1
|
Zheng X, Zhao Y, Zhang Y, Zhu Y, Zhang J, Xu D, Yang H, Zhou Y. Alkaline phosphatase triggered gold nanoclusters turn-on fluorescence immunoassay for detection of Ochratoxin A. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 304:123317. [PMID: 37688875 DOI: 10.1016/j.saa.2023.123317] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 08/28/2023] [Accepted: 08/30/2023] [Indexed: 09/11/2023]
Abstract
Ochratoxin A (OTA) is a highly toxic mycotoxin which can cause a variety of diseases. Sensitive detection of OTA is significant for food safety. Herein, a feasible and sensitive immunoassay was established for OTA detection by alkaline phosphatase (ALP) triggered gold nanoclusters (AuNCs) turn-on fluorescence. The fluorescence of the AuNCs can be quenched by Cr6+ induced aggregation of AuNCs and the fluorescence resonance energy transfer (FRET) between AuNCs and Cr6+. Under the catalytic action of ALP-labelled IgG (IgG-ALP), the ascorbic acid 2-phosphate (AA2P) was hydrolyzed to ascorbic acid (AA) for the reducing of Cr6+ to Cr3+. As a result, the degrees of AuNCs aggregation and FRET were weakened and the fluorescence of AuNCs was turned on. The amount of OTA in the sample was negatively correlated with the amount of IgG-ALP captured by anti-OTA monoclonal antibody (McAb) in the microplate. In optimal conditions, the turn-on fluorescence immunoassay had a good linear range of 6.25-100 ng/mL, and the detection limit was 0.693 ng/mL. The recoveries of OTA from corn were 95.89%-101.08% for the fluorescence immunoassay. This work provided a feasible, sensitive and good selectivity fluorescence method for OTA detection.
Collapse
Affiliation(s)
- Xiaolong Zheng
- College of Animal Science and Technology, Yangtze University, 266 Jingmi Road, Jingzhou, Hubei, 434025, China
| | - Yanan Zhao
- College of Animal Science and Technology, Yangtze University, 266 Jingmi Road, Jingzhou, Hubei, 434025, China
| | - Yan Zhang
- College of Life Science, Yangtze University, 266 Jingmi Road, Jingzhou, Hubei, 434025, China
| | - Yuanhua Zhu
- College of Animal Science and Technology, Yangtze University, 266 Jingmi Road, Jingzhou, Hubei, 434025, China
| | - Junxiang Zhang
- College of Life Science, Yangtze University, 266 Jingmi Road, Jingzhou, Hubei, 434025, China
| | - Die Xu
- College of Life Science, Yangtze University, 266 Jingmi Road, Jingzhou, Hubei, 434025, China
| | - Hualin Yang
- College of Animal Science and Technology, Yangtze University, 266 Jingmi Road, Jingzhou, Hubei, 434025, China; College of Life Science, Yangtze University, 266 Jingmi Road, Jingzhou, Hubei, 434025, China.
| | - Yu Zhou
- College of Animal Science and Technology, Yangtze University, 266 Jingmi Road, Jingzhou, Hubei, 434025, China.
| |
Collapse
|
2
|
Dai S, Li W, Xu R, Wang X, Li Q, Dou M, Li J. Label-Free Fluorescence Quantitative Detection Platform on Plasmonic Silica Photonic Crystal Microsphere Array. Anal Chem 2022; 94:17939-17946. [PMID: 36519631 DOI: 10.1021/acs.analchem.2c04000] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
We have demonstrated the proof-of-concept of a label-free fluorescence quantitative detection platform based on gold nanoparticle (AuNP) enhancement intrinsic fluorescence of protein on the silica photonic crystal microsphere (SPCM) array. The label-free one-step competitive fluorescence immunoassay protocol has been proposed on the surface of the SPCM. Aflatoxin B1 (AFB1) as a model molecule was detected by the newly established method. AFB1-bovine serum albumin and monoclonal antibodies (Abs) of anti-AFB1 have been immobilized on the surfaces of SPCMs and AuNPs, respectively. AuNPs remarkably enhanced the intrinsic fluorescence of artificial antigens on the surface of the SPCM at near UV excitation. The simulation of electric field distribution showed that the maximum value of the near-field enhancement |E/E0| of the SPCM with AuNPs could reach 20. The label-free fluorescence enhancement effect comes from the synergistic effects of photonic crystal effect and AuNP plasmon effect. Such a label-free fluorescence detection method can provide a linear detection range from 0.1 to 10 ng/mL with a limit of detection of 0.025 ng/mL and good specificity for AFB1. The recovery rates in the spiked cereal samples were measured in the range of 84.07 ± 5.71%-101.02 ± 5.13%, which were consistent with that of the traditional enzyme linked immunosorbent assay method. The label-free detection platform displays great application potential in biology, medicine, agriculture, food industry, chemical industry, energy source, and environmental protection.
Collapse
Affiliation(s)
- Shijie Dai
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing210023, China
| | - Wei Li
- Medical Imaging Center, the First Affiliated Hospital, Jinan University, Guangzhou, Guangdong510627China
| | - Ruimin Xu
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing210023, China
| | - Xin Wang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing210023, China
| | - Qianjin Li
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing210023, China
| | - Menghua Dou
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing210023, China
| | - Jianlin Li
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing210023, China
| |
Collapse
|
3
|
A fluorescence immunosensor for ochratoxin A based on resonance energy transfer between fluorescein derivative and gold nanoparticles. J Food Compost Anal 2022. [DOI: 10.1016/j.jfca.2022.104806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
4
|
Qin G, Zhou Q, Li H, Yan F, He J, Wei Y, Wang H, Chen Y, Lao S, Yang Y, Luo L, Mo R. A sensitiveWS2nanosheet sensing platform based on chemiluminescence resonance energy transfer for the detection of ochratoxin A. Aust J Chem 2022. [DOI: 10.1071/ch21285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
5
|
Sun J, Li M, Xing F, Wang H, Zhang Y, Sun X. Novel dual immunochromatographic test strip based on double antibodies and biotin-streptavidin system for simultaneous sensitive detection of aflatoxin M1 and ochratoxin A in milk. Food Chem 2021; 375:131682. [PMID: 34863599 DOI: 10.1016/j.foodchem.2021.131682] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 11/13/2021] [Accepted: 11/23/2021] [Indexed: 12/25/2022]
Abstract
The coexistence of mycotoxins in agricultural products poses a serious threat to food safety. This study developed a dual immunochromatographic test strips (DICTS) method based on double antibodies labeled with time-resolved fluorescent microspheres (TRFM) to realize simultaneous rapid detection of aflatoxin M1 (AFM1) and ochratoxin A (OTA) in milk. As bridge antibody, the polyclonal antibody (pAb) was first conjugated with the TRFM and then with the monoclonal antibody (mAb). Meanwhile, a biotin-streptavidin system was introduced to replace the traditional goat anti-mouse Immunoglobulin G, thus providing a stable signal on the control line. After optimization, the detection limit of AFM1 and OTA in milk was respectively 0.018 and 0.036 ng/mL. The recoveries of intraassay and interassay experiments ranged from 89.65% to 103.99%. The accuracy, repeatability, and specificity of the developed TRFM-DICTS were estimated. The results of TRFM-DICTS showed a high consistency with those of the ultrahigh-performance liquid chromatography-tandem mass spectrometry.
