1
|
Pathak T, Bose A. 1,5-disubstituted 1,2,3-triazolylated carbohydrates and nucleosides. Carbohydr Res 2024; 541:109126. [PMID: 38823061 DOI: 10.1016/j.carres.2024.109126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 04/18/2024] [Accepted: 04/24/2024] [Indexed: 06/03/2024]
Abstract
In general, 1,5-disubstituted 1,2,3-triazolyl moiety is much less common in the synthesis and applications in comparison to its regioisomeric counterpart. Moreover, the synthesis of 1,5-disubstituted 1,2,3-triazoles are not so straightforward as is the case for copper catalyzed strategy of 1,4-disubstituted 1,2,3-triazoles. The preparation of 1,5-triazolylated carbohydrates and nucleosides are even more complex because of the difficulties in accessing the appropriate starting materials as well as the compatibility of reaction conditions with the various protecting groups. 1,5-Disubstitution regioisomeric triazoles of carbohydrates and nucleosides were traditionally obtained as minor products through straightforward heating of the mixture of azides and terminal alkynes. However, the separation of isomers was tedious or in some cases futile. On the other hand, regioselective synthesis using ruthenium catalysis triggered serious concern of residual metal content in therapeutically important ingredients. Therefore, serious efforts are being made by several groups to develop non-toxic metal based or completely metal-free synthesis of 1,5-disubstituted 1,2,3-triazoles. This article strives to summarize the pre-Click era as well as the post-2001 reports on the synthesis and potential applications of 1,5-disubstituted 1,2,3-triazoles in biological systems.
Collapse
Affiliation(s)
- Tanmaya Pathak
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur, 721 302, West Bengal, India.
| | - Amitabha Bose
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur, 721 302, West Bengal, India
| |
Collapse
|
2
|
Jaiswal MK, Gupta A, Ansari FJ, Pandey VK, Tiwari VK. Recent Progress on Synthesis of Functionalized 1,5-Disubstituted Triazoles. Curr Org Synth 2024; 21:513-558. [PMID: 38804327 DOI: 10.2174/1570179420666230418123350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Revised: 12/13/2022] [Accepted: 01/12/2023] [Indexed: 05/29/2024]
Abstract
Immediately after the invention of 'Click Chemistry' in 2002, the regioselective 1,2,3- triazole scaffolds resulted from respective organic azides and terminal alkynes under Cu(I) catalysis have been well recognized as the functional heterocyclic core at the centre of modern organic chemistry, medicinal chemistry, and material sciences. This CuAAC reaction has several notable features including excellent regioselectivity, high-to-excellent yields, easy to execute, short reaction time, modular in nature, mild condition, readily available starting materials, etc. Moreover, the resulting regioselective triazoles can serve as amide bond isosteres, a privileged functional group in drug discovery and development. More than hundreds of reviews had been devoted to the 'Click Chemistry' in special reference to 1,4-disubstituted triazoles, while only little efforts were made for an opposite regioisomer i.e., 1,5-disubstituted triazole. Herein, we have presented various classical approaches for an expeditious synthesis of a wide range of biologically relevant 1,5- disubstituted 1,2,3-triazole analogues. The syntheses of such a class of diversly functionalized triazoles have emerged as a crucial investigation in the domain of chemistry and biology. This tutorial review covers the literature assessment on the development of various synthetic protocols for the functionalized 1,5-disubstituted triazoles reported during the last 12 years.
Collapse
Affiliation(s)
- Manoj K Jaiswal
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Abhishek Gupta
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Faisal J Ansari
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Vinay K Pandey
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Vinod K Tiwari
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| |
Collapse
|
3
|
Chauhan NS, Dubey A, Mandal PK. Palladium-Catalyzed Direct C-H Glycosylation of Free ( N-H) Indole and Tryptophan by Norbornene-Mediated Regioselective C-H Activation. Org Lett 2022; 24:7067-7071. [PMID: 36165771 DOI: 10.1021/acs.orglett.2c02537] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We describe the palladium-catalyzed direct C-H glycosylation of free N-H indole or tryptophan for the stereoselective synthesis of 2-glycosylindoles and tryptophan-C-glycosides. This reaction relies on the ortho-directing transient mediator norbornene, which underwent regioselective C-H functionalization at the indole or tryptophan ring, providing high chemoselectivity. This method offers a more straightforward, step-economical, and cost-effective route to construct C-glycosides. The gram-scale amenable building blocks can be further functionalized at C3 and N-H, displaying the robustness of present method.
