1
|
Hansen S, Arafiles JVV, Ochtrop P, Hackenberger CPR. Modular solid-phase synthesis of electrophilic cysteine-selective ethynyl-phosphonamidate peptides. Chem Commun (Camb) 2022; 58:8388-8391. [PMID: 35792548 DOI: 10.1039/d2cc02379b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We report an efficient method to install electrophilic cysteine-selective ethynyl-phosphonamidates on peptides during Fmoc-based solid phase peptide synthesis (SPPS). By performing Staudinger-phosphonite reactions between different solid supported azido-peptides and varying ethynylphosphonites, we obtained ethynyl-phosphonamidate containing peptidic compounds after acidic deprotection, including an electrophilic cell-penetrating peptide that showed high efficiency as an additive for cellular delivery of proteins.
Collapse
Affiliation(s)
- Sarah Hansen
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Chemical Biology Department, Robert-Rössle-Str. 10, 13125 Berlin, Germany. .,Humboldt Universität zu Berlin, Department of Chemistry, Brook Taylor Str. 2, 12489 Berlin, Germany
| | - Jan Vincent V Arafiles
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Chemical Biology Department, Robert-Rössle-Str. 10, 13125 Berlin, Germany.
| | - Philipp Ochtrop
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Chemical Biology Department, Robert-Rössle-Str. 10, 13125 Berlin, Germany. .,Humboldt Universität zu Berlin, Department of Chemistry, Brook Taylor Str. 2, 12489 Berlin, Germany
| | - Christian P R Hackenberger
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Chemical Biology Department, Robert-Rössle-Str. 10, 13125 Berlin, Germany. .,Humboldt Universität zu Berlin, Department of Chemistry, Brook Taylor Str. 2, 12489 Berlin, Germany
| |
Collapse
|
2
|
Hauser A, Poulou E, Müller F, Schmieder P, Hackenberger CPR. Synthesis and Evaluation of Non-Hydrolyzable Phospho-Lysine Peptide Mimics. Chemistry 2021; 27:2326-2331. [PMID: 32986895 PMCID: PMC7898648 DOI: 10.1002/chem.202003947] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 09/25/2020] [Indexed: 01/16/2023]
Abstract
The intrinsic lability of the phosphoramidate P-N bond in phosphorylated histidine (pHis), arginine (pHis) and lysine (pLys) residues is a significant challenge for the investigation of these post-translational modifications (PTMs), which gained attention rather recently. While stable mimics of pHis and pArg have contributed to study protein substrate interactions or to generate antibodies for enrichment as well as detection, no such analogue has been reported yet for pLys. This work reports the synthesis and evaluation of two pLys mimics, a phosphonate and a phosphate derivative, which can easily be incorporated into peptides using standard fluorenyl-methyloxycarbonyl- (Fmoc-)based solid-phase peptide synthesis (SPPS). In order to compare the biophysical properties of natural pLys with our synthetic mimics, the pKa values of pLys and analogues were determined in titration experiments applying nuclear magnetic resonance (NMR) spectroscopy in small model peptides. These results were used to compute electrostatic potential (ESP) surfaces obtained after molecular geometry optimization. These findings indicate the potential of the designed non-hydrolyzable, phosphonate-based mimic for pLys in various proteomic approaches.
