1
|
Beach M, Nayanathara U, Gao Y, Zhang C, Xiong Y, Wang Y, Such GK. Polymeric Nanoparticles for Drug Delivery. Chem Rev 2024; 124:5505-5616. [PMID: 38626459 PMCID: PMC11086401 DOI: 10.1021/acs.chemrev.3c00705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/18/2024]
Abstract
The recent emergence of nanomedicine has revolutionized the therapeutic landscape and necessitated the creation of more sophisticated drug delivery systems. Polymeric nanoparticles sit at the forefront of numerous promising drug delivery designs, due to their unmatched control over physiochemical properties such as size, shape, architecture, charge, and surface functionality. Furthermore, polymeric nanoparticles have the ability to navigate various biological barriers to precisely target specific sites within the body, encapsulate a diverse range of therapeutic cargo and efficiently release this cargo in response to internal and external stimuli. However, despite these remarkable advantages, the presence of polymeric nanoparticles in wider clinical application is minimal. This review will provide a comprehensive understanding of polymeric nanoparticles as drug delivery vehicles. The biological barriers affecting drug delivery will be outlined first, followed by a comprehensive description of the various nanoparticle designs and preparation methods, beginning with the polymers on which they are based. The review will meticulously explore the current performance of polymeric nanoparticles against a myriad of diseases including cancer, viral and bacterial infections, before finally evaluating the advantages and crucial challenges that will determine their wider clinical potential in the decades to come.
Collapse
Affiliation(s)
- Maximilian
A. Beach
- School
of Chemistry, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Umeka Nayanathara
- School
of Chemistry, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Yanting Gao
- School
of Chemistry, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Changhe Zhang
- School
of Chemistry, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Yijun Xiong
- School
of Chemistry, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Yufu Wang
- School
of Chemistry, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Georgina K. Such
- School
of Chemistry, The University of Melbourne, Parkville, Victoria 3010, Australia
| |
Collapse
|
2
|
Kariya M, Omoto K, Nomura K, Yonezawa K, Kamikubo H, Nishino T, Inoie T, Rapenne G, Yasuhara K. Lipid cubic phase with an organic-inorganic hybrid structure formed by organoalkoxysilane lipid. Chem Commun (Camb) 2024; 60:2168-2171. [PMID: 38205510 DOI: 10.1039/d3cc05167f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2024]
Abstract
A lipid cubic phase encompassing a cross-linked siloxane structure was formed by the self-assembly of a synthetic organoalkoxysilane lipid in water. The spontaneous sol-gel reaction of the alkoxysilane moiety on the lipid head group produced an organic-inorganic hybrid material with a double gyroid Ia3d cubic structure.
Collapse
Affiliation(s)
- Miki Kariya
- Division of Materials Science, Nara Institute of Science and Technology (NAIST), 8916-5 Takayama-cho, Ikoma, 630-0192, Japan.
| | - Kenichiro Omoto
- Division of Materials Science, Nara Institute of Science and Technology (NAIST), 8916-5 Takayama-cho, Ikoma, 630-0192, Japan.
| | - Kaoru Nomura
- Bioorganic Research Institute, Suntory Foundation for Life Sciences, 8-1-1 Seikadai, Seika-cho, Soraku-gun, Kyoto, 619-0284, Japan
| | - Kento Yonezawa
- Division of Materials Science, Nara Institute of Science and Technology (NAIST), 8916-5 Takayama-cho, Ikoma, 630-0192, Japan.
- Center for Digital Green-innovation, Nara Institute of Science and Technology (NAIST), 8916-5 Takayama-cho, Ikoma, 630-0192, Japan
| | - Hironari Kamikubo
- Division of Materials Science, Nara Institute of Science and Technology (NAIST), 8916-5 Takayama-cho, Ikoma, 630-0192, Japan.
- Center for Digital Green-innovation, Nara Institute of Science and Technology (NAIST), 8916-5 Takayama-cho, Ikoma, 630-0192, Japan
| | - Toshio Nishino
- Division of Materials Science, Nara Institute of Science and Technology (NAIST), 8916-5 Takayama-cho, Ikoma, 630-0192, Japan.
| | - Tomomi Inoie
- Division of Materials Science, Nara Institute of Science and Technology (NAIST), 8916-5 Takayama-cho, Ikoma, 630-0192, Japan.
| | - Gwénaël Rapenne
- Division of Materials Science, Nara Institute of Science and Technology (NAIST), 8916-5 Takayama-cho, Ikoma, 630-0192, Japan.
- CEMES-CNRS, Université de Toulouse, CNRS, 29 Rue Marvig, F-31055 Toulouse Cedex 4, France
| | - Kazuma Yasuhara
- Division of Materials Science, Nara Institute of Science and Technology (NAIST), 8916-5 Takayama-cho, Ikoma, 630-0192, Japan.
- Center for Digital Green-innovation, Nara Institute of Science and Technology (NAIST), 8916-5 Takayama-cho, Ikoma, 630-0192, Japan
| |
Collapse
|
3
|
Hao J, Ishihara M, Rapenne G, Yasuhara K. Lipid nanodiscs spontaneously formed by an amphiphilic polymethacrylate derivative as an efficient nanocarrier for molecular delivery to intact cells. RSC Adv 2024; 14:6127-6134. [PMID: 38375006 PMCID: PMC10875731 DOI: 10.1039/d3ra07481a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 02/06/2024] [Indexed: 02/21/2024] Open
Abstract
There is a great demand for the technology of molecular delivery into living cells using nanocarriers to realise molecular therapies such as gene delivery and drug delivery systems. Lipid-based nanocarriers offer several advantages for molecular delivery in biological systems, such as easy preparation, high encapsulation efficiency of water-insoluble drug molecules, and excellent biocompatibility. In this paper, we first report the interaction of lipid nanodiscs spontaneously formed by the complexation of an amphiphilic polymethacrylate derivative and phospholipid with intact cells. We evaluated the internalisation of polymethacrylate-based lipid nanodiscs by intact HeLa cells and applied them to the delivery of paclitaxel (PTX), an anticancer drug. The lipid nanodisc showed excellent uptake efficiency compared to conventional liposomes at a concentration where nanodiscs do not show cytotoxicity. In addition, the nanodisc encapsulating PTX showed significantly higher anticancer activity than PTX-loaded liposomes against HeLa cells, reflecting their excellent activity in delivering payloads to intact cells. This study demonstrated the potential of a polymethacrylate-based lipid nanodisc as a novel nanocarrier for molecular delivery to intact cells.
