1
|
Nazzaro A, Lu B, Sawyer N, Watkins AM, Arora PS. Macrocyclic β-Sheets Stabilized by Hydrogen Bond Surrogates. Angew Chem Int Ed Engl 2023; 62:e202303943. [PMID: 37170337 PMCID: PMC10592574 DOI: 10.1002/anie.202303943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Revised: 05/09/2023] [Accepted: 05/10/2023] [Indexed: 05/13/2023]
Abstract
Mimics of protein secondary and tertiary structure offer rationally-designed inhibitors of biomolecular interactions. β-Sheet mimics have a storied history in bioorganic chemistry and are typically designed with synthetic or natural turn segments. We hypothesized that replacement of terminal inter-β-strand hydrogen bonds with hydrogen bond surrogates (HBS) may lead to conformationally-defined macrocyclic β-sheets without the requirement for natural or synthetic β-turns, thereby providing a minimal mimic of a protein β-sheet. To access turn-less antiparallel β-sheet mimics, we developed a facile solid phase synthesis protocol. We surveyed a dataset of protein β-sheets for naturally observed interstrand side chain interactions. This bioinformatics survey highlighted an over-abundance of aromatic-aromatic, cation-π and ionic interactions in β-sheets. In correspondence with natural β-sheets, we find that minimal HBS mimics show robust β-sheet formation when specific amino acid residue pairings are incorporated. In isolated β-sheets, aromatic interactions endow superior conformational stability over ionic or cation-π interactions. Circular dichroism and NMR spectroscopies, along with high-resolution X-ray crystallography, support our design principles.
Collapse
Affiliation(s)
- Alex Nazzaro
- Department of Chemistry, New York University, 100 Washington Square East, NY 10013, New York, USA
| | - Brandon Lu
- Department of Chemistry, New York University, 100 Washington Square East, NY 10013, New York, USA
| | - Nicholas Sawyer
- Department of Chemistry, New York University, 100 Washington Square East, NY 10013, New York, USA
| | | | - Paramjit S Arora
- Department of Chemistry, New York University, 100 Washington Square East, NY 10013, New York, USA
| |
Collapse
|
2
|
Pal S. Impact of Hydrogen‐Bond Surrogate Model on Helix Stabilization and Development of Protein‐Protein Interaction Inhibitors. ChemistrySelect 2023. [DOI: 10.1002/slct.202204207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
Affiliation(s)
- Sunit Pal
- Chemical Genomics Centre of the Max Planck Society Max Planck Institute of Molecular Physiology Otto-Hahn-Str. 11 44227 Dortmund Germany
| |
Collapse
|
3
|
Design and Synthesis of Novel Helix Mimetics Based on the Covalent H-Bond Replacement and Amide Surrogate. MOLECULES (BASEL, SWITZERLAND) 2023; 28:molecules28020780. [PMID: 36677838 PMCID: PMC9863496 DOI: 10.3390/molecules28020780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 12/27/2022] [Accepted: 01/10/2023] [Indexed: 01/15/2023]
Abstract
A novel hydrogen bond surrogate-based (HBS) α-helix mimetic was designed by the combination of covalent H-bond replacement and the use of an ether linkage to substitute an amide bond within a short peptide sequence. The new helix template could be placed in position other than the N-terminus of a short peptide, and the CD studies demonstrate that the template adopts stable conformations in aqueous buffer at exceptionally high temperatures.
Collapse
|
4
|
Chen XX, Tang Y, Wu M, Zhang YN, Chen K, Zhou Z, Fang GM. Helix-Constrained Peptides Constructed by Head-to-Side Chain Cross-Linking Strategies. Org Lett 2021; 23:7792-7796. [PMID: 34551517 DOI: 10.1021/acs.orglett.1c02820] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Facile head-to-side chain cross-linking strategies are developed to generate helix-constrained peptides. In our strategies, a covalent cross-linker is incorporated at N, i+7 or N, i+1 positions to lock the peptide into a helical conformation. The described patterns of head-to-side chain cross-linking will provide new frameworks for constrained helical peptide.