Collapse
Affiliation(s)
- Anett Hauser
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP)Robert-Rössle-Strasse 1013125BerlinGermany
- Department of ChemistryHumboldt-Universität zu BerlinBrook-Taylor-Strasse 212489BerlinGermany
| | - Eleftheria Poulou
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP)Robert-Rössle-Strasse 1013125BerlinGermany
| | - Fabian Müller
- Department of ChemistryHumboldt-Universität zu BerlinBrook-Taylor-Strasse 212489BerlinGermany
| | - Peter Schmieder
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP)Robert-Rössle-Strasse 1013125BerlinGermany
| | - Christian P. R. Hackenberger
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP)Robert-Rössle-Strasse 1013125BerlinGermany
- Department of ChemistryHumboldt-Universität zu BerlinBrook-Taylor-Strasse 212489BerlinGermany
| |
Collapse
|
3
|
Huang B, Zhao Z, Zhao Y, Huang S. Protein arginine phosphorylation in organisms. Int J Biol Macromol 2021; 171:414-422. [PMID: 33428953 DOI: 10.1016/j.ijbiomac.2021.01.015] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Revised: 01/04/2021] [Accepted: 01/04/2021] [Indexed: 12/18/2022]
Abstract
Protein arginine phosphorylation (pArg), a novel molecular switch, plays a key role in regulating cellular processes. The intrinsic acid lability, hot sensitivity, and hot-alkali instability of "high-energy" phosphoamidate (PN bond) in pArg, make the investigation highly difficult and challenging. Recently, the progress in identifying prokaryotic protein arginine kinase/phosphatase and assigning hundreds of pArg proteins and phosphosites has been made, which is arousing scientists' interest and passions. It shows that pArg is tightly connected to bacteria stress response and pathogenicity, and is probably implied in human diseases. In this review, we highlight the strategies for investigation of this mysterious modification and its momentous physiological functions, and also prospect for the potentiality of drugs development targeting pArg-relative pathways.
Collapse
Affiliation(s)
- Biling Huang
- Institute of Drug Discovery Technology, Ningbo University, Ningbo 315211, PR China.
| | - Zhixing Zhao
- MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, PR China
| | - Yufen Zhao
- Institute of Drug Discovery Technology, Ningbo University, Ningbo 315211, PR China; Department of Chemical Biology, College of Chemistry and Chemical Engineering, Key Laboratory for Chemical Biology of Fujian Province, Xiamen University, Xiamen 361005, PR China; Key Lab of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Tsinghua University, Beijing 100084, PR China.
| | - Shaohua Huang
- Institute of Drug Discovery Technology, Ningbo University, Ningbo 315211, PR China.
| |
Collapse
|
4
|
Ahn S, Jung H, Kee JM. Quest for the Crypto-phosphoproteome. Chembiochem 2020; 22:319-325. [PMID: 33094900 DOI: 10.1002/cbic.202000583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 09/14/2020] [Indexed: 11/05/2022]
Abstract
Protein phosphorylation is one of the most studied post-translational modifications (PTMs). Despite the remarkable advances in phosphoproteomics, a chemically less-stable subset of the phosphosites, which we call the crypto-phosphoproteome, has remained underexplored due to technological challenges. In this Viewpoint, we briefly summarize the current understanding of these elusive protein phosphorylations and identify the missing pieces for future studies.
Collapse
Affiliation(s)
- Seungmin Ahn
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Korea
| | - Hoyoung Jung
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Korea
| | - Jung-Min Kee
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Korea
| |
Collapse
|
5
|
Hauser A, Hwang S, Sun H, Hackenberger CPR. Combining free energy calculations with tailored enzyme activity assays to elucidate substrate binding of a phospho-lysine phosphatase. Chem Sci 2020; 11:12655-12661. [PMID: 34094459 PMCID: PMC8163145 DOI: 10.1039/d0sc03930f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Accepted: 09/07/2020] [Indexed: 12/20/2022] Open
Abstract
Studying enzymes that are involved in the regulation of dynamic post-translational modifications (PTMs) is of key importance in proteomics research. Such investigations can be particularly challenging when the modification itself is intrinsically labile. In this article, we elucidate the enzymatic activity of Phospholysine Phosphohistidine Inorganic Pyrophosphate Phosphatase (LHPP) towards different O- and N-phosphorylated peptides by a combined experimental and computational approach. LHPP has been previously described to hydrolyze the phosphoramidate bonds in different small molecule substrates, including phosphorylated lysine (pLys). Taking the instability of the phosphoramidate bond into account, we conducted a carefully adjusted enzymatic assay with various pLys pentapeptides to confirm enzymatic phosphatase activity with LHPP. Molecular docking was employed to explore possible binding poses of the substrates in complex with the enzyme. Molecular dynamics based free energy calculations, which are unique in their accuracy and solid theoretical basis, were further applied to predict relative binding affinity of different substrates. Comparison of simulations with experiments clearly suggested a distinct binding motif of pLys peptides as well as a very narrow promiscuity of LHPP. We believe this integrated approach can be widely adopted to study the structure and interaction of poorly characterized enzyme-substrate complexes, in particular with synthetically challenging or labile substrates.
