1
|
Kim D, Javius-Jones K, Mamidi N, Hong S. Dendritic nanoparticles for immune modulation: a potential next-generation nanocarrier for cancer immunotherapy. NANOSCALE 2024; 16:10208-10220. [PMID: 38727407 DOI: 10.1039/d4nr00635f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2024]
Abstract
Immune activation, whether occurring from direct immune checkpoint blockade or indirectly as a result of chemotherapy, is an approach that has drastically impacted the way we treat cancer. Utilizing patients' own immune systems for anti-tumor efficacy has been translated to robust immunotherapies; however, clinically significant successes have been achieved in only a subset of patient populations. Dendrimers and dendritic polymers have recently emerged as a potential nanocarrier platform that significantly improves the therapeutic efficacy of current and next-generation cancer immunotherapies. In this paper, we highlight the recent progress in developing dendritic polymer-based therapeutics with immune-modulating properties. Specifically, dendrimers, dendrimer hybrids, and dendronized copolymers have demonstrated promising results and are currently in pre-clinical development. Despite their early stage of development, these nanocarriers hold immense potential to make profound impact on cancer immunotherapy and combination therapy. This overview provides insights into the potential impact of dendrimers and dendron-based polymers, offering a preview of their potential utilities for various aspects of cancer treatment.
Collapse
Affiliation(s)
- DaWon Kim
- Pharmaceutical Sciences Division, University of Wisconsin-Madison, School of Pharmacy, Madison, WI, USA.
| | - Kaila Javius-Jones
- Pharmaceutical Sciences Division, University of Wisconsin-Madison, School of Pharmacy, Madison, WI, USA.
| | - Narsimha Mamidi
- Wisconsin Center for NanoBioSystems, University of Wisconsin-Madison, Madison, WI, USA
| | - Seungpyo Hong
- Pharmaceutical Sciences Division, University of Wisconsin-Madison, School of Pharmacy, Madison, WI, USA.
- Wisconsin Center for NanoBioSystems, University of Wisconsin-Madison, Madison, WI, USA
- Lachman Institute for Drug Development, University of Wisconsin-Madison, Madison, WI, USA
- Yonsei Frontier Lab, Yonsei University, Seoul, Korea
| |
Collapse
|
2
|
Xu X, Liu A, Liu S, Ma Y, Zhang X, Zhang M, Zhao J, Sun S, Sun X. Application of molecular dynamics simulation in self-assembled cancer nanomedicine. Biomater Res 2023; 27:39. [PMID: 37143168 PMCID: PMC10161522 DOI: 10.1186/s40824-023-00386-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 04/21/2023] [Indexed: 05/06/2023] Open
Abstract
Self-assembled nanomedicine holds great potential in cancer theragnostic. The structures and dynamics of nanomedicine can be affected by a variety of non-covalent interactions, so it is essential to ensure the self-assembly process at atomic level. Molecular dynamics (MD) simulation is a key technology to link microcosm and macroscale. Along with the rapid development of computational power and simulation methods, scientists could simulate the specific process of intermolecular interactions. Thus, some experimental observations could be explained at microscopic level and the nanomedicine synthesis process would have traces to follow. This review not only outlines the concept, basic principle, and the parameter setting of MD simulation, but also highlights the recent progress in MD simulation for self-assembled cancer nanomedicine. In addition, the physicochemical parameters of self-assembly structure and interaction between various assembled molecules under MD simulation are also discussed. Therefore, this review will help advanced and novice researchers to quickly zoom in on fundamental information and gather some thought-provoking ideas to advance this subfield of self-assembled cancer nanomedicine.
Collapse
Affiliation(s)
- Xueli Xu
- School of Science, Shandong Jianzhu University, Jinan, 250101, China
| | - Ao Liu
- School of Science, Shandong Jianzhu University, Jinan, 250101, China
| | - Shuangqing Liu
- School of Chemistry and Pharmaceutical Engineering, Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, 250000, China
| | - Yanling Ma
- School of Chemistry and Pharmaceutical Engineering, Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, 250000, China
| | - Xinyu Zhang
- School of Chemistry and Pharmaceutical Engineering, Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, 250000, China
| | - Meng Zhang
- School of Chemistry and Pharmaceutical Engineering, Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, 250000, China
| | - Jinhua Zhao
- School of Science, Shandong Jianzhu University, Jinan, 250101, China
| | - Shuo Sun
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, 02115, USA
| | - Xiao Sun
- School of Chemistry and Pharmaceutical Engineering, Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, 250000, China.
| |
Collapse
|
3
|
Poellmann MJ, Javius-Jones K, Hopkins C, Lee JW, Hong S. Dendritic-Linear Copolymer and Dendron Lipid Nanoparticles for Drug and Gene Delivery. Bioconjug Chem 2022; 33:2008-2017. [PMID: 35512322 DOI: 10.1021/acs.bioconjchem.2c00128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Polymers constitute a diverse class of macromolecules that have demonstrated their unique advantages to be utilized for drug or gene delivery applications. In particular, polymers with a highly ordered, hyperbranched structure─"dendrons"─offer significant benefits to the design of such nanomedicines. The incorporation of dendrons into block copolymer micelles can endow various unique properties that are not typically observed from linear polymer counterparts. Specifically, the dendritic structure induces the conical shape of unimers that form micelles, thereby improving the thermodynamic stability and achieving a low critical micelle concentration (CMC). Furthermore, through a high density of highly ordered functional groups, dendrons can enhance gene complexation, drug loading, and stimuli-responsive behavior. In addition, outward-branching dendrons can support a high density of nonfouling polymers, such as poly(ethylene glycol), for serum stability and variable densities of multifunctional groups for multivalent cellular targeting and interactions. In this paper, we review the design considerations for dendron-lipid nanoparticles and dendron micelles formed from amphiphilic block copolymers intended for gene transfection and cancer drug delivery applications. These technologies are early in preclinical development and, as with other nanomedicines, face many obstacles on the way to clinical adoption. Nevertheless, the utility of dendron micelles for drug delivery remains relatively underexplored, and we believe there are significant and dramatic advancements to be made in tumor targeting with these platforms.
Collapse
Affiliation(s)
- Michael J Poellmann
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin, Madison, Wisconsin 53705, United States
| | - Kaila Javius-Jones
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin, Madison, Wisconsin 53705, United States
| | - Caroline Hopkins
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin, Madison, Wisconsin 53705, United States
| | - Jin Woong Lee
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin, Madison, Wisconsin 53705, United States
| | - Seungpyo Hong
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin, Madison, Wisconsin 53705, United States.,Wisconsin Center for NanoBioSystems, University of Wisconsin, Madison, Wisconsin 53705, United States.,Yonsei Frontier Lab and Department of Pharmacy, Yonsei University, Seoul 03722, Republic of Korea
| |
Collapse
|
4
|
Sunoqrot S, Orainee B, Alqudah DA, Daoud F, Alshaer W. Curcumin-tannic acid-poloxamer nanoassemblies enhance curcumin's uptake and bioactivity against cancer cells in vitro. Int J Pharm 2021; 610:121255. [PMID: 34737014 DOI: 10.1016/j.ijpharm.2021.121255] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 10/14/2021] [Accepted: 10/28/2021] [Indexed: 12/12/2022]
Abstract
Curcumin (CUR) is a bioactive natural compound with potent antioxidant and anticancer properties. However, its poor water solubility has been a major limitation against its widespread clinical use. The aim of this study was to develop a nanoscale formulation for CUR to improve its solubility and potentially enhance its bioactivity, by leveraging the self-assembly behavior of tannic acid (TA) and amphiphilic poloxamers to form CUR-entrapped nanoassemblies. To optimize drug loading, formulation variables included the CUR: TA ratio and the type of amphiphilic polymer (Pluronic® F-127 or Pluronic® P-123). The optimal CUR nanoparticles (NPs) were around 200 nm in size with a high degree of monodispersity and 56% entrapment efficiency. Infrared spectroscopy confirmed the presence of intermolecular interactions between CUR and the NP formulation components. X-ray diffraction revealed that CUR was entrapped in the NPs in an amorphous state. The NPs maintained excellent colloidal stability under various conditions. In vitro release of CUR from the NPs showed a biphasic controlled release pattern up to 72 h. Antioxidant and antiproliferative assays against a panel of human cancer cell lines revealed significantly higher activity for CUR NPs compared to free CUR, particularly in MCF-7 and MDA-MB-231 breast cancer cells. This was attributed to greater cellular uptake of the NPs compared to the free drug as verified by confocal microscopy imaging and flow cytometry measurements. Our findings present a highly promising NP delivery platform for CUR prepared via a simple self-assembly process with the ability to potentiate its bioactivity in cancer and other diseases where oxidative stress is implicated.
