1
|
Costello A, Peterson AA, Chen PH, Bagirzadeh R, Lanster DL, Badran AH. Genetic Code Expansion History and Modern Innovations. Chem Rev 2024. [PMID: 39466033 DOI: 10.1021/acs.chemrev.4c00275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
The genetic code is the foundation for all life. With few exceptions, the translation of nucleic acid messages into proteins follows conserved rules, which are defined by codons that specify each of the 20 proteinogenic amino acids. For decades, leading research groups have developed a catalogue of innovative approaches to extend nature's amino acid repertoire to include one or more noncanonical building blocks in a single protein. In this review, we summarize advances in the history of in vitro and in vivo genetic code expansion, and highlight recent innovations that increase the scope of biochemically accessible monomers and codons. We further summarize state-of-the-art knowledge in engineered cellular translation, as well as alterations to regulatory mechanisms that improve overall genetic code expansion. Finally, we distill existing limitations of these technologies into must-have improvements for the next generation of technologies, and speculate on future strategies that may be capable of overcoming current gaps in knowledge.
Collapse
Affiliation(s)
- Alan Costello
- Department of Chemistry The Scripps Research Institute; La Jolla, California 92037, United States
- Department of Integrative Structural and Computational Biology The Scripps Research Institute; La Jolla, California 92037, United States
| | - Alexander A Peterson
- Department of Chemistry The Scripps Research Institute; La Jolla, California 92037, United States
- Department of Integrative Structural and Computational Biology The Scripps Research Institute; La Jolla, California 92037, United States
| | - Pei-Hsin Chen
- Department of Chemistry The Scripps Research Institute; La Jolla, California 92037, United States
- Department of Integrative Structural and Computational Biology The Scripps Research Institute; La Jolla, California 92037, United States
- Doctoral Program in Chemical and Biological Sciences The Scripps Research Institute; La Jolla, California 92037, United States
| | - Rustam Bagirzadeh
- Department of Chemistry The Scripps Research Institute; La Jolla, California 92037, United States
- Department of Integrative Structural and Computational Biology The Scripps Research Institute; La Jolla, California 92037, United States
| | - David L Lanster
- Department of Chemistry The Scripps Research Institute; La Jolla, California 92037, United States
- Department of Integrative Structural and Computational Biology The Scripps Research Institute; La Jolla, California 92037, United States
- Doctoral Program in Chemical and Biological Sciences The Scripps Research Institute; La Jolla, California 92037, United States
| | - Ahmed H Badran
- Department of Chemistry The Scripps Research Institute; La Jolla, California 92037, United States
- Department of Integrative Structural and Computational Biology The Scripps Research Institute; La Jolla, California 92037, United States
| |
Collapse
|
2
|
Chemla Y, Kaufman F, Amiram M, Alfonta L. Expanding the Genetic Code of Bioelectrocatalysis and Biomaterials. Chem Rev 2024; 124:11187-11241. [PMID: 39377473 DOI: 10.1021/acs.chemrev.4c00077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/09/2024]
Abstract
Genetic code expansion is a promising genetic engineering technology that incorporates noncanonical amino acids into proteins alongside the natural set of 20 amino acids. This enables the precise encoding of non-natural chemical groups in proteins. This review focuses on the applications of genetic code expansion in bioelectrocatalysis and biomaterials. In bioelectrocatalysis, this technique enhances the efficiency and selectivity of bioelectrocatalysts for use in sensors, biofuel cells, and enzymatic electrodes. In biomaterials, incorporating non-natural chemical groups into protein-based polymers facilitates the modification, fine-tuning, or the engineering of new biomaterial properties. The review provides an overview of relevant technologies, discusses applications, and highlights achievements, challenges, and prospects in these fields.
Collapse
|
3
|
Dunkelmann DL, Chin JW. Engineering Pyrrolysine Systems for Genetic Code Expansion and Reprogramming. Chem Rev 2024; 124:11008-11062. [PMID: 39235427 PMCID: PMC11467909 DOI: 10.1021/acs.chemrev.4c00243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 07/29/2024] [Accepted: 07/31/2024] [Indexed: 09/06/2024]
Abstract
Over the past 16 years, genetic code expansion and reprogramming in living organisms has been transformed by advances that leverage the unique properties of pyrrolysyl-tRNA synthetase (PylRS)/tRNAPyl pairs. Here we summarize the discovery of the pyrrolysine system and describe the unique properties of PylRS/tRNAPyl pairs that provide a foundation for their transformational role in genetic code expansion and reprogramming. We describe the development of genetic code expansion, from E. coli to all domains of life, using PylRS/tRNAPyl pairs, and the development of systems that biosynthesize and incorporate ncAAs using pyl systems. We review applications that have been uniquely enabled by the development of PylRS/tRNAPyl pairs for incorporating new noncanonical amino acids (ncAAs), and strategies for engineering PylRS/tRNAPyl pairs to add noncanonical monomers, beyond α-L-amino acids, to the genetic code of living organisms. We review rapid progress in the discovery and scalable generation of mutually orthogonal PylRS/tRNAPyl pairs that can be directed to incorporate diverse ncAAs in response to diverse codons, and we review strategies for incorporating multiple distinct ncAAs into proteins using mutually orthogonal PylRS/tRNAPyl pairs. Finally, we review recent advances in the encoded cellular synthesis of noncanonical polymers and macrocycles and discuss future developments for PylRS/tRNAPyl pairs.
Collapse
Affiliation(s)
- Daniel L. Dunkelmann
- Medical
Research Council Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, England, United Kingdom
- Max
Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany
| | - Jason W. Chin
- Medical
Research Council Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, England, United Kingdom
| |
Collapse
|
4
|
Choi JH, Kim S, Kang OY, Choi SY, Hyun JY, Lee HS, Shin I. Selective fluorescent labeling of cellular proteins and its biological applications. Chem Soc Rev 2024; 53:9446-9489. [PMID: 39109465 DOI: 10.1039/d4cs00094c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
Proteins, which are ubiquitous in cells and critical to almost all cellular functions, are indispensable for life. Fluorescence imaging of proteins is key to understanding their functions within their native milieu, as it provides insights into protein localization, dynamics, and trafficking in living systems. Consequently, the selective labeling of target proteins with fluorophores has emerged as a highly active research area, encompassing bioorganic chemistry, chemical biology, and cell biology. Various methods for selectively labeling proteins with fluorophores in cells and tissues have been established and are continually being developed to visualize and characterize proteins. This review highlights research findings reported since 2018, with a focus on the selective labeling of cellular proteins with small organic fluorophores and their biological applications in studying protein-associated biological events. We also discuss the strengths and weaknesses of each labeling approach for their utility in living systems.
Collapse
Affiliation(s)
- Joo Hee Choi
- Department of Chemistry, Yonsei University, 03722 Seoul, Republic of Korea.
| | - Sooin Kim
- Department of Chemistry, Sogang University, 04107 Seoul, Republic of Korea.
| | - On-Yu Kang
- Department of Drug Discovery, Data Convergence Drug Research Center, Korea Research Institute of Chemical Technology (KRICT), Daejeon 34114, Republic of Korea.
| | - Seong Yun Choi
- Department of Drug Discovery, Data Convergence Drug Research Center, Korea Research Institute of Chemical Technology (KRICT), Daejeon 34114, Republic of Korea.