Collapse
Affiliation(s)
- Anett Hauser
- Department of Chemical Biology II, Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP) Berlin Germany
- Institute for Chemistry, Humboldt-Universität zu Berlin Berlin Germany
| | - Songhwan Hwang
- Group of Structural Chemistry and Computational Biophysics, Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP) Berlin Germany
| | - Han Sun
- Group of Structural Chemistry and Computational Biophysics, Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP) Berlin Germany
| | - Christian P R Hackenberger
- Department of Chemical Biology II, Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP) Berlin Germany
- Institute for Chemistry, Humboldt-Universität zu Berlin Berlin Germany
| |
Collapse
|
6
|
Samarasimhareddy M, Mayer G, Hurevich M, Friedler A. Multiphosphorylated peptides: importance, synthetic strategies, and applications for studying biological mechanisms. Org Biomol Chem 2020; 18:3405-3422. [DOI: 10.1039/d0ob00499e] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Advances in the synthesis of multiphosphorylated peptides and peptide libraries: tools for studying the effects of phosphorylation patterns on protein function and regulation.
Collapse
Affiliation(s)
- Mamidi Samarasimhareddy
- The Institute of Chemistry
- Edmond J. Safra Campus
- Givat Ram
- The Hebrew University of Jerusalem
- Jerusalem
| | - Guy Mayer
- The Institute of Chemistry
- Edmond J. Safra Campus
- Givat Ram
- The Hebrew University of Jerusalem
- Jerusalem
| | - Mattan Hurevich
- The Institute of Chemistry
- Edmond J. Safra Campus
- Givat Ram
- The Hebrew University of Jerusalem
- Jerusalem
| | - Assaf Friedler
- The Institute of Chemistry
- Edmond J. Safra Campus
- Givat Ram
- The Hebrew University of Jerusalem
- Jerusalem
| |
Collapse
|
7
|
Penkert M, Hauser A, Harmel R, Fiedler D, Hackenberger CPR, Krause E. Electron Transfer/Higher Energy Collisional Dissociation of Doubly Charged Peptide Ions: Identification of Labile Protein Phosphorylations. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2019; 30:1578-1585. [PMID: 31111417 DOI: 10.1007/s13361-019-02240-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Revised: 03/07/2019] [Accepted: 03/16/2019] [Indexed: 06/09/2023]
Abstract
In recent years, labile phosphorylation sites on arginine, histidine, cysteine, and lysine as well as pyrophosphorylation of serine and threonine have gained more attention in phosphoproteomic studies. However, the analysis of these delicate posttranslational modifications via tandem mass spectrometry remains a challenge. Common fragmentation techniques such as collision-induced dissociation (CID) and higher energy collisional dissociation (HCD) are limited due to extensive phosphate-related neutral loss. Electron transfer dissociation (ETD) has shown to preserve labile modifications, but is restricted to higher charge states, missing the most prevalent doubly charged peptides. Here, we report the ability of electron transfer/higher energy collisional dissociation (EThcD) to fragment doubly charged phosphorylated peptides without losing the labile modifications. Using synthetic peptides that contain phosphorylated arginine, histidine, cysteine, and lysine as well as pyrophosphorylated serine residues, we evaluated the optimal fragmentation conditions, demonstrating that EThcD is the method of choice for unambiguous assignment of tryptic, labile phosphorylated peptides. Graphical Abstract.
Collapse
Affiliation(s)
- Martin Penkert
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Robert-Roessle Str. 10, 13125, Berlin, Germany.