Collapse
Affiliation(s)
- Jinyu Hao
- Division of Materials Science, Graduate School of Science and Technology, Nara Institute of Science and Technology (NAIST) 8916-5 Takayama-cho Ikoma 630-0192 Japan
| | - Mika Ishihara
- Division of Materials Science, Graduate School of Science and Technology, Nara Institute of Science and Technology (NAIST) 8916-5 Takayama-cho Ikoma 630-0192 Japan
| | - Gwénaël Rapenne
- Division of Materials Science, Graduate School of Science and Technology, Nara Institute of Science and Technology (NAIST) 8916-5 Takayama-cho Ikoma 630-0192 Japan
- CEMES-CNRS, Université de Toulouse, CNRS 29 Rue Marvig F-31055 Toulouse Cedex 4 France
| | - Kazuma Yasuhara
- Division of Materials Science, Graduate School of Science and Technology, Nara Institute of Science and Technology (NAIST) 8916-5 Takayama-cho Ikoma 630-0192 Japan
- Centre for Digital Green-innovation, Nara Institute of Science and Technology (NAIST) 8916-5 Takayama-cho Ikoma 630-0192 Japan
| |
Collapse
|
4
|
Hasnol SBM, Fujii S, Matsunaga T, Sakuragi M. A Study on Bicellar Structural Characteristics and Skin Permeabilities across the Stratum Corneum of Arginine-Modified Peptide-induced Bicelles as a Potential Transdermal Drug Carrier. J Oleo Sci 2024; 73:1411-1422. [PMID: 39496434 DOI: 10.5650/jos.ess24103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2024] Open
Abstract
In this study, the effects of incorporating arginine-modified peptide into the structure of discshaped bicelles were investigated. Characterization of bicellar system was conducted using different techniques, including dynamic light scattering (DLS), zeta potential, cryogenic transmission electron microscopy (cryo-TEM) and small angle X-ray scattering (SAXS). Bicelle skin permeability as drug carriers was also evaluated. The addition of peptides revealed formation of small-sized, stable and discoidal-shaped bicelles. Positive zeta potential and synchrotron radiation experiments confirmed the presence and showed the peptide distribution across the bicelle face and rim region. A major disruption with the lipid rearrangement of the stratum corneum and the disruption of bicelle structures by the interaction between bicelle lipids and stratum corneum lipids were observed during the application of bicelles with cholesteryl chloroformate-arginine 8-mer (CholR8). This also demonstrated the highest penetration of the drug-loaded bicelle across the hairless mouse skin. As a model drug, non-steroidal anti-inflammatory drug, meloxicam was selected. Meloxicam was incorporated into the hydrophobic domain of bicelles due to its hydrophobic property. Considering these results, bicelle induced with peptides exhibits useful and promising characteristics and behaviors, shaping an effective strategy for future transdermal drug delivery applications.
Collapse
Affiliation(s)
| | - Shota Fujii
- Department of Chemistry and Biochemistry, The University of Kitakyushu
| | - Takuya Matsunaga
- Department of Chemistry and Biochemistry, The University of Kitakyushu
| | - Mina Sakuragi
- Division of Applied Chemistry, Graduate School of Engineering, Sojo University
| |
Collapse
|
5
|
Szyling J, Walkowiak J, Czapik A, Franczyk A. Synthesis of unsymmetrically and symmetrically functionalized disiloxanes via subsequent hydrosilylation of C≡C bonds. Sci Rep 2023; 13:10244. [PMID: 37353562 DOI: 10.1038/s41598-023-37375-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 06/20/2023] [Indexed: 06/25/2023] Open
Abstract
A selective synthesis of unsymmetrically functionalized disiloxanes via the subsequent hydrosilylation of internal alkynes in the first step, and alkynes (terminal or internal) or 1,3-diynes in the second, with 1,1,3,3-tetramethyldisiloxane (1) is presented for the first time. Using developed approaches performed in a stepwise or one-pot manner a new family of disubstituted disiloxanes was obtained which had previously been inaccessible by other synthetic methods. Moreover, symmetrically functionalized disiloxanes were obtained by direct hydrosilylation of 2 equivalents of terminal or internal alkynes with 1, showing the unique versatility of the hydrosilylation process. Three examples of symmetric disiloxanes were characterized by single crystal X-ray diffraction for the first time. As a result, a wide group of new compounds which can find potential applications as building blocks or coupling agents was obtained and characterized.
Collapse
Affiliation(s)
- Jakub Szyling
- Center for Advanced Technology, Adam Mickiewicz University, Uniwersytetu Poznanskiego 10, 61-614, Poznan, Poland
| | - Jędrzej Walkowiak
- Center for Advanced Technology, Adam Mickiewicz University, Uniwersytetu Poznanskiego 10, 61-614, Poznan, Poland
| | - Agnieszka Czapik
- Faculty of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznanskiego 8, 61-614, Poznan, Poland
| | - Adrian Franczyk
- Center for Advanced Technology, Adam Mickiewicz University, Uniwersytetu Poznanskiego 10, 61-614, Poznan, Poland.
| |
Collapse
|
6
|
Takagi Y, Uchida N, Anraku Y, Muraoka T. Stabilization of bicelles using metal-binding peptide for extended blood circulation. Chem Commun (Camb) 2022; 58:5164-5167. [PMID: 35388392 DOI: 10.1039/d2cc01058e] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A metal-binding peptide appending cholic acid, Chol-MBP, formed bicelles by mixing with 1,2-dipalmitoyl-sn-glycero-3-phosphorylcholine (DPPC). Coordination of Chol-MBP with Cu2+ stabilized DPPC bicelles against dilution and contamination of serum proteins, enabling extended blood circulation. This study demonstrates an effective supramolecular design of phospholipid bicelles with enhanced stability useful for membrane-based biomaterials.
Collapse
Affiliation(s)
- Yuichiro Takagi
- Department of Applied Chemistry, Graduate School of Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo 184-8588, Japan.
| | - Noriyuki Uchida
- Department of Applied Chemistry, Graduate School of Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo 184-8588, Japan.
| | - Yasutaka Anraku
- Department of Bioengineering, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan.,Innovation Center of NanoMedicine, Kawasaki Institute of Industrial Promotion, 3-25-14, Tonomachi, Kawasaki-ku, Kawasaki 210-0821, Japan
| | - Takahiro Muraoka
- Department of Applied Chemistry, Graduate School of Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo 184-8588, Japan. .,Institute of Global Innovation Research, Tokyo University of Agriculture and Technology, 3-8-1 Harumi-cho, Fuchu-Shi, Tokyo 183-8538, Japan.,Kanagawa Institute of Industrial Science and Technology (KISTEC), 705-1 Shimoimaizumi, Ebina, Kanagawa 243-0435, Japan
| |
Collapse
|
7
|
Mkam Tsengam IK, Omarova M, Kelley EG, McCormick A, Bothun GD, Raghavan SR, John VT. Transformation of Lipid Vesicles into Micelles by Adding Nonionic Surfactants: Elucidating the Structural Pathway and the Intermediate Structures. J Phys Chem B 2022; 126:2208-2216. [PMID: 35286100 PMCID: PMC8958590 DOI: 10.1021/acs.jpcb.1c09685] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 03/01/2022] [Indexed: 11/28/2022]
Abstract
The phospholipid lecithin (L) and the nonionic surfactant Tween 80 (T) are used together in various contexts, including in drug delivery and oil spill remediation. There is hence a need to elucidate the nanostructures in LT mixtures, which is the focus of this paper. We study these mixtures using cryogenic transmission electron microscopy (cryo-TEM), coupled with dynamic light scattering and small-angle neutron scattering. As the concentration of Tween 80 is increased, the vesicles formed by lecithin are transformed into spherical micelles. We identify bicelles (i.e., disc-like micelles) as well as cylindrical micelles as the key stable nanostructures formed at intermediate L/T ratios. The bicelles have diameters ∼13-26 nm, and the bicelle size decreases as the Tween 80 content increases. We propose that the lecithin lipids form the body of the discs, while the Tween 80 surfactants occupy the rims. This hypothesis is consistent with geometric arguments because lecithin is double-tailed and favors minimal curvature, whereas the single-tailed Tween 80 molecules prefer curved interfaces. In the case of cylindrical micelles, cryo-TEM reveals that the micelles are short (length < 22 nm) and flexible. We are able to directly visualize the microstructure of the aggregates formed by lecithin-Tween 80 mixtures, thereby enhancing the understanding of morphological changes in the lecithin-Tween 80 system.