Collapse
Affiliation(s)
- Neha Singh Chauhan
- Medicinal & Process Chemistry Division, CSIR-Central Drug Research Institute, BS-10/1, Sector 10, Jankipuram Extension, Sitapur Road, P.O. Box 173, Lucknow 226031, India.,Academy of Scientific and Innovative Research, Ghaziabad 201002, India
| | - Atul Dubey
- Medicinal & Process Chemistry Division, CSIR-Central Drug Research Institute, BS-10/1, Sector 10, Jankipuram Extension, Sitapur Road, P.O. Box 173, Lucknow 226031, India
| | - Pintu Kumar Mandal
- Medicinal & Process Chemistry Division, CSIR-Central Drug Research Institute, BS-10/1, Sector 10, Jankipuram Extension, Sitapur Road, P.O. Box 173, Lucknow 226031, India.,Academy of Scientific and Innovative Research, Ghaziabad 201002, India
| |
Collapse
|
4
|
Jeanneret R, Walz C, van Meerbeek M, Coppock S, Galan MC. AuCl 3-Catalyzed Hemiacetal Activation for the Stereoselective Synthesis of 2-Deoxy Trehalose Derivatives. Org Lett 2022; 24:6304-6309. [PMID: 35994370 PMCID: PMC9442795 DOI: 10.1021/acs.orglett.2c02530] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A new practical, catalytic, and highly stereoselective method for directly accessing 1,1-α,α'-linked 2-deoxy trehalose analogues via AuCl3-catalyzed dehydrative glycosylation using hemiacetal glycosyl donors and acceptors is described. The method relies on the chemoselective Brønsted acid-type activation of tribenzylated 2-deoxy hemiacetals in the presence of other less reactive hemiacetals.
Collapse
Affiliation(s)
- Robin Jeanneret
- School of Chemistry, University of Bristol, Cantock's Close, Bristol BS8 1TS, United Kingdom
| | - Carlo Walz
- School of Chemistry, University of Bristol, Cantock's Close, Bristol BS8 1TS, United Kingdom
| | - Maarten van Meerbeek
- School of Chemistry, University of Bristol, Cantock's Close, Bristol BS8 1TS, United Kingdom
| | - Sarah Coppock
- School of Chemistry, University of Bristol, Cantock's Close, Bristol BS8 1TS, United Kingdom
| | - M Carmen Galan
- School of Chemistry, University of Bristol, Cantock's Close, Bristol BS8 1TS, United Kingdom
| |
Collapse
|
5
|
Asahina Y, Ando T, Hojo H. Toward the chemical syntheses of fucosylated peptides: A combination of protecting groups for the hydroxy groups of fucose. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2022. [DOI: 10.1246/bcsj.20220037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Yuya Asahina
- Institute for Protein Research, Osaka University, 3-2, Yamadaoka, Suita, Osaka 565-0871
| | - Tatsuya Ando
- Institute for Protein Research, Osaka University, 3-2, Yamadaoka, Suita, Osaka 565-0871
| | - Hironobu Hojo
- Institute for Protein Research, Osaka University, 3-2, Yamadaoka, Suita, Osaka 565-0871
| |
Collapse
|
6
|
Ding YN, Li N, Huang YC, Shi WY, Zheng N, Wang CT, An Y, Liu XY, Liang YM. One-Pot Stereoselective Synthesis of 2,3-Diglycosylindoles and Tryptophan-C-glycosides via Palladium-Catalyzed C-H Glycosylation of Indole and Tryptophan. Org Lett 2022; 24:2381-2386. [PMID: 35319894 DOI: 10.1021/acs.orglett.2c00602] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
We described a novel palladium-catalyzed C-H glycosylation of indole or tryptophan for a one-pot stereoselective synthesis of 2,3-diglycosylindoles and tryptophan-C-glycosides. In this strategy, the use of air and base-free and ligand-free conditions provided a highly efficient route to construct C-glycosides. The method can be applied to a wide range of cost-effective and convenient glycosyl chloride donors. Mechanistic studies indicated that the indole 2,3-diglycosylation sequence was C3 and then C2.
Collapse
Affiliation(s)
- Ya-Nan Ding
- State Key Laboratory of Applied Organic Chemistry, School of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China
| | - Ning Li
- State Key Laboratory of Applied Organic Chemistry, School of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China
| | - Yan-Chong Huang
- State Key Laboratory of Applied Organic Chemistry, School of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China
| | - Wei-Yu Shi
- State Key Laboratory of Applied Organic Chemistry, School of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China
| | - Nian Zheng
- State Key Laboratory of Applied Organic Chemistry, School of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China
| | - Cui-Tian Wang
- State Key Laboratory of Applied Organic Chemistry, School of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China
| | - Yang An
- State Key Laboratory of Applied Organic Chemistry, School of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China
| | - Xue-Yuan Liu
- State Key Laboratory of Applied Organic Chemistry, School of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China
| | - Yong-Min Liang
- State Key Laboratory of Applied Organic Chemistry, School of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China
| |
Collapse
|
7
|