Collapse
Affiliation(s)
- Suhair Sunoqrot
- Department of Pharmacy, Faculty of Pharmacy, Al-Zaytoonah University of Jordan, Amman 11733, Jordan.
| | - Bayan Orainee
- Department of Pharmacy, Faculty of Pharmacy, Al-Zaytoonah University of Jordan, Amman 11733, Jordan
| | - Dana A Alqudah
- Cell Therapy Center, The University of Jordan, Amman 11942, Jordan
| | - Fadwa Daoud
- Cell Therapy Center, The University of Jordan, Amman 11942, Jordan
| | - Walhan Alshaer
- Cell Therapy Center, The University of Jordan, Amman 11942, Jordan
| |
Collapse
|
5
|
Nair A, Bu J, Bugno J, Rawding PA, Kubiatowicz LJ, Jeong WJ, Hong S. Size-Dependent Drug Loading, Gene Complexation, Cell Uptake, and Transfection of a Novel Dendron-Lipid Nanoparticle for Drug/Gene Co-delivery. Biomacromolecules 2021; 22:3746-3755. [PMID: 34319087 DOI: 10.1021/acs.biomac.1c00541] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Dendron micelles have shown promising results as a multifunctional delivery system, owing to their unique molecular architecture. Herein, we have prepared a novel poly(amidoamine) (PAMAM) dendron-lipid hybrid nanoparticle (DLNP) as a nanocarrier for drug/gene co-delivery and examined how the dendron generation of DLNPs impacts their cargo-carrying capabilities. DLNPs, formed by a thin-layer hydration method, were internally loaded with chemo-drugs and externally complexed with plasmids. Compared to generation 2 dendron DLNP (D2LNPs), D3LNPs demonstrated a higher drug encapsulation efficiency (31% vs 87%) and better gene complexation (minimal N/P ratio of 20:1 vs 5:1 for complexation) due to their smaller micellar aggregation number and higher charge density, respectively. Furthermore, D3LNPs were able to avoid endocytosis and subsequent lysosomal degradation and demonstrated a higher cellular uptake than D2LNPs. As a result, D3LNPs exhibited significantly enhanced antitumor and gene transfection efficacy in comparison to D2LNPs. These findings provide design cues for engineering multifunctional dendron-based nanotherapeutic systems for effective combination cancer treatment.
Collapse
Affiliation(s)
- Ashita Nair
- Division of Pharmaceutical Sciences, School of Pharmacy, University of Wisconsin, Madison, Wisconsin 53705, United States.,Wisconsin Center for NanoBioSystems (WisCNano), School of Pharmacy, The University of Wisconsin-Madison, 777 Highland Ave., Madison, Wisconsin 53705, United States
| | - Jiyoon Bu
- Division of Pharmaceutical Sciences, School of Pharmacy, University of Wisconsin, Madison, Wisconsin 53705, United States.,Wisconsin Center for NanoBioSystems (WisCNano), School of Pharmacy, The University of Wisconsin-Madison, 777 Highland Ave., Madison, Wisconsin 53705, United States
| | - Jason Bugno
- Department of Biopharmaceutical Sciences, College of Pharmacy, University of Illinois, Chicago, Illinois 60612, United States
| | - Piper A Rawding
- Division of Pharmaceutical Sciences, School of Pharmacy, University of Wisconsin, Madison, Wisconsin 53705, United States.,Wisconsin Center for NanoBioSystems (WisCNano), School of Pharmacy, The University of Wisconsin-Madison, 777 Highland Ave., Madison, Wisconsin 53705, United States
| | - Luke J Kubiatowicz
- Division of Pharmaceutical Sciences, School of Pharmacy, University of Wisconsin, Madison, Wisconsin 53705, United States.,Wisconsin Center for NanoBioSystems (WisCNano), School of Pharmacy, The University of Wisconsin-Madison, 777 Highland Ave., Madison, Wisconsin 53705, United States
| | - Woo-Jin Jeong
- Division of Pharmaceutical Sciences, School of Pharmacy, University of Wisconsin, Madison, Wisconsin 53705, United States.,Department of Biological Engineering, Inha University, 100 Inha-ro, Michuhol-gu, Incheon 22212, Republic of Korea
| | - Seungpyo Hong
- Division of Pharmaceutical Sciences, School of Pharmacy, University of Wisconsin, Madison, Wisconsin 53705, United States.,Wisconsin Center for NanoBioSystems (WisCNano), School of Pharmacy, The University of Wisconsin-Madison, 777 Highland Ave., Madison, Wisconsin 53705, United States.,Department of Biopharmaceutical Sciences, College of Pharmacy, University of Illinois, Chicago, Illinois 60612, United States.,Yonsei Frontier Lab and Department of Pharmacy, Yonsei University, Seoul 03722, Republic of Korea
| |
Collapse
|
6
|
Wengenmayr M, Dockhorn R, Sommer JU. Multimolecular Structure Formation with Linear Dendritic Copolymers. Macromolecules 2021. [DOI: 10.1021/acs.macromol.1c00226] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Martin Wengenmayr
- Institute Theory of Polymers, Leibniz Institute for Polymer Research Dresden, Hohe Strasse 6, D-01069 Dresden, Germany
| | - Ron Dockhorn
- Institute Theory of Polymers, Leibniz Institute for Polymer Research Dresden, Hohe Strasse 6, D-01069 Dresden, Germany
| | - Jens-Uwe Sommer
- Institute Theory of Polymers, Leibniz Institute for Polymer Research Dresden, Hohe Strasse 6, D-01069 Dresden, Germany
- Institute of Theoretical Physics, Technische Universität Dresden, Zellescher Weg 17, D-01069 Dresden, Germany
| |
Collapse
|
7
|
Ziolek RM, Smith P, Pink DL, Dreiss CA, Lorenz CD. Unsupervised Learning Unravels the Structure of Four-Arm and Linear Block Copolymer Micelles. Macromolecules 2021. [DOI: 10.1021/acs.macromol.0c02523] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Robert M. Ziolek
- Biological Physics and Soft Matter Group, Department of Physics, King’s College London, London WC2R 2LS, U.K
| | - Paul Smith
- Biological Physics and Soft Matter Group, Department of Physics, King’s College London, London WC2R 2LS, U.K
| | - Demi L. Pink
- Biological Physics and Soft Matter Group, Department of Physics, King’s College London, London WC2R 2LS, U.K
| | - Cécile A. Dreiss
- Institute of Pharmaceutical Science, King’s College London, London SE1 9NH, U.K
| | - Christian D. Lorenz
- Biological Physics and Soft Matter Group, Department of Physics, King’s College London, London WC2R 2LS, U.K
| |
Collapse
|
8
|
Ziolek RM, Omar J, Hu W, Porcar L, González-Gaitano G, Dreiss CA, Lorenz CD. Understanding the pH-Directed Self-Assembly of a Four-Arm Block Copolymer. Macromolecules 2020. [DOI: 10.1021/acs.macromol.0c01694] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- Robert M. Ziolek
- Biological Physics and Soft Matter Group, Department of Physics, King’s College London, London WC2R 2LS, United Kingdom
| | - Jasmin Omar
- Institute of Pharmaceutical Science, King’s College London, London SE1 9NH, United Kingdom
| | - Wenjing Hu
- Institute of Pharmaceutical Science, King’s College London, London SE1 9NH, United Kingdom
| | - Lionel Porcar
- Institut Max Von Laue Paul Langevin, F-38042 Grenoble 9, France
| | | | - Cécile A. Dreiss
- Institute of Pharmaceutical Science, King’s College London, London SE1 9NH, United Kingdom
| | - Christian D. Lorenz
- Biological Physics and Soft Matter Group, Department of Physics, King’s College London, London WC2R 2LS, United Kingdom
| |
Collapse
|
9
|
Mejlsøe S, Kakkar A. Telodendrimers: Promising Architectural Polymers for Drug Delivery. Molecules 2020; 25:E3995. [PMID: 32887285 PMCID: PMC7504730 DOI: 10.3390/molecules25173995] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Revised: 08/27/2020] [Accepted: 08/28/2020] [Indexed: 02/06/2023] Open
Abstract
Architectural complexity has played a key role in enhancing the efficacy of nanocarriers for a variety of applications, including those in the biomedical field. With the continued evolution in designing macromolecules-based nanoparticles for drug delivery, the combination approach of using important features of linear polymers with dendrimers has offered an advantageous and viable platform. Such nanostructures, which are commonly referred to as telodendrimers, are hybrids of linear polymers covalently linked with different dendrimer generations and backbones. There is considerable variety in selection from widely studied linear polymers and dendrimers, which can help tune the overall composition of the resulting hybrid structures. This review highlights the advances in articulating syntheses of these macromolecules, and the contributions these are making in facilitating therapeutic administration. Limited progress has been made in the design and synthesis of these hybrid macromolecules, and it is through an understanding of their physicochemical properties and aqueous self-assembly that one can expect to fully exploit their potential in drug delivery.