Collapse
Affiliation(s)
- Igor Kevin Mkam Tsengam
- Department
of Chemical and Biomolecular Engineering, Tulane University, 300 Lindy Boggs Building, New Orleans, Louisiana 70118, United States
| | - Marzhana Omarova
- Department
of Chemical and Biomolecular Engineering, Tulane University, 300 Lindy Boggs Building, New Orleans, Louisiana 70118, United States
| | - Elizabeth G. Kelley
- Center
for Neutron Research, National Institute
of Standards and Technology, Gaithersburg, Maryland 20899, United States
| | - Alon McCormick
- Department
of Chemical Engineering and Material Science, University of Minnesota, 421 Washington Avenue SE, Minneapolis, Minnesota 55455, United States
| | - Geoffrey D. Bothun
- Department
of Chemical Engineering, University of Rhode
Island, 51 Lower College Road; Kingston, Rhode Island 02881, United States
| | - Srinivasa R. Raghavan
- Department
of Chemical and Biomolecular Engineering, University of Maryland, College
Park, Maryland 20742, United States
| | - Vijay T. John
- Department
of Chemical and Biomolecular Engineering, Tulane University, 300 Lindy Boggs Building, New Orleans, Louisiana 70118, United States
| |
Collapse
|
8
|
Bariwal J, Ma H, Altenberg GA, Liang H. Nanodiscs: a versatile nanocarrier platform for cancer diagnosis and treatment. Chem Soc Rev 2022; 51:1702-1728. [PMID: 35156110 DOI: 10.1039/d1cs01074c] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Cancer therapy is a significant challenge due to insufficient drug delivery to the cancer cells and non-selective killing of healthy cells by most chemotherapy agents. Nano-formulations have shown great promise for targeted drug delivery with improved efficiency. The shape and size of nanocarriers significantly affect their transport inside the body and internalization into the cancer cells. Non-spherical nanoparticles have shown prolonged blood circulation half-lives and higher cellular internalization frequency than spherical ones. Nanodiscs are desirable nano-formulations that demonstrate enhanced anisotropic character and versatile functionalization potential. Here, we review the recent development of theranostic nanodiscs for cancer mitigation ranging from traditional lipid nanodiscs encased by membrane scaffold proteins to newer nanodiscs where either the membrane scaffold proteins or the lipid bilayers themselves are replaced with their synthetic analogues. We first discuss early cancer detection enabled by nanodiscs. We then explain different strategies that have been explored to carry a wide range of payloads for chemotherapy, cancer gene therapy, and cancer vaccines. Finally, we discuss recent progress on organic-inorganic hybrid nanodiscs and polymer nanodiscs that have the potential to overcome the inherent instability problem of lipid nanodiscs.
Collapse
Affiliation(s)
- Jitender Bariwal
- Department of Cell Physiology and Molecular Biophysics, and Center for Membrane Protein Research, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, USA.
| | - Hairong Ma
- Department of Cell Physiology and Molecular Biophysics, and Center for Membrane Protein Research, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, USA.
| | - Guillermo A Altenberg
- Department of Cell Physiology and Molecular Biophysics, and Center for Membrane Protein Research, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, USA.
| | - Hongjun Liang
- Department of Cell Physiology and Molecular Biophysics, and Center for Membrane Protein Research, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, USA.
| |
Collapse
|
9
|
Kim S, Lim WG, Im H, Ban M, Han JW, Lee J, Hwang J, Lee J. Polymer Interface-Dependent Morphological Transition toward Two-Dimensional Porous Inorganic Nanocoins as an Ultrathin Multifunctional Layer for Stable Lithium-Sulfur Batteries. J Am Chem Soc 2021; 143:15644-15652. [PMID: 34469682 DOI: 10.1021/jacs.1c05562] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Two-dimensional (2D) porous inorganic nanomaterials have intriguing properties as a result of dimensional features and high porosity, but controlled production of circular 2D shapes is still challenging. Here, we designed a simple approach to produce 2D porous inorganic nanocoins (NCs) by integrating block copolymer (BCP) self-assembly and orientation control of microdomains at polymer-polymer interfaces. Multicomponent blends containing BCP and homopoly(methyl methacrylate) (hPMMA) are designed to undergo macrophase separation followed by microphase separation. The balanced interfacial compatibility of BCP allows perpendicularly oriented lamellar-assembly at the interfaces between BCP-rich phase and hPMMA matrix. Disassembly of lamellar structures and calcination yield ultrathin 2D inorganic NCs that are perforated by micropores. This approach enables control of the thickness, size, and chemical composition of the NCs. 2D porous and acidic aluminosilicate NC (AS-NC) is used to fabricate an ultrathin and lightweight functional separator for lithium-sulfur batteries. The AS-NC layer acts as an ionic sieve to selectively block lithium polysulfides. Abundant acid sites chemically capture polysulfides, and micropores physically exclude them, so sulfur utilization and cycle stability are increased.
Collapse
Affiliation(s)
- Seongseop Kim
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Daejeon 34141, Republic of Korea
| | - Won-Gwang Lim
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Daejeon 34141, Republic of Korea
| | - Hyeonae Im
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-Ro, Nam-Gu, Pohang 37673, Gyeongbuk, Republic of Korea
| | - Minkyeong Ban
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Daejeon 34141, Republic of Korea
| | - Jeong Woo Han
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-Ro, Nam-Gu, Pohang 37673, Gyeongbuk, Republic of Korea
| | - Jisung Lee
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Daejeon 34141, Republic of Korea
| | - Jongkook Hwang
- Department of Chemical Engineering, Ajou University, Worldcupro 206, Suwon 16499, Republic of Korea
| | - Jinwoo Lee
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Daejeon 34141, Republic of Korea
| |
Collapse
|
10
|
Uchida N, Yanagi M, Hamada H. Physical Enhancement? Nanocarrier? Current Progress in Transdermal Drug Delivery. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:335. [PMID: 33525364 PMCID: PMC7911274 DOI: 10.3390/nano11020335] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 01/18/2021] [Accepted: 01/25/2021] [Indexed: 12/19/2022]
Abstract
A transdermal drug delivery system (TDDS) is a method that provides drug adsorption via the skin. TDDS could replace conventional oral administration and blood administration because it is easily accessible. However, it is still difficult to design efficient TDDS due to the high barrier property of skin covered with stratum corneum, which inhibits the permeation of drug molecules. Thus far, TDDS methods by applying physical stimuli such as microneedles and chemical stimuli such as surfactants have been actively developed. However, it has been hard to avoid inflammation at the administration site because these methods partially destroy the skin tissue. On the other hand, TDDS with nanocarriers minimizing damage to the skin tissues has emerged together with the development of nanotechnology in recent years. This review focuses on current trends in TDDS.
