding reinforced factor. J Mater Chem B 2020; 8:3058-3063. [DOI: 10.1039/d0tb00331j] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
A new hydrogen bonding reinforced factor was introduced into polymer design for the preparation of supramolecular hydrogels with advanced properties.
Collapse
|
30
|
Kumar A, Tyagi S, Singh R, Tyagi YK. Synthesis, characterisation and self-assembly studies of dendron-based novel non-ionic amphiphiles. NEW J CHEM 2019. [DOI: 10.1039/c8nj05143g] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
A novel series of dendron-based non-ionic amphiphiles that aggregate to form supramolecular structures have been designed and synthesized using biocompatible starting materials.
Collapse
Affiliation(s)
- Ashwani Kumar
- University School of Basic and Applied Sciences
- Guru Gobind Singh Indraprastha University
- Dwarka
- India
| | - Shvetambri Tyagi
- Bhaskarcharya College of Applied Sciences
- University of Delhi
- Dwarka
- India
| | - Ram Singh
- Department of Applied Chemistry
- Delhi Technological University
- Rohini
- India
| | - Yogesh K. Tyagi
- University School of Basic and Applied Sciences
- Guru Gobind Singh Indraprastha University
- Dwarka
- India
| |
Collapse
|
31
|
Murali DM, Shanmugam G. The aromaticity of the phenyl ring imparts thermal stability to a supramolecular hydrogel obtained from low molecular mass compound. NEW J CHEM 2019. [DOI: 10.1039/c9nj01781j] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Using Fmoc-phenylalanine and Fmoc-cyclohexylalanine, we show that the aromaticity of the phenyl ring imparts significant thermal stability to a supramolecular hydrogel system and its significance depends on the method of inducing hydrogelation.
Collapse
Affiliation(s)
- Dhanya Mahalakshmi Murali
- Organic & Bioorganic Chemistry Laboratory
- Council of Scientific and Industrial Research-Central Leather Research Institute (CSIR-CLRI)
- Chennai-600 020
- India
| | - Ganesh Shanmugam
- Organic & Bioorganic Chemistry Laboratory
- Council of Scientific and Industrial Research-Central Leather Research Institute (CSIR-CLRI)
- Chennai-600 020
- India
- Academy of Scientific and Innovative Research (AcSIR)
| |
Collapse
|
32
|
Brito A, Abul-Haija YM, da Costa DS, Novoa-Carballal R, Reis RL, Ulijn RV, Pires RA, Pashkuleva I. Minimalistic supramolecular proteoglycan mimics by co-assembly of aromatic peptide and carbohydrate amphiphiles. Chem Sci 2018; 10:2385-2390. [PMID: 30881666 PMCID: PMC6385665 DOI: 10.1039/c8sc04361b] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Accepted: 12/21/2018] [Indexed: 01/08/2023] Open
Abstract
A modular two-component supramolecular hydrogel composed of a peptide core and carbohydrate shell as a minimalistic mimic of proteoglycans.
We report the co-assembly of aromatic carbohydrate and dipeptide amphiphiles under physiological conditions as a strategy to generate minimalistic proteoglycan mimics. The resulting nanofibers present a structural, fluorenylmethoxycarbonyl-diphenylalanine (Fmoc-FF) core and a functional carbohydrate (Fmoc-glucosamine-6-sulfate or -phosphate) shell. The size, degree of bundling and mechanical properties of the assembled structures depend on the chemical nature of the carbohydrate amphiphile used. In cell culture medium, these nanofibers can further organize into supramolecular hydrogels. We demonstrate that, similar to proteoglycans, the assembled gels prolong the stability of growth factors and preserve the viability of cultured cells. Our results demonstrate that this approach can be applied to the design of extracellular matrix (ECM) substitutes for future regenerative therapies.