Collapse
Affiliation(s)
- Xiao-Xu Chen
- School of Life Science, Institute of Physical Science and Information Technology, Anhui University, Hefei 230601, P. R. China
| | - Yang Tang
- Center of Minimally Invasive Treatment for Tumor, Department of Medical Ultrasound, Shanghai Tenth People's Hospital; Ultrasound Research and Education Institute, Clinical Research Center for Interventional Medicine, School of Medicine, Tongji University, Shanghai 200072, P. R. China
| | - Meng Wu
- School of Life Science, Institute of Physical Science and Information Technology, Anhui University, Hefei 230601, P. R. China
| | - Yan-Ni Zhang
- School of Life Science, Institute of Physical Science and Information Technology, Anhui University, Hefei 230601, P. R. China
| | - Kai Chen
- School of Life Science, Institute of Physical Science and Information Technology, Anhui University, Hefei 230601, P. R. China
| | - Zhaocai Zhou
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, 200438, P. R. China
| | - Ge-Min Fang
- School of Life Science, Institute of Physical Science and Information Technology, Anhui University, Hefei 230601, P. R. China
| |
Collapse
|
5
|
Qin X, Chen H, Tu L, Ma Y, Liu N, Zhang H, Li D, Riedl B, Bierer D, Yin F, Li Z. Potent Inhibition of HIF1α and p300 Interaction by a Constrained Peptide Derived from CITED2. J Med Chem 2021; 64:13693-13703. [PMID: 34472840 DOI: 10.1021/acs.jmedchem.1c01043] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Disrupting the interaction between HIF1α and p300 is a promising strategy to modulate the hypoxia response of tumor cells. Herein, we designed a constrained peptide inhibitor derived from the CITED2/p300 complex to disturb the HIF1α/p300 interaction. Through truncation/mutation screening and a terminal aspartic acid-stabilized strategy, a constrained peptide was constructed with outstanding biochemical/biophysical properties, especially in binding affinity, cell penetration, and serum stability. To date, our study was the first one to showcase that stabilized peptides derived from CITED2 using helix-stabilizing methods acted as a promising candidate for modulating hypoxia-inducible signaling.
Collapse
Affiliation(s)
- Xuan Qin
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Hailing Chen
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Licheng Tu
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Yue Ma
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Na Liu
- Pingshan Translational Medicine Center, Shenzhen Bay Laboratory, Shenzhen 518055, China
| | - Haowei Zhang
- Key Lab in Healthy Science and Technology, Division of Life Science, Shenzhen Graduate School of Tsinghua University, Shenzhen 518055, China
| | - Di Li
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Bernd Riedl
- Department of Medicinal Chemistry, Bayer AG, Aprather Weg 18A, Wuppertal 42096, Germany
| | - Donald Bierer
- Department of Medicinal Chemistry, Bayer AG, Aprather Weg 18A, Wuppertal 42096, Germany
| | - Feng Yin
- Pingshan Translational Medicine Center, Shenzhen Bay Laboratory, Shenzhen 518055, China
| | - Zigang Li
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen 518055, China.,Pingshan Translational Medicine Center, Shenzhen Bay Laboratory, Shenzhen 518055, China
| |
Collapse
|
6
|
Jedhe GS, Arora PS. Hydrogen bond surrogate helices as minimal mimics of protein α-helices. Methods Enzymol 2021; 656:1-25. [PMID: 34325784 DOI: 10.1016/bs.mie.2021.04.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Examination of complexes of proteins with biomolecular ligands reveals that proteins tend to interact with partners via folded sub-domains, in which the backbone possesses secondary structure. α-Helices comprising the largest class of protein secondary structures, play fundamental roles in a multitude of highly specific protein-protein and protein-nucleic acid interactions. We have demonstrated a unique strategy for stabilization of the α-helical conformation that involves replacement of one of the main chain i and i+4 hydrogen bonds in the target α-helix with a covalent bond. We termed this synthetic strategy a hydrogen bond surrogate (HBS) approach. Two salient features of this approach are: (1) the internal placement of the crosslink allows development of helices such that none of the solvent-exposed surfaces are blocked by the constraining element, i.e., all side chains of the constrained helices remain available for molecular recognition. (2) This approach can be deployed to constrain very short peptides (<10 amino acid residues) into highly stable α-helices. This chapter presents the biophysical basis for the development of the hydrogen bond surrogate approach, as well as methods for the synthesis and conformational analysis of the artificial helices.