Collapse
Affiliation(s)
- Noriyuki Uchida
- Department of Applied Chemistry, Graduate School of Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Nakacho, Koganei, Tokyo 184-8588, Japan
- RIKEN Center for Emergent Matter Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Masayoshi Yanagi
- Department of Life Science, Faculty of Science, Okayama University of Science, 1-1 Ridai Kita, Okayama 700-0005, Japan;
| | - Hiroki Hamada
- Department of Life Science, Faculty of Science, Okayama University of Science, 1-1 Ridai Kita, Okayama 700-0005, Japan;
| |
Collapse
|
11
|
Frampton MB, Blais A, Raczywolski Z, Castle A, Zelisko PM. Exploring the utility of hybrid siloxane-phosphocholine (SiPC) liposomes as drug delivery vehicles. RSC Adv 2021. [DOI: 10.1039/d0ra10052h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Hybrid siloxane-phosphocholines (SiPCs) are a unique class of lipids that spontaneously form unilamellar vesicles (ULVs) that are ∼100 nm in diameter upon exposure to aqueous media without the need for extrusion and can be used as delivery vehicles.
Collapse
Affiliation(s)
- Mark B. Frampton
- Department of Chemistry
- Centre for Biotechnology
- Brock University
- St. Catharines
- Canada
| | - Andrea Blais
- Department of Chemistry
- Centre for Biotechnology
- Brock University
- St. Catharines
- Canada
| | - Zachary Raczywolski
- Department of Chemistry
- Centre for Biotechnology
- Brock University
- St. Catharines
- Canada
| | - Alan Castle
- Department of Biological Sciences
- Centre for Biotechnology
- Brock University
- St. Catharines
- Canada
| | - Paul M. Zelisko
- Department of Chemistry
- Centre for Biotechnology
- Brock University
- St. Catharines
- Canada
| |
Collapse
|
12
|
Yasuhara K, Morigaki K. New lipid membrane technologies for reconstitution, analysis, and utilization of 'living' membrane proteins. Biophys Physicobiol 2020; 17:125-129. [PMID: 33240738 PMCID: PMC7671742 DOI: 10.2142/biophysico.bsj-2020021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Accepted: 08/28/2020] [Indexed: 12/01/2022] Open
Affiliation(s)
- Kazuma Yasuhara
- Division of Materials Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, Ikoma, Nara 630-0192, Japan
| | - Kenichi Morigaki
- Biosignal Research Center, Kobe University, Kobe, Hyogo 657-8501, Japan.,Graduate School of Agricultural Science, Kobe University, Kobe, Hyogo 657-8501, Japan
| |
Collapse
|
13
|
Chen Q, Guan G, Deng F, Yang D, Wu P, Kang S, Sun R, Wang X, Zhou D, Dai W, Wang X, Zhang H, He B, Chen D, Zhang Q. Anisotropic active ligandations in siRNA-Loaded hybrid nanodiscs lead to distinct carcinostatic outcomes by regulating nano-bio interactions. Biomaterials 2020; 251:120008. [PMID: 32388031 DOI: 10.1016/j.biomaterials.2020.120008] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 03/24/2020] [Accepted: 03/26/2020] [Indexed: 12/19/2022]
Abstract
Active targeting modification is one of the foremost nanomedicine strategies for the efficacy improvement. Compared to the homogeneous ligandation on spherical nanocarriers, non-spherical nanomedicines usually make the ligand modification more complicated. The modified ligands always exhibit anisotropy and heterogeneity. However, there is very little systematic study on these diversified anisotropic modifications. The efficacy difference and underlying mechanism were still unclear. Here, we separately fabricated hybrid nanodiscs (NDs) conjugated with cRGD on the edge and plane surfaces to engineer two anisotropic targeting nanocarriers (E-cRGD-NDs and P-cRGD-NDs, respectively) for gene delivery. The ligand anisotropy endowed NDs with diversified cellular interactions, and caused different efficacies between E-cRGD-NDs and P-cRGD-NDs. Of note, E-cRGD-NDs showed significant superiority in siRNA loading, cellular uptake, silence efficiency, protein expression and even in vivo efficacy. The mechanism investigation revealed the functional anisotropy specifically for E-cRGD-NDs. The edge modification of cRGD efficiently separated the targeting and siRNA loading domains, maximizing their respective functions. These findings reflected the unique effect of ligand anisotropy, also provided a new strategy for the targeting screening of extensive nanomedicines.
Collapse
Affiliation(s)
- Qing Chen
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, 110016, China; Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China; State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing, 100191, China
| | - Guannan Guan
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Feiyang Deng
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China; State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing, 100191, China
| | - Dan Yang
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, 110016, China; Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China; State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing, 100191, China
| | - Peiyao Wu
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, 110016, China; Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China; State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing, 100191, China
| | - Shuangming Kang
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, 110016, China; HONSAN Health Indutry Group, ShenZhen, 518000, China
| | - Ruimeng Sun
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, 110016, China; Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China; State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing, 100191, China
| | - Xiaoyou Wang
- College of Pharmaceutical Sciences, Southwest University, Chongqing, 400715, China
| | - Demin Zhou
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Wenbing Dai
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China; State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing, 100191, China
| | - Xueqing Wang
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China; State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing, 100191, China
| | - Hua Zhang
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China; State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing, 100191, China
| | - Bing He
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China; State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing, 100191, China.
| | - Dawei Chen
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, 110016, China.
| | - Qiang Zhang
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, 110016, China; Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China; State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing, 100191, China.
| |
Collapse
|
14
|
Combination of Roll Grinding and High-Pressure Homogenization Can Prepare Stable Bicelles for Drug Delivery. NANOMATERIALS 2018; 8:nano8120998. [PMID: 30513913 PMCID: PMC6316440 DOI: 10.3390/nano8120998] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Revised: 11/21/2018] [Accepted: 11/30/2018] [Indexed: 12/14/2022]
Abstract
To improve the solubility of the drug nifedipine (NI), NI-encapsulated lipid-based nanoparticles (NI-LNs) have been prepared from neutral hydrogenated soybean phosphatidylcholine and negatively charged dipalmitoylphosphatidylglycerol at a molar ratio of 5/1 using by roll grinding and high-pressure homogenization. The NI-LNs exhibited high entrapment efficiency, long-term stability, and enhanced NI bioavailability. To better understand their structures, cryo transmission electron microscopy and atomic force microscopy were performed in the present study. Imaging from both instruments revealed that the NI-LNs were bicelles. Structures prepared with a different drug (phenytoin) or with phospholipids (dimyristoylphosphatidylcholine, dipalmitoylphosphatidylcholine, and distearoylphosphatidylcholine) were also bicelles. Long-term storage, freeze-drying, and high-pressure homogenization did not affect the structures; however, different lipid ratios, or the presence of cholesterol, did result in liposomes (5/0) or micelles (0/5) with different physicochemical properties and stabilities. Considering the result of long-term stability, standard NI-LN bicelles (5/1) showed the most long-term stabilities, providing a useful preparation method for stable bicelles for drug delivery.