Collapse
Affiliation(s)
- Alexandra Brito
- 3B's Research Group , I3Bs - Research Institute on Biomaterials , Biodegradables and Biomimetics , University of Minho , Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine , AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco , Guimarães , Portugal . ; .,ICVS/3Bs-PT Government Associate Laboratory , Braga/Guimarães , Portugal
| | - Yousef M Abul-Haija
- Department of Pure and Applied Chemistry , University of Strathclyde , Glasgow G1 1XL , UK
| | - Diana Soares da Costa
- 3B's Research Group , I3Bs - Research Institute on Biomaterials , Biodegradables and Biomimetics , University of Minho , Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine , AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco , Guimarães , Portugal . ; .,ICVS/3Bs-PT Government Associate Laboratory , Braga/Guimarães , Portugal
| | - Ramon Novoa-Carballal
- 3B's Research Group , I3Bs - Research Institute on Biomaterials , Biodegradables and Biomimetics , University of Minho , Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine , AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco , Guimarães , Portugal . ; .,ICVS/3Bs-PT Government Associate Laboratory , Braga/Guimarães , Portugal
| | - Rui L Reis
- 3B's Research Group , I3Bs - Research Institute on Biomaterials , Biodegradables and Biomimetics , University of Minho , Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine , AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco , Guimarães , Portugal . ; .,ICVS/3Bs-PT Government Associate Laboratory , Braga/Guimarães , Portugal.,The Discoveries Centre for Regenerative and Precision Medicine , Headquarters at University of Minho , Avepark, 4805-017 Barco , Guimarães , Portugal
| | - Rein V Ulijn
- Advanced Science Research Center (ASRC) at the Graduate Center , City University of New York (CUNY) , 85 St Nicholas Terrace , New York , New York 10031 , USA . .,Department of Chemistry , Hunter College , City University of New York , 695 Park Avenue , New York 10065 , USA.,PhD Programs in Biochemistry and Chemistry , The Graduate Center of the City University of New York , New York 10016 , USA
| | - Ricardo A Pires
- 3B's Research Group , I3Bs - Research Institute on Biomaterials , Biodegradables and Biomimetics , University of Minho , Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine , AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco , Guimarães , Portugal . ; .,ICVS/3Bs-PT Government Associate Laboratory , Braga/Guimarães , Portugal.,The Discoveries Centre for Regenerative and Precision Medicine , Headquarters at University of Minho , Avepark, 4805-017 Barco , Guimarães , Portugal
| | - Iva Pashkuleva
- 3B's Research Group , I3Bs - Research Institute on Biomaterials , Biodegradables and Biomimetics , University of Minho , Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine , AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco , Guimarães , Portugal . ; .,ICVS/3Bs-PT Government Associate Laboratory , Braga/Guimarães , Portugal
| |
Collapse
|
33
|
Liang H, Russell SJ, Wood DJ, Tronci G. Monomer-Induced Customization of UV-Cured Atelocollagen Hydrogel Networks. Front Chem 2018; 6:626. [PMID: 30619833 PMCID: PMC6304747 DOI: 10.3389/fchem.2018.00626] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2018] [Accepted: 12/03/2018] [Indexed: 01/14/2023] Open
Abstract
The covalent functionalization of type I atelocollagen with either 4-vinylbenzyl or methacrylamide residues is presented as a simple synthetic strategy to achieve customizable, cell-friendly UV-cured hydrogel networks with widespread clinical applicability. Molecular parameters, i.e., the type of monomer, degree of atelocollagen functionalization and UV-curing solution, have been systematically varied and their effect on gelation kinetics, swelling behavior, elastic properties, and enzymatic degradability investigated. UV-cured hydrogel networks deriving from atelocollagen precursors functionalized with equivalent molar content of 4-vinylbenzyl (F 4VBC = 18 ± 1 mol.%) and methacrylamide (F MA = 19 ± 2 mol.%) adducts proved to display remarkably-different swelling ratio (SR = 1963 ± 58-5202 ± 401 wt.%), storage modulus (G' = 17 ± 3-390 ± 99 Pa) and collagenase resistance (μ rel = 18 ± 5-56 ± 5 wt.%), similarly to the case of UV-cured hydrogel networks obtained with the same type of methacrylamide adduct, but varied degree of functionalization (F MA = 19 ± 2 - 88 ± 1 mol.%). UV-induced network formation of 4VBC-functionalized atelocollagen molecules yielded hydrogels with increased stiffness and enzymatic stability, attributed to the molecular rigidity of resulting aromatized crosslinking segment, whilst no toxic response was observed with osteosarcoma G292 cells. Although to a lesser extent, the pH of the UV-curing solution also proved to affect macroscopic hydrogel properties, likely due to the altered organization of atelocollagen molecules during network formation. By leveraging the knowledge gained with classic synthetic networks, this study highlights how the type of monomer can be conveniently exploited to realize customizable atelocollagen hydrogels for personalized medicine, whereby the structure-property relationships can be controlled to meet the requirements of unmet clinical applications.