Collapse
Affiliation(s)
- Jiadi Sun
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, School of Food Science Synergetic Innovation Center of Food Safety and Nutrition, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Miao Li
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, School of Food Science Synergetic Innovation Center of Food Safety and Nutrition, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Fuguo Xing
- Key Laboratory of Agro-products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs/Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, PR China
| | - Haiming Wang
- Guangzhou GRG Metrology & Test Co., Ltd., Guangzhou 510630, China
| | - Yinzhi Zhang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, School of Food Science Synergetic Innovation Center of Food Safety and Nutrition, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Xiulan Sun
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, School of Food Science Synergetic Innovation Center of Food Safety and Nutrition, Jiangnan University, Wuxi, Jiangsu 214122, China.
| |
Collapse
|
6
|
A label-free, direct solid-phase fluorimetric analysis of ochratoxin A in agricultural products with monoclonal antibody-immobilized monolith. Food Chem 2020; 346:128736. [PMID: 33293146 DOI: 10.1016/j.foodchem.2020.128736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 11/23/2020] [Accepted: 11/23/2020] [Indexed: 11/20/2022]
Abstract
We established a method for directly measuring mycotoxin ochratoxin A (OTA) in foods by solid-phase fluorescence of monolith-immobilized antibodies. The antibody was introduced onto only one side of an 8 mm-diameter, 3 mm-thick monolith via covalently immobilized protein G. 4 μg (2.7 × 10-11 mol) of antibody was immobilized per one monolith. A maximum of 10 μg (2.4 × 10-11 mol) OTA adsorbed to the activated side of each monolith. The amount of OTA adsorbed and the fluorescence intensity showed good linearity in the range of 0.5-3 ng OTA. Loading the sample solution onto the non-antibody side on the monolith blocked the hydrophobic fluorescent matrices from reaching the immobilized surface of the antibody. The proposed method was able to detect 1 ng OTA/g in solid samples with complex matrices. Mean recoveries obtained at spiked concentration of 3 ng g-1 OTA/g were 78-90% with relative standard deviations of <7.9%.
Collapse
|
7
|
Armstrong-Price DE, Deore PS, Manderville RA. Intrinsic "Turn-On" Aptasensor Detection of Ochratoxin A Using Energy-Transfer Fluorescence. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:2249-2255. [PMID: 31986034 DOI: 10.1021/acs.jafc.9b07391] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Ochratoxin A (OTA) is an intrinsically fluorescent phenolic mycotoxin that contaminates a wide range of food products and is a serious health threat to animals and humans. An OTA binding aptamer (OTABA) that folds into an antiparallel G-quadruplex (GQ) in the absence and presence of target OTA has been incorporated into a vast variety of aptasensor platforms for OTA detection. The development of a simple, aptamer-based approach would allow for detection of the toxin without the use of complex analytical instrumentation, which has been the gold standard for OTA detection thus far. However, to date, none of the aptasensor platforms have utilized the natural fluorescence of the phenolic toxin for detection. Herein, we report that OTA binding to OTABA involves π-stacking interactions that lead to GQ-to-toxin energy transfer (ET), which affords a "turn-on" fluorescence self-signaling platform in which the emission of the aptamer-target complex is enhanced in comparison to the free toxin alone. Selective excitation of the GQ-OTA complex at 256 nm leads to a 4-fold enhancement in OTA fluorescence. The GQ-OTA ET detection platform boasts a limit of detection ∼2 ng/mL, which is comparable to a previously demonstrated fluorescence resonance energy transfer immunoassay platform for OTA detection, and displays excellent OTA selectivity and recovery from red wine samples.
Collapse
|
8
|
Bajgiran KR, Dorman JA, Melvin AT. Dipole-Modulated Downconversion Nanoparticles as Label-Free Biological Sensors. ACS Sens 2020; 5:29-33. [PMID: 31904223 DOI: 10.1021/acssensors.9b02204] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Ultrasensitive detection of proteins and biomolecules has been previously achieved by optical nanoparticles (NPs) using the principles of Förster resonance energy transfer (FRET). However, the inherent need for labeling the target analyte in these assays hinders their applicability in point-of-use (POU) diagnostics. In this work, a label-free NP-based sensor has been developed that utilizes downconversion luminescence and surface electric dipoles as a novel approach for the detection of avidin. The long-lived luminescence of Eu3+-doped biotinylated NPs was effectively quenched in the presence of avidin in a concentration-dependent manner. The NPs exhibited high avidin selectivity and sensitivity with a limit of detection (LOD) of 7.8 nM and a wide dynamic range spanning 1 nM to 10 μM in deionized (DI) water. The application of the assay in a complex biological matrix consisting of cell growth medium supplemented with 10% v/v serum was verified with minor effects on avidin sensitivity exhibited by an LOD of 34.7 nM. The performance of the system was evaluated by comparing the photoluminescence (PL) intensities of known avidin concentration and the values predicted by the generated calibration curve. The new biosensing strategy has the potential to be extended to the detection of other disease biomarkers or pathogens with LOD and limited matrix effects in POU settings.
Collapse
Affiliation(s)
- Khashayar R. Bajgiran
- Cain Department of Chemical Engineering, Louisiana State University, Baton Rouge, Louisiana 70803, United States
| | - James A. Dorman
- Cain Department of Chemical Engineering, Louisiana State University, Baton Rouge, Louisiana 70803, United States
| | - Adam T. Melvin
- Cain Department of Chemical Engineering, Louisiana State University, Baton Rouge, Louisiana 70803, United States
| |
Collapse
|
9
|
Li Y, Zhang N, Wang H, Zhao Q. An immunoassay for ochratoxin A using tetramethylrhodamine-labeled ochratoxin A as a probe based on a binding-induced change in fluorescence intensity. Analyst 2020; 145:651-655. [DOI: 10.1039/c9an01879d] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
In an immunoassay, ochratoxin A (OTA) competitively displaces the bound tetramethylrhodamine (TMR)-OTA fluorescent probe from the antibody, causing a decrease in fluorescence.
Collapse
Affiliation(s)
- Yapiao Li
- State Key Laboratory of Environmental Chemistry and Ecotoxicology
- Research Center for Eco-Environmental Sciences
- Chinese Academy of Sciences
- Beijing 100085
- China
| | - Ning Zhang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology
- Research Center for Eco-Environmental Sciences
- Chinese Academy of Sciences
- Beijing 100085
- China
| | - Hailin Wang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology
- Research Center for Eco-Environmental Sciences
- Chinese Academy of Sciences
- Beijing 100085
- China
| | - Qiang Zhao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology
- Research Center for Eco-Environmental Sciences
- Chinese Academy of Sciences
- Beijing 100085
- China
| |
Collapse
|
10
|
Qiu S, Yuan L, Wei Y, Zhang D, Chen Q, Lin Z, Luo L. DNA template-mediated click chemistry-based portable signal-on sensor for ochratoxin A detection. Food Chem 2019; 297:124929. [PMID: 31253344 DOI: 10.1016/j.foodchem.2019.05.203] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 05/13/2019] [Accepted: 05/30/2019] [Indexed: 11/29/2022]
Abstract
A novel signal-on portable sensing system has been developed for OTA detection using personal glucose meter (PGM) as signal transducer. In the study, we explore the potential of using a short dsDNA as template to trigger the "click" ligation of two DNA strands, further improve the stability of DNA strand on the magnetic beads (MBs) surface, and thereby reduce the background signal. Compared with no "click" ligation, the background signal decreases 7.5 times. Both the sensitivity and selectivity are greatly promoted. A high sensitivity with OTA detection down to 72 pg/mL is achieved, which is comparable with several existing detectors, such as fluorescence-based detectors and electrochemical detectors. The feasibility of the strategy in real samples is well verified and evaluated by detecting OTA in feed samples, indicating the potential application in the food safety field.