- Pharmaceutical Chemistry, University of Science & Technology, Daejeon 34113, Republic of Korea
| | - Ji Young Hyun
- Department of Drug Discovery, Data Convergence Drug Research Center, Korea Research Institute of Chemical Technology (KRICT), Daejeon 34114, Republic of Korea.
- Pharmaceutical Chemistry, University of Science & Technology, Daejeon 34113, Republic of Korea
| | - Hyun Soo Lee
- Department of Chemistry, Sogang University, 04107 Seoul, Republic of Korea.
| | - Injae Shin
- Department of Chemistry, Yonsei University, 03722 Seoul, Republic of Korea.
| |
Collapse
|
5
|
Minoshima M, Reja SI, Hashimoto R, Iijima K, Kikuchi K. Hybrid Small-Molecule/Protein Fluorescent Probes. Chem Rev 2024; 124:6198-6270. [PMID: 38717865 DOI: 10.1021/acs.chemrev.3c00549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/23/2024]
Abstract
Hybrid small-molecule/protein fluorescent probes are powerful tools for visualizing protein localization and function in living cells. These hybrid probes are constructed by diverse site-specific chemical protein labeling approaches through chemical reactions to exogenous peptide/small protein tags, enzymatic post-translational modifications, bioorthogonal reactions for genetically incorporated unnatural amino acids, and ligand-directed chemical reactions. The hybrid small-molecule/protein fluorescent probes are employed for imaging protein trafficking, conformational changes, and bioanalytes surrounding proteins. In addition, fluorescent hybrid probes facilitate visualization of protein dynamics at the single-molecule level and the defined structure with super-resolution imaging. In this review, we discuss development and the bioimaging applications of fluorescent probes based on small-molecule/protein hybrids.
Collapse
Affiliation(s)
- Masafumi Minoshima
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1, Yamadaoka, Suita, Osaka 5650871, Japan
| | - Shahi Imam Reja
- Immunology Frontier Research Center, Osaka University, 2-1, Yamadaoka, Suita, Osaka 5650871, Japan
| | - Ryu Hashimoto
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1, Yamadaoka, Suita, Osaka 5650871, Japan
| | - Kohei Iijima
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1, Yamadaoka, Suita, Osaka 5650871, Japan
| | - Kazuya Kikuchi
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1, Yamadaoka, Suita, Osaka 5650871, Japan
| |
Collapse
|
6
|
Ma B, Niu W, Guo J. Proximity-enhanced protein crosslinking through an alkene-tetrazine reaction. Bioorg Chem 2023; 132:106359. [PMID: 36642019 PMCID: PMC9957846 DOI: 10.1016/j.bioorg.2023.106359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 11/21/2022] [Accepted: 12/01/2022] [Indexed: 01/13/2023]
Abstract
The inverse electron demand Diels-Alder (iEDDA) reaction between a tetrazine and a strained alkene has been widely explored as useful bioorthogonal chemistry for selective labeling of biomolecules. In this work, we exploit the slow reaction between a non-conjugated terminal alkene and a tetrazine, and apply this reaction to achieving a proximity-enhanced protein crosslinking. In one protein subunit, a terminal alkene-containing amino acid was site-specifically incorporated in response to an amber nonsense codon. In another protein subunit, a tetrazine moiety was introduced through the attachment to a cysteine residue. Fast protein crosslinking was achieved due to a large increase in effective molarity of the two reactants that were brought to close proximity by the two interacting protein subunits. Such a proximity-enhanced protein crosslinking is useful for the study of protein-protein interactions.
Collapse
Affiliation(s)
- Bin Ma
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, NE 68588, United States
| | - Wei Niu
- Department of Chemical & Biomolecular Engineering, University of Nebraska-Lincoln, Lincoln, NE 68588, United States
| | - Jiantao Guo
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, NE 68588, United States; The Nebraska Center for Integrated Biomolecular Communication (NCIBC), University of Nebraska-Lincoln, Lincoln, NE 68588, United States.
| |
Collapse
|
7
|
Oerlemans RAJF, Timmermans SBPE, van Hest JCM. Artificial Organelles: Towards Adding or Restoring Intracellular Activity. Chembiochem 2021; 22:2051-2078. [PMID: 33450141 PMCID: PMC8252369 DOI: 10.1002/cbic.202000850] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 01/15/2021] [Indexed: 12/15/2022]
Abstract
Compartmentalization is one of the main characteristics that define living systems. Creating a physically separated microenvironment allows nature a better control over biological processes, as is clearly specified by the role of organelles in living cells. Inspired by this phenomenon, researchers have developed a range of different approaches to create artificial organelles: compartments with catalytic activity that add new function to living cells. In this review we will discuss three complementary lines of investigation. First, orthogonal chemistry approaches are discussed, which are based on the incorporation of catalytically active transition metal-containing nanoparticles in living cells. The second approach involves the use of premade hybrid nanoreactors, which show transient function when taken up by living cells. The third approach utilizes mostly genetic engineering methods to create bio-based structures that can be ultimately integrated with the cell's genome to make them constitutively active. The current state of the art and the scope and limitations of the field will be highlighted with selected examples from the three approaches.
Collapse
Affiliation(s)
- Roy A. J. F. Oerlemans
- Bio-Organic Chemistry Research GroupInstitute for Complex Molecular SystemsEindhoven University of TechnologyP.O. Box 513 (STO3.41)5600 MBEindhovenThe Netherlands
| | - Suzanne B. P. E. Timmermans
- Bio-Organic Chemistry Research GroupInstitute for Complex Molecular SystemsEindhoven University of TechnologyP.O. Box 513 (STO3.41)5600 MBEindhovenThe Netherlands
| | - Jan C. M. van Hest
- Bio-Organic Chemistry Research GroupInstitute for Complex Molecular SystemsEindhoven University of TechnologyP.O. Box 513 (STO3.41)5600 MBEindhovenThe Netherlands
| |
Collapse
|
8
|
Alamudi SH, Liu X, Chang YT. Azide-based bioorthogonal chemistry: Reactions and its advances in cellular and biomolecular imaging. BIOPHYSICS REVIEWS 2021; 2:021301. [PMID: 38505123 PMCID: PMC10903415 DOI: 10.1063/5.0050850] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 04/29/2021] [Indexed: 03/21/2024]
Abstract
Since the term "bioorthogonal" was first demonstrated in 2003, new tools for bioorthogonal chemistry have been rapidly developed. Bioorthogonal chemistry has now been widely utilized for applications in imaging various biomolecules, such as proteins, glycoconjugates, nucleic acids, and lipids. Contrasting the chemical reactions or synthesis that are typically executed in vitro with organic solvents, bioorthogonal reactions can occur inside cells under physiological conditions. Functional groups or chemical reporters for bioorthogonal chemistry are highly selective and will not perturb the native functions of biological systems. Advances in azide-based bioorthogonal chemical reporters make it possible to perform chemical reactions in living systems for wide-ranging applications. This review discusses the milestones of azide-based bioorthogonal reactions, from Staudinger ligation and copper(I)-catalyzed azide-alkyne cycloaddition to strain-promoted azide-alkyne cycloaddition. The development of bioorthogonal reporters and their capability of being built into biomolecules in vivo have been extensively applied in cellular imaging. We focus on strategies used for metabolic incorporation of chemically tagged molecular building blocks (e.g., amino acids, carbohydrates, nucleotides, and lipids) into cells via cellular machinery systems. With the aid of exogenous bioorthogonally compatible small fluorescent probes, we can selectively visualize intracellular architectures, such as protein, glycans, nucleic acids, and lipids, with high specificity to help in answering complex biological problems.