Collapse
Affiliation(s)
| | - Ashok Kakkar
- Department of Chemistry, McGill University, 801 Sherbrooke St. West, Montreal, QC H3A 0B8, Canada;
| |
Collapse
|
10
|
Yadav S, Sharma AK, Kumar P. Nanoscale Self-Assembly for Therapeutic Delivery. Front Bioeng Biotechnol 2020; 8:127. [PMID: 32158749 PMCID: PMC7051917 DOI: 10.3389/fbioe.2020.00127] [Citation(s) in RCA: 142] [Impact Index Per Article: 28.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Accepted: 02/10/2020] [Indexed: 12/23/2022] Open
Abstract
Self-assembly is the process of association of individual units of a material into highly arranged/ordered structures/patterns. It imparts unique properties to both inorganic and organic structures, so generated, via non-covalent interactions. Currently, self-assembled nanomaterials are finding a wide variety of applications in the area of nanotechnology, imaging techniques, biosensors, biomedical sciences, etc., due to its simplicity, spontaneity, scalability, versatility, and inexpensiveness. Self-assembly of amphiphiles into nanostructures (micelles, vesicles, and hydrogels) happens due to various physical interactions. Recent advancements in the area of drug delivery have opened up newer avenues to develop novel drug delivery systems (DDSs) and self-assembled nanostructures have shown their tremendous potential to be used as facile and efficient materials for this purpose. The main objective of the projected review is to provide readers a concise and straightforward knowledge of basic concepts of supramolecular self-assembly process and how these highly functionalized and efficient nanomaterials can be useful in biomedical applications. Approaches for the self-assembly have been discussed for the fabrication of nanostructures. Advantages and limitations of these systems along with the parameters that are to be taken into consideration while designing a therapeutic delivery vehicle have also been outlined. In this review, various macro- and small-molecule-based systems have been elaborated. Besides, a section on DNA nanostructures as intelligent materials for future applications is also included.
Collapse
Affiliation(s)
| | | | - Pradeep Kumar
- Nucleic Acids Research Laboratory, CSIR Institute of Genomics and Integrative Biology, Delhi, India
| |
Collapse
|
11
|
Jeong C, Noh I, Rejinold NS, Kim J, Jon S, Kim YC. Self-Assembled Supramolecular Bilayer Nanoparticles Composed of Near-Infrared Dye as a Theranostic Nanoplatform To Encapsulate Hydrophilic Drugs Effectively. ACS Biomater Sci Eng 2019; 6:474-484. [DOI: 10.1021/acsbiomaterials.9b01587] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
12
|
Le NTT, Nguyen TNQ, Cao VD, Hoang DT, Ngo VC, Hoang Thi TT. Recent Progress and Advances of Multi-Stimuli-Responsive Dendrimers in Drug Delivery for Cancer Treatment. Pharmaceutics 2019; 11:E591. [PMID: 31717376 PMCID: PMC6920789 DOI: 10.3390/pharmaceutics11110591] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 11/02/2019] [Accepted: 11/06/2019] [Indexed: 12/20/2022] Open
Abstract
Despite the fact that nanocarriers as drug delivery systems overcome the limitation of chemotherapy, the leakage of encapsulated drugs during the delivery process to the target site can still cause toxic effects to healthy cells in other tissues and organs in the body. Controlling drug release at the target site, responding to stimuli that originated from internal changes within the body, as well as stimuli manipulated by external sources has recently received significant attention. Owning to the spherical shape and porous structure, dendrimer is utilized as a material for drug delivery. Moreover, the surface region of dendrimer has various moieties facilitating the surface functionalization to develop the desired material. Therefore, multi-stimuli-responsive dendrimers or 'smart' dendrimers that respond to more than two stimuli will be an inspired attempt to achieve the site-specific release and reduce as much as possible the side effects of the drug. The aim of this review was to delve much deeper into the recent progress of multi-stimuli-responsive dendrimers in the delivery of anticancer drugs in addition to the major potential challenges.
Collapse
Affiliation(s)
- Ngoc Thuy Trang Le
- Institute of Research and Development, Duy Tan University, Danang 550000, Vietnam;
| | - Thi Nhu Quynh Nguyen
- Faculty of Pharmacy, Lac Hong University, Buu Long Ward, Bien Hoa City, Dong Nai Province 810000, Vietnam; (T.N.Q.N.); (V.D.C.); (D.T.H.); (V.C.N.)
| | - Van Du Cao
- Faculty of Pharmacy, Lac Hong University, Buu Long Ward, Bien Hoa City, Dong Nai Province 810000, Vietnam; (T.N.Q.N.); (V.D.C.); (D.T.H.); (V.C.N.)
| | - Duc Thuan Hoang
- Faculty of Pharmacy, Lac Hong University, Buu Long Ward, Bien Hoa City, Dong Nai Province 810000, Vietnam; (T.N.Q.N.); (V.D.C.); (D.T.H.); (V.C.N.)
| | - Van Cuong Ngo
- Faculty of Pharmacy, Lac Hong University, Buu Long Ward, Bien Hoa City, Dong Nai Province 810000, Vietnam; (T.N.Q.N.); (V.D.C.); (D.T.H.); (V.C.N.)
| | - Thai Thanh Hoang Thi
- Biomaterials and Nanotechnology Research Group, Faculty of Applied Sciences, Ton Duc Thang University, Ho Chi Minh City 700000, Vietnam
| |
Collapse
|
13
|
Moquin A, Sturn J, Zhang I, Ji J, von Celsing R, Vali H, Maysinger D, Kakkar A. Unraveling Aqueous Self-Assembly of Telodendrimers to Shed Light on Their Efficacy in Drug Encapsulation. ACS APPLIED BIO MATERIALS 2019; 2:4515-4526. [DOI: 10.1021/acsabm.9b00643] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Alexandre Moquin
- Department of Chemistry, McGill University, 801 Sherbrooke Street West, Montreal, Quebec H3A 0B8, Canada
- Department of Pharmacology and Therapeutics, McGill University, 3655 Promenade Sir-William-Osler, Montreal, Quebec H3G 1Y6, Canada
| | - Jessica Sturn
- Department of Chemistry, McGill University, 801 Sherbrooke Street West, Montreal, Quebec H3A 0B8, Canada
| | - Issan Zhang
- Department of Pharmacology and Therapeutics, McGill University, 3655 Promenade Sir-William-Osler, Montreal, Quebec H3G 1Y6, Canada
| | - Jeff Ji
- Department of Pharmacology and Therapeutics, McGill University, 3655 Promenade Sir-William-Osler, Montreal, Quebec H3G 1Y6, Canada
| | - Richard von Celsing
- Department of Chemistry, McGill University, 801 Sherbrooke Street West, Montreal, Quebec H3A 0B8, Canada
| | - Hojatollah Vali
- Department of Anatomy and Cell Biology, McGill University, 3640 University Street, Montreal, Quebec H3A 0C7, Canada
| | - Dusica Maysinger
- Department of Pharmacology and Therapeutics, McGill University, 3655 Promenade Sir-William-Osler, Montreal, Quebec H3G 1Y6, Canada
| | - Ashok Kakkar
- Department of Chemistry, McGill University, 801 Sherbrooke Street West, Montreal, Quebec H3A 0B8, Canada
| |
Collapse
|
14
|
Zheng X, Pan D, Chen M, Dai X, Cai H, Zhang H, Gong Q, Gu Z, Luo K. Tunable Hydrophile-Lipophile Balance for Manipulating Structural Stability and Tumor Retention of Amphiphilic Nanoparticles. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2019; 31:e1901586. [PMID: 31259438 DOI: 10.1002/adma.201901586] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 05/30/2019] [Indexed: 06/09/2023]
Abstract
Hydrophile-lipophile balance (HLB) has a great influence on the self-assembly and physicochemical properties of amphiphiles, thus affecting their biological effects. It is shown that amphiphilic nanoparticles (NPs) with a moderate HLB value display enhanced stability and highly efficient tumor retention. 2,2-Bis(hydroxymethyl)propionic acid hyperbranched poly(ethylene glycol) (PEG)-pyropheophorbide-a (Ppa) amphiphiles (G320P, G310P, G220P, and G210P) are synthesized with a tunable HLB value from 6.1 to 9.9 by manipulating the number of generation of dendrons (G2 or G3) and the molecular weight of PEG chains (10 or 20 kDa). Molecular dynamics simulations reveal that G320P and G210P with a moderate HLB value (8.0 and 7.8) self-assemble into very stable NPs with a small solvent accessible surface area and high nonbonding interactions. G320P with a moderate HLB value (8.0) and a long PEG chain excels against other NPs in prolonging the blood circulation time of Ppa (up to 13-fold), penetrating deeply into multicellular tumor spheroids and accumulating in tumors, and enhancing the PDT efficacy with a tumor growth inhibition of 96.0%. Rational design of NPs with a moderate HLB value may be implemented in these NP-derived nanomedicines to achieve high levels of retention in tumors.