Collapse
Affiliation(s)
- Suyan Qiu
- Institute for Quality & Safety and Standards of Agricultural Products Research, Jiangxi Academy of Agricultural Sciences, Nanchang, Jiangxi 330200, China
| | - Lijuan Yuan
- Institute for Quality & Safety and Standards of Agricultural Products Research, Jiangxi Academy of Agricultural Sciences, Nanchang, Jiangxi 330200, China
| | - Yihua Wei
- Institute for Quality & Safety and Standards of Agricultural Products Research, Jiangxi Academy of Agricultural Sciences, Nanchang, Jiangxi 330200, China
| | - Dawen Zhang
- Institute for Quality & Safety and Standards of Agricultural Products Research, Jiangxi Academy of Agricultural Sciences, Nanchang, Jiangxi 330200, China
| | - Qinglong Chen
- Institute for Quality & Safety and Standards of Agricultural Products Research, Jiangxi Academy of Agricultural Sciences, Nanchang, Jiangxi 330200, China
| | - Zhenyu Lin
- MOE Key Laboratory of Analysis and Detection for Food Safety, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, Department of Chemistry, Fuzhou University, Fuzhou, Fujian 350002, China.
| | - Linguang Luo
- Institute for Quality & Safety and Standards of Agricultural Products Research, Jiangxi Academy of Agricultural Sciences, Nanchang, Jiangxi 330200, China.
| |
Collapse
|
11
|
Oh HK, Joung HA, Jung M, Lee H, Kim MG. Rapid and Simple Detection of Ochratoxin A using Fluorescence Resonance Energy Transfer on Lateral Flow Immunoassay (FRET-LFI). Toxins (Basel) 2019; 11:E292. [PMID: 31126081 PMCID: PMC6563163 DOI: 10.3390/toxins11050292] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Revised: 05/22/2019] [Accepted: 05/23/2019] [Indexed: 11/16/2022] Open
Abstract
The detection of mycotoxins is crucial because of their toxicity in plants, animals, and humans. It is very important to determine whether food products are contaminated with mycotoxins such as ochratoxin A (OTA), as mycotoxins can survive heat treatments and hydrolysis. In this study, we designed a fluorescence resonance energy transfer (FRET)-based system that exploits antibody-antigen binding to detect mycotoxins more rapidly and easily than other currently available methods. In addition, we were able to effectively counteract the matrix effect in the sample by using a nitrocellulose membrane that enabled fluorescence measurement in coffee samples. The developed FRET on lateral flow immunoassay (FRET-LFI) system was used to detect OTA at a limit of detection (LOD) of 0.64 ng∙mL-1, and the test can be completed in only 30 min. Moreover, OTA in coffee samples was successfully detected at a LOD of 0.88 ng∙mL-1, overcoming the matrix effect, owing to the chromatographic properties of the capillary force of the membrane. We believe that the developed system can be used as a powerful tool for the sensitive diagnosis of harmful substances such as mycotoxins and pesticides for environmental and food quality control monitoring.
Collapse
Affiliation(s)
- Hyun-Kyung Oh
- Department of Chemistry, Gwangju Institute of Science and Technology, 123 Cheomdangawgi-ro, Buk-gu, Gwangju 61005, Korea.
| | - Hyou-Arm Joung
- Electrical & Computer Engineering Department, University of California, Los Angeles, CA 90095, USA.
| | - Minhyuk Jung
- Department of Chemistry, Gwangju Institute of Science and Technology, 123 Cheomdangawgi-ro, Buk-gu, Gwangju 61005, Korea.
| | - Hohjai Lee
- Department of Chemistry, Gwangju Institute of Science and Technology, 123 Cheomdangawgi-ro, Buk-gu, Gwangju 61005, Korea.
| | - Min-Gon Kim
- Department of Chemistry, Gwangju Institute of Science and Technology, 123 Cheomdangawgi-ro, Buk-gu, Gwangju 61005, Korea.
- INGIbio Co. Ltd., R&D Center, 206, APRI, 123 Cheomdangawgi-ro, Buk-gu, Gwangju 61005, Korea.
| |
Collapse
|
12
|
Samokhvalov AV, Safenkova IV, Zherdev AV, Dzantiev BB. The registration of aptamer-ligand (ochratoxin A) interactions based on ligand fluorescence changes. Biochem Biophys Res Commun 2018; 505:536-541. [PMID: 30269817 DOI: 10.1016/j.bbrc.2018.09.109] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Accepted: 09/17/2018] [Indexed: 12/12/2022]
Abstract
The fluorescent properties of ligands can change when they bind to specific receptors. Modulated by the transition of the ligand from the free to the bound state, fluorescence makes it possible both to detect this ligand and quantitatively register its binding. We characterized the interaction of ochratoxin A (OTA) with the specific G-quadruplex aptamer through excitation-emission matrix fluorescence spectroscopy. It was shown that the formation of the complex changes the OTA fluorescence spectrum both in the region of the main peak at λex/λem 380/430 nm and in the region of peak at λex/λem 265/425 nm. At pH 8.5 and OTA concentration of 30 nM, this peak is smaller in intensity than the main peak of fluorescence. The formation of the complex with the aptamer leads to an increase of the fluorescence at λex/λem 265/425 nm up to 6.5 times, which makes it up to 4.9 times more intense than fluorescence at 380/430 nm. Fluorescence of the G-quadruplex aptamer (donor) takes part in increasing of the OTA (acceptor) emission at λex/λem 265/425 nm due to the resonance energy transfer. The concentration regularities of the modulated fluorescence of OTA at λex/λem 265/425 nm have been studied. Their correspondence to the calculations of complexation conducted on the basis of the dissociation constant is shown.
Collapse
Affiliation(s)
- Alexey V Samokhvalov
- A.N. Bach Institute of Biochemistry, Research Centre of Biotechnology of the Russian Academy of Sciences, Leninsky Prospect 33, 119071, Moscow, Russia
| | - Irina V Safenkova
- A.N. Bach Institute of Biochemistry, Research Centre of Biotechnology of the Russian Academy of Sciences, Leninsky Prospect 33, 119071, Moscow, Russia
| | - Anatoly V Zherdev
- A.N. Bach Institute of Biochemistry, Research Centre of Biotechnology of the Russian Academy of Sciences, Leninsky Prospect 33, 119071, Moscow, Russia
| | - Boris B Dzantiev
- A.N. Bach Institute of Biochemistry, Research Centre of Biotechnology of the Russian Academy of Sciences, Leninsky Prospect 33, 119071, Moscow, Russia.
| |
Collapse
|
13
|
Sharma A, Khan R, Catanante G, Sherazi TA, Bhand S, Hayat A, Marty JL. Designed Strategies for Fluorescence-Based Biosensors for the Detection of Mycotoxins. Toxins (Basel) 2018; 10:toxins10050197. [PMID: 29751687 PMCID: PMC5983253 DOI: 10.3390/toxins10050197] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Revised: 05/08/2018] [Accepted: 05/08/2018] [Indexed: 12/22/2022] Open
Abstract
Small molecule toxins such as mycotoxins with low molecular weight are the most widely studied biological toxins. These biological toxins are responsible for food poisoning and have the potential to be used as biological warfare agents at the toxic dose. Due to the poisonous nature of mycotoxins, effective analysis techniques for quantifying their toxicity are indispensable. In this context, biosensors have been emerged as a powerful tool to monitors toxins at extremely low level. Recently, biosensors based on fluorescence detection have attained special interest with the incorporation of nanomaterials. This review paper will focus on the development of fluorescence-based biosensors for mycotoxin detection, with particular emphasis on their design as well as properties such as sensitivity and specificity. A number of these fluorescent biosensors have shown promising results in food samples for the detection of mycotoxins, suggesting their future potential for food applications.