Collapse
Affiliation(s)
- Ganesh S Jedhe
- Department of Chemistry, New York University, New York, NY, United States
| | - Paramjit S Arora
- Department of Chemistry, New York University, New York, NY, United States.
| |
Collapse
|
7
|
Pal S, Prabhakaran EN. Trimodular Solution‐Phase Protocol for Rapid Large‐Scale Synthesis of Hydrogen Bond Surrogate‐Constrained α‐Helicomimics. European J Org Chem 2021. [DOI: 10.1002/ejoc.202001359] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Sunit Pal
- Department of Organic Chemistry Indian Institute of Science Bangalore Karnataka 560012 India
| | - Erode N. Prabhakaran
- Department of Organic Chemistry Indian Institute of Science Bangalore Karnataka 560012 India
| |
Collapse
|
8
|
Liu Y, Hu K, Yin F, Li Z. Facile Chemoselective Modification of Thioethers Generates Chiral Center-Induced Helical Peptides. Methods Mol Biol 2021; 2355:301-322. [PMID: 34386967 DOI: 10.1007/978-1-0716-1617-8_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The modulation of protein-protein interactions (PPIs) is a promising way for interrogating disease. Stapled peptides that stabilize peptides into a fixed α-helical conformation via chemical means are important representative compounds for regulating PPIs. The effect of the secondary conformation of peptides on the biophysical properties has not been explicitly elucidated due to the difficulty of obtaining peptide epimers with the same chemical composition but different conformations. Herein, we systematically designed and demonstrated the concept of "Chiral Center-Induced Helicity" (CIH) to stabilize the secondary structure of peptides. By introducing a precise R-configuration chiral center on the side-ring of a peptide, researchers can decisively regulate the secondary structure of peptides. Through the study of CIH peptides, we found that increasing the helicity can significantly enhance the stability of peptides and improve the cell membrane penetrating capability of the peptides. Moreover, the substitution group in the chiral center could contribute to additional interactions with the binding groove, which shows great significance for fragment-based drug design. This chapter will focus on the method involved in this research, including specific protocols of the synthesis and basic characterization of CIH peptides in Subheading 3.1. In addition, we have also extended the concept of CIH to dual-chiral center systems, including sulfoxide-based and sulfonium-based in-tether chiral center peptides, which we will introduce in Subheadings 3.2 and 3.3.
Collapse
Affiliation(s)
- Yinghuan Liu
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Shenzhen Graduate School, Peking University, Shenzhen, China
| | - Kuan Hu
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Shenzhen Graduate School, Peking University, Shenzhen, China
| | - Feng Yin
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Shenzhen Graduate School, Peking University, Shenzhen, China
| | - Zigang Li
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Shenzhen Graduate School, Peking University, Shenzhen, China.
| |
Collapse
|
9
|
Li Y, Lian C, Hou Z, Wang D, Wang R, Wan C, Zhong W, Zhao R, Wang Y, Li S, Yin F, Li Z. Intramolecular methionine alkylation constructs sulfonium tethered peptides for protein conjugation. Chem Commun (Camb) 2020; 56:3741-3744. [DOI: 10.1039/d0cc00377h] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Continuous efforts have been invested in the selective modification of proteins.
Collapse
|
10
|
Singh VK, Pillai V, Patel SK, Buch L. Improving Cytotoxicity by Changing a Linker from Diphenylether to Diphenylmethane and now to Phenylene in Binuclear Dithiocarbamate Complexes: Synthesis and Cytotoxicity Study. ChemistrySelect 2019. [DOI: 10.1002/slct.201900938] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Affiliation(s)
- Vinay K Singh
- Department of ChemistryFaculty of ScienceThe M. S. University of Baroda Vadodara- 390 002 India
| | - Vineeta Pillai
- Department of ChemistryFaculty of ScienceThe M. S. University of Baroda Vadodara- 390 002 India
| | - Shailykumari K. Patel
- Department of ChemistryFaculty of ScienceThe M. S. University of Baroda Vadodara- 390 002 India
| | - Lipi Buch
- Department of ZoologyFaculty of ScienceThe M. S. University of Baroda Vadodara- 390 002 India
| |
Collapse
|
11
|
Design and Synthetic Strategies for Helical Peptides. Methods Mol Biol 2019; 2001:107-131. [PMID: 31134570 DOI: 10.1007/978-1-4939-9504-2_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Abnormal protein-protein interactions (PPIs) are the basis of multiple diseases, and the large and shallow PPI interfaces make the target "undruggable" for traditional small molecules. Peptides, emerging as a new therapeutic modality, can efficiently mimic PPIs with their large scaffolds. Natural peptides are flexible and usually have poor serum stability and cell permeability, features that limit their further biological applications. To satisfy the clinical application of peptide inhibitors, many strategies have been developed to constrain peptides in their bioactive conformation. In this report, we describe several classic methods used to constrain peptides into a fixed secondary structure which could significantly improve their biophysical properties.