Collapse
|
15
|
Wang J, Wang AZ, Lv P, Tao W, Liu G. Advancing the Pharmaceutical Potential of Bioinorganic Hybrid Lipid-Based Assemblies. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2018; 5:1800564. [PMID: 30250799 PMCID: PMC6145262 DOI: 10.1002/advs.201800564] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Revised: 05/29/2018] [Indexed: 06/08/2023]
Abstract
Bioinspired lipid assemblies that mimic the elaborate architecture of natural membranes have fascinated researchers for a long time. These lipid assemblies have gone from being just an imperative platform for biophysical research to a pharmaceutical delivery system for biomedical applications. Despite success, these organized nanosystems are often subject to the mechanical instability and limited theranostic capability without adding any inconvenient modifications. To reach their advanced pharmaceutical potential, various bioinorganic hybrid lipid-based assembles, which provide new opportunities to synergistically complement and improve therapeutic/diagnostic potential of existing lipid-based nanomedicine with distinct mechanisms containing inorganic embedded surfactants, have recently been developed.
Collapse
Affiliation(s)
- Junqing Wang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational MedicineSchool of Public HealthXiamen UniversityXiamen361102China
- Center for Nanomedicine and Department of AnesthesiologyBrigham and Women's HospitalHarvard Medical SchoolBostonMA02115USA
| | - Angela Zhe Wang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational MedicineSchool of Public HealthXiamen UniversityXiamen361102China
- Blood Cancer Cytogenetics and Genomics LaboratoryDepartment of Anatomical and Cellular PathologyPrince of Wales HospitalThe Chinese University of Hong KongShatinHong Kong S.A.R.China
| | - Peng Lv
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational MedicineSchool of Public HealthXiamen UniversityXiamen361102China
| | - Wei Tao
- Center for Nanomedicine and Department of AnesthesiologyBrigham and Women's HospitalHarvard Medical SchoolBostonMA02115USA
| | - Gang Liu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational MedicineSchool of Public HealthXiamen UniversityXiamen361102China
- State Key Laboratory of Cellular Stress BiologyInnovation Center for Cell BiologySchool of Life SciencesXiamen UniversityXiamen361102China
- The MOE Key Laboratory of Spectrochemical Analysis & InstrumentationCollege of Chemistry and Chemical EngineeringXiamen UniversityXiamen361005China
| |
Collapse
|
16
|
Hameed S, Bhattarai P, Dai Z. Cerasomes and Bicelles: Hybrid Bilayered Nanostructures With Silica-Like Surface in Cancer Theranostics. Front Chem 2018; 6:127. [PMID: 29721494 PMCID: PMC5915561 DOI: 10.3389/fchem.2018.00127] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Accepted: 04/03/2018] [Indexed: 01/10/2023] Open
Abstract
Over years, theranostic nanoplatforms have provided a new avenue for the diagnosis and treatment of various cancer types. To this end, a myriad of nanocarriers such as polymeric micelles, liposomes, and inorganic nanoparticles (NPs) with distinct physiochemical and biological properties are routinely investigated for preclinical and clinical studies. So far, liposomes have received great attention for various biomedical applications, however, it still suffers from insufficient morphological stability. On the other hand, inorganic NPs depicting excellent therapeutic ability have failed to address biocompatibility issues. This has raised a serious concern about the clinical approval of multifunctional organic or inorganic-based theranostic agents. Recently, partially silica coated nanohybrids such as cerasomes and bicelles demonstrating both diagnostic and therapeutic ability in a single system, have drawn profound attention as a fascinating novel drug delivery system. Compared with traditional liposomal or inorganic-based nanoformulations, this new and highly stable nanocarriers integrates the functional attributes of biomimetic liposomes and silica NPs, therefore, synergize strengths and functions, or even surpass weaknesses of individual components. This review at its best enlightens the emerging concept of such partially silica coated nanohybrids, fabrication strategies, and theranostic opportunities to combat cancer and related diseases.
Collapse
Affiliation(s)
- Sadaf Hameed
- Department of Biomedical Engineering, College of Engineering, Peking University, Beijing, China
| | - Pravin Bhattarai
- Department of Biomedical Engineering, College of Engineering, Peking University, Beijing, China
| | - Zhifei Dai
- Department of Biomedical Engineering, College of Engineering, Peking University, Beijing, China
| |
Collapse
|
17
|
Isabettini S, Massabni S, Hodzic A, Durovic D, Kohlbrecher J, Ishikawa T, Fischer P, Windhab EJ, Walde P, Kuster S. Molecular engineering of lanthanide ion chelating phospholipids generating assemblies with a switched magnetic susceptibility. Phys Chem Chem Phys 2018; 19:20991-21002. [PMID: 28745755 DOI: 10.1039/c7cp03994h] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Lanthanide ion (Ln3+) chelating amphiphiles are powerful molecules for tailoring the magnetic response of polymolecular assemblies. Mixtures of 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC) and 1,2-dimyristoyl-sn-glycero-3-phospho-ethanolamine-diethylene triaminepentaacetate (DMPE-DTPA) complexed to Ln3+ deliver highly magnetically responsive bicelles. Their magnetic properties are readily tuned by changing the bicellar size or the magnetic susceptibility Δχ of the bilayer lipids. The former technique is intrinsically bound to the region of the phase diagram guarantying the formation of bicelles. Methods aiming towards manipulating the Δχ of the bilayer are comparatively more robust, flexible and lacking. Herein, we synthesized a new Ln3+ chelating phospholipid using glutamic acid as a backbone: DMPE-Glu-DTPA. The chelate polyhedron was specifically engineered to alter the Δχ, whilst remaining geometrically similar to DMPE-DTPA. Planar asymmetric assemblies hundreds of nanometers in size were achieved presenting unprecedented magnetic alignments. The DMPE-Glu-DTPA/Ln3+ complex switched the Δχ, achieving perpendicular alignment of assemblies containing Dy3+ and parallel alignment of those containing Tm3+. Moreover, samples with chelated Yb3+ were more alignable than the Tm3+ chelating counterparts. Such a possibility has never been demonstrated for planar Ln3+ chelating polymolecular assemblies. The physico-chemical properties of these novel assemblies were further studied by monitoring the alignment behavior at different temperatures and by including 16 mol% of cholesterol (Chol-OH) in the phospholipid bilayer. The DMPE-Glu-DTPA/Ln3+ complex and the resulting assemblies are promising candidates for applications in numerous fields including pharmaceutical technologies, structural characterization of membrane biomolecules by NMR spectroscopy, as contrasting agents for magnetic resonance imaging, and for the development of smart optical gels.