Collapse
Affiliation(s)
- Atul Sharma
- BAE: Biocapteurs-Analyses-Environnement, Universite de Perpignan Via Domitia, 52 Avenue Paul Alduy, 66860 Perpignan CEDEX, France.
- Biosensor Lab, Department of Chemistry, Birla Institute of Technology and Science, Pilani K. K. Birla Goa Campus, Zuarinagar, Goa 403726, India.
- School of Pharmaceutical Sciences, MVN University-Palwal, Haryana-121105, India.
| | - Reem Khan
- BAE: Biocapteurs-Analyses-Environnement, Universite de Perpignan Via Domitia, 52 Avenue Paul Alduy, 66860 Perpignan CEDEX, France.
- Department of Chemistry, COMSATS Institute of Information Technology, Abbottabad 22060, Pakistan.
- Interdisciplinary Research Centre in Biomedical Materials (IRCBM), COMSATS Institute of Information Technology, Lahore 54000, Pakistan.
| | - Gaelle Catanante
- BAE: Biocapteurs-Analyses-Environnement, Universite de Perpignan Via Domitia, 52 Avenue Paul Alduy, 66860 Perpignan CEDEX, France.
| | - Tauqir A Sherazi
- Department of Chemistry, COMSATS Institute of Information Technology, Abbottabad 22060, Pakistan.
| | - Sunil Bhand
- Biosensor Lab, Department of Chemistry, Birla Institute of Technology and Science, Pilani K. K. Birla Goa Campus, Zuarinagar, Goa 403726, India.
| | - Akhtar Hayat
- Interdisciplinary Research Centre in Biomedical Materials (IRCBM), COMSATS Institute of Information Technology, Lahore 54000, Pakistan.
| | - Jean Louis Marty
- BAE: Biocapteurs-Analyses-Environnement, Universite de Perpignan Via Domitia, 52 Avenue Paul Alduy, 66860 Perpignan CEDEX, France.
| |
Collapse
|
14
|
Cui X, Jin M, Du P, Chen G, Zhang C, Zhang Y, Shao Y, Wang J. Development of immunoassays for multi-residue detection of small molecule compounds. FOOD AGR IMMUNOL 2018. [DOI: 10.1080/09540105.2018.1428284] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Affiliation(s)
- Xueyan Cui
- Key Laboratory for Agro-Products Quality and Food Safety, Institute of Quality Standards & Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing, People’s Republic of China
| | - Maojun Jin
- Key Laboratory for Agro-Products Quality and Food Safety, Institute of Quality Standards & Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing, People’s Republic of China
| | - Pengfei Du
- Key Laboratory for Agro-Products Quality and Food Safety, Institute of Quality Standards & Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing, People’s Republic of China
| | - Ge Chen
- Key Laboratory for Agro-Products Quality and Food Safety, Institute of Quality Standards & Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing, People’s Republic of China
| | - Chan Zhang
- Key Laboratory for Agro-Products Quality and Food Safety, Institute of Quality Standards & Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing, People’s Republic of China
| | - Yudan Zhang
- Key Laboratory for Agro-Products Quality and Food Safety, Institute of Quality Standards & Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing, People’s Republic of China
| | - Yong Shao
- Key Laboratory for Agro-Products Quality and Food Safety, Institute of Quality Standards & Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing, People’s Republic of China
| | - Jing Wang
- Key Laboratory for Agro-Products Quality and Food Safety, Institute of Quality Standards & Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing, People’s Republic of China
| |
Collapse
|
15
|
Huertas-Pérez JF, Arroyo-Manzanares N, García-Campaña AM, Gámiz-Gracia L. Solid phase extraction as sample treatment for the determination of Ochratoxin A in foods: A review. Crit Rev Food Sci Nutr 2018; 57:3405-3420. [PMID: 26744990 DOI: 10.1080/10408398.2015.1126548] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Ochratoxin A (OTA) is a mycotoxin produced by two main types of fungi, Aspergillus and Penicillium species. OTA is a natural contaminant found in a large number of different matrices and is considered as a possible carcinogen for humans. Hence, low maximum permitted levels in foods have been established by competent authorities around the world, making essential the use of very sensitive analytical methods for OTA detection. Sample treatment is a crucial step of analytical methodology to get clean and concentrated extracts, and therefore low limits of quantification. Solid phase extraction (SPE) is a useful technique for rapid and selective sample preparation. This sample treatment enables the concentration and purification of analytes from the sample solution or extract by sorption on a solid sorbent. This review is focused on sample treatment procedures based on SPE prior to the determination of OTA in food matrices, published from 2010.