Collapse
Affiliation(s)
- Xiuli Zheng
- Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, Department of Radiology, National Clinical Research Center for Geriatrics, State Key Laboratory of Biotherapy, West China Hospital, and National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610041, China
| | - Dayi Pan
- Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, Department of Radiology, National Clinical Research Center for Geriatrics, State Key Laboratory of Biotherapy, West China Hospital, and National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610041, China
| | - Miao Chen
- West China School of Medicine, and West China College of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Xinghang Dai
- West China School of Medicine, and West China College of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Hao Cai
- Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, Department of Radiology, National Clinical Research Center for Geriatrics, State Key Laboratory of Biotherapy, West China Hospital, and National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610041, China
| | - Hu Zhang
- Amgen Bioprocessing Centre, Keck Graduate Institute, CA, 91711, USA
| | - Qiyong Gong
- Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, Department of Radiology, National Clinical Research Center for Geriatrics, State Key Laboratory of Biotherapy, West China Hospital, and National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610041, China
| | - Zhongwei Gu
- Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, Department of Radiology, National Clinical Research Center for Geriatrics, State Key Laboratory of Biotherapy, West China Hospital, and National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610041, China
| | - Kui Luo
- Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, Department of Radiology, National Clinical Research Center for Geriatrics, State Key Laboratory of Biotherapy, West China Hospital, and National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610041, China
| |
Collapse
|
15
|
Bolu BS, Sanyal R, Sanyal A. Drug Delivery Systems from Self-Assembly of Dendron-Polymer Conjugates †. Molecules 2018; 23:E1570. [PMID: 29958437 PMCID: PMC6099537 DOI: 10.3390/molecules23071570] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Revised: 06/20/2018] [Accepted: 06/21/2018] [Indexed: 01/01/2023] Open
Abstract
This review highlights the utilization of dendron-polymer conjugates as building blocks for the fabrication of nanosized drug delivery vehicles. The examples given provide an overview of the evolution of these delivery platforms, from simple micellar containers to smart stimuli- responsive drug delivery systems through their design at the macromolecular level. Variations in chemical composition and connectivity of the dendritic and polymeric segments provide a variety of self-assembled micellar nanostructures that embody desirable attributes of viable drug delivery systems.
Collapse
Affiliation(s)
- Burcu Sumer Bolu
- Department of Chemistry, Bogazici University, Bebek, 34342 Istanbul, Turkey.
| | - Rana Sanyal
- Department of Chemistry, Bogazici University, Bebek, 34342 Istanbul, Turkey.
- Center for Life Sciences and Technologies, Bogazici University, 34342 Istanbul, Turkey.
| | - Amitav Sanyal
- Department of Chemistry, Bogazici University, Bebek, 34342 Istanbul, Turkey.
- Center for Life Sciences and Technologies, Bogazici University, 34342 Istanbul, Turkey.
| |
Collapse
|
16
|
Hsu HJ, Han Y, Cheong M, Král P, Hong S. Dendritic PEG outer shells enhance serum stability of polymeric micelles. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2018; 14:1879-1889. [PMID: 29782948 DOI: 10.1016/j.nano.2018.05.010] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Revised: 04/25/2018] [Accepted: 05/04/2018] [Indexed: 02/06/2023]
Abstract
A higher surface density of poly(ethylene glycol) (PEG) on polymeric micelles enhances their stability in serum, leading to improved plasma circulation. To obtain fundamental, mechanistic understanding of the PEG effect associated with polymeric architecture/configuration, we have synthesized PEGylated dendron-based copolymers (PDCs) and linear block copolymers (LBCs) with similar molecular weights. These copolymers formed dendron (hyperbranched) and linear micelles, respectively, which were compared in terms of their stabilities in serum, micelle-serum protein interactions, and in vivo biodistributions. Overall, the dendron micelles exhibited a better serum stability (longer half-life) and thus a slower release profile than the linear micelles. Fluorescence quenching assays and molecular dynamics (MD) simulations revealed that the high serum stability of the dendron micelles can be attributed to reduced micelle-serum protein interactions, owing to their dendritic, dense PEG outer shell. These results provide an important design cue for various polymeric micelles and nanoparticles.
Collapse
Affiliation(s)
- Hao-Jui Hsu
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin, Madison, WI; Department of Biopharmaceutical Sciences, University of Illinois at Chicago, Chicago, IL
| | - Yanxiao Han
- Department of Chemistry, University of Illinois at Chicago, Chicago, IL
| | - Michael Cheong
- Department of Biopharmaceutical Sciences, University of Illinois at Chicago, Chicago, IL
| | - Petr Král
- Department of Chemistry, University of Illinois at Chicago, Chicago, IL; Department of Physics, University of Illinois at Chicago, Chicago, IL.
| | - Seungpyo Hong
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin, Madison, WI; Department of Biopharmaceutical Sciences, University of Illinois at Chicago, Chicago, IL; Yonsei Frontier Lab and Department of Pharmacy, Yonsei University, Seoul.
| |
Collapse
|
17
|
Sen S, Han Y, Rehak P, Vuković L, Král P. Computational studies of micellar and nanoparticle nanomedicines. Chem Soc Rev 2018; 47:3849-3860. [DOI: 10.1039/c8cs00022k] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The review highlights recent computational modeling of micellar and nanoparticle nanomedicines, which elucidates their functional roles in atomistic details.
Collapse
Affiliation(s)
- Soumyo Sen
- Department of Chemistry
- University of Illinois at Chicago
- Chicago
- USA
| | - Yanxiao Han
- Department of Chemistry
- University of Illinois at Chicago
- Chicago
- USA
| | - Pavel Rehak
- Department of Chemistry
- University of Illinois at Chicago
- Chicago
- USA
| | - Lela Vuković
- Department of Chemistry and Biochemistry
- University of Texas at El Paso
- El Paso
- USA
| | - Petr Král
- Department of Chemistry
- University of Illinois at Chicago
- Chicago
- USA
- Department of Physics
| |
Collapse
|
18
|
Sunoqrot S, Alsadi A, Tarawneh O, Hamed R. Polymer type and molecular weight dictate the encapsulation efficiency and release of Quercetin from polymeric micelles. Colloid Polym Sci 2017. [DOI: 10.1007/s00396-017-4183-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
19
|
Sunoqrot S, Hasan L, Alsadi A, Hamed R, Tarawneh O. Interactions of mussel-inspired polymeric nanoparticles with gastric mucin: Implications for gastro-retentive drug delivery. Colloids Surf B Biointerfaces 2017; 156:1-8. [PMID: 28499200 DOI: 10.1016/j.colsurfb.2017.05.005] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Revised: 04/06/2017] [Accepted: 05/02/2017] [Indexed: 12/18/2022]
Abstract
Mussel-inspired polydopamine (pD) coatings have several unique characteristics such as durability, versatility, and robustness. In this study, we have designed pD-coated nanoparticles (NPs) of methoxy polyethylene glycol-b-poly(ε-caprolactone) (mPEG-PCL@pD) as prospective nanoscale mucoadhesive platforms for gastro-retentive drug delivery. Successful pD coating on the NPs was confirmed by Transmission Electron Microscopy and X-ray Photoelectron Spectroscopy. Mucoadhesion of pD-coated NPs was investigated in vitro using commercially available mucin under stomach lumen-mimetic conditions. Mucin-NP interactions were monitored by dynamic light scattering, which showed a significant change in particle size distribution of pD-coated NPs at mucin/NP ratios of 1:1, 1:2, and 1:4w/w. Turbidity measurements indicated the formation of large mucin-NP aggregates causing a significant increase in turbidity at mucin/NP ratios of 2:1 and 4:1w/w. pD-coated NPs exhibited a significantly higher mucin adsorption ability compared to uncoated NPs at mucin/NP ratios of 1:4, 1:2, and 1:1w/w. Zeta potential measurements demonstrated that mucin-pD-coated NP interactions were not electrostatic in nature. An ex vivo wash-off test conducted using excised sheep stomach revealed that 78% of pD-coated NPs remained attached to the mucosa after 8h of incubation, compared to only 33% of uncoated NPs. In vitro release of rifampicin, used as a model drug, showed a similar controlled release profile from both pD-coated and uncoated NPs. Our results serve to expand the versatility of mussel-inspired coatings to the design of mucoadhesive nanoscale vehicles for oral drug delivery.