An Y, Zhang BS, Ding YN, Zhang Z, Gou XY, Li XS, Wang X, Li Y, Liang YM. Palladium-catalyzed C-H glycosylation and retro Diels-Alder tandem reaction via structurally modified norbornadienes (smNBDs). Chem Sci 2021; 12:13144-13150. [PMID: 34745545 PMCID: PMC8513894 DOI: 10.1039/d1sc03569j] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 08/27/2021] [Indexed: 01/12/2023] Open
Abstract
This report describes palladium-catalyzed C–H glycosylation and retro Diels–Alder tandem reaction via structurally modified norbornadienes (smNBDs). smNBDs were proposed to regulate the reactivity of the aryl-norbornadiene-palladacycle (ANP), including its high chemoselectivity and regioselectivity, which were the key to constructing C2 and C3 unsubstituted C4-glycosidic indoles. The scope of this substrate is extensive; the halogenated six-membered and five-membered glycosides were applied to the reaction smoothly, and N-alkyl (primary, secondary and tertiary) C4-glycosidic indoles can also be obtained by this method. In terms of mechanism, the key ANP intermediates characterized by X-ray single-crystal diffraction and further controlled experiments proved that the migration-insertion of smNBDs with phenylpalladium intermediate endows them with high chemo- and regioselectivity. Finally, density functional theory (DFT) calculation further verified the rationality of the mechanism. This report describes palladium-catalyzed C–H glycosylation and retro Diels–Alder tandem reaction via structurally modified norbornadienes (smNBDs).![]()
Collapse
Affiliation(s)
- Yang An
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University Lanzhou 730000 P. R. China
| | - Bo-Sheng Zhang
- College of Chemistry and Chemical Engineering, Northwest Normal University Lanzhou Gansu 730070 P. R. China
| | - Ya-Nan Ding
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University Lanzhou 730000 P. R. China
| | - Zhe Zhang
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University Lanzhou 730000 P. R. China
| | - Xue-Ya Gou
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University Lanzhou 730000 P. R. China
| | - Xue-Song Li
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University Lanzhou 730000 P. R. China
| | - Xiaolei Wang
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University Lanzhou 730000 P. R. China
| | - Yuke Li
- Department of Chemistry, Centre for Scientific Modeling and Computation, Chinese University of Hong Kong Shatin Hong Kong P. R. China
| | - Yong-Min Liang
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University Lanzhou 730000 P. R. China
| |
Collapse
|
8
|
Sollert C, Kocsi D, Jane RT, Orthaber A, Borbas KE. C-glycosylated pyrroles and their application in dipyrromethane and porphyrin synthesis. J PORPHYR PHTHALOCYA 2021. [DOI: 10.1142/s1088424621500723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Pyrrole C-glycosylated in either the 2- or the 3-position could be prepared by the acid-catalyzed reaction between trichloroacetimidate glycosyl donors and pyrrole, or [Formula: see text]-phenyl-tri?uoroacetimidate glucosyl donor and [Formula: see text]-TIPS pyrrole, respectively. Pyrroles carrying glucose, mannose, galactose and lactose in the 2-position, and glucose in the 3-position were obtained. The configurations of the products could be assigned using a combination of 1D and 2D NMR spectroscopy. A number of undesired background reactions yielding a variety of stereo- and regioisomers were identified; in several cases these could be eliminated. Glycosylpyrroles could be incorporated into mono- and diglycosylated dipyrromethanes, a diglycosylated BODIPY dye, and a monoglycosylated Zn(II) porphyrin without damaging the sugar unit.
Collapse
Affiliation(s)
- Carina Sollert
- Department of Chemistry, Ångström Laboratory, Box 523, Uppsala University, 75120 Uppsala, Sweden
| | - Daniel Kocsi
- Department of Chemistry, Ångström Laboratory, Box 523, Uppsala University, 75120 Uppsala, Sweden
| | - Reuben T. Jane
- Department of Chemistry, Ångström Laboratory, Box 523, Uppsala University, 75120 Uppsala, Sweden
| | - Andreas Orthaber
- Department of Chemistry, Ångström Laboratory, Box 523, Uppsala University, 75120 Uppsala, Sweden
| | - K. Eszter Borbas
- Department of Chemistry, Ångström Laboratory, Box 523, Uppsala University, 75120 Uppsala, Sweden
| |
Collapse
|
9
|
Cortés I, Cala LJ, Bracca ABJ, Kaufman TS. Furo[3,2- c]coumarins carrying carbon substituents at C-2 and/or C-3. Isolation, biological activity, synthesis and reaction mechanisms. RSC Adv 2020; 10:33344-33377. [PMID: 35515056 PMCID: PMC9056730 DOI: 10.1039/d0ra06930b] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Accepted: 09/01/2020] [Indexed: 12/23/2022] Open
Abstract
The isolation, biological activity and synthesis of natural furo[3,2-c]coumarins are presented, covering mainly the developments in the last 35 years. The most relevant approaches toward the synthesis of 2-substituted, 3-substituted and 2,3-disubstituted heterocycles are also discussed, with emphasis on the efficiency of the processes and their mechanisms.