Collapse
Affiliation(s)
- J Fernando Huertas-Pérez
- a Department of Analytical Chemistry, Faculty of Sciences , University of Granada , Campus Fuentenueva s/n, Granada , Spain
| | - Natalia Arroyo-Manzanares
- a Department of Analytical Chemistry, Faculty of Sciences , University of Granada , Campus Fuentenueva s/n, Granada , Spain
| | - Ana M García-Campaña
- a Department of Analytical Chemistry, Faculty of Sciences , University of Granada , Campus Fuentenueva s/n, Granada , Spain
| | - Laura Gámiz-Gracia
- a Department of Analytical Chemistry, Faculty of Sciences , University of Granada , Campus Fuentenueva s/n, Granada , Spain
| |
Collapse
|
16
|
Liu A, Anfossi L, Shen L, Li C, Wang X. Non-competitive immunoassay for low-molecular-weight contaminant detection in food, feed and agricultural products: A mini-review. Trends Food Sci Technol 2018. [DOI: 10.1016/j.tifs.2017.11.014] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
17
|
Kim HY, Li T, Jung C, Fu R, Cho DY, Park KS, Park HG. Universally applicable, quantitative PCR method utilizing fluorescent nucleobase analogs. RSC Adv 2018; 8:37391-37395. [PMID: 35557795 PMCID: PMC9089284 DOI: 10.1039/c8ra06675b] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Accepted: 10/28/2018] [Indexed: 11/21/2022] Open
Abstract
We herein describe a novel quantitative PCR (qPCR) method, which operates in both signal-off and on manners, by utilizing a unique property of fluorescent nucleobase analogs. The first, signal-off method is developed by designing the primers to contain pyrrolo-dC (PdC), one of the most common fluorescent nucleobase analogs. The specially designed single-stranded primer is extended to form double-stranded DNA during PCR and the fluorescence signal from the PdCs incorporated in the primer is accordingly reduced due to its conformation-dependent fluorescence properties. In addition, the second, signal-on method is devised by designing the primers to contain 5′-overhang sequences complementary to the PdC-incorporated DNA probes. At the initial phase, the PdC-incorporated DNA probes are hybridized to the 5′-overhang sequences of the primer, exhibiting the significantly quenched fluorescence signal, but are detached by either hydrolysis or strand displacement reaction during PCR, leading to the highly enhanced fluorescence signal. This method is more advanced than the first one since it produces signal-on fluorescence response and permits the use of a single PdC-incorporated DNA probe for the detection of multiple target nucleic acids, remarkably decreasing the assay cost. With these novel qPCR methods, we successfully quantified target nucleic acids derived from sexually transmitted disease (STD) pathogens with high accuracy. Importantly, the proposed strategies overcome the major drawbacks in the current SYBR Green and TaqMan probe-based qPCR methods such as low specificity and high assay cost. A novel quantitative PCR (qPCR) method was developed by utilizing a unique property of fluorescent nucleobase analogs (PdCs).![]()
Collapse
Affiliation(s)
- Hyo Yong Kim
- Department of Chemical and Biomolecular Engineering (BK21 Program)
- KAIST
- Daejeon 305-701
- Republic of Korea
| | - Taihua Li
- College of Biology and the Environment
- Co-Innovation Centre for Sustainable Forestry in Southern China
- Nanjing Forestry University
- Nanjing
- China
| | - Cheulhee Jung
- Department of Chemical and Biomolecular Engineering (BK21 Program)
- KAIST
- Daejeon 305-701
- Republic of Korea
| | - Rongzhan Fu
- Department of Chemical and Biomolecular Engineering (BK21 Program)
- KAIST
- Daejeon 305-701
- Republic of Korea
| | - Dae-Yeon Cho
- Labgenomics Clinical Research Institute
- Labgenomics Co. Ltd
- Yong-In
- Republic of Korea
| | - Ki Soo Park
- Department of Biological Engineering
- College of Engineering
- Konkuk University
- Seoul 05029
- Republic of Korea
| | - Hyun Gyu Park
- Department of Chemical and Biomolecular Engineering (BK21 Program)
- KAIST
- Daejeon 305-701
- Republic of Korea
| |
Collapse
|
18
|
Fadock K, Manderville RA. DNA Aptamer-Target Binding Motif Revealed Using a Fluorescent Guanine Probe: Implications for Food Toxin Detection. ACS OMEGA 2017; 2:4955-4963. [PMID: 30023732 PMCID: PMC6044742 DOI: 10.1021/acsomega.7b00782] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Accepted: 08/16/2017] [Indexed: 06/08/2023]
Abstract
DNA aptamers are single-stranded oligonucleotides that are generated by an in vitro selection method to bind targets with high affinity and specificity. Understanding molecular recognition by DNA aptamers is of fundamental importance in the development of biosensor applications. The small molecule ochratoxin A (OTA) is a fungal-derived food toxin, and OTA DNA aptamers have been established for the development of rapid detection platforms required for food safety. One such OTA aptamer (OTAA) is a guanine-rich DNA oligonucleotide that folds into an antiparallel G-quadruplex (GQ) upon OTA binding, although structural details of the GQ fold and its interaction with OTA are currently unknown. In the present study, the fluorescent nucleobase analogue, 8-thienyl-2'-deoxyguanosine (ThdG), was inserted into various G sites of OTAA to determine the probe impact on GQ folding and OTA binding affinity. Our results suggest that OTAA contains three lateral (l) loops connecting two stacked G-tetrads with an anticlockwise loop progression to afford a -(lll) GQ topology. The phenolic ring system of OTA undergoes π-stacking interactions with the G-tetrads of OTAA. Our results also demonstrate aptamer sites that can be modified with ThdG to afford a fluorescent light-up signal upon OTA binding.
Collapse
|
19
|
Amplified impedimetric immunosensor based on instant catalyst for sensitive determination of ochratoxin A. Biosens Bioelectron 2016; 86:386-392. [DOI: 10.1016/j.bios.2016.06.080] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Revised: 06/19/2016] [Accepted: 06/27/2016] [Indexed: 01/01/2023]
|
20
|
Xu L, Zhang Z, Zhang Q, Li P. Mycotoxin Determination in Foods Using Advanced Sensors Based on Antibodies or Aptamers. Toxins (Basel) 2016; 8:239. [PMID: 27529281 PMCID: PMC4999855 DOI: 10.3390/toxins8080239] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Revised: 07/08/2016] [Accepted: 07/08/2016] [Indexed: 12/24/2022] Open
Abstract
Mycotoxin contamination threatens health and life of humans and animals throughout the food supply chains. Many of the mycotoxins have been proven to be carcinogens, teratogens and mutagens. The reliable and sensitive sensing methods are requested to monitor mycotoxin contamination. Advanced sensors based on antibodies or aptamers boast the advantages of high sensitivity and rapidity, and have been used in the mycotoxin sensing. These sensors are miniaturized, thereby lowering costs, and are applicable to high-throughput modes. In this work, the latest developments in sensing strategies for mycotoxin determination were critically discussed. Optical and electrochemical sensing modes were compared. The sensing methods for single mycotoxin or multiple mycotoxins in food samples were reviewed, along with the challenges and the future of antibody or aptamer-based sensors. This work might promote academic studies and industrial applications for mycotoxin sensing.
Collapse
Affiliation(s)
- Lin Xu
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan 430062, China.
- Key Laboratory of Biology and Genetic Improvement of oil Crops, Ministry of Agriculture, Wuhan 430062, China.
- Key Laboratory of Detection for Mycotoxins, Ministry of Agriculture, Wuhan 430062, China.
| | - Zhaowei Zhang
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan 430062, China.
- Key Laboratory of Detection for Mycotoxins, Ministry of Agriculture, Wuhan 430062, China.
| | - Qi Zhang
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan 430062, China.
- Key Laboratory of Detection for Mycotoxins, Ministry of Agriculture, Wuhan 430062, China.
- Laboratory of Risk Assessment for oilseeds Products (Wuhan), Ministry of Agriculture, Wuhan 430062, China.
| | - Peiwu Li
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan 430062, China.
- Key Laboratory of Biology and Genetic Improvement of oil Crops, Ministry of Agriculture, Wuhan 430062, China.
- Key Laboratory of Detection for Mycotoxins, Ministry of Agriculture, Wuhan 430062, China.
- Laboratory of Risk Assessment for oilseeds Products (Wuhan), Ministry of Agriculture, Wuhan 430062, China.
- Quality Inspection and Test Center for oilseeds Products, Ministry of Agriculture, Wuhan 430062, China.
| |
Collapse
|
21
|
Li T, Choi YH, Shin YB, Kim HJ, Kim MG. A fluorescence enhancement-based label-free homogeneous immunoassay of benzo[a]pyrene (BaP) in aqueous solutions. CHEMOSPHERE 2016; 150:407-413. [PMID: 26796590 DOI: 10.1016/j.chemosphere.2016.01.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2014] [Revised: 12/15/2015] [Accepted: 01/04/2016] [Indexed: 06/05/2023]
Abstract
A fluorescence enhancement-based immunoassay has been developed for the detection of the polycyclic aromatic hydrocarbons (PAH), benzo[a]pyrene (BaP), in aqueous solutions. The results of this study show that BaP, which inefficiently fluoresces in aqueous solution, displays enhanced fluorescence when bound to the anti-BaP antibody (anti-BaP), as part of a label-free immunoassay system. Binding to anti-BaP results in a 3.12-fold increase in the fluorescence intensity of BaP, which emits at 435 nm when excited at 280 nm, due to the hydrophobic interaction and fluorescence resonance energy transfer (FRET) between antibody and antigen. As result of this phenomenon, the antibody-based fluorescence immunoassay system can be used to detect BaP specifically with a limit of detection (LOD) of 0.06 ng mL(-1). Finally, extraction recoveries of BaP from spiked wheat and barley samples were found to be in the range of 80.5-87.0% and 92.9-92.1%, respectively.