Collapse
Affiliation(s)
- Suhair Sunoqrot
- Department of Pharmacy, Faculty of Pharmacy, Al-Zaytoonah University of Jordan, Amman, Jordan.
| | - Lina Hasan
- Department of Pharmacy, Faculty of Pharmacy, Al-Zaytoonah University of Jordan, Amman, Jordan
| | - Aya Alsadi
- Department of Pharmacy, Faculty of Pharmacy, Al-Zaytoonah University of Jordan, Amman, Jordan
| | - Rania Hamed
- Department of Pharmacy, Faculty of Pharmacy, Al-Zaytoonah University of Jordan, Amman, Jordan
| | - Ola Tarawneh
- Department of Pharmacy, Faculty of Pharmacy, Al-Zaytoonah University of Jordan, Amman, Jordan
| |
Collapse
|
20
|
Bugno J, Hsu HJ, Hong S. Tweaking dendrimers and dendritic nanoparticles for controlled nano-bio interactions: potential nanocarriers for improved cancer targeting. J Drug Target 2016; 23:642-50. [PMID: 26453160 DOI: 10.3109/1061186x.2015.1052077] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Nanoparticles have shown great promise in the treatment of cancer, with a demonstrated potential in targeted drug delivery. Among a myriad of nanocarriers that have been recently developed, dendrimers have attracted a great deal of scientific interests due to their unique chemical and structural properties that allow for precise engineering of their characteristics. Despite this, the clinical translation of dendrimers has been hindered due to their drawbacks, such as scale-up issues, rapid systemic elimination, inefficient tumor accumulation and limited drug loading. In order to overcome these limitations, a series of reengineered dendrimers have been recently introduced using various approaches, including: (i) modifications of structure and surfaces; (ii) integration with linear polymers and (iii) hybridization with other types of nanocarriers. Chemical modifications and surface engineering have tailored dendrimers to improve their pharmacokinetics and tissue permeation. Copolymerization of dendritic polymers with linear polymers has resulted in various amphiphilic copolymers with self-assembly capabilities and improved drug loading efficiencies. Hybridization with other nanocarriers integrates advantageous characteristics of both systems, which includes prolonged plasma circulation times and enhanced tumor targeting. This review provides a comprehensive summary of the newly emerging drug delivery systems that involve reengineering of dendrimers in an effort to precisely control their nano-bio interactions, mitigating their inherent weaknesses.
Collapse
Affiliation(s)
- Jason Bugno
- a Department of Biopharmaceutical Sciences , College of Pharmacy, University of Illinois , Chicago , IL , USA and
| | - Hao-Jui Hsu
- a Department of Biopharmaceutical Sciences , College of Pharmacy, University of Illinois , Chicago , IL , USA and
| | - Seungpyo Hong
- a Department of Biopharmaceutical Sciences , College of Pharmacy, University of Illinois , Chicago , IL , USA and.,b Integrated Science and Engineering Division, Underwood International College, Yonsei University , Seoul , Korea
| |
Collapse
|
21
|
Pearson RM, Sen S, Hsu HJ, Pasko M, Gaske M, Král P, Hong S. Tuning the Selectivity of Dendron Micelles Through Variations of the Poly(ethylene glycol) Corona. ACS NANO 2016; 10:6905-6914. [PMID: 27267700 PMCID: PMC6800011 DOI: 10.1021/acsnano.6b02708] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Engineering controllable cellular interactions into nanoscale drug delivery systems is key to enable their full potential. Here, using folic acid (FA) as a model targeting ligand and dendron micelles (DM) as a nanoparticle (NP) platform, we present a comprehensive experimental and modeling investigation of the structural properties of DMs that govern the formation of controllable, FA-mediated cellular interactions. Our experimental results demonstrate that a high level of control over the specific cell interactions of FA-targeted DMs can be achieved through modulation of the PEG corona length and the FA content. Using various molecular weight PEGs (0.6K, 1K, and 2K g/mol) and contents of dendron-FA conjugate incorporated into DMs (0, 5, 10, 25 wt %), the cell interactions of the targeted DMs could be controlled to exhibit minimal to >25-fold enhancement over nontargeted DMs. Molecular dynamics simulations indicated that structural characteristics, such as solvent accessible surface area of FA, local PEG density near FA, and FA mobility, account in part for the experimental differences in cellular interactions. The molecular structure that allows FA to depart from the surface of DMs to facilitate the initial cell surface binding was revealed to be the most important contributor for determining FA-mediated cellular interactions of DMs. The modular properties of DMs in controlling their specific cell interactions support the potential of DMs as a delivery platform and offer design cues for future development of targeted NPs.
Collapse
Affiliation(s)
- Ryan M. Pearson
- Department of Biopharmaceutical Sciences, College of Pharmacy, University of Illinois, Chicago, IL 60612, USA
| | - Soumyo Sen
- Department of Chemistry, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Hao-jui Hsu
- Department of Biopharmaceutical Sciences, College of Pharmacy, University of Illinois, Chicago, IL 60612, USA
| | - Matt Pasko
- Department of Biopharmaceutical Sciences, College of Pharmacy, University of Illinois, Chicago, IL 60612, USA
| | - Marilyn Gaske
- Department of Biopharmaceutical Sciences, College of Pharmacy, University of Illinois, Chicago, IL 60612, USA
- Department of Chemistry, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Petr Král
- Department of Chemistry, University of Illinois at Chicago, Chicago, IL 60607, USA
- Department of Physics, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Seungpyo Hong
- Department of Biopharmaceutical Sciences, College of Pharmacy, University of Illinois, Chicago, IL 60612, USA
- Department of Bioengineering, University of Illinois at Chicago, Chicago, IL 60607, USA
- Department of Integrated OMICs for Biomedical Science, Yonsei University, Seoul, 03706, Republic of Korea
- Underwood International College, Yonsei University, Seoul, 03706, Republic of Korea
| |
Collapse
|
22
|
Hsu H, Bugno J, Lee S, Hong S. Dendrimer‐based nanocarriers: a versatile platform for drug delivery. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2016; 9. [DOI: 10.1002/wnan.1409] [Citation(s) in RCA: 100] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2016] [Revised: 03/15/2016] [Accepted: 03/17/2016] [Indexed: 12/18/2022]
Affiliation(s)
- Hao‐Jui Hsu
- Department of Biopharmaceutical Sciences, College of PharmacyUniversity of IllinoisChicagoILUSA
| | - Jason Bugno
- Department of Biopharmaceutical Sciences, College of PharmacyUniversity of IllinoisChicagoILUSA
| | - Seung‐ri Lee
- Department of Biopharmaceutical Sciences, College of PharmacyUniversity of IllinoisChicagoILUSA
| | - Seungpyo Hong
- Department of Biopharmaceutical Sciences, College of PharmacyUniversity of IllinoisChicagoILUSA
- Department of Integrated OMICs for Biomedical Science and Underwood International CollegeYonsei UniversitySeoulKorea
| |
Collapse
|
23
|
Sumer Bolu B, Manavoglu Gecici E, Sanyal R. Combretastatin A-4 Conjugated Antiangiogenic Micellar Drug Delivery Systems Using Dendron–Polymer Conjugates. Mol Pharm 2016; 13:1482-90. [DOI: 10.1021/acs.molpharmaceut.5b00931] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Burcu Sumer Bolu
- Department
of Chemistry, Bogazici University, Istanbul 34342, Turkey
| | | | - Rana Sanyal
- Department
of Chemistry, Bogazici University, Istanbul 34342, Turkey
- Center
for Life Sciences and Technologies, Bogazici University, Istanbul 34342, Turkey
| |
Collapse
|
24
|
Lee O, Khan SA. Novel routes for administering chemoprevention: local transdermal therapy to the breasts. Semin Oncol 2016; 43:107-115. [DOI: 10.1053/j.seminoncol.2015.09.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
25
|
Aguilar-Castillo BA, Santos JL, Luo H, Aguirre-Chagala YE, Palacios-Hernández T, Herrera-Alonso M. Nanoparticle stability in biologically relevant media: influence of polymer architecture. SOFT MATTER 2015; 11:7296-7307. [PMID: 26274373 DOI: 10.1039/c5sm01455g] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
We have contrasted the behavior of nanoparticles formed by the self-assembly of polymers based on poly(ethylene glycol) (PEG) and poly(D,L-lactide), with linear, linear-dendritic and bottle-brush architectures in biologically relevant media. Polymer PEG content ranged between 14% and 46% w/w, and self-assembly was triggered by a rapid and large change in solvent quality inside a four-stream vortex mixer. We examined nanoparticle interaction with human serum albumin (HSA), and solute release in the presence of fetal bovine serum. Dynamic light scattering data showed that PEG surface brushes of all nanoparticles provided effective steric stabilization, thus limiting their interaction with human serum albumin. Calorimetric experiments revealed that nanoparticle-HSA interaction was relatively weak and enthalpically driven, whereas dynamic light scattering results of incubated nanoparticles showed the absence of larger aggregates for most of the polymers examined. Solute core partitioning was examined by the loss of Forster resonance energy transfer (FRET) from a core-loaded donor-acceptor pair. The rate and magnitude of FRET efficiency loss was strongly dependent on the polymer architecture, and was found to be lowest for the bottle-brush, attributed to its covalent nature. Collectively, these findings are expected to impact the molecular design of increasingly stable polymeric carriers for drug delivery applications.
Collapse
|
26
|
Bugno J, Hsu HJ, Hong S. Recent advances in targeted drug delivery approaches using dendritic polymers. Biomater Sci 2015; 3:1025-34. [PMID: 26221937 PMCID: PMC4519693 DOI: 10.1039/c4bm00351a] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Since they were first synthesized over 30 years ago, dendrimers have seen rapid translation into various biomedical applications. A number of reports have not only demonstrated their clinical utility, but also revealed novel design approaches and strategies based on the elucidation of underlying mechanisms governing their biological interactions. This review focuses on presenting the latest advances in dendrimer design, discussing the current mechanistic understandings, and highlighting recent developments and targeted approaches using dendrimers in drug/gene delivery.