Collapse
Affiliation(s)
- He Liang
- Clothworkers' Centre for Textile Materials Innovation for Healthcare, School of Design, University of Leeds, Leeds, United Kingdom
- Biomaterials and Tissue Engineering Research Group, School of Dentistry, St. James's University Hospital, University of Leeds, Leeds, United Kingdom
| | - Stephen J. Russell
- Clothworkers' Centre for Textile Materials Innovation for Healthcare, School of Design, University of Leeds, Leeds, United Kingdom
| | - David J. Wood
- Biomaterials and Tissue Engineering Research Group, School of Dentistry, St. James's University Hospital, University of Leeds, Leeds, United Kingdom
| | - Giuseppe Tronci
- Clothworkers' Centre for Textile Materials Innovation for Healthcare, School of Design, University of Leeds, Leeds, United Kingdom
- Biomaterials and Tissue Engineering Research Group, School of Dentistry, St. James's University Hospital, University of Leeds, Leeds, United Kingdom
| |
Collapse
|
34
|
Abdolmaleki A, Dadsetani M, Zabardasti A. Improving the first hyperpolarizability of anthracene through interaction with HX molecules (XF, Cl, Br): A theoretical study. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2018; 196:353-365. [PMID: 29475184 DOI: 10.1016/j.saa.2018.02.042] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Revised: 01/28/2018] [Accepted: 02/12/2018] [Indexed: 06/08/2023]
Abstract
The variations in nonlinear optical activity (NLO) of anthracene (C14H10) was investigated via intermolecular interactions between C14H10 and HX molecules (XF, Cl and Br) using B3LYP-D3 method at 6-311++G(d,p) basis set. The stabilization of those complexes was investigated via vibrational analysis, quantum theory of atoms in molecules, molecular electrostatic potential, natural bond orbitals and symmetry-adapted perturbation theory (SAPT) analysis. Furthermore, the optical spectra and the first hyperpolarizabilities of C14H10⋯HX complexes were computed. The adsorption of hydrogen halide through C14H10⋯HX complex formation, didn't change much the linear optical activities of C14H10 molecule, but the magnitude of the first hyperpolarizability of the C14H10⋯HX complexes to be as much as that of urea.
Collapse
|
35
|
Sitsanidis ED, Piras CC, Alexander BD, Siligardi G, Jávorfi T, Hall AJ, Edwards AA. Circular dichroism studies of low molecular weight hydrogelators: The use of SRCD and addressing practical issues. Chirality 2018; 30:708-718. [PMID: 29645307 DOI: 10.1002/chir.22850] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Revised: 02/08/2018] [Accepted: 02/14/2018] [Indexed: 11/08/2022]
Abstract
Circular dichroism (CD) spectroscopy has been used extensively for the investigation of the conformation and configuration of chiral molecules, but its use for evaluating the mode of self-assembly in soft materials has been limited. Herein, we report a protocol for the study of such materials by electronic CD spectroscopy using commercial/benchtop instruments and synchrotron radiation (SR) using the B23 beamline available at Diamond Light Source. The use of the B23 beamtime for SRCD was advantageous because of the unique enhanced spatial resolution achieved because of its highly collimated and small beamlight cross section (ca. 250 μm) and higher photon flux in the far UV region (175-250 nm) enhancing the signal-to-noise ratio relative to benchtop CD instruments. A set of low molecular weight (LMW) hydrogelators, comprising two Fmoc-protected enantiomeric monosaccharides and one Fmoc dipeptide (Fmoc-FF), were studied. The research focused on the optimization of sample preparation and handling, which then enabled the characterization of sample conformational homogeneity and thermal stability. CD spectroscopy, in combination with other spectroscopic techniques and microscopy, will allow a better insight into the self-assembly of chiral building blocks into higher order structural architectures.