Collapse
Affiliation(s)
- Taihua Li
- College of Biology and the Environment, Nanjing Forestry University, Nanjing 210-037, China
| | - Yo Han Choi
- Department of Chemistry, School of Physics and Chemistry, Gwangju Institute of Science & Technology (GIST), 261 Cheomdan-gwagiro, Gwangju 500-712, South Korea; Department of Microbiology, College of Medicine, Chungnam National University, Daejeon 301-747, South Korea
| | - Yong-Beom Shin
- Biomedical Translational Research Center, Korea Research Institute of Bioscience & Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon 305-806, South Korea
| | - Hwa-Jung Kim
- Department of Microbiology, College of Medicine, Chungnam National University, Daejeon 301-747, South Korea
| | - Min-Gon Kim
- Department of Chemistry, School of Physics and Chemistry, Gwangju Institute of Science & Technology (GIST), 261 Cheomdan-gwagiro, Gwangju 500-712, South Korea; Advanced Photonics Research Institute, Gwangju Institute of Science & Technology (GIST), 261 Cheomdan-gwagiro, Gwangju 500-712, South Korea.
| |
Collapse
|
22
|
Jo EJ, Mun H, Kim SJ, Shim WB, Kim MG. Detection of ochratoxin A (OTA) in coffee using chemiluminescence resonance energy transfer (CRET) aptasensor. Food Chem 2016; 194:1102-7. [DOI: 10.1016/j.foodchem.2015.07.152] [Citation(s) in RCA: 79] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2014] [Revised: 03/23/2015] [Accepted: 07/07/2015] [Indexed: 12/13/2022]
|
23
|
Arola HO, Tullila A, Kiljunen H, Campbell K, Siitari H, Nevanen TK. Specific Noncompetitive Immunoassay for HT-2 Mycotoxin Detection. Anal Chem 2016; 88:2446-52. [DOI: 10.1021/acs.analchem.5b04591] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Henri O. Arola
- VTT Technical
Research Centre of Finland, Tietotie
2, FI-02150 Espoo, Finland
| | - Antti Tullila
- VTT Technical
Research Centre of Finland, Tietotie
2, FI-02150 Espoo, Finland
| | - Harri Kiljunen
- VERIFIN, Finnish
Institute for Chemical Weapons Convention, Department of Chemistry, University of Helsinki, A. I. Virtasen
aukio 1, FI-00014 Helsinki, Finland
| | - Katrina Campbell
- Institute for Global
Food Security, Queen’s University Belfast, School of Biological Sciences, 8 Cloreen Park, Malone Road, Belfast BT7 1NN, United Kingdom
| | - Harri Siitari
- Faculty
of Pharmacy, University of Helsinki, Viikinkaari 5 E, FI-00014 Helsinki, Finland
| | - Tarja K. Nevanen
- VTT Technical
Research Centre of Finland, Tietotie
2, FI-02150 Espoo, Finland
| |
Collapse
|
24
|
Ha TH. Recent Advances for the Detection of Ochratoxin A. Toxins (Basel) 2015; 7:5276-300. [PMID: 26690216 PMCID: PMC4690132 DOI: 10.3390/toxins7124882] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Revised: 11/25/2015] [Accepted: 11/26/2015] [Indexed: 12/15/2022] Open
Abstract
Ochratoxin A (OTA) is one of the mycotoxins secreted by Aspersillus and Penicillium that can easily colonize various grains like coffee, peanut, rice, and maize. Since OTA is a chemically stable compound that can endure the physicochemical conditions of modern food processing, additional research efforts have been devoted to develop sensitive and cost-effective surveillance solutions. Although traditional chromatographic and immunoassays appear to be mature enough to attain sensitivity up to the regulation levels, alternative detection schemes are still being enthusiastically pursued in an attempt to meet the requirements of rapid and cost-effective detections. Herein, this review presents recent progresses in OTA detections with minimal instrumental usage, which have been facilitated by the development of OTA aptamers and by the innovations in functional nanomaterials. In addition to the introduction of aptamer-based OTA detection techniques, OTA-specific detection principles are also presented, which exclusively take advantage of the unique chemical structure and related physicochemical characteristics.
Collapse
Affiliation(s)
- Tai Hwan Ha
- BioNanotechnology Research Centre, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Korea.
- Nanobiotechnology (Major), Korea University of Science & Technology, 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Korea.
| |
Collapse
|
25
|
Facile synthesis of N, S-codoped fluorescent carbon nanodots for fluorescent resonance energy transfer recognition of methotrexate with high sensitivity and selectivity. Biosens Bioelectron 2015; 64:517-22. [DOI: 10.1016/j.bios.2014.09.066] [Citation(s) in RCA: 84] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2014] [Revised: 09/11/2014] [Accepted: 09/23/2014] [Indexed: 12/30/2022]
|
26
|
Majdinasab M, Sheikh-Zeinoddin M, Soleimanian-Zad S, Li P, Zhang Q, Li X, Tang X, Li J. A reliable and sensitive time-resolved fluorescent immunochromatographic assay (TRFICA) for ochratoxin A in agro-products. Food Control 2015. [DOI: 10.1016/j.foodcont.2014.06.044] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
27
|
Mun H, Jo EJ, Li T, Joung HA, Hong DG, Shim WB, Jung C, Kim MG. Homogeneous assay of target molecules based on chemiluminescence resonance energy transfer (CRET) using DNAzyme-linked aptamers. Biosens Bioelectron 2014; 58:308-13. [PMID: 24658027 DOI: 10.1016/j.bios.2014.02.008] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2013] [Revised: 01/27/2014] [Accepted: 02/05/2014] [Indexed: 12/28/2022]
Abstract
We have designed a single-stranded DNAzyme-aptamer sensor for homogeneous target molecular detection based on chemiluminescence resonance energy transfer (CRET). The structure of the engineered single-stranded DNA (ssDNA) includes the horseradish peroxidase (HRP)-like DNAzyme, optimum-length linker (10-mer-length DNA), and target-specific aptamer sequences. A quencher dye was modified at the 3' end of the aptamer sequence. The incorporation of hemin into the G-quadruplex structure of DNAzyme yields an active HRP-like activity that catalyzes luminol to generate a chemiluminescence (CL) signal. In the presence of target molecules, such as ochratoxin A (OTA), adenosine triphosphate (ATP), or thrombin, the aptamer sequence was folded due to the formation of the aptamer/analyte complex, which induced the quencher dye close to the DNAzyme structure. Consequently, the CRET occurred between a DNAzyme-catalyzed chemiluminescence reaction and the quencher dye. Our results showed that CRET-based DNAzyme-aptamer biosensing enabled specific OTA analysis with a limit of detection of 0.27ng/mL. The CRET platform needs no external light source and avoids autofluorescence and photobleaching, and target molecules can be detected specifically and sensitively in a homogeneous manner.