Collapse
Affiliation(s)
- Iván Cortés
- Instituto de Química Rosario (IQUIR, CONICET-UNR), Facultad de Ciencias Bioquímicas y Farmacéuticas - Universidad Nacional de Rosario Suipacha 531 S2002LRK Rosario Argentina
| | - L Javier Cala
- Instituto de Química Rosario (IQUIR, CONICET-UNR), Facultad de Ciencias Bioquímicas y Farmacéuticas - Universidad Nacional de Rosario Suipacha 531 S2002LRK Rosario Argentina
| | - Andrea B J Bracca
- Instituto de Química Rosario (IQUIR, CONICET-UNR), Facultad de Ciencias Bioquímicas y Farmacéuticas - Universidad Nacional de Rosario Suipacha 531 S2002LRK Rosario Argentina
| | - Teodoro S Kaufman
- Instituto de Química Rosario (IQUIR, CONICET-UNR), Facultad de Ciencias Bioquímicas y Farmacéuticas - Universidad Nacional de Rosario Suipacha 531 S2002LRK Rosario Argentina
| |
Collapse
|
10
|
Liu J, Xiao X, Han P, Zhou H, Yin QS, Sun JS. Palladium-catalyzed C-glycosylation and annulation of o-alkynylanilines with 1-iodoglycals: convenient access to 3-indolyl- C-glycosides. Org Biomol Chem 2020; 18:8834-8838. [PMID: 33103171 DOI: 10.1039/d0ob01812k] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An efficient and practical approach for the synthesis of 3-indolyl-C-Δ1,2-glycosides through a palladium-catalyzed annulation/C-glycosylation sequence of o-alkynylanilines with 1-iodoglycals has been developed. This methodology has a wide scope of substrates and gives access to 3-indolyl-C-Δ1,2-glycosides in high yields. Furthermore, the product obtained here exhibits a high utility for further transformations.
Collapse
Affiliation(s)
- Jianchao Liu
- National Engineering Research Center for Carbohydrate Synthesis, Jiangxi Normal University, 99 Ziyang Avenue, Nanchang 330022, China.
| | | | | | | | | | | |
Collapse
|
11
|
Abstract
Substituted indole scaffolds are often utilized in medicinal chemistry as they regularly possess significant pharmacological activity. Therefore the development of simple, inexpensive and efficient methods for alkylating the indole heterocycle continues to be an active research area. Reported are reactions of trichloroacetimidate electrophiles and indoles to address the challenges of accessing alkyl decorated indole structures. These alkylations perform best when either the indole or the imidate is functionalized with electron withdrawing groups to avoid polyalkylation.
Collapse
Affiliation(s)
- Tamie Suzuki
- Department of Chemistry, 1-014 Center for Science and Technology, Syracuse University, Syracuse, NY 13244
| | - John D Chisholm
- Department of Chemistry, 1-014 Center for Science and Technology, Syracuse University, Syracuse, NY 13244
| |
Collapse
|
12
|
Shelke YG, Yashmeen A, Gholap AVA, Gharpure SJ, Kapdi AR. Homogeneous Catalysis: A Powerful Technology for the Modification of Important Biomolecules. Chem Asian J 2018; 13:2991-3013. [PMID: 30063286 DOI: 10.1002/asia.201801020] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2018] [Revised: 07/29/2018] [Indexed: 12/17/2022]
Abstract
Homogeneous catalysis plays an important and ubiquitous role in the synthesis of simple and complex molecules, including drug compounds, natural products, and agrochemicals. In recent years, the wide-reaching importance of homogeneous catalysis has made it an indispensable tool for the modification of biomolecules, such as carbohydrates (sugars), amino acids, peptides, nucleosides, nucleotides, and steroids. Such a synthetic strategy offers several advantages, which have led to the development of new molecules of biological relevance at a rapid rate relative to the number of available synthetic methods. Given the powerful nature of homogeneous catalysis in effecting these synthetic transformations, this Focus Review has been compiled to highlight these important developments.
Collapse
Affiliation(s)
- Yogesh G Shelke
- Department of Chemistry, Indian Institute of Technology, Bombay, Main Gate Road, Powai, Mumbai, 400076, India
| | - Afsana Yashmeen
- Department of Chemistry, Institute of Chemical Technology, Nathalal Parekh Road, Matunga, Mumbai, 400019, India
| | - Aniket V A Gholap
- Department of Chemistry, Institute of Chemical Technology, Nathalal Parekh Road, Matunga, Mumbai, 400019, India
| | - Santosh J Gharpure
- Department of Chemistry, Indian Institute of Technology, Bombay, Main Gate Road, Powai, Mumbai, 400076, India
| | - Anant R Kapdi
- Department of Chemistry, Institute of Chemical Technology, Nathalal Parekh Road, Matunga, Mumbai, 400019, India
| |
Collapse
|
13
|
Wang Y, Liu M, Liu L, Xia JH, Du YG, Sun JS. The Structural Revision and Total Synthesis of Carambolaflavone A. J Org Chem 2018; 83:4111-4118. [PMID: 29504402 DOI: 10.1021/acs.joc.8b00008] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Yong Wang
- The National Research Center for Carbohydrate Synthesis, Jiangxi Normal University, Nanchang, 330022, China
- State Key Lab of Environmental Chemistry and Ecotoxicology, Research Center for Eco-environmental Science, CAS, Beijing, 100850, China
| | - Miao Liu
- The National Research Center for Carbohydrate Synthesis, Jiangxi Normal University, Nanchang, 330022, China
| | - Lei Liu
- The National Research Center for Carbohydrate Synthesis, Jiangxi Normal University, Nanchang, 330022, China
| | - Jian-Hui Xia
- The National Research Center for Carbohydrate Synthesis, Jiangxi Normal University, Nanchang, 330022, China
| | - Yu-Guo Du