Collapse
|
12
|
Yuan F, Tian Y, Qin W, Li J, Yang D, Zhao B, Yin F, Li Z. Evaluation of topologically distinct constrained antimicrobial peptides with broad-spectrum antimicrobial activity. Org Biomol Chem 2019; 16:5764-5770. [PMID: 30004546 DOI: 10.1039/c8ob00483h] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Antimicrobial peptides (AMPs) are short cationic peptides with a high affinity for membranes and emerged as a promising therapeutic approach with potential for treating infectious diseases. Chemical stabilization of short peptides proved to be a successful approach for enhancing their bio-physical properties. Herein, we designed and synthesized a panel of conformationally constrained antimicrobial peptides with either α-helical or β-hairpin conformation using templating strategies. These synthetic short constrained peptides possess different topological distributions of hydrophobic and hydrophilic residues and displayed distinct antimicrobial activity. Notably, the conformationally constrained α-helical peptides displayed a faster internalization into the bacteria cells compared to their β-hairpin analogues. These synthetic short constrained peptides showed killing effects on a broad spectrum of microorganisms mainly through pore formation and membrane damage which provided a potentially promising skeleton for the next generation of stabilized antimicrobial peptides.
Collapse
Affiliation(s)
- Fang Yuan
- Institute of Scientific and Technical Information of China, Beijing, 100038, China
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Abstract
Peptide secondary and tertiary structure motifs frequently serve as inspiration for the development of protein-protein interaction (PPI) inhibitors. While a wide variety of strategies have been used to stabilize or imitate α-helices, similar strategies for β-sheet stabilization are more limited. Synthetic scaffolds that stabilize reverse turns and cross-strand interactions have provided important insights into β-sheet stability and folding. However, these templates occupy regions of the β-sheet that might impact the β-sheet's ability to bind at a PPI interface. Here, we present the hydrogen bond surrogate (HBS) approach for stabilization of β-hairpin peptides. The HBS linkage replaces a cross-strand hydrogen bond with a covalent linkage, conferring significant conformational and proteolytic resistance. Importantly, this approach introduces the stabilizing linkage in the buried β-sheet interior, retains all side chains for further functionalization, and allows efficient solid-phase macrocyclization. We anticipate that HBS stabilization of PPI β-sheets will enhance the development of β-sheet PPI inhibitors and expand the repertoire of druggable PPIs.
Collapse
Affiliation(s)
- Nicholas Sawyer
- Department of Chemistry, New York University, 100 Washington Square East, New York, New York 10003, United States
| | - Paramjit S. Arora
- Department of Chemistry, New York University, 100 Washington Square East, New York, New York 10003, United States
| |
Collapse
|
14
|
Sawyer TK, Partridge AW, Kaan HYK, Juang YC, Lim S, Johannes C, Yuen TY, Verma C, Kannan S, Aronica P, Tan YS, Sherborne B, Ha S, Hochman J, Chen S, Surdi L, Peier A, Sauvagnat B, Dandliker PJ, Brown CJ, Ng S, Ferrer F, Lane DP. Macrocyclic α helical peptide therapeutic modality: A perspective of learnings and challenges. Bioorg Med Chem 2018; 26:2807-2815. [PMID: 29598901 DOI: 10.1016/j.bmc.2018.03.008] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2018] [Revised: 03/03/2018] [Accepted: 03/06/2018] [Indexed: 12/20/2022]
Abstract
Macrocyclic α-helical peptides have emerged as a compelling new therapeutic modality to tackle targets confined to the intracellular compartment. Within the scope of hydrocarbon-stapling there has been significant progress to date, including the first stapled α-helical peptide to enter into clinical trials. The principal design concept of stapled α-helical peptides is to mimic a cognate (protein) ligand relative to binding its target via an α-helical interface. However, it was the proclivity of such stapled α-helical peptides to exhibit cell permeability and proteolytic stability that underscored their promise as unique macrocyclic peptide drugs for intracellular targets. This perspective highlights key learnings as well as challenges in basic research with respect to structure-based design, innovative chemistry, cell permeability and proteolytic stability that are essential to fulfill the promise of stapled α-helical peptide drug development.