Collapse
Affiliation(s)
- Samira Husen Alamudi
- Institute of Bioengineering and Nanotechnology, Agency for Science, Technology and Research (ASTAR), 31 Biopolis Way, #07‐01, Singapore 138669
| | - Xiao Liu
- Department of Chemistry, Pohang University of Science and Technology, Pohang 37673, South Korea
| | | |
Collapse
|
9
|
Zhao Q, Guo G, Zhu W, Zhu L, Da Y, Han Y, Xu H, Wu S, Cheng Y, Zhou Y, Cai X, Jiang X. Suzuki Cross-Coupling Reaction with Genetically Encoded Fluorosulfates for Fluorogenic Protein Labeling. Chemistry 2020; 26:15938-15943. [PMID: 32776653 DOI: 10.1002/chem.202002037] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Revised: 07/24/2020] [Indexed: 11/09/2022]
Abstract
A palladium-catalyzed cross-coupling reaction with aryl halide functionalities has recently emerged as a valuable tool for protein modification. Herein, a new fluorogenic modification methodology for proteins, with genetically encoded fluorosulfate-l-tyrosine, which exhibits high efficiency and biocompatibility in bacterial cells as well as in aqueous medium, is described. Furthermore, the cross-coupling of 4-cyanophenylboronic acid on green fluorescent protein was shown to possess a unique fluorogenic property, which could open up the possibility of a responsive "off/on" switch with great potential to enable spectroscopic imaging of proteins with minimal background noise. Taken together, a convenient and efficient catalytic system has been developed that may provide broad utilities in protein visualization and live-cell imaging.
Collapse
Affiliation(s)
- Qian Zhao
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, P.R. China
| | - Guoying Guo
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, P.R. China
| | - Weiwei Zhu
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, P.R. China
| | - Liping Zhu
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, P.R. China
| | - Yifan Da
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, P.R. China
| | - Ying Han
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, P.R. China
| | - Hongjiao Xu
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, P.R. China
| | - Shuohan Wu
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, P.R. China
| | - Yaping Cheng
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, P.R. China
| | - Yani Zhou
- School of Basic Medical Sciences, Lanzhou University, Lanzhou, 730000, P.R. China
| | - Xiaoqing Cai
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, P.R. China
| | - Xianxing Jiang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, P.R. China
| |
Collapse
|
10
|
Gerrits M, Budisa N, Merk H. Site-Specific Chemoselective Pyrrolysine Analogues Incorporation Using the Cell-Free Protein Synthesis System. ACS Synth Biol 2019; 8:381-390. [PMID: 30589532 DOI: 10.1021/acssynbio.8b00421] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Cell-free protein synthesis (CFPS) is a fast and convenient way to synthesize proteins for analytical studies and applications. CFPS, when equipped with a suitable orthogonal pair, allows for protein-site-directed labeling with desired functionalities such as fluorescent dyes or therapeutic groups that are needed to tailor proteins for analytical applications. In this context, chemoselective reactive pyrrolysine analogues (CR-OAs) are of particular value, as this class of unnatural amino acids, among other useful properties, covers a wide range of different chemoselective reactions. In this study, we present a flexible approach that facilitates incorporation of CR-OAs in CFPS systems. In particular, a fairly simple addition of two expression plasmids in our cell-free system, one encoding pyrrolysyl-tRNA synthetase and the other one the target protein, enabled ribosomal synthesis of proteins in the half-milligram range with the pre-installed orthogonal reactivity, easily modifiable by using mild, copper-free bioorthogonal chemistry. Our CFPS system allows rapid and highly customizable expression, as shown by several examples of successful site-directed fluorescence labeling. The feasibility of our CFPS system for protein analytics is further proved by demonstrating the functional integrity of a labeled protein by interaction measurements using microscale thermophoresis.
Collapse
Affiliation(s)
- Michael Gerrits
- Biocatalysis Group, Department of Chemistry, Technische Universität Berlin, 10623 Berlin, Germany
- biotechrabbit GmbH, 12489 Berlin, Germany
| | - Nediljko Budisa
- Biocatalysis Group, Department of Chemistry, Technische Universität Berlin, 10623 Berlin, Germany
- Chemical Synthetic Biology, Department of Chemistry, University of Manitoba, 144 Dysart Road, R3T 2N2 Winnipeg, MB, Canada
| | | |
Collapse
|
11
|
Sutherland BP, El-Zaatari BM, Halaszynski NI, French JM, Bai S, Kloxin CJ. On-Resin Macrocyclization of Peptides Using Vinyl Sulfonamides as a Thiol-Michael "Click" Acceptor. Bioconjug Chem 2018; 29:3987-3992. [PMID: 30452234 DOI: 10.1021/acs.bioconjchem.8b00751] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Macrocyclization of linear peptides imparts improved stability to enzymatic degradation and increases potency of function. Many successful macrocyclization of peptides both in solution and on-resin have been achieved but are limited in scope as they lack selectivity, require long reaction times, or necessitate heat. To overcome these drawbacks a robust and facile strategy was developed employing thiol-Michael click chemistry via an N-methyl vinyl sulfonamide. We demonstrate its balance of reactivity and high stability through FTIR model kinetic studies, reaching 88% conversion over 30 min, and NMR stability studies, revealing no apparent degradation over an 8 day period in basic conditions. Using a commercially available reagent, 2-chloroethane sulfonyl chloride, the cell adhesion peptide, RGDS, was functionalized and macrocyclized on-resin with a relative efficiency of over 95%. The simplistic nature of this process demonstrates the effectiveness of vinyl sulfonamides as a thiol-Michael click acceptor and its applicability to many other bioconjugation applications.
Collapse
Affiliation(s)
- Bryan P Sutherland
- Department of Materials Science and Engineering , University of Delaware , 201 DuPont Hall , Newark , Delaware 19716 , United States
| | - Bassil M El-Zaatari
- Department of Chemical and Biomolecular Engineering , University of Delaware , 150 Academy Street , Newark , Delaware 19716 , United States
| | - Nicole I Halaszynski
- Department of Materials Science and Engineering , University of Delaware , 201 DuPont Hall , Newark , Delaware 19716 , United States
| | - Jonathan M French
- Department of Chemistry , Syracuse University , 111 College Place , Syracuse , New York 13210 , United States
| | - Shi Bai
- Department of Chemistry and Biochemistry , University of Delaware , Newark , Delaware 19716 , United States
| | - Christopher J Kloxin
- Department of Materials Science and Engineering , University of Delaware , 201 DuPont Hall , Newark , Delaware 19716 , United States.,Department of Chemical and Biomolecular Engineering , University of Delaware , 150 Academy Street , Newark , Delaware 19716 , United States
| |
Collapse
|
12
|
Abstract
Expanding the genetic code to enable the incorporation of unnatural amino acids into proteins in biological systems provides a powerful tool for studying protein structure and function. While this technology has been mostly developed and applied in bacterial and mammalian cells, it recently expanded into animals, including worms, fruit flies, zebrafish, and mice. In this review, we highlight recent advances toward the methodology development of genetic code expansion in animal model organisms. We further illustrate the applications, including proteomic labeling in fruit flies and mice and optical control of protein function in mice and zebrafish. We summarize the challenges of unnatural amino acid mutagenesis in animals and the promising directions toward broad application of this emerging technology.