Collapse
Affiliation(s)
- Stéphane Isabettini
- Laboratory of Food Process Engineering, ETH Zürich, Schmelzbergstrasse 7, 8092 Zürich, Switzerland.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Isabettini S, Liebi M, Kohlbrecher J, Ishikawa T, Fischer P, Windhab EJ, Walde P, Kuster S. Mastering the magnetic susceptibility of magnetically responsive bicelles with 3β-amino-5-cholestene and complexed lanthanide ions. Phys Chem Chem Phys 2018; 19:10820-10824. [PMID: 28401210 DOI: 10.1039/c7cp01025g] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The magnetic susceptibility of lanthanide-chelating bicelles was selectively enhanced by introducing 3β-amino-5-cholestene (aminocholesterol, Chol-NH2) in the bilayer. Unprecedented magnetic alignment of the bicelles was achieved without altering their size. An aminocholesterol conjugate (Chol-C2OC2-NH2), in combination with different lanthanide ions, offers the possibility of fine-tuning the bicelle's magnetic susceptibility.
Collapse
Affiliation(s)
- Stéphane Isabettini
- Laboratory of Food Process Engineering, ETH Zürich, Schmelzbergstrasse 7, 8092 Zürich, Switzerland.
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Yasuhara K, Arakida J, Ravula T, Ramadugu SK, Sahoo B, Kikuchi JI, Ramamoorthy A. Spontaneous Lipid Nanodisc Fomation by Amphiphilic Polymethacrylate Copolymers. J Am Chem Soc 2017; 139:18657-18663. [PMID: 29171274 DOI: 10.1021/jacs.7b10591] [Citation(s) in RCA: 85] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
There is a growing interest in the use of lipid bilayer nanodiscs for various biochemical and biomedical applications. Among the different types of nanodiscs, the unique features of synthetic polymer-based nanodiscs have attracted additional interest. A styrene-maleic acid (SMA) copolymer demonstrated to form lipid nanodiscs has been used for structural biology related studies on membrane proteins. However, the application of SMA polymer based lipid nanodiscs is limited because of the strong absorption of the aromatic group interfering with various experimental measurements. Thus, there is considerable interest in the development of other molecular frameworks for the formation of polymer-based lipid nanodiscs. In this study, we report the first synthesis and characterization of a library of polymethacrylate random copolymers as alternatives to SMA polymer. In addition, we experimentally demonstrate the ability of these polymers to form lipid bilayer nanodiscs through the fragmentation of lipid vesicles by means of light scattering, electron microscopy, differential scanning calorimetry, and solution and solid-state NMR experiments. We further demonstrate a unique application of the newly developed polymer for kinetics and structural characterization of the aggregation of human islet amyloid polypeptide (also known as amylin) within the lipid bilayer of the polymer nanodiscs using thioflavin-T-based fluorescence and circular dichroism experiments. Our results demonstrate that the reported new styrene-free polymers can be used in high-throughput biophysical experiments. Therefore, we expect that the new polymer nanodiscs will be valuable in the structural studies of amyloid proteins and membrane proteins by various biophysical techniques.
Collapse
Affiliation(s)
- Kazuma Yasuhara
- Graduate School of Materials Science, Nara Institute of Science and Technology , 8916-5 Takayama-cho, Ikoma, Nara 6300192, Japan
| | - Jin Arakida
- Graduate School of Materials Science, Nara Institute of Science and Technology , 8916-5 Takayama-cho, Ikoma, Nara 6300192, Japan
| | - Thirupathi Ravula
- Biophysics Program and Department of Chemistry, University of Michigan , Ann Arbor, Michigan 48109-1055, United States
| | - Sudheer Kumar Ramadugu
- Biophysics Program and Department of Chemistry, University of Michigan , Ann Arbor, Michigan 48109-1055, United States
| | - Bikash Sahoo
- Biophysics Program and Department of Chemistry, University of Michigan , Ann Arbor, Michigan 48109-1055, United States
| | - Jun-Ichi Kikuchi
- Graduate School of Materials Science, Nara Institute of Science and Technology , 8916-5 Takayama-cho, Ikoma, Nara 6300192, Japan
| | - Ayyalusamy Ramamoorthy
- Biophysics Program and Department of Chemistry, University of Michigan , Ann Arbor, Michigan 48109-1055, United States
| |
Collapse
|
20
|
Lin L, Liang X, Xu Y, Yang Y, Li X, Dai Z. Doxorubicin and Indocyanine Green Loaded Hybrid Bicelles for Fluorescence Imaging Guided Synergetic Chemo/Photothermal Therapy. Bioconjug Chem 2017; 28:2410-2419. [DOI: 10.1021/acs.bioconjchem.7b00407] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Li Lin
- Department of Biomedical
Engineering, College of Engineering, Peking University, Beijing 100871, China
| | - Xiaolong Liang
- Department of Biomedical
Engineering, College of Engineering, Peking University, Beijing 100871, China
| | - Yunxue Xu
- Department of Biomedical
Engineering, College of Engineering, Peking University, Beijing 100871, China
| | - Yongbo Yang
- Department of Biomedical
Engineering, College of Engineering, Peking University, Beijing 100871, China
| | - Xiaoda Li
- Department of Biomedical
Engineering, College of Engineering, Peking University, Beijing 100871, China
| | - Zhifei Dai
- Department of Biomedical
Engineering, College of Engineering, Peking University, Beijing 100871, China
| |
Collapse
|
21
|
Abstract
The application of biocatalytic or chemoenzymatic techniques in silicon chemistry serves two roles: it provides a greater understanding of the processing of silicon species by natural systems, such as plants, diatoms, and sponges, as well opening up avenues to green methodologies in the field. In the latter case, biocatalytic approaches have been applied to the synthesis of small-molecule systems and polymeric materials. Often these biocatalytic approaches allow access to molecular structures under mild conditions and, in some cases, molecular structures that are not accessible through traditional chemical methodologies. A review of recent advances in the applications of biocatalysis in silicon chemistry is presented.
Collapse
Affiliation(s)
- Mark B Frampton
- School of Biosciences, Loyalist College, 376 Wallbridge-Loyalist Road, Belleville, ON, K89 5B9, Canada
| | - Paul M Zelisko
- Department of Chemistry and Centre for Biotechnology, Brock University, 1812 Sir Isaac Brock Way, St. Catharines, ON, L2S 3A1, Canada
| |
Collapse
|
22
|
Lin L, Wang X, Li X, Yang Y, Yue X, Zhang Q, Dai Z. Modulating Drug Release Rate from Partially Silica-Coated Bicellar Nanodisc by Incorporating PEGylated Phospholipid. Bioconjug Chem 2016; 28:53-63. [PMID: 27718555 DOI: 10.1021/acs.bioconjchem.6b00508] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
This article reports an effective method to regulate hydrophobic drug release rate from partially silica-coated bicellar nanodisc generated from proamphiphilic organoalkoxysilane and dihexanoylphosphatidylcholine by introducing different molar percentages of 1,2-distearoyl-sn-glycero-3-phosphoethanolamine-N-PEG2000 (DSPE-PEG2000) into planar bilayers of hybrid bicelles. It was found that the drug release rate increased with increasing the molar percentages of DSPE-PEG2000, and 57.38%, 69.21%, 78.69%, 81.64%, and 82.23% of hydrophobic doxorubicin was released within 120 h from the nanodics incorporating with 0%, 2.5%, 5%, 10%, and 20% DSPE-PEG2000, respectively. Compared with the non-PEGylated nanodisc and free doxorubicin, the PEGylated nanodiscs showed good biocompatibility, high cellular uptake, and adhesion, as well as high local drug accumulation. In addition, both in vitro and in vivo results demonstrated significantly improved antitumor efficacy of the PEGylated nanodisc than its control groups. Thus, the PEGylated nanodisc with partial silica coating offers a facile and efficient strategy of drug delivery for chemotherapy with improved patient acceptance and compliance.