Collapse
Affiliation(s)
| | - Carmen C Piras
- Medway School of Pharmacy, Universities of Greenwich and Kent at Medway, Kent, UK
| | - Bruce D Alexander
- Department of Pharmaceutical, Chemical and Environmental Sciences, University of Greenwich, Kent, UK
| | | | | | - Andrew J Hall
- Medway School of Pharmacy, Universities of Greenwich and Kent at Medway, Kent, UK
| | - Alison A Edwards
- Medway School of Pharmacy, Universities of Greenwich and Kent at Medway, Kent, UK
| |
Collapse
|
36
|
Yamate T, Fujiwara T, Yamaguchi T, Suzuki H, Akazome M. Exploiting CH/π interactions in robust supramolecular adhesives. Polym Chem 2018. [DOI: 10.1039/c8py00592c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
CH/π interactions drive the high adhesion strength and high water and humidity resistances of a supramolecular adhesive.
Collapse
Affiliation(s)
- Taiki Yamate
- Nippon Soda Co
- Ltd
- Chiba Research Center
- Ichihara
- Japan
| | - Takayuki Fujiwara
- Division of Computational Chemistry
- Transition State Technology Co
- Ltd
- Yamaguchi 755-8611
- Japan
| | - Toru Yamaguchi
- Division of Computational Chemistry
- Transition State Technology Co
- Ltd
- Yamaguchi 755-8611
- Japan
| | | | - Motohiro Akazome
- Department of Applied Chemistry and Biotechnology
- Graduate School of Engineering
- Chiba University
- Chiba 263-8522
- Japan
| |
Collapse
|
37
|
Rajkamal, Pathak NP, Halder T, Dhara S, Yadav S. Partially Acetylated or Benzoylated Arabinose Derivatives as Structurally Simple Organogelators: Effect of the Ester Protecting Group on Gel Properties. Chemistry 2017. [PMID: 28639337 DOI: 10.1002/chem.201701669] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Sugar-based low-molecular-weight gelators (LMWGs) have been used for various applications for a long time. Herein, structurally simple, ester-protected arabinosides are reported as low-molecular-weight organogelators (LMOGs) that are able to gel aromatic solvents, as well as petrol and diesel. Studies on the mechanical strength of the gels, through detailed rheological experiments, indicate that gels from the 1,2-dibenzoylated arabinose gelator possess better mechanical properties than those from the 1,2-diacetylated gelator. These results are interpreted in terms of the tendency of the former to form fibers with comparatively lower diameter than those of the latter, based on detailed field-emission SEM and AFM studies. Investigations of the interactions responsible for the self-assembly of gelators through IR spectroscopy and wide-angle X-ray scattering reveal that the primary interactions responsible are hydrogen bonds between the hydroxyl groups and ester C=O, which is absent in the solid state of the gelators. In addition, π interactions present in the 1,2-dibenzoylated derivative result in a more regular arrangement, which, in turn, leads to better mechanical properties of the gels compared with those of the 1,2-diacetylated gelator.
Collapse
Affiliation(s)
- Rajkamal
- Department of Applied Chemistry, Indian Institute of Technology (ISM), Dhanbad, 826004, Jharkhand, India
| | - Navendu P Pathak
- Department of Applied Chemistry, Indian Institute of Technology (ISM), Dhanbad, 826004, Jharkhand, India
| | - Tanmoy Halder
- Department of Applied Chemistry, Indian Institute of Technology (ISM), Dhanbad, 826004, Jharkhand, India
| | - Shubhajit Dhara
- Department of Applied Chemistry, Indian Institute of Technology (ISM), Dhanbad, 826004, Jharkhand, India
| | - Somnath Yadav
- Department of Applied Chemistry, Indian Institute of Technology (ISM), Dhanbad, 826004, Jharkhand, India
| |
Collapse
|
38
|
Abstract
Many carbohydrate-binding proteins contain aromatic amino acid residues in their binding sites. These residues interact with carbohydrates in a stacking geometry via CH/π interactions. These interactions can be found in carbohydrate-binding proteins, including lectins, enzymes and carbohydrate transporters. Besides this, many non-protein aromatic molecules (natural as well as artificial) can bind saccharides using these interactions. Recent computational and experimental studies have shown that carbohydrate–aromatic CH/π interactions are dispersion interactions, tuned by electrostatics and partially stabilized by a hydrophobic effect in solvated systems.