- Department of Chemistry, Humboldt-Universität zu Berlin, Brook-Taylor-Str. 2, 12489, Berlin, Germany.
| | - Anett Hauser
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Robert-Roessle Str. 10, 13125, Berlin, Germany
- Department of Chemistry, Humboldt-Universität zu Berlin, Brook-Taylor-Str. 2, 12489, Berlin, Germany
| | - Robert Harmel
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Robert-Roessle Str. 10, 13125, Berlin, Germany
- Department of Chemistry, Humboldt-Universität zu Berlin, Brook-Taylor-Str. 2, 12489, Berlin, Germany
| | - Dorothea Fiedler
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Robert-Roessle Str. 10, 13125, Berlin, Germany
- Department of Chemistry, Humboldt-Universität zu Berlin, Brook-Taylor-Str. 2, 12489, Berlin, Germany
| | - Christian P R Hackenberger
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Robert-Roessle Str. 10, 13125, Berlin, Germany
- Department of Chemistry, Humboldt-Universität zu Berlin, Brook-Taylor-Str. 2, 12489, Berlin, Germany
| | - Eberhard Krause
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Robert-Roessle Str. 10, 13125, Berlin, Germany
| |
Collapse
|
8
|
Jung H, Shin SH, Kee J. Recent Updates on ProteinN‐Phosphoramidate Hydrolases. Chembiochem 2018; 20:623-633. [DOI: 10.1002/cbic.201800566] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Indexed: 12/16/2022]
Affiliation(s)
- Hoyoung Jung
- Department of ChemistryUlsan National Institute of Science and Technology (UNIST) Ulsan 44919 South Korea
| | - Son Hye Shin
- Department of ChemistryUlsan National Institute of Science and Technology (UNIST) Ulsan 44919 South Korea
| | - Jung‐Min Kee
- Department of ChemistryUlsan National Institute of Science and Technology (UNIST) Ulsan 44919 South Korea
| |
Collapse
|
9
|
Hauser A, Penkert M, Hackenberger CPR. Chemical Approaches to Investigate Labile Peptide and Protein Phosphorylation. Acc Chem Res 2017; 50:1883-1893. [PMID: 28723107 DOI: 10.1021/acs.accounts.7b00170] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Protein phosphorylation is by far the most abundant and most studied post-translational modification (PTM). For a long time, phosphate monoesters of serine (pSer), threonine (pThr), and tyrosine (pTyr) have been considered as the only relevant forms of phosphorylation in organisms. Recently, several research groups have dedicated their efforts to the investigation of other, less characterized phosphoamino acids as naturally occurring PTMs. Such apparent peculiar phosphorylations include the phosphoramidates of histidine (pHis), arginine (pArg), and lysine (pLys), the phosphorothioate of cysteine (pCys), and the anhydrides of pyrophosphorylated serine (ppSer) and threonine (ppThr). Almost all of these phosphorylated amino acids show higher lability under physiological conditions than those of phosphate monoesters. Furthermore, they are prone to hydrolysis under acidic and sometimes basic conditions as well as at elevated temperatures, which renders their synthetic accessibility and proteomic analysis particularly challenging. In this Account, we illustrate recent chemical approaches to probe the occurrence and function of these labile phosphorylation events. Within these endeavors, the synthesis of site-selectively phosphorylated peptides, in particular in combination with chemoselective phosphorylation strategies, was crucial. With these well-defined standards in hand, the appropriate proteomic mass spectrometry-based analysis protocols for the characterization of labile phosphosites in biological samples could be developed. Another successful approach in this research field includes the design and synthesis of stable analogues of these labile PTMs, which were used for the generation of pHis- and pArg-specific antibodies for the detection and enrichment of endogenous phosphorylated samples. Finally, other selective enrichment techniques are described, which rely for instance on the unique chemical environment of a pyrophosphate or the selective interaction between a phosphoamino acid and its phosphatase. It is worth noting that many of those studies are still in their early stages, which is also reflected in the small number of identified phosphosites compared to that of phosphate monoesters. Thus, many challenges need to be mastered to fully understand the biological role of these poorly characterized and rather uncommon phosphorylations. Taken together, this overview exemplifies recent efforts in a flourishing field of functional proteomic analysis and furthermore manifests the power of modern peptide synthesis to address unmet questions in the life sciences.