Collapse
Affiliation(s)
- Wes Brown
- Department of Chemistry, University of Pittsburgh, 219 Parkman Avenue, Pittsburgh, Pennsylvania 15237, United States
| | - Jihe Liu
- Department of Chemistry, University of Pittsburgh, 219 Parkman Avenue, Pittsburgh, Pennsylvania 15237, United States
| | - Alexander Deiters
- Department of Chemistry, University of Pittsburgh, 219 Parkman Avenue, Pittsburgh, Pennsylvania 15237, United States
| |
Collapse
|
13
|
Orthogonal Protein Translation Using Pyrrolysyl-tRNA Synthetases for Single- and Multiple-Noncanonical Amino Acid Mutagenesis. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2018; 162:1-19. [PMID: 27783132 DOI: 10.1007/10_2016_37] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
To date, the two systems most extensively used for noncanonical amino acid (ncAA) incorporation via orthogonal translation are based on the Methanococcus jannaschii TyrRS/tRNA CUATyr and the Methanosarcina barkeri/Methanosarcina mazei PylRS/tRNA CUAPyl pairs. Here, we summarize the development and usage of the pyrrolysine-based system for orthogonal translation, a process that allows for the recombinant production of site-specifically labeled proteins and peptides. Via stop codon suppression in Escherichia coli and mammalian cells, genetically encoded biomolecules can be equipped with a great diversity of chemical functionalities including click chemistry handles, post-translational modifications, and photocaged sidechains.
Collapse
|
14
|
Seidel L, Coin I. Mapping of Protein Interfaces in Live Cells Using Genetically Encoded Crosslinkers. Methods Mol Biol 2018; 1728:221-235. [PMID: 29405001 DOI: 10.1007/978-1-4939-7574-7_14] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Understanding the topology of protein-protein interactions is a matter of fundamental importance in the biomedical field. Biophysical approaches such as X-ray crystallography and nuclear magnetic resonance can investigate in detail only isolated protein complexes that are reconstituted in an artificial environment. Alternative methods are needed to investigate protein interactions in a physiological context, as well as to characterize protein complexes that elude the direct structural characterization. We describe here a general strategy to investigate protein interactions at the molecular level directly in the live mammalian cell, which is based on the genetic incorporation of photo- and chemical crosslinking noncanonical amino acids. First a photo-crosslinking amino acid is used to map putative interaction surfaces and determine which positions of a protein come into proximity of an associated partner. In a second step, the subset of residues that belong to the binding interface are substituted with a chemical crosslinker that reacts selectively with proximal cysteines strategically placed in the interaction partner. This allows determining inter-molecular spatial constraints that provide the basis for building accurate molecular models. In this chapter, we illustrate the detailed application of this experimental strategy to unravel the binding modus of the 40-mer neuropeptide hormone Urocortin1 to its class B G-protein coupled receptor, the corticotropin releasing factor receptor type 1. The approach is in principle applicable to any protein complex independent of protein type and size, employs established techniques of noncanonical amino acid mutagenesis, and is feasible in any molecular biology laboratory.
Collapse
Affiliation(s)
- Lisa Seidel
- Institute of Biochemistry, University of Leipzig, Leipzig, Germany
| | - Irene Coin
- Institute of Biochemistry, University of Leipzig, Leipzig, Germany.
| |
Collapse
|
15
|
Li L, Zhang Z. Development and Applications of the Copper-Catalyzed Azide-Alkyne Cycloaddition (CuAAC) as a Bioorthogonal Reaction. Molecules 2016; 21:E1393. [PMID: 27783053 PMCID: PMC6273301 DOI: 10.3390/molecules21101393] [Citation(s) in RCA: 115] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Revised: 10/14/2016] [Accepted: 10/15/2016] [Indexed: 11/24/2022] Open
Abstract
The emergence of bioorthogonal reactions has greatly broadened the scope of biomolecule labeling and detecting. Of all the bioorthogonal reactions that have been developed, the copper-catalyzed azide-alkyne cycloaddition (CuAAC) is the most widely applied one, mainly because of its relatively fast kinetics and high efficiency. However, the introduction of copper species to in vivo systems raises the issue of potential toxicity. In order to reduce the copper-induced toxicity and further improve the reaction kinetics and efficiency, different strategies have been adopted, including the development of diverse copper chelating ligands to assist the catalytic cycle and the development of chelating azides as reagents. Up to now, the optimization of CuAAC has facilitated its applications in labeling and identifying either specific biomolecule species or on the omics level. Herein, we mainly discuss the efforts in the development of CuAAC to better fit the bioorthogonal reaction criteria and its bioorthogonal applications both in vivo and in vitro.
Collapse
Affiliation(s)
- Li Li
- School of Life Sciences, Peking University, Beijing 100871, China.
- National Institute of Biological Sciences, Beijing 102206, China.
| | - Zhiyuan Zhang
- National Institute of Biological Sciences, Beijing 102206, China.
| |
Collapse
|
16
|
|
17
|
Cheng M, Zhang W, Yuan J, Luo W, Li N, Lin S, Yang Y, Fang X, Chen PR. Single-molecule dynamics of site-specific labeled transforming growth factor type II receptors on living cells. Chem Commun (Camb) 2015; 50:14724-7. [PMID: 24887482 DOI: 10.1039/c4cc02804j] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
We achieved single-molecule imaging and tracking of the transforming growth factor type II receptor (TβRII) that was labeled by an organic dye via a genetically encoded unnatural amino acid (UAA) and the copper-free click chemistry. The stoichiometry, mobility and dimerization kinetics of individual TβRII molecules were determined.
Collapse
Affiliation(s)
- Ming Cheng
- Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Key Laboratory of Molecular Nanostructures and Nanotechnology, Chinese Academy of Sciences, Beijing 100190, P. R. China.
| | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Yang M, Li J, Chen PR. Transition metal-mediated bioorthogonal protein chemistry in living cells. Chem Soc Rev 2015; 43:6511-26. [PMID: 24867400 DOI: 10.1039/c4cs00117f] [Citation(s) in RCA: 232] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Considerable attention has been focused on improving the biocompatibility of Cu(I)-catalyzed azide-alkyne cycloaddition (CuAAC), a hallmark of bioorthogonal reaction, in living cells. Besides creating copper-free versions of click chemistry such as strain promoted azide-alkyne cycloaddition (SPAAC), a central effort has also been made to develop various Cu(I) ligands that can prevent the cytotoxicity of Cu(I) ions while accelerating the CuAAC reaction. Meanwhile, additional transition metals such as palladium have been explored as alternative sources to promote a bioorthogonal conjugation reaction on cell surface, as well as within an intracellular environment. Furthermore, transition metal mediated chemical conversions beyond conjugation have also been utilized to manipulate protein activity within living systems. We highlight these emerging examples that significantly enriched our protein chemistry toolkit, which will likely expand our view on the definition and applications of bioorthogonal chemistry.