Collapse
Affiliation(s)
- Jason Bugno
- Department of Biopharmaceutical Sciences, College of Pharmacy, University of Illinois, Chicago, IL 60612, USA.
| | | | | |
Collapse
|
27
|
Yin L, Chen Y, Zhang Z, Yin Q, Zheng N, Cheng J. Biodegradable micelles capable of mannose-mediated targeted drug delivery to cancer cells. Macromol Rapid Commun 2015; 36:483-9. [PMID: 25619623 PMCID: PMC4486258 DOI: 10.1002/marc.201400650] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2014] [Revised: 12/16/2014] [Indexed: 12/31/2022]
Abstract
A targeted micellar drug delivery system is developed from a biocompatible and biodegradable amphiphilic polyester, poly(Lac-OCA)-b-(poly(Tyr(alkynyl)-OCA)-g-mannose) (PLA-b-(PTA-g-mannose), that is synthesized via controlled ring-opening polymerization of O-carboxyanhydride (OCA) and highly efficient "Click" chemistry. Doxorubicin (DOX), a model lipophilic anticancer drug, can be effectively encapsulated into the micelles, and the mannose moiety allows active targeting of the micelles to cancer cells that specifically express mannose receptors, which thereafter enhances the anticancer efficiency of the drug. Comprised entirely of biodegradable and biocompatible polyesters, this micellar system demonstrates promising potentials for targeted drug delivery and cancer therapy.
Collapse
Affiliation(s)
- Lichen Yin
- Institute of Functional Nano & Soft Materials (FUNSOM), Collaborative Innovation Center of Suzhou, Nano Science and Technology, Soochow University, Suzhou, 215123, Jiangsu, China
| | - Yongbing Chen
- Department of Cardiothoracic Surgery, the Second Affiliated Hospital of Soochow University, Suzhou, 215004, Jiangsu, China
| | - Zhonghai Zhang
- Department of Materials Science and Engineering, University of Illinois, Urbana-Champaign, 1304 W. Green Street, Urbana, IL 61801, USA
| | - Qian Yin
- Department of Materials Science and Engineering, University of Illinois, Urbana-Champaign, 1304 W. Green Street, Urbana, IL 61801, USA
| | - Nan Zheng
- Department of Materials Science and Engineering, University of Illinois, Urbana-Champaign, 1304 W. Green Street, Urbana, IL 61801, USA
| | - Jianjun Cheng
- Department of Materials Science and Engineering, University of Illinois, Urbana-Champaign, 1304 W. Green Street, Urbana, IL 61801, USA
| |
Collapse
|
28
|
Hsu HJ, Sen S, Pearson RM, Uddin S, Král P, Hong S. Poly(ethylene glycol) Corona Chain Length Controls End-Group-Dependent Cell Interactions of Dendron Micelles. Macromolecules 2014; 47:6911-6918. [PMID: 25709141 PMCID: PMC4334293 DOI: 10.1021/ma501258c] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2014] [Revised: 09/15/2014] [Indexed: 01/17/2023]
Abstract
To systematically investigate the relationship among surface charge, PEG chain length, and nano-bio interactions of dendron-based micelles (DMs), a series of PEGylated DMs with various end groups (-NH2, -Ac, and -COOH) and PEG chain lengths (600 and 2000 g/mol) are prepared and tested in vitro. The DMs with longer PEG chains (DM2K) do not interact with cells despite their positively charged surfaces. In sharp contrast, the DMs with shorter PEG chains (DM600) exhibit charge-dependent cellular interactions, as observed in both in vitro and molecular dynamics (MD) simulation results. Furthermore, all DMs with different charges display enhanced stability for hydrophobic dye encapsulation compared to conventional linear-block copolymer-based micelles, by allowing only a minimal leakage of the dye in vitro. Our results demonstrate the critical roles of the PEG chain length and polymeric architecture on the terminal charge effect and the stability of micelles, which provides an important design cue for polymeric micelles.
Collapse
Affiliation(s)
- Hao-jui Hsu
- Departments of Biopharmaceutical Sciences, Bioengineering, Chemistry, and Physics, University of Illinois at Chicago, Chicago, Illinois 60612, United States
| | - Soumyo Sen
- Departments of Biopharmaceutical Sciences, Bioengineering, Chemistry, and Physics, University of Illinois at Chicago, Chicago, Illinois 60612, United States
| | - Ryan M. Pearson
- Departments of Biopharmaceutical Sciences, Bioengineering, Chemistry, and Physics, University of Illinois at Chicago, Chicago, Illinois 60612, United States
| | - Sayam Uddin
- Departments of Biopharmaceutical Sciences, Bioengineering, Chemistry, and Physics, University of Illinois at Chicago, Chicago, Illinois 60612, United States
| | - Petr Král
- Departments of Biopharmaceutical Sciences, Bioengineering, Chemistry, and Physics, University of Illinois at Chicago, Chicago, Illinois 60612, United States
| | - Seungpyo Hong
- Departments of Biopharmaceutical Sciences, Bioengineering, Chemistry, and Physics, University of Illinois at Chicago, Chicago, Illinois 60612, United States
| |
Collapse
|
29
|
James C, Rush AM, Insley T, Vuković L, Adamiak L, Král P, Gianneschi NC. Poly(oligonucleotide). J Am Chem Soc 2014; 136:11216-9. [PMID: 25077676 PMCID: PMC4140503 DOI: 10.1021/ja503142s] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2014] [Indexed: 01/01/2023]
Abstract
Here we report the preparation of poly(oligonucleotide) brush polymers and amphiphilic brush copolymers from nucleic acid monomers via graft-through polymerization. We describe the polymerization of PNA-norbornyl monomers to yield poly-PNA (poly(peptide nucleic acid)) via ring-opening metathesis polymerization (ROMP) with the initiator, (IMesH2)(C5H5N)2(Cl)2RuCHPh.1 In addition, we present the preparation of poly-PNA nanoparticles from amphiphilic block copolymers and describe their hybridization to a complementary single-stranded DNA (ssDNA) oligonucleotide.
Collapse
Affiliation(s)
- Carrie
R. James
- Department
of Chemistry and Biochemistry, University
of California, San Diego, La Jolla, California 92093, United States
| | - Anthony M. Rush
- Department
of Chemistry and Biochemistry, University
of California, San Diego, La Jolla, California 92093, United States
| | - Thomas Insley
- Department of Chemistry, Department of Physics University
of Illinois at Chicago, Chicago, Illinois 60607, United States
| | - Lela Vuković
- Department of Chemistry, Department of Physics University
of Illinois at Chicago, Chicago, Illinois 60607, United States
| | - Lisa Adamiak
- Department
of Chemistry and Biochemistry, University
of California, San Diego, La Jolla, California 92093, United States
| | - Petr Král
- Department of Chemistry, Department of Physics University
of Illinois at Chicago, Chicago, Illinois 60607, United States
| | - Nathan C. Gianneschi
- Department
of Chemistry and Biochemistry, University
of California, San Diego, La Jolla, California 92093, United States
| |
Collapse
|
30
|
Fan X, Wang Z, Yuan D, Sun Y, Li Z, He C. Novel linear-dendritic-like amphiphilic copolymers: synthesis and self-assembly characteristics. Polym Chem 2014. [DOI: 10.1039/c4py00065j] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Tailoring the self-assembly of linear-dendritic-like amphiphilic copolymers via stereocomplexation.
Collapse
Affiliation(s)
- Xiaoshan Fan
- Department of Materials Science and Engineering
- National University of Singapore
- 117575 Singapore, Singapore
| | - Zhuo Wang
- Department of Materials Science and Engineering
- National University of Singapore
- 117575 Singapore, Singapore
| | - Du Yuan
- Department of Materials Science and Engineering
- National University of Singapore
- 117575 Singapore, Singapore
| | - Yang Sun
- Department of Materials Science and Engineering
- National University of Singapore
- 117575 Singapore, Singapore
| | - Zibiao Li
- Institute of Materials Research and Engineering
- Singapore 117602, Singapore
| | - Chaobin He
- Department of Materials Science and Engineering
- National University of Singapore
- 117575 Singapore, Singapore
- Institute of Materials Research and Engineering
- Singapore 117602, Singapore
| |
Collapse
|
31
|
Santos JL, Herrera-Alonso M. Kinetically Arrested Assemblies of Architecturally Distinct Block Copolymers. Macromolecules 2013. [DOI: 10.1021/ma402047e] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- José Luis Santos
- Department of Materials Science and Engineering, The Johns Hopkins University, Baltimore, Maryland 21218
| | - Margarita Herrera-Alonso
- Department of Materials Science and Engineering, The Johns Hopkins University, Baltimore, Maryland 21218
| |
Collapse
|
32
|
Cheetham AG, Zhang P, Lin YA, Lock LL, Cui H. Supramolecular nanostructures formed by anticancer drug assembly. J Am Chem Soc 2013; 135:2907-10. [PMID: 23379791 DOI: 10.1021/ja3115983] [Citation(s) in RCA: 423] [Impact Index Per Article: 35.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
We report here a supramolecular strategy to directly assemble the small molecular hydrophobic anticancer drug camptothecin (CPT) into discrete, stable, well-defined nanostructures with a high and quantitative drug loading. Depending on the number of CPTs in the molecular design, the resulting nanostructures can be either nanofibers or nanotubes, and have a fixed CPT loading content ranging from 23% to 38%. We found that formation of nanostructures provides protection for both the CPT drug and the biodegradable linker from the external environment and thus offers a mechanism for controlled release of CPT. Under tumor-relevant conditions, these drug nanostructures can release the bioactive form of CPT and show in vitro efficacy against a number of cancer cell lines. This strategy can be extended to construct nanostructures of other types of anticancer drugs and thus presents new opportunities for the development of self-delivering drugs for cancer therapeutics.