Collapse
|
15
|
Wang L, Coric P, Zhu K, Liu WQ, Vidal M, Bouaziz S, Broussy S. Synthesis and characterization of water-soluble macrocyclic peptides stabilizing protein α-turn. Org Biomol Chem 2018; 16:459-471. [DOI: 10.1039/c7ob02852k] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Macrocyclic peptides mimic tight “non-classical” α-turn type II-αLS found in proteins, as shown by spectroscopic and computational analysis of their equilibrating conformations.
Collapse
Affiliation(s)
- Lei Wang
- UMR COMETE 8638 CNRS
- Université Paris Descartes
- Faculté de Pharmacie de Paris
- Sorbonne Paris Cité
- Paris 75006
| | - Pascale Coric
- UMR 8015 CNRS
- Université Paris Descartes
- Faculté de Pharmacie de Paris
- Sorbonne Paris Cité
- Paris 75006
| | - Kexin Zhu
- UMR COMETE 8638 CNRS
- Université Paris Descartes
- Faculté de Pharmacie de Paris
- Sorbonne Paris Cité
- Paris 75006
| | - Wang-Qing Liu
- UMR COMETE 8638 CNRS
- Université Paris Descartes
- Faculté de Pharmacie de Paris
- Sorbonne Paris Cité
- Paris 75006
| | - Michel Vidal
- UMR COMETE 8638 CNRS
- Université Paris Descartes
- Faculté de Pharmacie de Paris
- Sorbonne Paris Cité
- Paris 75006
| | - Serge Bouaziz
- UMR 8015 CNRS
- Université Paris Descartes
- Faculté de Pharmacie de Paris
- Sorbonne Paris Cité
- Paris 75006
| | - Sylvain Broussy
- UMR COMETE 8638 CNRS
- Université Paris Descartes
- Faculté de Pharmacie de Paris
- Sorbonne Paris Cité
- Paris 75006
| |
Collapse
|
16
|
Klein M. Stabilized helical peptides: overview of the technologies and its impact on drug discovery. Expert Opin Drug Discov 2017; 12:1117-1125. [PMID: 28889766 DOI: 10.1080/17460441.2017.1372745] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
INTRODUCTION Protein-protein interactions are predominant in the workings of all cells. Until now, there have been a few successes in targeting protein-protein interactions with small molecules. Peptides may overcome some of the challenges of small molecules in disrupting protein-protein interactions. However, peptides present a new set of challenges in drug discovery. Thus, the study of the stabilization of helical peptides has been extensive. Areas covered: Several technological approaches to helical peptide stabilization have been studied. In this review, stapled peptides, foldamers, and hydrogen bond surrogates are discussed. Issues regarding design principles are also discussed. Furthermore, this review introduces select computational techniques used to aid peptide design and discusses clinical trials of peptides in a more advanced stage of development. Expert opinion: Stabilized helical peptides hold great promise in a wide array of diseases. However, the field is still relatively new and new design principles are emerging. The possibilities of peptide modification are quite extensive and expanding, so the design of stabilized peptides requires great attention to detail in order to avoid a large number of failed lead peptides. The start of clinical trials with stapled peptides is a promising sign for the future.