Collapse
Affiliation(s)
- Anett Hauser
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Robert-Roessle-Straße 10, 13125 Berlin, Germany
- Institute
of Chemistry, Humboldt-Universität zu Berlin, Brook-Taylor-Straße
2, 12489 Berlin, Germany
| | - Martin Penkert
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Robert-Roessle-Straße 10, 13125 Berlin, Germany
- Institute
of Chemistry, Humboldt-Universität zu Berlin, Brook-Taylor-Straße
2, 12489 Berlin, Germany
| | - Christian P. R. Hackenberger
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Robert-Roessle-Straße 10, 13125 Berlin, Germany
- Institute
of Chemistry, Humboldt-Universität zu Berlin, Brook-Taylor-Straße
2, 12489 Berlin, Germany
| |
Collapse
|
10
|
Marmelstein AM, Moreno J, Fiedler D. Chemical Approaches to Studying Labile Amino Acid Phosphorylation. Top Curr Chem (Cham) 2017; 375:22. [DOI: 10.1007/s41061-017-0111-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Accepted: 01/23/2017] [Indexed: 12/12/2022]
|
11
|
Chemoselective synthesis and analysis of naturally occurring phosphorylated cysteine peptides. Nat Commun 2016; 7:12703. [PMID: 27586301 PMCID: PMC5025809 DOI: 10.1038/ncomms12703] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Accepted: 07/26/2016] [Indexed: 12/15/2022] Open
Abstract
In contrast to protein O-phosphorylation, studying the function of the less frequent N- and S-phosphorylation events have lagged behind because they have chemical features that prevent their manipulation through standard synthetic and analytical methods. Here we report on the development of a chemoselective synthetic method to phosphorylate Cys side-chains in unprotected peptides. This approach makes use of a reaction between nucleophilic phosphites and electrophilic disulfides accessible by standard methods. We achieve the stereochemically defined phosphorylation of a Cys residue and verify the modification using electron-transfer higher-energy dissociation (EThcD) mass spectrometry. To demonstrate the use of the approach in resolving biological questions, we identify an endogenous Cys phosphorylation site in IICB(Glc), which is known to be involved in the carbohydrate uptake from the bacterial phosphotransferase system (PTS). This new chemical and analytical approach finally allows further investigating the functions and significance of Cys phosphorylation in a wide range of crucial cellular processes.
Collapse
|
12
|
Bertran-Vicente J, Schümann M, Schmieder P, Krause E, Hackenberger CPR. Direct access to site-specifically phosphorylated-lysine peptides from a solid-support. Org Biomol Chem 2016; 13:6839-43. [PMID: 26018866 DOI: 10.1039/c5ob00734h] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Phosphorylation is a key process for changing the activity and function of proteins. The impact of phospho-serine (pSer), -threonine (pThr) and -tyrosine (pTyr) is certainly understood for some proteins. Recently, peptides and proteins containing N-phosphorylated amino acids such as phosphoarginine (pArg), phosphohistidine (pHis) and phospholysine (pLys) have gained interest because of their different chemical properties and stability profiles. Due to its high intrinsic lability, pLys is the least studied within this latter group. In order to gain insight into the biological role of pLys, chemical and analytical tools, which are compatible with the labile P(=O)-N bond, are highly sought-after. We recently reported an in-solution synthetic approach to incorporate pLys residues in a site-specific manner into peptides by taking advantage of the chemoselectivity of the Staudinger-phosphite reaction. While the in-solution approach allows us to circumvent the critical TFA cleavage, it still requires several transformations and purification steps to finally deliver pLys peptides. Here we report the synthesis of site-specific pLys peptides directly from a solid support by using a base labile resin. This straightforward and highly efficient approach facilitates the synthesis of various site-specific pLys-containing peptides and lays the groundwork for future studies about this elusive protein modification.