- State Key Lab of Environmental Chemistry and Ecotoxicology, Research Center for Eco-environmental Science, CAS, Beijing, 100850, China
| | - Jian-Song Sun
- The National Research Center for Carbohydrate Synthesis, Jiangxi Normal University, Nanchang, 330022, China
| |
Collapse
|
14
|
Zhu F, Rodriguez J, Yang T, Kevlishvili I, Miller E, Yi D, O'Neill S, Rourke MJ, Liu P, Walczak MA. Glycosyl Cross-Coupling of Anomeric Nucleophiles: Scope, Mechanism, and Applications in the Synthesis of Aryl C-Glycosides. J Am Chem Soc 2017; 139:17908-17922. [PMID: 29148749 DOI: 10.1021/jacs.7b08707] [Citation(s) in RCA: 88] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Stereoselective manipulations at the C1 anomeric position of saccharides are one of the central goals of preparative carbohydrate chemistry. Historically, the majority of reactions forming a bond with anomeric carbon has focused on reactions of nucleophiles with saccharide donors equipped with a leaving group. Here, we describe a novel approach to stereoselective synthesis of C-aryl glycosides capitalizing on the highly stereospecific reaction of anomeric nucleophiles. First, methods for the preparation of anomeric stannanes have been developed and optimized to afford both anomers of common saccharides in high anomeric selectivities. We established that oligosaccharide stannanes could be prepared from monosaccharide stannanes via O-glycosylation with Schmidt-type donors, glycal epoxides, or under dehydrative conditions with C1 alcohols. Second, we identified a general set of catalytic conditions with Pd2(dba)3 (2.5 mol%) and a bulky ligand (JackiePhos, 10 mol%) controlling the β-elimination pathway. We demonstrated that the glycosyl cross-coupling resulted in consistently high anomeric selectivities for both anomers with mono- and oligosaccharides, deoxysugars, saccharides with free hydroxyl groups, pyranose, and furanose substrates. The versatility of the glycosyl cross-coupling reaction was probed in the total synthesis of salmochelins (siderophores) and commercial anti-diabetic drugs (gliflozins). Combined experimental and computational studies revealed that the β-elimination pathway is suppressed for biphenyl-type ligands due to the shielding of Pd(II) by sterically demanding JackiePhos, whereas smaller ligands, which allow for the formation of a Pd-F complex, predominantly result in a glycal product. Similar steric effects account for the diminished rates of cross-couplings of 1,2-cis C1-stannanes with aryl halides. DFT calculations also revealed that the transmetalation occurs via a cyclic transition state with retention of configuration at the anomeric position. Taken together, facile access to both anomers of various glycoside nucleophiles, a broad reaction scope, and uniformly high transfer of anomeric configuration make the glycosyl cross-coupling reaction a practical tool for the synthesis of bioactive natural products, drug candidates, allowing for late-stage glycodiversification studies with small molecules and biologics.
Collapse
Affiliation(s)
- Feng Zhu
- Department of Chemistry and Biochemistry, University of Colorado , Boulder, Colorado 80309, United States
| | - Jacob Rodriguez
- Department of Chemistry and Biochemistry, University of Colorado , Boulder, Colorado 80309, United States
| | - Tianyi Yang
- Department of Chemistry and Biochemistry, University of Colorado , Boulder, Colorado 80309, United States
| | - Ilia Kevlishvili
- Department of Chemistry, University of Pittsburgh , Pittsburgh, Pennsylvania 15260, United States
| | - Eric Miller
- Department of Chemistry and Biochemistry, University of Colorado , Boulder, Colorado 80309, United States
| | - Duk Yi
- Department of Chemistry and Biochemistry, University of Colorado , Boulder, Colorado 80309, United States
| | - Sloane O'Neill
- Department of Chemistry and Biochemistry, University of Colorado , Boulder, Colorado 80309, United States
| | - Michael J Rourke
- Department of Chemistry and Biochemistry, University of Colorado , Boulder, Colorado 80309, United States
| | - Peng Liu
- Department of Chemistry, University of Pittsburgh , Pittsburgh, Pennsylvania 15260, United States
| | - Maciej A Walczak
- Department of Chemistry and Biochemistry, University of Colorado , Boulder, Colorado 80309, United States
| |
Collapse
|
15
|
Affiliation(s)
- You Yang
- Shanghai
Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Biao Yu
- State
Key Laboratory of Bio-organic and Natural Products Chemistry, Shanghai
Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| |
Collapse
|
16
|
Adhikari AA, Radal L, Chisholm JD. Synthesis of 3,3'-Disubstituted Indolenines Utilizing the Lewis Acid Catalyzed Alkylation of 2,3-Disubstituted Indoles with Trichloroacetimidates. Synlett 2017; 28:2335-2339. [PMID: 29033500 DOI: 10.1055/s-0036-1588491] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Trichloroacetimidates function as effective electrophiles for the selective C3-alkylation of 2,3-disubstituted indoles to provide 3,3'-disubstituted indolenines. These indolenines are common synthetic intermediates that are often utilized in the synthesis of complex molecules. Effective reaction conditions utilizing Lewis acid catalysts have been determined, and the scope of the reaction with respect to indole and imidate reaction partner has been investigated. This chemistry provides an alternative to base promoted and transition metal catalyzed methods that are more commonly utilized to access similar indolenines.