Collapse
Affiliation(s)
- Mark Klein
- a Division of Hematology, Oncology, and Transplantation , University of Minnesota , Minneapolis , MN , USA.,b Hematology/Oncology Section , Minneapolis VA Healthcare System , Minneapolis , MN , USA
| |
Collapse
|
17
|
Zhang ZX, Hu ZW, Zhao DS, Chen YX, Li YM. Helices with Rational Residues Conduct Different Modulations towards Aβ Aggregation. CHEM LETT 2017. [DOI: 10.1246/cl.170229] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Zheng-Xiao Zhang
- Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, P. R. China
| | - Zhi-Wen Hu
- Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, P. R. China
| | - De-Sheng Zhao
- Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, P. R. China
| | - Yong-Xiang Chen
- Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, P. R. China
| | - Yan-Mei Li
- Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, P. R. China
- Beijing Institute for Brain Disorders Center of Parkinson’s Disease, P. R. China
| |
Collapse
|
18
|
Sawyer N, Watkins AM, Arora PS. Protein Domain Mimics as Modulators of Protein-Protein Interactions. Acc Chem Res 2017; 50:1313-1322. [PMID: 28561588 DOI: 10.1021/acs.accounts.7b00130] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Protein-protein interactions (PPIs) are ubiquitous in biological systems and often misregulated in disease. As such, specific PPI modulators are desirable to unravel complex PPI pathways and expand the number of druggable targets available for therapeutic intervention. However, the large size and relative flatness of PPI interfaces make them challenging molecular targets. This Account describes our systematic approach using secondary and tertiary protein domain mimics (PDMs) to specifically modulate PPIs. Our strategy focuses on mimicry of regular secondary and tertiary structure elements from one of the PPI partners to inspire rational PDM design. We have compiled three databases (HIPPDB, SIPPDB, and DIPPDB) of secondary and tertiary structures at PPI interfaces to guide our designs and better understand the energetics of PPI secondary and tertiary structures. Our efforts have focused on three of the most common secondary and tertiary structures: α-helices, β-strands, and helix dimers (e.g., coiled coils). To mimic α-helices, we designed the hydrogen bond surrogate (HBS) as an isosteric PDM and the oligooxopiperazine helix mimetic (OHM) as a topographical PDM. The nucleus of the HBS approach is a peptide macrocycle in which the N-terminal i, i + 4 main-chain hydrogen bond is replaced with a covalent carbon-carbon bond. In mimicking a main-chain hydrogen bond, the HBS approach stabilizes the α-helical conformation while leaving all helical faces available for functionalization to tune binding affinity and specificity. The OHM approach, in contrast, envisions a tetrapeptide to mimic one face of a two-turn helix. We anticipated that placement of ethylene bridges between adjacent amides constrains the tetrapeptide backbone to mimic the i, i + 4, and i + 7 side chains on one face of an α-helix. For β-strands, we developed triazolamers, a topographical PDM where the peptide bonds are replaced by triazoles. The triazoles simultaneously stabilize the extended, zigzag conformation of β-strands and transform an otherwise ideal protease substrate into a stable molecule by replacement of the peptide bonds. We turned to a salt bridge surrogate (SBS) approach as a means for stabilizing very short helix dimers. As with the HBS approach, the SBS strategy replaces a noncovalent interaction with a covalent bond. Specifically, we used a bis-triazole linkage that mimics a salt bridge interaction to drive helix association and folding. Using this approach, we were able to stabilize helix dimers that are less than half of the length required to form a coiled coil from two independent strands. In addition to demonstrating the stabilization of desired structures, we have also shown that our designed PDMs specifically modulate target PPIs in vitro and in vivo. Examples of PPIs successfully targeted include HIF1α/p300, p53/MDM2, Bcl-xL/Bak, Ras/Sos, and HIV gp41. The PPI databases and designed PDMs created in these studies will aid development of a versatile set of molecules to probe complex PPI functions and, potentially, PPI-based therapeutics.
Collapse
Affiliation(s)
- Nicholas Sawyer
- Department of Chemistry, New York University, 100 Washington Square East, New York, New York 10003, United States
| | - Andrew M. Watkins
- Department of Chemistry, New York University, 100 Washington Square East, New York, New York 10003, United States
| | - Paramjit S. Arora
- Department of Chemistry, New York University, 100 Washington Square East, New York, New York 10003, United States
| |
Collapse
|
19
|
|
20
|
An in-tether sulfoxide chiral center influences the biophysical properties of the N-capped peptides. Bioorg Med Chem 2017; 25:1756-1761. [DOI: 10.1016/j.bmc.2016.11.042] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2016] [Revised: 11/16/2016] [Accepted: 11/23/2016] [Indexed: 11/23/2022]
|
21
|
Li J, Hu K, Chen H, Wu Y, Chen L, Yin F, Tian Y, Li Z. An in-tether chiral center modulates the proapoptotic activity of the KLA peptide. Chem Commun (Camb) 2017; 53:10452-10455. [DOI: 10.1039/c7cc04923d] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
We have utilized a novel in-tether chiral center induced helicity strategy (CIH) to develop a potent apoptosis inducer based on apoptotic KLA peptide. For our constructed peptides, the CIH-KLA-(R) epimer exhibited superior cellular uptakes and special mitochondrial targeting when compared with its S counterpart.