Collapse
|
39
|
Pal KB, Mukhopadhyay B. Carbohydrate-BasedSafe Fuel Gel with Significant Self-healing Property. ChemistrySelect 2017. [DOI: 10.1002/slct.201601776] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Kumar Bhaskar Pal
- Department of Chemical Sciences; Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur, Nadia; 741246 India
- Centre for Analysis and Synthesis; Department of Chemistry; Lund University; Box 124 221 00 Lund Sweden
| | - Balaram Mukhopadhyay
- Department of Chemical Sciences; Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur, Nadia; 741246 India
| |
Collapse
|
40
|
Bian S, Cai H, Cui Y, He M, Cao W, Chen X, Sun Y, Liang J, Fan Y, Zhang X. Temperature and ion dual responsive biphenyl-dipeptide supramolecular hydrogels as extracellular matrix mimic-scaffolds for cell culture applications. J Mater Chem B 2017; 5:3667-3674. [DOI: 10.1039/c7tb00576h] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Illustration of the gelation process of a new aromatic short peptide gelator based on biphenyl and its application in cell culture.
Collapse
Affiliation(s)
- Shaoquan Bian
- National Engineering Research Center for Biomaterials
- Sichuan University
- Chengdu 610064
- China
| | - Hanxu Cai
- National Engineering Research Center for Biomaterials
- Sichuan University
- Chengdu 610064
- China
| | - Yani Cui
- National Engineering Research Center for Biomaterials
- Sichuan University
- Chengdu 610064
- China
| | - Mengmeng He
- National Engineering Research Center for Biomaterials
- Sichuan University
- Chengdu 610064
- China
| | - Wanxu Cao
- National Engineering Research Center for Biomaterials
- Sichuan University
- Chengdu 610064
- China
| | - Xuening Chen
- National Engineering Research Center for Biomaterials
- Sichuan University
- Chengdu 610064
- China
| | - Yong Sun
- National Engineering Research Center for Biomaterials
- Sichuan University
- Chengdu 610064
- China
| | - Jie Liang
- National Engineering Research Center for Biomaterials
- Sichuan University
- Chengdu 610064
- China
| | - Yujiang Fan
- National Engineering Research Center for Biomaterials
- Sichuan University
- Chengdu 610064
- China
| | - Xingdong Zhang
- National Engineering Research Center for Biomaterials
- Sichuan University
- Chengdu 610064
- China
| |
Collapse
|
41
|
Karoyo AH, Wilson LD. Physicochemical Properties and the Gelation Process of Supramolecular Hydrogels: A Review. Gels 2017; 3:E1. [PMID: 30920498 PMCID: PMC6318668 DOI: 10.3390/gels3010001] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Revised: 12/01/2016] [Accepted: 12/02/2016] [Indexed: 12/29/2022] Open
Abstract
Supramolecular polysaccharide-based hydrogels have attracted considerable research interest recently due to their high structural functionality, low toxicity, and potential applications in foods, cosmetics, catalysis, drug delivery, tissue engineering and the environment. Modulation of the stability of hydrogels is of paramount importance, especially in the case of stimuli-responsive systems. This review will update the recent progress related to the rational design of supramolecular hydrogels with the objective of understanding the gelation process and improving their physical gelation properties for tailored applications. Emphasis will be given to supramolecular host⁻guest systems with reference to conventional gels in describing general aspects of gel formation. A brief account of the structural characterization of various supramolecular hydrogels is also provided in order to gain a better understanding of the design of such materials relevant to the nature of the intermolecular interactions, thermodynamic properties of the gelation process, and the critical concentration values of the precursors and the solvent components. This mini-review contributes to greater knowledge of the rational design of supramolecular hydrogels with tailored applications in diverse fields ranging from the environment to biomedicine.