Collapse
Affiliation(s)
- Jordi Bertran-Vicente
- Leibniz Institut für Molekulare Pharmakologie (FMP), Robert-Roessle Str. 10, Berlin 13125, Germany.
| | | | | | | | | |
Collapse
|
13
|
Ouyang H, Fu C, Fu S, Ji Z, Sun Y, Deng P, Zhao Y. Development of a stable phosphoarginine analog for producing phosphoarginine antibodies. Org Biomol Chem 2016; 14:1925-9. [DOI: 10.1039/c5ob02603b] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
pAIE is designed and synthesized as a stable analog and bioisostere of acid-labile pArg, to produce pArg specific antibodies, facilitating the detection of protein arginine phosphorylation.
Collapse
Affiliation(s)
- Han Ouyang
- Department of Chemistry
- College of Chemistry and Chemical Engineering
- Xiamen University
- Xiamen 361005
- China
| | - Chuan Fu
- Department of Chemical Biology
- College of Chemistry and Chemical Engineering
- Xiamen University
- Xiamen 361005
- China
| | - Songsen Fu
- Department of Chemistry
- College of Chemistry and Chemical Engineering
- Xiamen University
- Xiamen 361005
- China
| | - Zhe Ji
- Department of Chemical Biology
- College of Chemistry and Chemical Engineering
- Xiamen University
- Xiamen 361005
- China
| | - Ying Sun
- Department of Chemistry
- College of Chemistry and Chemical Engineering
- Xiamen University
- Xiamen 361005
- China
| | - Peiran Deng
- Department of Chemical Biology
- College of Chemistry and Chemical Engineering
- Xiamen University
- Xiamen 361005
- China
| | - Yufen Zhao
- Department of Chemistry
- College of Chemistry and Chemical Engineering
- Xiamen University
- Xiamen 361005
- China
| |
Collapse
|
14
|
Fuhrmann J, Subramanian V, Thompson PR. Synthesis and Use of a Phosphonate Amidine to Generate an Anti‐Phosphoarginine‐Specific Antibody. Angew Chem Int Ed Engl 2015. [DOI: 10.1002/ange.201506737] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Jakob Fuhrmann
- Department of Chemistry, The Scripps Research Institute, 130 Scripps Way, Jupiter, FL 33458 (USA)
| | - Venkataraman Subramanian
- Department of Biochemistry and Molecular Pharmacology, UMass Medical School, 364 Plantation Street, Worcester, MA 01605 (USA)
- Chemical Biology Interface Program, UMass Medical School, 364 Plantation Street, Worcester, MA 01605 (USA)
| | - Paul R. Thompson
- Department of Biochemistry and Molecular Pharmacology, UMass Medical School, 364 Plantation Street, Worcester, MA 01605 (USA)
- Chemical Biology Interface Program, UMass Medical School, 364 Plantation Street, Worcester, MA 01605 (USA)
| |
Collapse
|
15
|
Fuhrmann J, Subramanian V, Thompson PR. Synthesis and Use of a Phosphonate Amidine to Generate an Anti-Phosphoarginine-Specific Antibody. Angew Chem Int Ed Engl 2015; 54:14715-8. [PMID: 26458230 DOI: 10.1002/anie.201506737] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2015] [Revised: 09/08/2015] [Indexed: 01/09/2023]
Abstract
Protein arginine phosphorylation is a post-translational modification (PTM) that is important for bacterial growth and virulence. Despite its biological relevance, the intrinsic acid lability of phosphoarginine (pArg) has impaired studies of this novel PTM. Herein, we report for the first time the development of phosphonate amidines and sulfonate amidines as isosteres of pArg and then use these mimics as haptens to develop the first high-affinity sequence independent anti-pArg specific antibody. Employing this anti-pArg antibody, we further showed that arginine phosphorylation is induced in Bacillus subtilis during oxidative stress. Overall, we expect this antibody to see widespread use in analyzing the biological significance of arginine phosphorylation. Additionally, the chemistry reported here will facilitate the generation of pArg mimetics as highly potent inhibitors of the enzymes that catalyze arginine phosphorylation/dephosphorylation.