Collapse
Affiliation(s)
- Jingxu Li
- Key Laboratory of Chemical Genomics
- School of Chemical Biology and Biotechnology
- Peking University Shenzhen Graduate School
- Shenzhen
- P. R. China
| | - Kuan Hu
- Key Laboratory of Chemical Genomics
- School of Chemical Biology and Biotechnology
- Peking University Shenzhen Graduate School
- Shenzhen
- P. R. China
| | - Hailing Chen
- Guangdong Provincial Key Laboratory of New Drug Screening
- School of Pharmaceutical Science
- Southern Medical University
- Guangzhou
- China
| | - YuJie Wu
- Key Laboratory of Chemical Genomics
- School of Chemical Biology and Biotechnology
- Peking University Shenzhen Graduate School
- Shenzhen
- P. R. China
| | - Longjian Chen
- Key Laboratory of Chemical Genomics
- School of Chemical Biology and Biotechnology
- Peking University Shenzhen Graduate School
- Shenzhen
- P. R. China
| | - Feng Yin
- Key Laboratory of Chemical Genomics
- School of Chemical Biology and Biotechnology
- Peking University Shenzhen Graduate School
- Shenzhen
- P. R. China
| | - Yuan Tian
- School of Life Science and Engineering
- Southwest Jiaotong University
- Chengdu 611756
- P. R. China
| | - Zigang Li
- Key Laboratory of Chemical Genomics
- School of Chemical Biology and Biotechnology
- Peking University Shenzhen Graduate School
- Shenzhen
- P. R. China
| |
Collapse
|
22
|
Abstract
Substitution of a main chain i → i + 4 hydrogen bond with a covalent bond can nucleate and stabilize the α-helical conformation in peptides. Herein we describe the potential of different alkene isosteres to mimic intramolecular hydrogen bonds and stabilize α-helices in diverse peptide sequences.
Collapse
Affiliation(s)
- Stephen T Joy
- Department of Chemistry, New York University, New York, NY 10003, USA.
| | - Paramjit S Arora
- Department of Chemistry, New York University, New York, NY 10003, USA.
| |
Collapse
|
23
|
Zhao H, Liu QS, Geng H, Tian Y, Cheng M, Jiang YH, Xie MS, Niu XG, Jiang F, Zhang YO, Lao YZ, Wu YD, Xu NH, Li ZG. Crosslinked Aspartic Acids as Helix-Nucleating Templates. Angew Chem Int Ed Engl 2016; 55:12088-93. [DOI: 10.1002/anie.201606833] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Indexed: 12/12/2022]
Affiliation(s)
- Hui Zhao
- School of Chemical Biology and Biotechnology; Shenzhen Graduate School of Peking University; Shenzhen 518055 China
| | - Qi-Song Liu
- School of Chemical Biology and Biotechnology; Shenzhen Graduate School of Peking University; Shenzhen 518055 China
- Shenzhen Key Lab of Tissue Engineering; The Second People's Hospital of Shenzhen; Shenzhen 518035 China
| | - Hao Geng
- School of Chemical Biology and Biotechnology; Shenzhen Graduate School of Peking University; Shenzhen 518055 China
| | - Yuan Tian
- School of Chemical Biology and Biotechnology; Shenzhen Graduate School of Peking University; Shenzhen 518055 China
| | - Min Cheng
- Key Lab in Healthy Science and Technology; Division of Life Science; Shenzhen Graduate School of Tsinghua University; Shenzhen 518055 China
| | - Yan-Hong Jiang
- School of Chemical Biology and Biotechnology; Shenzhen Graduate School of Peking University; Shenzhen 518055 China
| | - Ming-Sheng Xie
- School of Chemical Biology and Biotechnology; Shenzhen Graduate School of Peking University; Shenzhen 518055 China
| | - Xiao-Gang Niu
- College of Chemistry and Molecular Engineering; Beijing Nuclear Magnetic Resonance Center; Peking University; Beijing 100871 China
| | - Fan Jiang
- School of Chemical Biology and Biotechnology; Shenzhen Graduate School of Peking University; Shenzhen 518055 China
| | - Ya-Ou Zhang
- Key Lab in Healthy Science and Technology; Division of Life Science; Shenzhen Graduate School of Tsinghua University; Shenzhen 518055 China
| | - Yuan-Zhi Lao
- School of Pharmacy; Shanghai University of Traditional Chinese Medicine; Shanghai 201203 China