Collapse
Affiliation(s)
- Abdalla H Karoyo
- Department of Chemistry, University of Saskatchewan, 110 Science Place, Saskatoon, SK S7N 5C9, Canada.
| | - Lee D Wilson
- Department of Chemistry, University of Saskatchewan, 110 Science Place, Saskatoon, SK S7N 5C9, Canada.
| |
Collapse
|
42
|
Wang G, Chen A, Mangunuru HPR, Yerabolu JR. Synthesis and characterization of amide linked triazolyl glycolipids as molecular hydrogelators and organogelators. RSC Adv 2017. [DOI: 10.1039/c7ra06228a] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Eighteen new glycolipids were synthesized and characterized. All eighteen are effective molecular gelators for at least one solvent and eleven are hydrogelators at concentrations of 0.15–1.0 wt%. The hydrogels are suitable carriers for sustained release of chloramphenicol.
Collapse
Affiliation(s)
- Guijun Wang
- Department of Chemistry and Biochemistry
- Old Dominion University
- Norfolk
- USA
| | - Anji Chen
- Department of Chemistry and Biochemistry
- Old Dominion University
- Norfolk
- USA
| | - Hari P. R. Mangunuru
- Department of chemical and medicinal engineering
- Virginia Commonwealth University
- Richmond
- USA
| | | |
Collapse
|
43
|
Kesava Raju CS, Pramanik B, Ravishankar R, Chalapathi Rao PV, Sriganesh G. Xylitol based phase selective organogelators for potential oil spillage recovery. RSC Adv 2017. [DOI: 10.1039/c7ra06898k] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Xylitol based cost effective and easily synthesizable phase selective gelators were developed for strong gelation ability for different crude oils, wide range of refinery products and reported for their potential application in oil spillage recovery.
Collapse
Affiliation(s)
| | - Bhaskar Pramanik
- Analytical Division
- Hindustan Petroleum Green R&D Center (HPGRDC)
- KIADB Industrial Estate
- Bangalore
- India
| | - Raman Ravishankar
- Analytical Division
- Hindustan Petroleum Green R&D Center (HPGRDC)
- KIADB Industrial Estate
- Bangalore
- India
| | | | - Gandham Sriganesh
- Analytical Division
- Hindustan Petroleum Green R&D Center (HPGRDC)
- KIADB Industrial Estate
- Bangalore
- India
| |
Collapse
|
44
|
The influence of substituents on cooperativity between CH···π and N···H hydrogen bonds in a T-shaped configuration: X-benzene⊥(FH···pyrazine···HF) complexes as a working model. Struct Chem 2016. [DOI: 10.1007/s11224-016-0777-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
45
|
Peng Y, Feng Y, Deng GJ, He YM, Fan QH. From Weakness to Strength: C-H/π-Interaction-Guided Self-Assembly and Gelation of Poly(benzyl ether) Dendrimers. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2016; 32:9313-9320. [PMID: 27538342 DOI: 10.1021/acs.langmuir.6b02672] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
The C-H/π interactions as the key driving force for the construction of supramolecular gels remain a great challenge because of their weak nature. We hereby employed for the first time weak C-H/π interactions for the construction of supramolecular dendritic gels based on peripherally methyl-functionalized poly(benzyl ether) dendrimers. Their gelation property is highly dependent on the nature of the peripheral methyl groups. Furthermore, single-crystal X-ray analysis and NMR spectroscopy revealed that multiple C-H/π interactions between the proton of the methyl group and the electron-rich peripheral methyl-substituted aryl ring played significant roles in the formation of supramolecular nanofibers and organogels. This study uncovers the critical role of weak noncovalent interactions and provides new insights into the further design of self-assembled nanomaterials.
Collapse
Affiliation(s)
- Yi Peng
- Beijing National Laboratory for Molecule Sciences (BNLMS), CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences , Beijing 100190, China
- Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University , Xiangtan 411105, China
| | - Yu Feng
- Beijing National Laboratory for Molecule Sciences (BNLMS), CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences , Beijing 100190, China
| | - Guo-Jun Deng
- Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University , Xiangtan 411105, China
| | - Yan-Mei He
- Beijing National Laboratory for Molecule Sciences (BNLMS), CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences , Beijing 100190, China
| | - Qing-Hua Fan
- Beijing National Laboratory for Molecule Sciences (BNLMS), CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences , Beijing 100190, China
| |
Collapse
|
46
|
Kaplan JA, Barthélémy P, Grinstaff MW. Self-assembled nanofiber hydrogels for mechanoresponsive therapeutic anti-TNFα antibody delivery. Chem Commun (Camb) 2016; 52:5860-3. [PMID: 27049283 DOI: 10.1039/c6cc02221a] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Low molecular weight hydrogels, prepared from glycosyl-nucleoside-lipid amphiphiles, exhibit shear-thinning behaviour and reversible thermally- and mechanically-triggered sol-gel transitions. Using mechanical shear stimulation, the release of entrapped anti-TNFα increases and the released anti-TNFα demonstrates efficacy in in vitro neutralization bioassays. Delivery of anti-TNFα is of general interest and broad medicinal utility for treating autoimmune diseases such as rheumatoid arthritis.