Collapse
Affiliation(s)
- Arijit A Adhikari
- Department of Chemistry, Syracuse University, 1-014 Center for Science and Technology, Syracuse, NY 13244
| | - Léa Radal
- Department of Chemistry, Syracuse University, 1-014 Center for Science and Technology, Syracuse, NY 13244
| | - John D Chisholm
- Department of Chemistry, Syracuse University, 1-014 Center for Science and Technology, Syracuse, NY 13244
| |
Collapse
|
17
|
Bokor É, Kun S, Goyard D, Tóth M, Praly JP, Vidal S, Somsák L. C-Glycopyranosyl Arenes and Hetarenes: Synthetic Methods and Bioactivity Focused on Antidiabetic Potential. Chem Rev 2017; 117:1687-1764. [PMID: 28121130 DOI: 10.1021/acs.chemrev.6b00475] [Citation(s) in RCA: 154] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
This Review summarizes close to 500 primary publications and surveys published since 2000 about the syntheses and diverse bioactivities of C-glycopyranosyl (het)arenes. A classification of the preparative routes to these synthetic targets according to methodologies and compound categories is provided. Several of these compounds, regardless of their natural or synthetic origin, display antidiabetic properties due to enzyme inhibition (glycogen phosphorylase, protein tyrosine phosphatase 1B) or by inhibiting renal sodium-dependent glucose cotransporter 2 (SGLT2). The latter class of synthetic inhibitors, very recently approved as antihyperglycemic drugs, opens new perspectives in the pharmacological treatment of type 2 diabetes. Various compounds with the C-glycopyranosyl (het)arene motif were subjected to biological studies displaying among others antioxidant, antiviral, antibiotic, antiadhesive, cytotoxic, and glycoenzyme inhibitory effects.
Collapse
Affiliation(s)
- Éva Bokor
- Department of Organic Chemistry, University of Debrecen , P.O. Box 400, Debrecen H-4002, Hungary
| | - Sándor Kun
- Department of Organic Chemistry, University of Debrecen , P.O. Box 400, Debrecen H-4002, Hungary
| | - David Goyard
- Institut de Chimie et Biochimie Moléculaires et Supramoléculaires, Laboratoire de Chimie Organique 2 - Glycochimie, UMR 5246, Université Claude Bernard Lyon 1 and CNRS , 43 Boulevard du 11 Novembre 1918, Villeurbanne F-69622, France
| | - Marietta Tóth
- Department of Organic Chemistry, University of Debrecen , P.O. Box 400, Debrecen H-4002, Hungary
| | - Jean-Pierre Praly
- Institut de Chimie et Biochimie Moléculaires et Supramoléculaires, Laboratoire de Chimie Organique 2 - Glycochimie, UMR 5246, Université Claude Bernard Lyon 1 and CNRS , 43 Boulevard du 11 Novembre 1918, Villeurbanne F-69622, France
| | - Sébastien Vidal
- Institut de Chimie et Biochimie Moléculaires et Supramoléculaires, Laboratoire de Chimie Organique 2 - Glycochimie, UMR 5246, Université Claude Bernard Lyon 1 and CNRS , 43 Boulevard du 11 Novembre 1918, Villeurbanne F-69622, France
| | - László Somsák
- Department of Organic Chemistry, University of Debrecen , P.O. Box 400, Debrecen H-4002, Hungary
| |
Collapse
|
18
|
Johansson JR, Beke-Somfai T, Said Stålsmeden A, Kann N. Ruthenium-Catalyzed Azide Alkyne Cycloaddition Reaction: Scope, Mechanism, and Applications. Chem Rev 2016; 116:14726-14768. [DOI: 10.1021/acs.chemrev.6b00466] [Citation(s) in RCA: 223] [Impact Index Per Article: 27.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Johan R. Johansson
- Cardiovascular
and Metabolic Diseases, Innovative Medicines and Early Development
Biotech Unit, AstraZeneca, Pepparedsleden 1, SE-43183 Mölndal, Sweden
| | - Tamás Beke-Somfai
- Research
Centre for Natural Sciences, Hungarian Academy of Sciences, Magyar tudósok
krt. 2, H-1117 Budapest, Hungary
| | - Anna Said Stålsmeden
- Chemistry
and Biochemistry, Department of Chemistry and Chemical Engineering, Chalmers University of Technology, SE-41296 Göteborg, Sweden
| | - Nina Kann
- Chemistry
and Biochemistry, Department of Chemistry and Chemical Engineering, Chalmers University of Technology, SE-41296 Göteborg, Sweden
| |
Collapse
|
19
|
Kayet A, Ganguly A, Pathak T. Vinyl sulfone modified-azidofuranoside building-blocks: 1,4-/1,5-disubstituted-1,2,3-triazole linked trisaccharides via an aqueous/ionic-liquid route and “Click” chemistry. RSC Adv 2016. [DOI: 10.1039/c5ra25942h] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
1,5-Disubstituted 1,2,3-triazole (1,5-DT) linked disaccharides have been synthesized from stable building blocks having both vinyl sulfone and azido groups using aqueous ionic-liquid media.