Collapse
Affiliation(s)
- Hyoyoung Mun
- School of Physics and Chemistry, Gwangju Institute of Science and Technology, Gwangju 500-712, Republic of Korea
| | - Eun-Jung Jo
- School of Physics and Chemistry, Gwangju Institute of Science and Technology, Gwangju 500-712, Republic of Korea
| | - Taihua Li
- School of Physics and Chemistry, Gwangju Institute of Science and Technology, Gwangju 500-712, Republic of Korea
| | - Hyou-Arm Joung
- School of Physics and Chemistry, Gwangju Institute of Science and Technology, Gwangju 500-712, Republic of Korea
| | - Dong-Gu Hong
- School of Physics and Chemistry, Gwangju Institute of Science and Technology, Gwangju 500-712, Republic of Korea
| | - Won-Bo Shim
- School of Physics and Chemistry, Gwangju Institute of Science and Technology, Gwangju 500-712, Republic of Korea
| | - Cheulhee Jung
- Department of Chemistry and Biochemistry, Institute of Cellular and Molecular Biology, University of Texas at Austin, Austin, TX 78712, USA
| | - Min-Gon Kim
- School of Physics and Chemistry, Gwangju Institute of Science and Technology, Gwangju 500-712, Republic of Korea; Advanced Photonics Research Institute, Gwangju Institute of Science and Technology, Gwangju 500-712, Republic of Korea.
| |
Collapse
|
28
|
Li X, Lei J, Li P, Zhang Q, Zhang L, Zhang W, Zhang Z. Specific antibody-induced fluorescence quenching for the development of a directly applicable and label-free immunoassay. ANAL. METHODS 2014; 6:5454-5458. [DOI: 10.1039/c4ay00954a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/27/2024]
Abstract
A simple and label-free immunoassay was proposed based on the specific antibody-analyte immune binding reaction induced by fluorescence quenching of the analyte.
Collapse
Affiliation(s)
- Xin Li
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences
- Wuhan, PR. China
- Key Laboratory of Biology and Genetic Improvement of Oil Crops
- Ministry of Agriculture
- Wuhan, PR. China
| | - Jiawen Lei
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences
- Wuhan, PR. China
- Key Laboratory of Biology and Genetic Improvement of Oil Crops
- Ministry of Agriculture
- Wuhan, PR. China
| | - Peiwu Li
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences
- Wuhan, PR. China
- Key Laboratory of Biology and Genetic Improvement of Oil Crops
- Ministry of Agriculture
- Wuhan, PR. China
| | - Qi Zhang
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences
- Wuhan, PR. China
- Key Laboratory of Biology and Genetic Improvement of Oil Crops
- Ministry of Agriculture
- Wuhan, PR. China
| | - Liangxiao Zhang
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences
- Wuhan, PR. China
- Key Laboratory of Biology and Genetic Improvement of Oil Crops
- Ministry of Agriculture
- Wuhan, PR. China
| | - Wen Zhang
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences
- Wuhan, PR. China
- Key Laboratory of Biology and Genetic Improvement of Oil Crops
- Ministry of Agriculture
- Wuhan, PR. China
| | - Zhaowei Zhang
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences
- Wuhan, PR. China
- Key Laboratory of Biology and Genetic Improvement of Oil Crops
- Ministry of Agriculture
- Wuhan, PR. China
| |
Collapse
|
29
|
Yuan Y, Wei S, Liu G, Xie S, Chai Y, Yuan R. Ultrasensitive electrochemiluminescent aptasensor for ochratoxin A detection with the loop-mediated isothermal amplification. Anal Chim Acta 2013; 811:70-5. [PMID: 24456596 DOI: 10.1016/j.aca.2013.11.022] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2013] [Revised: 11/02/2013] [Accepted: 11/08/2013] [Indexed: 10/26/2022]
Abstract
In this study, we for the first time presented an efficient, accurate, rapid, simple and ultrasensitive detection system for small molecule ochratoxin A (OTA) by using the integration of loop-mediated isothermal amplification (LAMP) technique and subsequently direct readout of LAMP amplicons with a signal-on electrochemiluminescent (ECL) system. Firstly, the dsDNA composed by OTA aptamer and its capture DNA were immobilized on the electrode. After the target recognition, the OTA aptamer bond with target OTA and subsequently left off the electrode, which effectively decreased the immobilization amount of OTA aptamer on electrode. Then, the remaining OTA aptamers on the electrode served as inner primer to initiate the LAMP reaction. Interestingly, the LAMP amplification was detected by monitoring the intercalation of DNA-binding Ru(phen)3(2+) ECL indictors into newly formed amplicons with a set of integrated electrodes. The ECL indictor Ru(phen)3(2+) binding to amplicons caused the reduction of the ECL intensity due to the slow diffusion of Ru(phen)3(2+)-amplicons complex to the electrode surface. Therefore, the presence of more OTA was expected to lead to the release of more OTA aptamer, which meant less OTA aptamer remained on electrode for producing LAMP amplicons, resulting in less Ru(phen)3(2+) interlaced into the formed amplicons within a fixed Ru(phen)3(2+) amount with an obviously increased ECL signal input. As a result, a detection limit as low as 10 fM for OTA was achieved. The aptasensor also has good reproducibility and stability.
Collapse
Affiliation(s)
- Yali Yuan
- Key Laboratory on Luminescence and Real-Time Analysis, Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China; College of Resources and Environments, Southwest University, Chongqing 400715, PR China
| | - Shiqiang Wei
- College of Resources and Environments, Southwest University, Chongqing 400715, PR China
| | - Guangpeng Liu
- College of Resources and Environments, Southwest University, Chongqing 400715, PR China
| | - Shunbi Xie
- Key Laboratory on Luminescence and Real-Time Analysis, Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China
| | - Yaqin Chai
- Key Laboratory on Luminescence and Real-Time Analysis, Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China.
| | - Ruo Yuan
- Key Laboratory on Luminescence and Real-Time Analysis, Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China.