Collapse
Affiliation(s)
- J A Kaplan
- Departments of Biomedical Engineering and Chemistry, Boston University, Boston, Massachusetts 02215, USA.
| | | | | |
Collapse
|
47
|
Liu J, Sun Z, Yuan Y, Tian X, Liu X, Duan G, Yang Y, Yuan L, Lin HC, Li X. Peptide Glycosylation Generates Supramolecular Assemblies from Glycopeptides as Biomimetic Scaffolds for Cell Adhesion and Proliferation. ACS APPLIED MATERIALS & INTERFACES 2016; 8:6917-6924. [PMID: 26930123 DOI: 10.1021/acsami.6b00850] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Glycopeptide-based hydrogelators with well-defined molecular structures and varied contents of sugar moieties were prepared via in vitro peptide glycosylation reactions. With systematic glucose modification, these glycopeptide hydrogelators exhibited diverse self-assembling behaviors in water and formed supramolecular hydrogels with enhanced thermostability and biostability, in comparison with their peptide analogue. Moreover, because of high water content and similar structural morphology and composition to extracellular matrixes (ECM) in tissues, these self-assembled hydrogels also exhibited great potential to act as new biomimetic scaffolds for mammalian cell growth. Therefore, peptide glycosylation proved to be an effective means for peptide modification and generation of novel supramolecular hydrogelators/hydrogels with improved biophysical properties (e.g., high biostability, increased thermostability, and cell adhesion) which could promise potential applications in regenerative medicine.
Collapse
Affiliation(s)
- Jie Liu
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University , Suzhou, 215123, China
| | - Ziling Sun
- School of Biology and Basic Medical Science, Soochow University , Suzhou, 215123, China
| | - Yuqi Yuan
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University , Suzhou, 215123, China
| | - Xin Tian
- School of Biology and Basic Medical Science, Soochow University , Suzhou, 215123, China
| | - Xi Liu
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University , Suzhou, 215123, China
| | - Guangxin Duan
- School of Biology and Basic Medical Science, Soochow University , Suzhou, 215123, China
| | - Yonggang Yang
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University , Suzhou, 215123, China
| | - Lin Yuan
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University , Suzhou, 215123, China
| | - Hsin-Chieh Lin
- Department of Materials Science and Engineering, National Chiao Tung University , Hsinchu, 300, Taiwan
| | - Xinming Li
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University , Suzhou, 215123, China
- State Key Laboratory of Molecular Engineering of Polymers, Fudan University , Shanghai 200433, China
| |
Collapse
|
48
|
Liu J, Xu F, Sun Z, Pan Y, Tian J, Lin HC, Li X. A supramolecular gel based on a glycosylated amino acid derivative with the properties of gel to crystal transition. SOFT MATTER 2016; 12:141-148. [PMID: 26446296 DOI: 10.1039/c5sm02111a] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Here we report the generation of a novel gelator from a glycosylated amino acid derivative, which contained three structural units, an aromatic residue, a carbohydrate moiety and a tert-butyl group in a single molecule. These structural units can promote the supramolecular self-assembly of this gelator in both aprotic and protic solvents via coordinated π-π stacking, multiple hydrogen binding and van der Waals interactions. More importantly, due to their non-equilibrium natures, the organogels formed in DCM, chloroform and ethanol can undergo gel to crystal transition in storage, driven by unbalanced gelator-gelator and solvent-gelator interactions. In this process, the gelators were firstly trapped in a kinetically favorable gel state, and then transferred into a more thermodynamically stable crystal state upon ageing, with the generation of microcrystals in different morphologies.