Collapse
Affiliation(s)
- Maiyun Yang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Synthetic and Functional Biomolecules Center, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | | | | |
Collapse
|
19
|
Dumas A, Lercher L, Spicer CD, Davis BG. Designing logical codon reassignment - Expanding the chemistry in biology. Chem Sci 2015; 6:50-69. [PMID: 28553457 PMCID: PMC5424465 DOI: 10.1039/c4sc01534g] [Citation(s) in RCA: 327] [Impact Index Per Article: 36.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2014] [Accepted: 07/14/2014] [Indexed: 12/18/2022] Open
Abstract
Over the last decade, the ability to genetically encode unnatural amino acids (UAAs) has evolved rapidly. The programmed incorporation of UAAs into recombinant proteins relies on the reassignment or suppression of canonical codons with an amino-acyl tRNA synthetase/tRNA (aaRS/tRNA) pair, selective for the UAA of choice. In order to achieve selective incorporation, the aaRS should be selective for the designed tRNA and UAA over the endogenous amino acids and tRNAs. Enhanced selectivity has been achieved by transferring an aaRS/tRNA pair from another kingdom to the organism of interest, and subsequent aaRS evolution to acquire enhanced selectivity for the desired UAA. Today, over 150 non-canonical amino acids have been incorporated using such methods. This enables the introduction of a large variety of structures into proteins, in organisms ranging from prokaryote, yeast and mammalian cells lines to whole animals, enabling the study of protein function at a level that could not previously be achieved. While most research to date has focused on the suppression of 'non-sense' codons, recent developments are beginning to open up the possibility of quadruplet codon decoding and the more selective reassignment of sense codons, offering a potentially powerful tool for incorporating multiple amino acids. Here, we aim to provide a focused review of methods for UAA incorporation with an emphasis in particular on the different tRNA synthetase/tRNA pairs exploited or developed, focusing upon the different UAA structures that have been incorporated and the logic behind the design and future creation of such systems. Our hope is that this will help rationalize the design of systems for incorporation of unexplored unnatural amino acids, as well as novel applications for those already known.
Collapse
Affiliation(s)
- Anaëlle Dumas
- Chemistry Research Laboratory , Department of Chemistry , University of Oxford , Mansfield Road , Oxford , OX1 3TA , UK .
| | - Lukas Lercher
- Chemistry Research Laboratory , Department of Chemistry , University of Oxford , Mansfield Road , Oxford , OX1 3TA , UK .
| | - Christopher D Spicer
- Chemistry Research Laboratory , Department of Chemistry , University of Oxford , Mansfield Road , Oxford , OX1 3TA , UK .
| | - Benjamin G Davis
- Chemistry Research Laboratory , Department of Chemistry , University of Oxford , Mansfield Road , Oxford , OX1 3TA , UK .
| |
Collapse
|
20
|
Biocompatible click chemistry enabled compartment-specific pH measurement inside E. coli. Nat Commun 2014; 5:4981. [PMID: 25236616 PMCID: PMC4174402 DOI: 10.1038/ncomms5981] [Citation(s) in RCA: 82] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2014] [Accepted: 08/13/2014] [Indexed: 11/15/2022] Open
Abstract
Bioorthogonal reactions, especially the Cu(I)-catalyzed azide-alkyne cycloaddition, have revolutionized our ability to label and manipulate biomolecules under living conditions. The cytotoxicity of Cu(I) ions, however, has hindered the application of this reaction in the internal space of living cells. By systematically surveying a panel of Cu(I)-stabilizing ligands in promoting protein labeling within the cytoplasm of E. coli, here we identify a highly efficient and biocompatible catalyst for intracellular modification of proteins by azide-alkyne cycloaddition. This reaction permits us to conjugate an environment-sensitive fluorophore site-specifically onto HdeA, an acid-stress chaperone that adopts pH-dependent conformational changes, in both the periplasm and cytoplasm of E. coli. The resulting protein-fluorophore hybrid pH indicators enable compartment-specific pH measurement to determine the pH gradient across the E. coli cytoplasmic membrane. This construct also allows the measurement of E. coli transmembrane potential, and the determination of the proton motive force across its inner membrane under normal and acid-stress conditions.
Collapse
|
21
|
Torres-Kolbus J, Chou C, Liu J, Deiters A. Synthesis of non-linear protein dimers through a genetically encoded Thiol-ene reaction. PLoS One 2014; 9:e105467. [PMID: 25181502 PMCID: PMC4152134 DOI: 10.1371/journal.pone.0105467] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2014] [Accepted: 07/21/2014] [Indexed: 11/19/2022] Open
Abstract
Site-specific incorporation of bioorthogonal unnatural amino acids into proteins provides a useful tool for the installation of specific functionalities that will allow for the labeling of proteins with virtually any probe. We demonstrate the genetic encoding of a set of alkene lysines using the orthogonal PylRS/PylTCUA pair in Escherichia coli. The installed double bond functionality was then applied in a photoinitiated thiol-ene reaction of the protein with a fluorescent thiol-bearing probe, as well as a cysteine residue of a second protein, showing the applicability of this approach in the formation of heterogeneous non-linear fused proteins.
Collapse
Affiliation(s)
- Jessica Torres-Kolbus
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina, United States of America
| | - Chungjung Chou
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina, United States of America
| | - Jihe Liu
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Alexander Deiters
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina, United States of America
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| |
Collapse
|
22
|
Ma X, Wang H, Chen W. N-heterocyclic carbene-stabilized palladium complexes as organometallic catalysts for bioorthogonal cross-coupling reactions. J Org Chem 2014; 79:8652-8. [PMID: 25144406 DOI: 10.1021/jo5014228] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
A small library of water-soluble N-heterocyclic carbene (NHC)-stabilized palladium complexes was prepared and applied for cross-couplings of biomolecules under mild conditions in water. Pd-NHC complexes bearing hydrophilic groups were demonstrated to be efficient catalysts for the Suzuki-Miyaura coupling of various unnatural amino acids and proteins bearing p-iodophenyl functional groups. We further utilized this catalytic system for the rapid bioorthogonal labeling of proteins on the surfaces of mammalian cells. These results demonstrated that NHC-stabilized metal complexes have potential utility in cellular systems.