Collapse
Affiliation(s)
- Jakob Fuhrmann
- Department of Chemistry, The Scripps Research Institute, 130 Scripps Way, Jupiter, FL 33458 (USA).
| | - Venkataraman Subramanian
- Department of Biochemistry and Molecular Pharmacology, UMass Medical School, 364 Plantation Street, Worcester, MA 01605 (USA).,Chemical Biology Interface Program, UMass Medical School, 364 Plantation Street, Worcester, MA 01605 (USA)
| | - Paul R Thompson
- Department of Biochemistry and Molecular Pharmacology, UMass Medical School, 364 Plantation Street, Worcester, MA 01605 (USA). .,Chemical Biology Interface Program, UMass Medical School, 364 Plantation Street, Worcester, MA 01605 (USA).
| |
Collapse
|
16
|
Affiliation(s)
- Manuel M. Müller
- Department of Chemistry, Princeton University,
Frick Laboratory, Princeton, New Jersey 08544, United States
| | - Tom W. Muir
- Department of Chemistry, Princeton University,
Frick Laboratory, Princeton, New Jersey 08544, United States
| |
Collapse
|
17
|
Ni F, Fu C, Gao X, Liu Y, Xu P, Liu L, Lv Y, Fu S, Sun Y, Han D, Li Y, Zhao Y. N-phosphoryl amino acid models for P-N bonds in prebiotic chemical evolution. Sci China Chem 2015. [DOI: 10.1007/s11426-015-5321-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
18
|
Bertran-Vicente J, Serwa RA, Schümann M, Schmieder P, Krause E, Hackenberger CPR. Site-specifically phosphorylated lysine peptides. J Am Chem Soc 2014; 136:13622-8. [PMID: 25196693 DOI: 10.1021/ja507886s] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Protein phosphorylation controls major processes in cells. Although phosphorylation of serine, threonine, and tyrosine and also recently histidine and arginine are well-established, the extent and biological significance of lysine phosphorylation has remained elusive. Research in this area has been particularly limited by the inaccessibility of peptides and proteins that are phosphorylated at specific lysine residues, which are incompatible with solid-phase peptide synthesis (SPPS) due to the intrinsic acid lability of the P(═O)-N phosphoramidate bond. To address this issue, we have developed a new synthetic route for the synthesis of site-specifically phospholysine (pLys)-containing peptides by employing the chemoselectivity of the Staudinger-phosphite reaction. Our synthetic approach relies on the SPPS of unprotected ε-azido lysine-containing peptides and their subsequent reaction to phosphoramidates with phosphite esters before they are converted into the natural modification via UV irradiation or basic deprotection. With these peptides in hand, we demonstrate that electron-transfer dissociation tandem mass spectrometry can be used for unambiguous assignment of phosphorylated-lysine residues within histone peptides and that these peptides can be detected in cell lysates using a bottom-up proteomic approach. This new tagging method is expected to be an essential tool for evaluating the biological relevance of lysine phosphorylation.
Collapse
Affiliation(s)
- Jordi Bertran-Vicente
- Leibniz-Institut für Molekulare Pharmakologie (FMP) , Robert-Rössle Str. 10, 13125 Berlin, Germany
| | | | | | | | | | | |
Collapse
|
19
|
McAllister TE, Horner KA, Webb ME. Evaluation of the interaction between phosphohistidine analogues and phosphotyrosine binding domains. Chembiochem 2014; 15:1088-91. [PMID: 24771713 PMCID: PMC4159583 DOI: 10.1002/cbic.201402090] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2014] [Indexed: 12/16/2022]
Abstract
We have investigated the interaction of peptides containing phosphohistidine analogues and their homologues with the prototypical phosphotyrosine binding SH2 domain from the eukaryotic cell signalling protein Grb2 by using a combination of isothermal titration calorimetry and a fluorescence anisotropy competition assay. These investigations demonstrated that the triazole class of phosphohistidine analogues are capable of binding too, suggesting that phosphohistidine could potentially be detected by this class of proteins in vivo.