Collapse
Affiliation(s)
| | - Xiaoyou Wang
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery System, College of Engineering, School of Pharmaceutical Sciences, Peking University , Beijing 100871, China
| | | | | | | | - Qiang Zhang
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery System, College of Engineering, School of Pharmaceutical Sciences, Peking University , Beijing 100871, China
| | - Zhifei Dai
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery System, College of Engineering, School of Pharmaceutical Sciences, Peking University , Beijing 100871, China
| |
Collapse
|
23
|
Li Y, Wu Y, Zheng S, Liang X, Han X, Liu R, Zhao D, Zhao Y, Jin Y, Chen M, Wang X, Cao H, Yue X, Shi TS, Liang Z. PEGylated cationic hybrid bicellar nanodisc for efficient siRNA delivery. RSC Adv 2016. [DOI: 10.1039/c6ra24268e] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Highly stable PEGylated cationic hybrid bicellar nanodisc for efficient siRNA delivery.
Collapse
|
24
|
Lin L, Wang X, Guo Y, Ren K, Li X, Jing L, Yue X, Zhang Q, Dai Z. Hybrid bicelles as a pH-sensitive nanocarrier for hydrophobic drug delivery. RSC Adv 2016. [DOI: 10.1039/c6ra18112k] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Stabilized disc-like hybrid bicelles provide pH-sensitive release, preferable cellular uptake, tumor accumulation and therapeutic effect in vitro and in vivo.
Collapse
Affiliation(s)
- Li Lin
- School of Life Science and Technology
- School of Municipal and Environmental Engineering
- Harbin Institute of Technology
- Harbin 150001
- China
| | - Xiaoyou Wang
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery System
- College of Engineering
- School of Pharmaceutical Sciences
- Peking University
- Beijing 100191
| | - Yanyu Guo
- School of Life Science and Technology
- School of Municipal and Environmental Engineering
- Harbin Institute of Technology
- Harbin 150001
- China
| | - Kuan Ren
- School of Life Science and Technology
- School of Municipal and Environmental Engineering
- Harbin Institute of Technology
- Harbin 150001
- China
| | - Xiaoda Li
- School of Life Science and Technology
- School of Municipal and Environmental Engineering
- Harbin Institute of Technology
- Harbin 150001
- China
| | - Lijia Jing
- School of Life Science and Technology
- School of Municipal and Environmental Engineering
- Harbin Institute of Technology
- Harbin 150001
- China
| | - Xiuli Yue
- School of Life Science and Technology
- School of Municipal and Environmental Engineering
- Harbin Institute of Technology
- Harbin 150001
- China
| | - Qiang Zhang
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery System
- College of Engineering
- School of Pharmaceutical Sciences
- Peking University
- Beijing 100191
| | - Zhifei Dai
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery System
- College of Engineering
- School of Pharmaceutical Sciences
- Peking University
- Beijing 100191
| |
Collapse
|
25
|
Cuvier A, Babonneau F, Berton J, Stevens CV, Fadda GC, Péhau‐Arnaudet G, Le Griel P, Prévost S, Perez J, Baccile N. Nanoscale Platelet Formation by Monounsaturated and Saturated Sophorolipids under Basic pH Conditions. Chemistry 2015; 21:19265-77. [DOI: 10.1002/chem.201502933] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2015] [Indexed: 12/15/2022]
Affiliation(s)
- Anne‐Sophie Cuvier
- Sorbonne Universités, UPMC Univ Paris 06, CNRS, Collège de France UMR 7574, Chimie de la Matière Condensée de Paris, UMR 7574, 75005 Paris (France)
| | - Florence Babonneau
- Sorbonne Universités, UPMC Univ Paris 06, CNRS, Collège de France UMR 7574, Chimie de la Matière Condensée de Paris, UMR 7574, 75005 Paris (France)
| | - Jan Berton
- SynBioC, Department of Sustainable Organic Chemistry and Technology, Ghent University, Ghent (Belgium)
| | - Christian V. Stevens
- SynBioC, Department of Sustainable Organic Chemistry and Technology, Ghent University, Ghent (Belgium)
| | - Giulia C. Fadda
- Laboratoire Léon Brillouin, LLB, CEA Saclay, 91191 Gif‐sur‐Yvette Cedex (France)
| | | | - Patrick Le Griel
- Sorbonne Universités, UPMC Univ Paris 06, CNRS, Collège de France UMR 7574, Chimie de la Matière Condensée de Paris, UMR 7574, 75005 Paris (France)
| | - Sylvain Prévost
- ESRF ‐ The European Synchrotron, High Brilliance Beamline ID02, 38043 Grenoble (France)
| | - Javier Perez
- SWING, Synchrotron Soleil, BP 48, 91192 Gif‐sur‐Yvette, (France)
| | - Niki Baccile
- Sorbonne Universités, UPMC Univ Paris 06, CNRS, Collège de France UMR 7574, Chimie de la Matière Condensée de Paris, UMR 7574, 75005 Paris (France)
| |
Collapse
|
26
|
Matsui R, Ohtani M, Yamada K, Hikima T, Takata M, Nakamura T, Koshino H, Ishida Y, Aida T. Chemically Locked Bicelles with High Thermal and Kinetic Stability. Angew Chem Int Ed Engl 2015. [DOI: 10.1002/ange.201506781] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Ryoichi Matsui
- Department of Chemistry and Biotechnology, School of Engineering, The University of Tokyo, 7‐3‐1 Hongo, Bunkyo‐ku, Tokyo 113‐8656 (Japan)
| | - Masataka Ohtani
- RIKEN Center for Emergent Material Science, 2‐1 Hirosawa, Wako, Saitama 351‐0198 (Japan)
| | - Kuniyo Yamada
- RIKEN Center for Emergent Material Science, 2‐1 Hirosawa, Wako, Saitama 351‐0198 (Japan)
| | - Takaaki Hikima
- RIKEN SPring‐8 Center, 1‐1‐1 Kouto, Sayo, Hyogo 679‐5148 (Japan)
| | - Masaki Takata
- RIKEN SPring‐8 Center, 1‐1‐1 Kouto, Sayo, Hyogo 679‐5148 (Japan)
| | - Takashi Nakamura
- RIKEN Center for Sustainable Resource Science, 2‐1 Hirosawa, Wako, Saitama 351‐0198 (Japan)
| | - Hiroyuki Koshino
- RIKEN Center for Sustainable Resource Science, 2‐1 Hirosawa, Wako, Saitama 351‐0198 (Japan)
| | - Yasuhiro Ishida
- RIKEN Center for Emergent Material Science, 2‐1 Hirosawa, Wako, Saitama 351‐0198 (Japan)
| | - Takuzo Aida
- RIKEN Center for Emergent Material Science, 2‐1 Hirosawa, Wako, Saitama 351‐0198 (Japan)
- Department of Chemistry and Biotechnology, School of Engineering, The University of Tokyo, 7‐3‐1 Hongo, Bunkyo‐ku, Tokyo 113‐8656 (Japan)
| |
Collapse
|
27
|
Matsui R, Ohtani M, Yamada K, Hikima T, Takata M, Nakamura T, Koshino H, Ishida Y, Aida T. Chemically Locked Bicelles with High Thermal and Kinetic Stability. Angew Chem Int Ed Engl 2015; 54:13284-8. [PMID: 26373898 DOI: 10.1002/anie.201506781] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Indexed: 11/08/2022]
Abstract
In situ polymerization of a bicellar mixture composed of a phospholipid and polymerizable surfactants afforded unprecedented stable bicelles. The polymerized composite showed an aligned phase over a wide thermal range (25 to >90 °C) with excellent (2)H quadrupole splitting of the solvent signal, thus implying versatility as an alignment medium for NMR studies. Crosslinking of the surfactants also brought favorable effects on the kinetic stability and alignment morphology of the bicelles. This system could thus offer a new class of scaffolds for biomembrane models.