Collapse
Affiliation(s)
- Jie Liu
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123 China.
| | - Fengyang Xu
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123 China.
| | - Ziling Sun
- School of Biology and Basic Medical Science, Soochow University, Suzhou, 215123 China
| | - Yue Pan
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123 China.
| | - Jian Tian
- School of Biology and Basic Medical Science, Soochow University, Suzhou, 215123 China
| | - Hsin-Chieh Lin
- Department of Materials Science and Engineering, National Chiao Tung University, Hsinchu, 300 Taiwan
| | - Xinming Li
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123 China.
| |
Collapse
|
49
|
He B, Nie H, Luo W, Hu R, Qin A, Zhao Z, Tang BZ. Synthesis, structure and optical properties of tetraphenylethene derivatives with through-space conjugation between benzene and various planar chromophores. Org Chem Front 2016. [DOI: 10.1039/c6qo00204h] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A series of tetraphenylethene derivatives with through-space conjugation and aggregation-enhanced emission properties are synthesized and studied.
Collapse
Affiliation(s)
- Bairong He
- State Key Laboratory of Luminescent Materials and Devices
- South China University of Technology
- Guangzhou 510640
- China
| | - Han Nie
- State Key Laboratory of Luminescent Materials and Devices
- South China University of Technology
- Guangzhou 510640
- China
| | - Wenwen Luo
- State Key Laboratory of Luminescent Materials and Devices
- South China University of Technology
- Guangzhou 510640
- China
| | - Rongrong Hu
- State Key Laboratory of Luminescent Materials and Devices
- South China University of Technology
- Guangzhou 510640
- China
| | - Anjun Qin
- State Key Laboratory of Luminescent Materials and Devices
- South China University of Technology
- Guangzhou 510640
- China
| | - Zujin Zhao
- State Key Laboratory of Luminescent Materials and Devices
- South China University of Technology
- Guangzhou 510640
- China
| | - Ben Zhong Tang
- State Key Laboratory of Luminescent Materials and Devices
- South China University of Technology
- Guangzhou 510640
- China
- Department of Chemistry
| |
Collapse
|
50
|
Du X, Zhou J, Shi J, Xu B. Supramolecular Hydrogelators and Hydrogels: From Soft Matter to Molecular Biomaterials. Chem Rev 2015; 115:13165-307. [PMID: 26646318 PMCID: PMC4936198 DOI: 10.1021/acs.chemrev.5b00299] [Citation(s) in RCA: 1296] [Impact Index Per Article: 144.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2015] [Indexed: 12/19/2022]
Abstract
In this review we intend to provide a relatively comprehensive summary of the work of supramolecular hydrogelators after 2004 and to put emphasis particularly on the applications of supramolecular hydrogels/hydrogelators as molecular biomaterials. After a brief introduction of methods for generating supramolecular hydrogels, we discuss supramolecular hydrogelators on the basis of their categories, such as small organic molecules, coordination complexes, peptides, nucleobases, and saccharides. Following molecular design, we focus on various potential applications of supramolecular hydrogels as molecular biomaterials, classified by their applications in cell cultures, tissue engineering, cell behavior, imaging, and unique applications of hydrogelators. Particularly, we discuss the applications of supramolecular hydrogelators after they form supramolecular assemblies but prior to reaching the critical gelation concentration because this subject is less explored but may hold equally great promise for helping address fundamental questions about the mechanisms or the consequences of the self-assembly of molecules, including low molecular weight ones. Finally, we provide a perspective on supramolecular hydrogelators. We hope that this review will serve as an updated introduction and reference for researchers who are interested in exploring supramolecular hydrogelators as molecular biomaterials for addressing the societal needs at various frontiers.
Collapse
Affiliation(s)
- Xuewen Du
- Department of Chemistry, Brandeis University, 415 South Street, Waltham, Massachusetts 02454, United States
| | - Jie Zhou
- Department of Chemistry, Brandeis University, 415 South Street, Waltham, Massachusetts 02454, United States
| | - Junfeng Shi
- Department of Chemistry, Brandeis University, 415 South Street, Waltham, Massachusetts 02454, United States
| | - Bing Xu
- Department of Chemistry, Brandeis University, 415 South Street, Waltham, Massachusetts 02454, United States
| |
Collapse
|