Collapse
Affiliation(s)
- Xueji Ma
- Department of Chemistry, Zhejiang University , Xixi Campus, Hangzhou 310028, China
| | | | | |
Collapse
|
23
|
Lang K, Chin JW. Cellular incorporation of unnatural amino acids and bioorthogonal labeling of proteins. Chem Rev 2014; 114:4764-806. [PMID: 24655057 DOI: 10.1021/cr400355w] [Citation(s) in RCA: 801] [Impact Index Per Article: 80.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Kathrin Lang
- Medical Research Council Laboratory of Molecular Biology , Francis Crick Avenue, Cambridge CB2 0QH, United Kingdom
| | | |
Collapse
|
24
|
Wan W, Tharp JM, Liu WR. Pyrrolysyl-tRNA synthetase: an ordinary enzyme but an outstanding genetic code expansion tool. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2014; 1844:1059-70. [PMID: 24631543 DOI: 10.1016/j.bbapap.2014.03.002] [Citation(s) in RCA: 290] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2014] [Revised: 03/01/2014] [Accepted: 03/05/2014] [Indexed: 11/16/2022]
Abstract
The genetic incorporation of the 22nd proteinogenic amino acid, pyrrolysine (Pyl) at amber codon is achieved by the action of pyrrolysyl-tRNA synthetase (PylRS) together with its cognate tRNA(Pyl). Unlike most aminoacyl-tRNA synthetases, PylRS displays high substrate side chain promiscuity, low selectivity toward its substrate α-amine, and low selectivity toward the anticodon of tRNA(Pyl). These unique but ordinary features of PylRS as an aminoacyl-tRNA synthetase allow the Pyl incorporation machinery to be easily engineered for the genetic incorporation of more than 100 non-canonical amino acids (NCAAs) or α-hydroxy acids into proteins at amber codon and the reassignment of other codons such as ochre UAA, opal UGA, and four-base AGGA codons to code NCAAs.
Collapse
Affiliation(s)
- Wei Wan
- Department of Chemistry, Texas A&M University, College Station, TX 77845, USA
| | - Jeffery M Tharp
- Department of Chemistry, Texas A&M University, College Station, TX 77845, USA
| | - Wenshe R Liu
- Department of Chemistry, Texas A&M University, College Station, TX 77845, USA.
| |
Collapse
|
25
|
Gattner MJ, Ehrlich M, Vrabel M. Sulfonyl azide-mediated norbornene aziridination for orthogonal peptide and protein labeling. Chem Commun (Camb) 2014; 50:12568-71. [DOI: 10.1039/c4cc04117h] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Here we show that electron-deficient sulfonyl azides can be used for selective functionalization of norbornene containing peptides and proteins.
Collapse
Affiliation(s)
- Michael J. Gattner
- Department of Chemistry
- Ludwig-Maximilians-University
- 81377 Munich, Germany
| | - Michael Ehrlich
- Department of Chemistry
- Ludwig-Maximilians-University
- 81377 Munich, Germany
| | - Milan Vrabel
- Department of Chemistry
- Ludwig-Maximilians-University
- 81377 Munich, Germany
| |
Collapse
|
26
|
Krishnakumar R, Ling J. Experimental challenges of sense codon reassignment: an innovative approach to genetic code expansion. FEBS Lett 2013; 588:383-8. [PMID: 24333334 DOI: 10.1016/j.febslet.2013.11.039] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2013] [Revised: 11/19/2013] [Accepted: 11/27/2013] [Indexed: 10/25/2022]
Abstract
The addition of new and versatile chemical and biological properties to proteins pursued through incorporation of non-canonical amino acids is at present primarily achieved by stop codon suppression. However, it is critical to find new "blank" codons to increase the variety and efficiency of such insertions, thereby taking 'sense codon recoding' to center stage in the field of genetic code expansion. Current thought optimistically suggests the use of the pyrrolysine system coupled with re-synthesis of genomic information towards achieving sense codon reassignment. Upon review of the serious experimental challenges reported in recent studies, we propose that success in this area will depend on the re-synthesis of genomes, but also on 'rewiring' the mechanism of protein synthesis and of its quality control.
Collapse
Affiliation(s)
- Radha Krishnakumar
- Synthetic Biology and Bioenergy, J. Craig Venter Institute, Rockville, MD 20850, USA.
| | - Jiqiang Ling
- Department of Microbiology and Molecular Genetics, University of Texas Health Science Center, The University of Texas Graduate School of Biomedical Sciences, Houston, TX 77030, USA
| |
Collapse
|
27
|
Schneider S, Gattner MJ, Vrabel M, Flügel V, López-Carrillo V, Prill S, Carell T. Structural Insights into Incorporation of Norbornene Amino Acids for Click Modification of Proteins. Chembiochem 2013; 14:2114-8. [DOI: 10.1002/cbic.201300435] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2013] [Indexed: 12/13/2022]
|
28
|
Lee YJ, Wu B, Raymond JE, Zeng Y, Fang X, Wooley KL, Liu WR. A genetically encoded acrylamide functionality. ACS Chem Biol 2013; 8:1664-70. [PMID: 23735044 DOI: 10.1021/cb400267m] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Nε-Acryloyl-l-lysine, a noncanonical amino acid with an electron deficient olefin, is genetically encoded in Escherichia coli using a pyrrolysyl-tRNA synthetase mutant in coordination with tRNACUAPyl. The acrylamide moiety is stable in cells, whereas it is active enough to perform a diverse set of unique reactions for protein modifications in vitro. These reactions include 1,4-addition, radical polymerization, and 1,3-dipolar cycloaddition. We demonstrate that a protein incorporated with Nε-acryloyl-l-lysine is efficiently modified with thiol-containing nucleophiles at slightly alkali conditions, and the acrylamide moiety also allows rapid radical copolymerization of the same protein into a polyacrylamide hydrogel at physiological pH. At physiological conditions, the acrylamide functionality undergoes a fast 1,3-dipolar cycloaddition reaction with diaryl nitrile imine to show turn-on fluorescence. We have used this observation to demonstrate site-specific fluorescent labeling of proteins incorporated with Nε-acryloyl-l-lysine both in vitro and in living cells. This critical development allows easy access to an array of modified proteins for applications where high specificity and reaction efficiency are needed.