Collapse
Affiliation(s)
- Ryoichi Matsui
- Department of Chemistry and Biotechnology, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656 (Japan)
| | - Masataka Ohtani
- RIKEN Center for Emergent Material Science, 2-1 Hirosawa, Wako, Saitama 351-0198 (Japan)
| | - Kuniyo Yamada
- RIKEN Center for Emergent Material Science, 2-1 Hirosawa, Wako, Saitama 351-0198 (Japan)
| | - Takaaki Hikima
- RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo, Hyogo 679-5148 (Japan)
| | - Masaki Takata
- RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo, Hyogo 679-5148 (Japan)
| | - Takashi Nakamura
- RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako, Saitama 351-0198 (Japan)
| | - Hiroyuki Koshino
- RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako, Saitama 351-0198 (Japan)
| | - Yasuhiro Ishida
- RIKEN Center for Emergent Material Science, 2-1 Hirosawa, Wako, Saitama 351-0198 (Japan).
| | - Takuzo Aida
- RIKEN Center for Emergent Material Science, 2-1 Hirosawa, Wako, Saitama 351-0198 (Japan).,Department of Chemistry and Biotechnology, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656 (Japan)
| |
Collapse
|
28
|
Ikeda A, Kiguchi K, Hida T, Yasuhara K, Nobusawa K, Akiyama M, Shinoda W. [70]Fullerenes assist the formation of phospholipid bicelles at low lipid concentrations. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2014; 30:12315-12320. [PMID: 25275703 DOI: 10.1021/la503732q] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
The incorporation of neutral [70]fullerenes (C70) led to bicelle formation in a relatively low lipid concentration range from neutral lipid mixtures (DMPC/DHPC). Furthermore, C70 addition resulted in the formation of large bicelles with a radius of ca. 100 nm, in contrast to C70-free bicelles that were formed from anionic lipid mixtures (DMPC/DHPC/DMPG). The stabilization of these bicelles was attributed to C70 incorporation into the membranes.
Collapse
Affiliation(s)
- Atsushi Ikeda
- Department of Applied Chemistry, Graduate School of Engineering, Hiroshima University , Higashi-Hiroshima 739-8527, Japan
| | | | | | | | | | | | | |
Collapse
|
29
|
Chen L, Wei B, Zhang X, Li C. Bifunctional graphene/γ-Fe₂O₃ hybrid aerogels with double nanocrystalline networks for enzyme immobilization. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2013; 9:2331-2340. [PMID: 23423944 DOI: 10.1002/smll.201202923] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2012] [Indexed: 06/01/2023]
Abstract
Highly porous hosting materials with conducting (favorable to electron transfer) and magnetic (favorable to product separation) bicontinuous networks should possess great potentials for immobilization of various enzymes in the field of biocatalytic engineering, but the synthesis of such materials is still a great challenge. Herein, bifunctional graphene/γ-Fe2 O3 hybrid aerogels with quite low density (30-65 mg cm(-3) ), large specific surface area (270-414 m(2) g(-1) ), high electrical conductivity (0.5-5 × 10(-2) S m(-1) ), and superior saturation magnetization (23-54 emu g(-1) ) are fabricated. Single networks of either graphene aerogels or γ-Fe2 O3 aerogels are obtained by etching of the hybrid aerogels with acid solution or calcining of the hybrid aerogels in air, indicative of the double networks of the as-synthesized graphene/γ-Fe2 O3 hybrid aerogels for the first time. The resulting bifunctional aerogels are used to immobilize β-glucuronidase for biocatalytic transformation of glycyrrhizin into glycyrrhetinic acid monoglucuronide or glycyrrhetinic acid, with high biocatalytic activity and definite repeatability.
Collapse
Affiliation(s)
- Liang Chen
- School of Materials Science & Engineering, Beijing Institute of Technology, Beijing 100081, PR China
| | | | | | | |
Collapse
|
30
|
Dürr UH, Soong R, Ramamoorthy A. When detergent meets bilayer: birth and coming of age of lipid bicelles. PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2013; 69:1-22. [PMID: 23465641 PMCID: PMC3741677 DOI: 10.1016/j.pnmrs.2013.01.001] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2012] [Accepted: 08/30/2012] [Indexed: 05/12/2023]
|
31
|
Yasuhara K, Kawataki T, Okuda S, Oshima S, Kikuchi JI. Spontaneously formed semipermeable organic–inorganic hybrid vesicles permitting molecular weight selective transmembrane passage. Chem Commun (Camb) 2013; 49:665-7. [DOI: 10.1039/c2cc36662b] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
32
|
Dürr UN, Gildenberg M, Ramamoorthy A. The magic of bicelles lights up membrane protein structure. Chem Rev 2012; 112:6054-74. [PMID: 22920148 PMCID: PMC3497859 DOI: 10.1021/cr300061w] [Citation(s) in RCA: 274] [Impact Index Per Article: 21.1] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2012] [Indexed: 12/12/2022]
Affiliation(s)
| | - Melissa Gildenberg
- Biophysics
and Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109-1055,
United States
| | - Ayyalusamy Ramamoorthy
- Biophysics
and Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109-1055,
United States
| |
Collapse
|
33
|
Yasuhara K, Hayashi H, Kikuchi JI. Thermal Stability of Synthetic Lipid Bicelles Encompassed by Siloxane Surfaces as Organic–Inorganic Hybrid Nanodiscs. CHEM LETT 2012. [DOI: 10.1246/cl.2012.1223] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Kazuma Yasuhara
- Graduate School of Materials Science, Nara Institute of Science and Technology
| | - Hiroki Hayashi
- Graduate School of Materials Science, Nara Institute of Science and Technology
| | - Jun-ichi Kikuchi
- Graduate School of Materials Science, Nara Institute of Science and Technology
| |
Collapse
|