Collapse
Affiliation(s)
- Andrew G Cheetham
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, Maryland 21218, USA
| | | | | | | | | |
Collapse
|
33
|
Tang L, Gabrielson NP, Uckun FM, Fan TM, Cheng J. Size-dependent tumor penetration and in vivo efficacy of monodisperse drug-silica nanoconjugates. Mol Pharm 2013; 10:883-92. [PMID: 23301497 DOI: 10.1021/mp300684a] [Citation(s) in RCA: 127] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The size of a nanomedicine strongly correlates with its biodistribution, tissue penetration, and cell uptake. However, there is limited understanding how the size of nanomedicine impacts the overall antitumor efficacy. We designed and synthesized camptothecin-silica nanoconjugates (Cpt-NCs) with monodisperse particle sizes of 50 and 200 nm, two representative sizes commonly used in drug delivery, and evaluated their antitumor efficacy in murine tumor models. Our studies revealed that the 50 nm Cpt-NC showed higher anticancer efficacy than the larger analogue, due presumably to its faster cellular internalization and more efficient tumor accumulation and penetration. Our findings suggest that nanomedicine with smaller sizes holds great promise for improved cancer therapy.
Collapse
Affiliation(s)
- Li Tang
- Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, 1304 West Green Street, Urbana, Illinois 61801, USA
| | | | | | | | | |
Collapse
|
34
|
Zhang Z, Yin L, Tu C, Song Z, Zhang Y, Xu Y, Tong R, Zhou Q, Ren J, Cheng J. Redox-Responsive, Core Cross-Linked Polyester Micelles. ACS Macro Lett 2013; 2:40-44. [PMID: 23536920 PMCID: PMC3606897 DOI: 10.1021/mz300522n] [Citation(s) in RCA: 113] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Monomethoxy poly(ethylene glycol)-b-poly(Tyr(alkynyl)-OCA), a biodegradable amphiphilic block copolymer, was synthesized by means of ring-opening polymerization of 5-(4-(prop-2-yn-1-yloxy)benzyl)-1,3-dioxolane-2,4-dione (Tyr(alkynyl)-OCA) and used to prepare core cross-linked polyester micelles via click chemistry. Core cross-linking not only improved the structural stability of the micelles but also allowed controlled release of cargo molecules in response to the reducing reagent. This new class of core cross-linked micelles can potentially be used in controlled release and drug delivery applications.
Collapse
Affiliation(s)
- Zhonghai Zhang
- Department of Materials Science and Engineering, University of Illinois at Urbana–Champaign, 1304 W. Green Street, Urbana, IL, 61801, USA
- Institute of Nano- and Bio-polymeric Materials, School of Material Science and Engineering, Tongji University, Shanghai, 200092, China
| | - Lichen Yin
- Department of Materials Science and Engineering, University of Illinois at Urbana–Champaign, 1304 W. Green Street, Urbana, IL, 61801, USA
| | - Chunlai Tu
- Department of Materials Science and Engineering, University of Illinois at Urbana–Champaign, 1304 W. Green Street, Urbana, IL, 61801, USA
| | - Ziyuan Song
- Department of Materials Science and Engineering, University of Illinois at Urbana–Champaign, 1304 W. Green Street, Urbana, IL, 61801, USA
| | - Yanfeng Zhang
- Department of Materials Science and Engineering, University of Illinois at Urbana–Champaign, 1304 W. Green Street, Urbana, IL, 61801, USA
| | - Yunxiang Xu
- Department of Materials Science and Engineering, University of Illinois at Urbana–Champaign, 1304 W. Green Street, Urbana, IL, 61801, USA
| | - Rong Tong
- Department of Materials Science and Engineering, University of Illinois at Urbana–Champaign, 1304 W. Green Street, Urbana, IL, 61801, USA
| | - Qin Zhou
- Department of Materials Science and Engineering, University of Illinois at Urbana–Champaign, 1304 W. Green Street, Urbana, IL, 61801, USA
- Department of Pharmaceutical Science, Guangdong Pharmaceutical University, Guangzhou, Guangdong, China
| | - Jie Ren
- Institute of Nano- and Bio-polymeric Materials, School of Material Science and Engineering, Tongji University, Shanghai, 200092, China
| | - Jianjun Cheng
- Department of Materials Science and Engineering, University of Illinois at Urbana–Champaign, 1304 W. Green Street, Urbana, IL, 61801, USA
| |
Collapse
|
35
|
Pearson RM, Patra N, Hsu HJ, Uddin S, Král P, Hong S. Positively Charged Dendron Micelles Display Negligible Cellular Interactions. ACS Macro Lett 2013; 2:77-81. [PMID: 23355959 DOI: 10.1021/mz300533w] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
PEGylated dendron-based copolymers (PDC) with different end-group functionalities (-NH(2), -COOH, and -Ac) were synthesized and self-assembled into dendron micelles to investigate the effect of terminal surface charges on size, morphology, and cellular interactions of the micelles. All of the dendron micelles exhibited similar sizes (20-60 nm) and spherical morphologies, as measured using dynamic light scattering and transmission electron microscopy, respectively. The cellular interactions of dendron micelles were evaluated using confocal microscopy and flow cytometry. Surprisingly, although amine-terminated dendrimers are known to strongly interact with cells non-specifically, all of the surface-modified dendron micelles exhibited charge-independent low-levels of cellular interaction. The unexpected results, particularly from the amine-terminated dendron micelles, could be attributed to: i) minimal end-group effects, as each PDC has an approximately 10-fold lower charge-number-to-molecular-weight ratio compared to the dendrimer; and ii) intra- and intermolecular hydrogen bonding between positively charged terminal groups with poly(ethylene glycol) (PEG) backbones, which leads to the sequestration of the charges, as demonstrated by atomistic molecular dynamics simulations. With the narrow size distribution, uniform morphologies, and low levels of non-specific cellular interactions, the dendron micelles offer a promising drug delivery platform.
Collapse
Affiliation(s)
- Ryan M. Pearson
- Departments
of Biopharmaceutical Sciences, ‡Bioengineering, §Chemistry, and ∥Physics, University of Illinois at Chicago, Chicago, Illinois
60612, United States
| | - Niladri Patra
- Departments
of Biopharmaceutical Sciences, ‡Bioengineering, §Chemistry, and ∥Physics, University of Illinois at Chicago, Chicago, Illinois
60612, United States
| | - Hao-jui Hsu
- Departments
of Biopharmaceutical Sciences, ‡Bioengineering, §Chemistry, and ∥Physics, University of Illinois at Chicago, Chicago, Illinois
60612, United States
| | - Sayam Uddin
- Departments
of Biopharmaceutical Sciences, ‡Bioengineering, §Chemistry, and ∥Physics, University of Illinois at Chicago, Chicago, Illinois
60612, United States
| | - Petr Král
- Departments
of Biopharmaceutical Sciences, ‡Bioengineering, §Chemistry, and ∥Physics, University of Illinois at Chicago, Chicago, Illinois
60612, United States
| | - Seungpyo Hong
- Departments
of Biopharmaceutical Sciences, ‡Bioengineering, §Chemistry, and ∥Physics, University of Illinois at Chicago, Chicago, Illinois
60612, United States
| |
Collapse
|
36
|
Sunoqrot S, Liu Y, Kim DH, Hong S. In vitro evaluation of dendrimer-polymer hybrid nanoparticles on their controlled cellular targeting kinetics. Mol Pharm 2012; 10:2157-66. [PMID: 23234605 DOI: 10.1021/mp300560n] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Although polymeric nanoparticles (NPs) and dendrimers represent some of the most promising cancer-targeting nanocarriers, each of them has drawbacks such as limited tissue diffusivity/tumor penetration and rapid in vivo elimination, respectively. To address these issues, we have designed a multiscale hybrid NP system (nanohybrid) that combines folate (FA)-targeted poly(amidoamine) dendrimers and poly(ethylene glycol)-b-poly(d,l-lactide) NPs. The nanohybrids (∼100 nm NPs encapsulating ∼5 nm targeted dendrimers) were extensively characterized through a series of in vitro experiments that validate the design rationale of the system, in an aim to simulate their in vivo behaviors. Cellular uptake studies using FA receptor (FR)-overexpressing KB cells (KB FR(+)) revealed that the nanohybrids maintained high FR selectivity resembling the selectivity of free dendrimers, while displaying temporally controlled cellular interactions due to the presence of the polymeric NP shells. The cellular interactions of the nanohybrids were clathrin-dependent (characteristic of polymer NPs) at early incubation time points (4 h), which were partially converted to caveolae-mediated internalization (characteristic of FA-targeted dendrimers) at longer incubation hours (24 h). Simulated penetration assays using multicellular tumor spheroids of KB FR(+) cells also revealed that the targeted dendrimers penetrated deep into the spheroids upon their release from the nanohybrids, whereas the NP shell did not. Additionally, methotrexate-containing systems showed the selective, controlled cytotoxicity kinetics of the nanohybrids. These results all demonstrate that our nanohybrids successfully integrate the unique characteristics of dendrimers (effective targeting and penetration) and polymeric NPs (controlled release and suitable size for long circulation) in a kinetically controlled manner.