Collapse
Affiliation(s)
- Anirban Kayet
- Department of Chemistry
- Indian Institute of Technology Kharagpur
- Kharagpur 721 302
- India
| | - Arghya Ganguly
- Department of Chemistry
- Indian Institute of Technology Kharagpur
- Kharagpur 721 302
- India
| | - Tanmaya Pathak
- Department of Chemistry
- Indian Institute of Technology Kharagpur
- Kharagpur 721 302
- India
| |
Collapse
|
20
|
Bankar SK, Mathew J, Ramasastry SSV. Synthesis of benzofurans via an acid catalysed transacetalisation/Fries-type O → C rearrangement/Michael addition/ring-opening aromatisation cascade of β-pyrones. Chem Commun (Camb) 2016; 52:5569-72. [DOI: 10.1039/c6cc01016d] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
An unusual and facile approach for the synthesis of 2-benzofuranyl-3-hydroxyacetones from 6-acetoxy-β-pyrones and phenols is presented.
Collapse
Affiliation(s)
- Siddheshwar K. Bankar
- Organic Synthesis and Catalysis Lab
- Department of Chemical Sciences
- Indian Institute of Science Education and Research (IISER) Mohali
- Manuali PO
- India
| | - Jopaul Mathew
- Organic Synthesis and Catalysis Lab
- Department of Chemical Sciences
- Indian Institute of Science Education and Research (IISER) Mohali
- Manuali PO
- India
| | - S. S. V. Ramasastry
- Organic Synthesis and Catalysis Lab
- Department of Chemical Sciences
- Indian Institute of Science Education and Research (IISER) Mohali
- Manuali PO
- India
| |
Collapse
|
21
|
A metal free aqueous route to 1,5-disubstituted 1,2,3-triazolylated monofuranosides and difuranosides. Tetrahedron Lett 2015. [DOI: 10.1016/j.tetlet.2015.08.030] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
22
|
Devari S, Kumar M, Deshidi R, Rizvi M, Shah BA. A general metal-free approach for the stereoselective synthesis of C-glycals from unactivated alkynes. Beilstein J Org Chem 2014; 10:2649-53. [PMID: 25550726 PMCID: PMC4273296 DOI: 10.3762/bjoc.10.277] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2014] [Accepted: 11/01/2014] [Indexed: 12/27/2022] Open
Abstract
A novel metal-free strategy for a rapid and α-selctive C-alkynylation of glycals was developed. The reaction utilizes TMSOTf as a promoter to generate in situ trimethylsilylacetylene for C-alkynylation. Thanks to this methodology, we can access C-glycosides in a single step from a variety of acetylenes , i.e., arylacetylenes and most importantly aliphatic alkynes.
Collapse
Affiliation(s)
- Shekaraiah Devari
- Academy of Scientific and Innovative Research (AcSIR); Natural Product Microbes, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu -Tawi, 180001, India
| | - Manjeet Kumar
- Academy of Scientific and Innovative Research (AcSIR); Natural Product Microbes, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu -Tawi, 180001, India
| | - Ramesh Deshidi
- Academy of Scientific and Innovative Research (AcSIR); Natural Product Microbes, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu -Tawi, 180001, India
| | - Masood Rizvi
- Department of Chemistry, University of Kashmir, 190006, India
| | - Bhahwal Ali Shah
- Academy of Scientific and Innovative Research (AcSIR); Natural Product Microbes, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu -Tawi, 180001, India
| |
Collapse
|
23
|
Schlemmer C, Wiebe C, Ferenc D, Kowalczyk D, Wedepohl S, Ziegelmüller P, Dernedde J, Opatz T. Chemoenzymatic synthesis of functional sialyl Lewis(x) mimetics with a heteroaromatic core. Chem Asian J 2014; 9:2119-25. [PMID: 24888318 PMCID: PMC4498494 DOI: 10.1002/asia.201402118] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2014] [Indexed: 11/10/2022]
Abstract
Functional mimetics of the sialyl Lewis(X) tetrasaccharide were prepared by the enzymatic sialylation of a 1,3-diglycosylated indole and a glycosyl azide, which was subsequently transformed into a 1,4-diglycosylated 1,2,3-triazole, by using the trans-sialidase of Trypanosoma cruzi. These compounds inhibited the binding of E-, L-, and P-selectin-coated nanoparticles to polyacrylamide-bound sialyl-Lewis(X) -containing neighboring sulfated tyrosine residues (sTyr/sLe(X) -PAA) at low or sub-millimolar concentrations. Except for E-selectin, the mimetics showed higher activities than the natural tetrasaccharide.