Collapse
Affiliation(s)
- Tom E McAllister
- School of Chemistry and Astbury Centre for Structural Molecular Biology, University of LeedsWoodhouse Lane, Leeds, LS2 9JT (UK) E-mail: Homepage: http://www.chem.leeds.ac.uk/MEW/
| | - Katherine A Horner
- School of Chemistry and Astbury Centre for Structural Molecular Biology, University of LeedsWoodhouse Lane, Leeds, LS2 9JT (UK) E-mail: Homepage: http://www.chem.leeds.ac.uk/MEW/
| | - Michael E Webb
- School of Chemistry and Astbury Centre for Structural Molecular Biology, University of LeedsWoodhouse Lane, Leeds, LS2 9JT (UK) E-mail: Homepage: http://www.chem.leeds.ac.uk/MEW/
| |
Collapse
|
20
|
Trentini DB, Fuhrmann J, Mechtler K, Clausen T. Chasing Phosphoarginine Proteins: Development of a Selective Enrichment Method Using a Phosphatase Trap. Mol Cell Proteomics 2014; 13:1953-64. [PMID: 24825175 DOI: 10.1074/mcp.o113.035790] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2013] [Indexed: 01/30/2023] Open
Abstract
Arginine phosphorylation is an emerging post-translational protein modification implicated in the bacterial stress response. Although early reports suggested that arginine phosphorylation also occurs in higher eukaryotes, its overall prevalence was never studied using modern mass spectrometry methods, owing to technical difficulties arising from the acid lability of phosphoarginine. As shown recently, the McsB and YwlE proteins from Bacillus subtilis function as a highly specific protein arginine kinase and phosphatase couple, shaping the phosphoarginine proteome. Using a B. subtilis ΔywlE strain as a source for arginine-phosphorylated proteins, we were able to adapt mass spectrometry (MS) protocols to the special chemical properties of the arginine modification. Despite this progress, the analysis of protein arginine phosphorylation in eukaryotes is still challenging, given the great abundance of serine/threonine phosphorylations that would compete with phosphoarginine during the phosphopeptide enrichment procedure, as well as during data-dependent MS acquisition. We thus set out to establish a method for the selective enrichment of arginine-phosphorylated proteins as an initial step in the phosphoproteomic analysis. For this purpose, we developed a substrate-trapping mutant of the YwlE phosphatase that retains binding affinity toward arginine-phosphorylated proteins but cannot hydrolyze the captured substrates. By testing a number of active site substitutions, we identified a YwlE mutant (C9A) that stably binds to arginine-phosphorylated proteins. We further improved the substrate-trapping efficiency by impeding the oligomerization of the phosphatase mutant. The engineered YwlE trap efficiently captured arginine-phosphorylated proteins from complex B. subtilis ΔywlE cell extracts, thus facilitating identification of phosphoarginine sites in the large pool of cellular protein modifications. In conclusion, we present a novel tool for the selective enrichment and subsequent MS analysis of arginine phosphorylation, which is a largely overlooked protein modification that might be important for eukaryotic cell signaling.
Collapse
Affiliation(s)
- Débora Broch Trentini
- From the ‡Research Institute of Molecular Pathology - IMP, Dr. Bohr-Gasse 7, A-1030 Vienna, Austria
| | - Jakob Fuhrmann
- From the ‡Research Institute of Molecular Pathology - IMP, Dr. Bohr-Gasse 7, A-1030 Vienna, Austria
| | - Karl Mechtler
- From the ‡Research Institute of Molecular Pathology - IMP, Dr. Bohr-Gasse 7, A-1030 Vienna, Austria; §Institute of Molecular Biotechnology of the Austrian Academy of Sciences - IMBA, Dr. Bohr-Gasse 3, A-1030 Vienna, Austria
| | - Tim Clausen
- From the ‡Research Institute of Molecular Pathology - IMP, Dr. Bohr-Gasse 7, A-1030 Vienna, Austria;
| |
Collapse
|