| |
Collapse
|
30
|
Zhang B, Liu B, Liao J, Chen G, Tang D. Novel Electrochemical Immunoassay for Quantitative Monitoring of Biotoxin Using Target-Responsive Cargo Release from Mesoporous Silica Nanocontainers. Anal Chem 2013; 85:9245-52. [DOI: 10.1021/ac4019878] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Bing Zhang
- Key Laboratory of Analysis and Detection for Food Safety (Ministry of Education & Fujian Province), Department of Chemistry, Fuzhou University, Fuzhou 350108, People’s Republic of China
| | - Bingqian Liu
- Key Laboratory of Analysis and Detection for Food Safety (Ministry of Education & Fujian Province), Department of Chemistry, Fuzhou University, Fuzhou 350108, People’s Republic of China
| | - Jiayao Liao
- Key
Laboratory on Luminescence and Real-Time Analysis (Ministry of Education),
College of Chemistry, Southwest University, Chongqing 400715, People’s Republic of China
| | - Guonan Chen
- Key Laboratory of Analysis and Detection for Food Safety (Ministry of Education & Fujian Province), Department of Chemistry, Fuzhou University, Fuzhou 350108, People’s Republic of China
| | - Dianping Tang
- Key Laboratory of Analysis and Detection for Food Safety (Ministry of Education & Fujian Province), Department of Chemistry, Fuzhou University, Fuzhou 350108, People’s Republic of China
| |
Collapse
|
31
|
Li T, Byun JY, Kim BB, Shin YB, Kim MG. Label-free homogeneous FRET immunoassay for the detection of mycotoxins that utilizes quenching of the intrinsic fluorescence ofantibodies. Biosens Bioelectron 2013; 42:403-8. [DOI: 10.1016/j.bios.2012.10.085] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2012] [Accepted: 10/26/2012] [Indexed: 10/27/2022]
|
32
|
Shephard G, Berthiller F, Burdaspal P, Crews C, Jonker M, Krska R, Lattanzio V, MacDonald S, Malone R, Maragos C, Sabino M, Solfrizzo M, van Egmond H, Whitaker T. Developments in mycotoxin analysis: an update for 2011-2012. WORLD MYCOTOXIN J 2013. [DOI: 10.3920/wmj2012.1492] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
This review highlights developments in mycotoxin analysis and sampling over a period between mid-2011 and mid- 2012. It covers the major mycotoxins aflatoxins, Alternaria toxins, ergot alkaloids, fumonisins, ochratoxin, patulin, trichothecenes, and zearalenone. A section on mycotoxins in botanicals and spices is also included. Methods for mycotoxin determination continue to be developed using a wide range of analytical systems ranging from rapid immunochemical-based methods to the latest advances in mass spectrometry. This review follows the format of previous reviews in this series (i.e. sections on individual mycotoxins), but due to the rapid spread and developments in the field of multimycotoxin methods by liquid chromatography-tandem mass spectrometry, a separate section has been devoted to advances in this area of research.
Collapse
Affiliation(s)
- G.S. Shephard
- PROMEC Unit, Medical Research Council, P.O. Box 19070, Tygerberg 7505, South Africa
| | - F. Berthiller
- Department for Agrobiotechnology (IFA-Tulln), Center for Analytical Chemistry, Christian Doppler Laboratory for Mycotoxin-Metabolism and Center for Analytical Chemistry, University of Natural Resources and Life Sciences Vienna, Konrad Lorenz Strasse 20, 3430 Tulln, Austria
| | - P.A. Burdaspal
- Spanish Food Safety and Nutrition Agency, National Centre for Food, km 5.100, 28220 Majadahonda (Madrid), Spain
| | - C. Crews
- The Food and Environment Research Agency, Sand Hutton, York YO41 1LZ, United Kingdom
| | - M.A. Jonker
- Cluster Natural Toxins and Pesticides, RIKILT Institute of Food Safety, Wageningen University and Research Centre, P.O. Box 230, 6700 AE Wageningen, the Netherlands
| | - R. Krska
- Department for Agrobiotechnology (IFA-Tulln), Center for Analytical Chemistry, Christian Doppler Laboratory for Mycotoxin-Metabolism and Center for Analytical Chemistry, University of Natural Resources and Life Sciences Vienna, Konrad Lorenz Strasse 20, 3430 Tulln, Austria
| | - V.M.T. Lattanzio
- National Research Council, Institute of Sciences of Food Production, Via Amendola 122/o, 700126 Bari, Italy
| | - S. MacDonald
- The Food and Environment Research Agency, Sand Hutton, York YO41 1LZ, United Kingdom
| | - R.J. Malone
- Trilogy Analytical Laboratory, 870 Vossbrink Drive, Washington, MO 63090, USA
| | - C. Maragos
- USDA, ARS National Center for Agricultural Utilization Research, 1815 N. University St, Peoria, IL 61604, USA
| | - M. Sabino
- Instituto Adolfo Lutz, Av Dr Arnaldo 355, 01246-902 São Paulo/SP, Brazil
| | - M. Solfrizzo
- National Research Council, Institute of Sciences of Food Production, Via Amendola 122/o, 700126 Bari, Italy
| | - H.P. van Egmond
- Cluster Natural Toxins and Pesticides, RIKILT Institute of Food Safety, Wageningen University and Research Centre, P.O. Box 230, 6700 AE Wageningen, the Netherlands
| | - T.B. Whitaker
- Biological and Agricultural Engineering Department, N.C. State University, P.O. Box 7625, Raleigh, NC 27695-7625, USA
| |
Collapse
|
33
|
Galarreta BC, Tabatabaei M, Guieu V, Peyrin E, Lagugné-Labarthet F. Microfluidic channel with embedded SERS 2D platform for the aptamer detection of ochratoxin A. Anal Bioanal Chem 2012. [PMID: 23187825 DOI: 10.1007/s00216-012-6557-7] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
A selective aptameric sequence is adsorbed on a two-dimensional nanostructured metallic platform optimized for surface-enhanced Raman spectroscopy (SERS) measurements. Using nanofabrication methods, a metallic nanostructure was prepared by electron-beam lithography onto a glass coverslip surface and embedded within a microfluidic channel made of polydimethylsiloxane, allowing one to monitor in situ SERS fingerprint spectra from the adsorbed molecules on the metallic nanostructures. The gold structure was designed so that its localized surface plasmon resonance matches the excitation wavelength used for the Raman measurement. This optofluidic device is then used to detect the presence of a toxin, namely ochratoxin-A (OTA), in a confined environment, using very small amounts of chemicals, and short data acquisition times, by taking advantage of the optical properties of a SERS platform to magnify the Raman signals of the aptameric monolayer system and avoiding chemical labeling of the aptamer or the OTA target.
Collapse
Affiliation(s)
- Betty C Galarreta
- Department of Chemistry, University of Western Ontario, London, ON, Canada
| | | | | | | | | |
Collapse
|
34
|
Meulenberg EP. Immunochemical methods for ochratoxin A detection: a review. Toxins (Basel) 2012; 4:244-66. [PMID: 22606375 PMCID: PMC3347002 DOI: 10.3390/toxins4040244] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2012] [Revised: 03/30/2012] [Accepted: 04/05/2012] [Indexed: 11/25/2022] Open
Abstract
The safety of food and feed depends to a great deal on quality control. Numerous compounds and organisms may contaminate food and feed commodities and thus pose a health risk for consumers. The compound of interest in this review is ochratoxin A (OTA), a secondary metabolite of the fungi Aspergillus and Penicillium. Due to its adverse health effects, detection and quantification are of utmost importance. Quality control of food and feed requires extraction and analysis, including TLC, HPLC, MS, and immunochemical methods. Each of these methods has its advantages and disadvantages. However, with regard to costs and rapidity, immunochemical methods have gained much interest in the last decade. In this review an introduction to immunochemistry and assay design will be given to elucidate the principles. Further, the application of the various formats to the detection and quantification of ochratoxin will be described, including the use of commercially available kits.
Collapse
|
35
|
Cui Y, Tang D, Liu B, Chen H, Zhang B, Chen G. Biofunctionalized dendritic polyaniline nanofibers for sensitive electrochemical immunoassay of biomarkers. Analyst 2012; 137:1656-62. [DOI: 10.1039/c2an15848e] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
36
|
Li T, Jo EJ, Kim MG. A label-free fluorescence immunoassay system for the sensitive detection of the mycotoxin, ochratoxin A. Chem Commun (Camb) 2012; 48:2304-6. [DOI: 10.1039/c2cc17088d] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|