Collapse
Affiliation(s)
- Claudine Schlemmer
- Institut für Organische Chemie, Johannes Gutenberg-UniversitätDuesbergweg 10–14, 55128 Mainz (Germany), Fax: (+49) 6131-3922338 E-mail:
| | - Christine Wiebe
- Institut für Organische Chemie, Johannes Gutenberg-UniversitätDuesbergweg 10–14, 55128 Mainz (Germany), Fax: (+49) 6131-3922338 E-mail:
| | - Dorota Ferenc
- Institut für Organische Chemie, Johannes Gutenberg-UniversitätDuesbergweg 10–14, 55128 Mainz (Germany), Fax: (+49) 6131-3922338 E-mail:
| | - Danuta Kowalczyk
- Institut für Organische Chemie, Johannes Gutenberg-UniversitätDuesbergweg 10–14, 55128 Mainz (Germany), Fax: (+49) 6131-3922338 E-mail:
| | - Stefanie Wedepohl
- Institut für Laboratoriumsmedizin, Klinische Chemie und Pathobiochemie, Charité-Universitätsmedizin BerlinCVK, Augustenburger Platz 1, 13353 Berlin (Germany)
| | - Patrick Ziegelmüller
- Institut für Biochemie und Molekularbiologie, Universität HamburgMartin-Luther-King-Platz 6, 20146 Hamburg (Germany)
| | - Jens Dernedde
- Institut für Laboratoriumsmedizin, Klinische Chemie und Pathobiochemie, Charité-Universitätsmedizin BerlinCVK, Augustenburger Platz 1, 13353 Berlin (Germany)
| | - Till Opatz
- Institut für Organische Chemie, Johannes Gutenberg-UniversitätDuesbergweg 10–14, 55128 Mainz (Germany), Fax: (+49) 6131-3922338 E-mail:
| |
Collapse
|
24
|
Wang C, Ma X, Zhang J, Tang Q, Jiao W, Shao H. Methanesulfonic-Acid-Catalysed Ring Opening and Glycosylation of 1,2-(Acetylcyclopropane)-AnnulatedD-Lyxofuranose. European J Org Chem 2014. [DOI: 10.1002/ejoc.201402037] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
25
|
McDonagh AW, Murphy PV. Synthesis of α-galactosyl ceramide analogues with an α-triazole at the anomeric carbon. Tetrahedron 2014. [DOI: 10.1016/j.tet.2014.03.029] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
26
|
Kayet A, Pathak T. 1,5-Disubstituted 1,2,3-Triazolylation at C1, C2, C3, C4, and C6 of Pyranosides: A Metal-Free Route to Triazolylated Monosaccharides and Triazole-Linked Disaccharides. J Org Chem 2013; 78:9865-75. [DOI: 10.1021/jo401576n] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Anirban Kayet
- Department
of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur 721 302, India
| | - Tanmaya Pathak
- Department
of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur 721 302, India
| |
Collapse
|
27
|
Schlemmer C, Andernach L, Schollmeyer D, Straub BF, Opatz T. Iodocyclization of o-Alkynylbenzamides Revisited: Formation of Isobenzofuran-1(3H)-imines and 1H-Isochromen-1-imines Instead of Lactams. J Org Chem 2012; 77:10118-24. [DOI: 10.1021/jo3017378] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Claudine Schlemmer
- Institute of Organic Chemistry, University of Mainz, Duesbergweg 10-14, D-55128 Mainz,
Germany
| | - Lars Andernach
- Institute of Organic Chemistry, University of Mainz, Duesbergweg 10-14, D-55128 Mainz,
Germany
| | - Dieter Schollmeyer
- Institute of Organic Chemistry, University of Mainz, Duesbergweg 10-14, D-55128 Mainz,
Germany
| | - Bernd F. Straub
- Institute of Organic
Chemistry, University of Heidelberg, Im
Neuenheimer Feld 270,
D-69120 Heidelberg, Germany
| | - Till Opatz
- Institute of Organic Chemistry, University of Mainz, Duesbergweg 10-14, D-55128 Mainz,
Germany
| |
Collapse
|
28
|
Koester DC, Werz DB. Sonogashira-Hagihara reactions of halogenated glycals. Beilstein J Org Chem 2012; 8:675-82. [PMID: 23015813 PMCID: PMC3388853 DOI: 10.3762/bjoc.8.75] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2012] [Accepted: 04/04/2012] [Indexed: 12/16/2022] Open
Abstract
Herein, we report on our findings of the Sonogashira-Hagihara reaction with 1-iodinated and 2-brominated glycals using several aromatic and aliphatic alkynes. This Pd-catalyzed cross-coupling reaction presents a facile access to alkynyl C-glycosides and sets the stage for a reductive/oxidative refunctionalization of the enyne moiety to regenerate either C-glycosidic structures or pyran derivatives with a substituent in position 2.
Collapse
Affiliation(s)
- Dennis C Koester
- Institut für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen, Tammannstr. 2, 37077 Göttingen, Germany
| | - Daniel B Werz
- Institut für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen, Tammannstr. 2, 37077 Göttingen, Germany
| |
Collapse
|