Collapse
Affiliation(s)
- Suhair Sunoqrot
- Department of Biopharmaceutical Sciences, University of Illinois at Chicago, Chicago, IL 60612, USA
| | | | | | | |
Collapse
|
37
|
Abstract
Dendritic polymers have attracted a great deal of scientific interest due to their well-defined unique structure and capability to be multifunctionalized. Here we present a comprehensive overview of various dendrimer-based nanomaterials that are currently being investigated for therapeutic delivery and diagnostic applications. Through a critical review of the old and new dendritic designs, we highlight the advantages and disadvantages of these systems and their structure-biological property relationships. This article also focuses on the major challenges facing the clinical translation of these nanomaterials and how these challenges are being (or should be) addressed, which will greatly benefit the overall progress of dendritic materials for theranostics.
Collapse
|
38
|
Yang Y, Sunoqrot S, Stowell C, Ji J, Lee CW, Kim JW, Khan SA, Hong S. Effect of size, surface charge, and hydrophobicity of poly(amidoamine) dendrimers on their skin penetration. Biomacromolecules 2012; 13:2154-62. [PMID: 22621160 DOI: 10.1021/bm300545b] [Citation(s) in RCA: 102] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
The barrier functions of the stratum corneum and the epidermal layers present a tremendous challenge in achieving effective transdermal delivery of drug molecules. Although a few reports have shown that poly(amidoamine) (PAMAM) dendrimers are effective skin-penetration enhancers, little is known regarding the fundamental mechanisms behind the dendrimer-skin interactions. In this Article, we have performed a systematic study to better elucidate how dendrimers interact with skin layers depending on their size and surface groups. Franz diffusion cells and confocal microscopy were employed to observe dendrimer interactions with full-thickness porcine skin samples. We have found that smaller PAMAM dendrimers (generation 2 (G2)) penetrate the skin layers more efficiently than the larger ones (G4). We have also found that G2 PAMAM dendrimers that are surface-modified by either acetylation or carboxylation exhibit increased skin permeation and likely diffuse through an extracellular pathway. In contrast, amine-terminated dendrimers show enhanced cell internalization and skin retention but reduced skin permeation. In addition, conjugation of oleic acid to G2 dendrimers increases their 1-octanol/PBS partition coefficient, resulting in increased skin absorption and retention. Here we report that size, surface charge, and hydrophobicity directly dictate the permeation route and efficiency of dendrimer translocation across the skin layers, providing a design guideline for engineering PAMAM dendrimers as a potential transdermal delivery vector.
Collapse
Affiliation(s)
- Yang Yang
- Department of Biopharmaceutical Sciences, College of Pharmacy, University of Illinois, Chicago, Illinois 60612, United States
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Tang L, Fan TM, Borst LB, Cheng J. Synthesis and biological response of size-specific, monodisperse drug-silica nanoconjugates. ACS NANO 2012; 6:3954-66. [PMID: 22494403 PMCID: PMC3555148 DOI: 10.1021/nn300149c] [Citation(s) in RCA: 143] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Drug-containing nanoparticles (NPs) with monodisperse, controlled particle sizes are highly desirable for drug delivery. Accumulating evidence suggests that NPs with sizes less than 50 nm demonstrate superior performance in vitro and in vivo. However, it is difficult to fabricate monodisperse, drug-containing NPs with discrete sizes required for studying and characterizing existing relationships among particle size, biologic processing, and therapeutic functionality. Here, we report a scalable process of fabricating drug-silica conjugated nanoparticles, termed drug-silica nanoconjugates (drug-NCs), which possess monodisperse size distributions and desirable particle sizes as small as 20 nm. We find that 20 nm NCs are superior to their 50 and 200 nm NC analogues by 2-5- and 10-20-fold, respectively, with regard to tumor accumulation and penetration and cellular internalization. These fundamental findings underscore the importance and necessity of further miniaturizing nanomedicine size for optimized drug delivery applications.
Collapse
Affiliation(s)
- Li Tang
- Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | - Timothy M. Fan
- Department of Veterinary Clinical Medicine, University of Illinois at Urbana-Champaign, University of Illinois at Urbana-Champaign, Urbana, Illinois 61802, USA
| | - Luke B. Borst
- Department of Population Health and Pathobiology, North Carolina State University, Raleigh, North Carolina 27606, USA
| | - Jianjun Cheng
- Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
- Corresponding Author:
| |
Collapse
|
40
|
Sunoqrot S, Bae JW, Pearson RM, Shyu K, Liu Y, Kim DH, Hong S. Temporal control over cellular targeting through hybridization of folate-targeted dendrimers and PEG-PLA nanoparticles. Biomacromolecules 2012; 13:1223-30. [PMID: 22439905 DOI: 10.1021/bm300316n] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Polymeric nanoparticles (NPs) and dendrimers are two major classes of nanomaterials that have demonstrated great potential for targeted drug delivery. However, their targeting efficacy has not yet met clinical needs, largely because of a lack of control over their targeting kinetics, which often results in rapid clearance and off-target drug delivery. To address this issue, we have designed a novel hybrid NP (nanohybrid) platform that allows targeting kinetics to be effectively controlled through hybridization of targeted dendrimers with polymeric NPs. Folate (FA)-targeted generation 4 poly(amidoamine) dendrimers were encapsulated into poly(ethylene glycol)-b-poly(D,L-lactide) (PEG-PLA) NPs using a double emulsion method, forming nanohybrids with a uniform size (~100 nm in diameter) at high encapsulation efficiencies (69-85%). Targeted dendrimers encapsulated within the NPs selectively interacted with FA receptor (FR)-overexpressing KB cells upon release in a temporally controlled manner. The targeting kinetics of the nanohybrids were modulated using three different molecular weights (MW) of the PLA block (23, 30, and 45 kDa). The release rates of the dendrimers from the nanohybrids were inversely proportional to the MW of the PLA block, which dictated their binding and internalization kinetics with KB cells. Our results provide evidence that selective cellular interactions can be kinetically controlled by the nanohybrid design, which can potentially enhance targeting efficacy of nanocarriers.
Collapse
Affiliation(s)
- Suhair Sunoqrot
- Department of Biopharmaceutical Sciences, University of Illinois at Chicago, Chicago, Illinois, United States
| | | | | | | | | | | | | |
Collapse
|
41
|
Myung JH, Gajjar KA, Saric J, Eddington DT, Hong S. Dendrimer-mediated multivalent binding for the enhanced capture of tumor cells. Angew Chem Int Ed Engl 2011; 50:11769-72. [PMID: 22012872 PMCID: PMC3549433 DOI: 10.1002/anie.201105508] [Citation(s) in RCA: 132] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2011] [Revised: 09/08/2011] [Indexed: 12/21/2022]
Affiliation(s)
- Ja Hye Myung
- Department of Biopharmaceutical Sciences, University of Illinois at Chicago, 833 South Wood St., Room 335, Chicago, IL, 60612
| | - Khyati A. Gajjar
- Department of Biopharmaceutical Sciences, University of Illinois at Chicago, 833 South Wood St., Room 335, Chicago, IL, 60612
| | - Jelena Saric
- Department of Biopharmaceutical Sciences, University of Illinois at Chicago, 833 South Wood St., Room 335, Chicago, IL, 60612
| | - David T. Eddington
- Department of Biopharmaceutical Sciences, University of Illinois at Chicago, 833 South Wood St., Room 335, Chicago, IL, 60612. Department of Bioengineering, University of Illinois at Chicago, 833 South Wood St., Room 335, Chicago, IL, 60612
| | - Seungpyo Hong
- Department of Biopharmaceutical Sciences, University of Illinois at Chicago, 833 South Wood St., Room 335, Chicago, IL, 60612. Department of Bioengineering, University of Illinois at Chicago 833 South Wood St., Room 335, Chicago, IL, 60612, Fax: 1-312-996-0098
| |
Collapse
|
42
|
Myung JH, Gajjar KA, Saric J, Eddington DT, Hong S. Dendrimer-Mediated Multivalent Binding for the Enhanced Capture of Tumor Cells. Angew Chem Int Ed Engl 2011. [DOI: 10.1002/ange.201105508] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|