Collapse
Affiliation(s)
- Yan-Jiun Lee
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - Bo Wu
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - Jeffrey E. Raymond
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - Yu Zeng
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - Xinqiang Fang
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - Karen L. Wooley
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - Wenshe R. Liu
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| |
Collapse
|
29
|
Li F, Zhang H, Sun Y, Pan Y, Zhou J, Wang J. Expanding the Genetic Code for Photoclick Chemistry inE. coli, Mammalian Cells, andA. thaliana. Angew Chem Int Ed Engl 2013. [DOI: 10.1002/ange.201303477] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
30
|
Li F, Zhang H, Sun Y, Pan Y, Zhou J, Wang J. Expanding the Genetic Code for Photoclick Chemistry inE. coli, Mammalian Cells, andA. thaliana. Angew Chem Int Ed Engl 2013; 52:9700-4. [DOI: 10.1002/anie.201303477] [Citation(s) in RCA: 80] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2013] [Revised: 06/24/2013] [Indexed: 12/25/2022]
|
31
|
Li J, Lin S, Wang J, Jia S, Yang M, Hao Z, Zhang X, Chen PR. Ligand-Free Palladium-Mediated Site-Specific Protein Labeling Inside Gram-Negative Bacterial Pathogens. J Am Chem Soc 2013; 135:7330-8. [DOI: 10.1021/ja402424j] [Citation(s) in RCA: 123] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Jie Li
- Synthetic and Functional Biomolecules
Center, Beijing National Laboratory for Molecular Sciences, Department
of Chemical Biology, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Shixian Lin
- Synthetic and Functional Biomolecules
Center, Beijing National Laboratory for Molecular Sciences, Department
of Chemical Biology, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Jie Wang
- Synthetic and Functional Biomolecules
Center, Beijing National Laboratory for Molecular Sciences, Department
of Chemical Biology, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Shang Jia
- Synthetic and Functional Biomolecules
Center, Beijing National Laboratory for Molecular Sciences, Department
of Chemical Biology, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Maiyun Yang
- Synthetic and Functional Biomolecules
Center, Beijing National Laboratory for Molecular Sciences, Department
of Chemical Biology, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Ziyang Hao
- Synthetic and Functional Biomolecules
Center, Beijing National Laboratory for Molecular Sciences, Department
of Chemical Biology, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Xiaoyu Zhang
- College of Chemistry and Chemical
Engineering, Lanzhou University, Lanzhou
730000, China
| | - Peng R. Chen
- Synthetic and Functional Biomolecules
Center, Beijing National Laboratory for Molecular Sciences, Department
of Chemical Biology, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
- Peking-Tsinghua Center for Life Sciences, Beijing, China
| |
Collapse
|
32
|
1-Thiacyclooct-4-yne (=5,6-Didehydro-3,4,7,8-tetrahydro-2H-thiocin), and Its Sulfoxide and Its Sulfone. Helv Chim Acta 2013. [DOI: 10.1002/hlca.201200260] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
33
|
Li Y, Pan M, Li Y, Huang Y, Guo Q. Thiol–yne radical reaction mediated site-specific protein labeling via genetic incorporation of an alkynyl-l-lysine analogue. Org Biomol Chem 2013; 11:2624-9. [DOI: 10.1039/c3ob27116a] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
34
|
Borrmann A, Milles S, Plass T, Dommerholt J, Verkade JMM, Wiessler M, Schultz C, van Hest JCM, van Delft FL, Lemke EA. Genetic encoding of a bicyclo[6.1.0]nonyne-charged amino acid enables fast cellular protein imaging by metal-free ligation. Chembiochem 2012; 13:2094-9. [PMID: 22945333 DOI: 10.1002/cbic.201200407] [Citation(s) in RCA: 145] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2012] [Indexed: 01/14/2023]
Abstract
Visualizing biomolecules by fluorescent tagging is a powerful method for studying their behaviour and function inside cells. We prepared and genetically encoded an unnatural amino acid (UAA) that features a bicyclononyne moiety. This UAA offered exceptional reactivity in strain-promoted azide-alkyne cycloadditions. Kinetic measurements revealed that the UAA reacted also remarkably fast in the inverse-electron-demand Diels-Alder cycloaddition with tetrazine-conjugated dyes. Genetic encoding of the new UAA inside mammalian cells and its subsequent selective labeling at low dye concentrations demonstrate the usefulness of the new amino acid for future imaging studies.
Collapse
Affiliation(s)
- Annika Borrmann
- Institute for Molecules and Materials, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands
| | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Yang M, Song Y, Zhang M, Lin S, Hao Z, Liang Y, Zhang D, Chen PR. Converting a Solvatochromic Fluorophore into a Protein-Based pH Indicator for Extreme Acidity. Angew Chem Int Ed Engl 2012; 51:7674-9. [DOI: 10.1002/anie.201204029] [Citation(s) in RCA: 105] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2012] [Revised: 06/15/2012] [Indexed: 11/11/2022]
|
36
|
Yang M, Song Y, Zhang M, Lin S, Hao Z, Liang Y, Zhang D, Chen PR. Converting a Solvatochromic Fluorophore into a Protein-Based pH Indicator for Extreme Acidity. Angew Chem Int Ed Engl 2012. [DOI: 10.1002/ange.201204029] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
37
|
Li YM, Yang MY, Huang YC, Li YT, Chen PR, Liu L. Ligation of expressed protein α-hydrazides via genetic incorporation of an α-hydroxy acid. ACS Chem Biol 2012; 7:1015-22. [PMID: 22424086 DOI: 10.1021/cb300020s] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Expressed protein ligation bridges the gap between synthetic peptides and recombinant proteins and thereby significantly increases the size and complexity of chemically synthesized proteins. Although the intein-based expressed protein ligation method has been extensively used in this regard, the development of new expressed protein ligation methods may improve the flexibility and power of protein semisynthesis. In this study a new alternative version of expressed protein ligation is developed by combining the recently developed technologies of hydrazide-based peptide ligation and genetic code expansion. Compared to the previous intein-based expressed protein ligation method, the new method does not require the use of protein splicing technology and generates recombinant protein α-hydrazides as ligation intermediates that are more chemically stable than protein α-thioesters. Furthermore, the use of an evolved mutant pyrrolysyl-tRNA synthetase(PylRS), ACPK-RS, from M. barkeri shows an improved performance for the expression of recombinant protein backbone oxoesters. By using HdeA as a model protein we demonstrate that the hydrazide-based method can be used to synthesize proteins with correctly folded structures and full biological activity. Because the PylRS-tRNACUAPyl system is compatible with both prokaryotic and eukaryotic cells,the strategy presented here may be readily expanded to manipulate proteins produced in mammalian cells. The new hydrazide-based method may also supplement the intein-based expressed protein ligation method by allowing for a more flexible selection of ligation site.
Collapse
Affiliation(s)
- Yi-Ming Li
- Tsinghua-Peking
Center for Life Sciences, Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Mai-Yun Yang
- Beijing National Laboratory for Molecular Sciences, Synthetic and Functional Biomolecules Center, Peking-Tsinghua Center for Life Sciences, and Department of Chemical Biology, Peking University, Beijing 100871, China
| | - Yi-Chao Huang
- Tsinghua-Peking
Center for Life Sciences, Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Yi-Tong Li
- Tsinghua-Peking
Center for Life Sciences, Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Peng R. Chen
- Beijing National Laboratory for Molecular Sciences, Synthetic and Functional Biomolecules Center, Peking-Tsinghua Center for Life Sciences, and Department of Chemical Biology, Peking University, Beijing 100871, China
| | - Lei Liu
- Tsinghua-Peking
Center for Life Sciences, Department of Chemistry, Tsinghua University, Beijing 100084, China
| |
Collapse
|
38
|
|
39
|
Plass T, Milles S, Koehler C, Szymański J, Mueller R, Wießler M, Schultz C, Lemke EA. Amino Acids for Diels-Alder Reactions in Living Cells. Angew Chem Int Ed Engl 2012; 51:4166-70. [DOI: 10.1002/anie.201108231] [Citation(s) in RCA: 277] [Impact Index Per Article: 23.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2011] [Revised: 02/17/2012] [Indexed: 01/03/2023]
|
40
|
Plass T, Milles S, Koehler C, Szymański J, Mueller R, Wießler M, Schultz C, Lemke EA. Amino Acids for Diels-Alder Reactions in Living Cells. Angew Chem Int Ed Engl 2012. [DOI: 10.1002/ange.201108231] [Citation(s) in RCA: 77] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
41
|
Kaya E, Vrabel M, Deiml C, Prill S, Fluxa VS, Carell T. A Genetically Encoded Norbornene Amino Acid for the Mild and Selective Modification of Proteins in a Copper-Free Click Reaction. Angew Chem Int Ed Engl 2012; 51:4466-9. [DOI: 10.1002/anie.201109252] [Citation(s) in RCA: 137] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2011] [Indexed: 12/31/2022]
|
42
|
Kaya E, Vrabel M, Deiml C, Prill S, Fluxa VS, Carell T. Genetische Kodierung einer Norbornen-Aminosäure zur milden und selektiven Modifikation von Proteinen mit einer kupferfreien Klick-Reaktion. Angew Chem Int Ed Engl 2012. [DOI: 10.1002/ange.201109252] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
43
|
Biochemical analysis with the expanded genetic lexicon. Anal Bioanal Chem 2012; 403:2089-102. [PMID: 22322380 DOI: 10.1007/s00216-012-5784-2] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2011] [Revised: 01/17/2012] [Accepted: 01/23/2012] [Indexed: 02/02/2023]
Abstract
The information used to build proteins is stored in the genetic material of every organism. In nature, ribosomes use 20 native amino acids to synthesize proteins in most circumstances. However, laboratory efforts to expand the genetic repertoire of living cells and organisms have successfully encoded more than 80 nonnative amino acids in E. coli, yeast, and other eukaryotic systems. The selectivity, fidelity, and site-specificity provided by the technology have enabled unprecedented flexibility in manipulating protein sequences and functions in cells. Various biophysical probes can be chemically conjugated or directly incorporated at specific residues in proteins, and corresponding analytical techniques can then be used to answer diverse biological questions. This review summarizes the methodology of genetic code expansion and its recent progress, and discusses the applications of commonly used analytical methods.
Collapse
|
44
|
Seitchik JL, Peeler JC, Taylor MT, Blackman ML, Rhoads TW, Cooley RB, Refakis C, Fox JM, Mehl RA. Genetically encoded tetrazine amino acid directs rapid site-specific in vivo bioorthogonal ligation with trans-cyclooctenes. J Am Chem Soc 2012; 134:2898-901. [PMID: 22283158 DOI: 10.1021/ja2109745] [Citation(s) in RCA: 211] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Bioorthogonal ligation methods with improved reaction rates and less obtrusive components are needed for site-specifically labeling proteins without catalysts. Currently no general method exists for in vivo site-specific labeling of proteins that combines fast reaction rate with stable, nontoxic, and chemoselective reagents. To overcome these limitations, we have developed a tetrazine-containing amino acid, 1, that is stable inside living cells. We have site-specifically genetically encoded this unique amino acid in response to an amber codon allowing a single 1 to be placed at any location in a protein. We have demonstrated that protein containing 1 can be ligated to a conformationally strained trans-cyclooctene in vitro and in vivo with reaction rates significantly faster than most commonly used labeling methods.
Collapse
Affiliation(s)
- Jason L Seitchik
- Department of Chemistry, Franklin & Marshall College, Lancaster, Pennsylvania 17604-3003, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Li Y, Yang M, Huang Y, Song X, Liu L, Chen PR. Genetically encoded alkenyl–pyrrolysine analogues for thiol–ene reaction mediated site-specific protein labeling. Chem Sci 2012. [DOI: 10.1039/c2sc20433a] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
46
|
Lin S, Zhang Z, Xu H, Li L, Chen S, Li J, Hao Z, Chen PR. Site-Specific Incorporation of Photo-Cross-Linker and Bioorthogonal Amino Acids into Enteric Bacterial Pathogens. J Am Chem Soc 2011; 133:20581-7. [DOI: 10.1021/ja209008w] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Shixian Lin
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Zhenrun Zhang
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Hao Xu
- National Institute of Biological Sciences (NIBS), Beijing 102206, China
| | - Lin Li
- National Institute of Biological Sciences (NIBS), Beijing 102206, China
| | - She Chen
- National Institute of Biological Sciences (NIBS), Beijing 102206, China
| | - Jie Li
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Ziyang Hao
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Peng R. Chen
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
- Center for Life Sciences, Beijing 100871, China
| |
Collapse
|
47
|
Hao Z, Hong S, Chen X, Chen PR. Introducing bioorthogonal functionalities into proteins in living cells. Acc Chem Res 2011; 44:742-51. [PMID: 21634380 DOI: 10.1021/ar200067r] [Citation(s) in RCA: 107] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Proteins are the workhorses of the cell, playing crucial roles in virtually every biological process. The revolutionary ability to visualize and monitor proteins in living systems, which is largely the result of the development of green fluorescence protein (GFP) and its derivatives, has dramatically expanded our understanding of protein dynamics and function. Still, GFPs are ill suited in many circumstances; one major drawback is their relatively large size, which can significantly perturb the functions of the native proteins to which they are fused. To bridge this gap, scientists working at the chemistry-biology interface have developed methods to install bioorthogonal functional groups into proteins in living cells. The bioorthogonal group is, by definition, a non-native and nonperturbing chemical group. But more importantly, the installed bioorthogonal handle is able to react with a probe bearing a complementary functionality in a highly selective fashion and with the cell operating in its physiological state. Although extensive efforts have been directed toward the development of bioorthogonal chemical reactions, introducing chemical functionalities into proteins in living systems remains an ongoing challenge. In this Account, we survey recent progress in this area, focusing on a genetic code expansion approach. In nature, a cell uses posttranslational modifications to append the necessary functional groups into proteins that are beyond those contained in the canonical 20 amino acids. Taking lessons from nature, scientists have chosen or engineered certain enzymes to modify target proteins with chemical handles. Alternatively, one can use the cell's translational machinery to genetically encode bioorthogonal functionalities, typically in the form of unnatural amino acids (UAAs), into proteins; this can be done in a residue-specific or a site-specific manner. For studying protein dynamics and function in living cells, site-specific modification by means of genetic code expansion is usually favored. A variety of UAAs bearing bioorthogonal groups as well as other functionalities have been genetically encoded into proteins of interest. Although this approach is well established in bacteria, tagging proteins in mammalian cells is challenging. A facile pyrrolysine-based system, which might potentially become the "one-stop shop" for protein modification in both prokaryotic and eukaryotic cells, has recently emerged. This technology can effectively introduce a series of bioorthogonal handles into proteins in mammalian cells for subsequent chemical conjugation with small-molecule probes. Moreover, the method may provide more precise protein labeling than GFP tagging. These advancements build the foundation for studying more complex cellular processes, such as the dynamics of important receptors on living mammalian cell surfaces.
Collapse
Affiliation(s)
- Ziyang Hao
- Beijing National Laboratory for Molecular Sciences and Department of Chemical Biology, College of Chemistry and Molecular Engineering
| | - Senlian Hong
- Beijing National Laboratory for Molecular Sciences and Department of Chemical Biology, College of Chemistry and Molecular Engineering
- School of Life Sciences, Peking University, Beijing 100871, China
| | - Xing Chen
- Beijing National Laboratory for Molecular Sciences and Department of Chemical Biology, College of Chemistry and Molecular Engineering
| | - Peng R. Chen
- Beijing National Laboratory for Molecular Sciences and Department of Chemical Biology, College of Chemistry and Molecular Engineering
- Laboratory of Chemical Genomics, School of Chemical Biology and Biotechnology, Shenzhen Graduate School of Peking University, Shenzhen 518055, China
| |
Collapse
|