| | - Yun-Dong Wu
- School of Chemical Biology and Biotechnology; Shenzhen Graduate School of Peking University; Shenzhen 518055 China
| | - Nai-Han Xu
- Key Lab in Healthy Science and Technology; Division of Life Science; Shenzhen Graduate School of Tsinghua University; Shenzhen 518055 China
| | - Zi-Gang Li
- School of Chemical Biology and Biotechnology; Shenzhen Graduate School of Peking University; Shenzhen 518055 China
| |
Collapse
|
24
|
Zhao H, Liu QS, Geng H, Tian Y, Cheng M, Jiang YH, Xie MS, Niu XG, Jiang F, Zhang YO, Lao YZ, Wu YD, Xu NH, Li ZG. Crosslinked Aspartic Acids as Helix-Nucleating Templates. Angew Chem Int Ed Engl 2016. [DOI: 10.1002/ange.201606833] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Hui Zhao
- School of Chemical Biology and Biotechnology; Shenzhen Graduate School of Peking University; Shenzhen 518055 China
| | - Qi-Song Liu
- School of Chemical Biology and Biotechnology; Shenzhen Graduate School of Peking University; Shenzhen 518055 China
- Shenzhen Key Lab of Tissue Engineering; The Second People's Hospital of Shenzhen; Shenzhen 518035 China
| | - Hao Geng
- School of Chemical Biology and Biotechnology; Shenzhen Graduate School of Peking University; Shenzhen 518055 China
| | - Yuan Tian
- School of Chemical Biology and Biotechnology; Shenzhen Graduate School of Peking University; Shenzhen 518055 China
| | - Min Cheng
- Key Lab in Healthy Science and Technology; Division of Life Science; Shenzhen Graduate School of Tsinghua University; Shenzhen 518055 China
| | - Yan-Hong Jiang
- School of Chemical Biology and Biotechnology; Shenzhen Graduate School of Peking University; Shenzhen 518055 China
| | - Ming-Sheng Xie
- School of Chemical Biology and Biotechnology; Shenzhen Graduate School of Peking University; Shenzhen 518055 China
| | - Xiao-Gang Niu
- College of Chemistry and Molecular Engineering; Beijing Nuclear Magnetic Resonance Center; Peking University; Beijing 100871 China
| | - Fan Jiang
- School of Chemical Biology and Biotechnology; Shenzhen Graduate School of Peking University; Shenzhen 518055 China
| | - Ya-Ou Zhang
- Key Lab in Healthy Science and Technology; Division of Life Science; Shenzhen Graduate School of Tsinghua University; Shenzhen 518055 China
| | - Yuan-Zhi Lao
- School of Pharmacy; Shanghai University of Traditional Chinese Medicine; Shanghai 201203 China
| | - Yun-Dong Wu
- School of Chemical Biology and Biotechnology; Shenzhen Graduate School of Peking University; Shenzhen 518055 China
| | - Nai-Han Xu
- Key Lab in Healthy Science and Technology; Division of Life Science; Shenzhen Graduate School of Tsinghua University; Shenzhen 518055 China
| | - Zi-Gang Li
- School of Chemical Biology and Biotechnology; Shenzhen Graduate School of Peking University; Shenzhen 518055 China
| |
Collapse
|
25
|
Singh VK, Kadu R, Roy H, Raghavaiah P, Mobin SM. Phenolate based metallomacrocyclic xanthate complexes of Co(II)/Cu(II) and their exclusive deployment in [2 : 2] binuclear N,O-Schiff base macrocycle formation and in vitro anticancer studies. Dalton Trans 2016; 45:1443-54. [PMID: 26674056 DOI: 10.1039/c5dt03407h] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Potassium salts of phenolate based polydentate xanthate ligands 4,4'-bis(2-dithiocarbonatobenzylideneamino)diphenyl ether () and 4,4'-bis(2-dithiocarbonatonaphthylmethylideneamino)diphenyl ether () have been synthesized and characterized, prior to use. The reaction of or with M(OAc)2 in Et3N affords access to a rare series of binuclear metallomacrocyclic xanthate complexes of the type [M2-μ(2)-bis-(κ(2)S,S-xan(1)/xan(2))] () which quickly forms [2 : 2] binuclear N,O-bidentate Schiff base macrocyclic complexes of the type [M2-μ(2)-bis-(κ(2)N,O-L(1)/L(2))] ( = 4,4'-bis(2-hydroxybenzylideneamino)diphenyl ether, = 4,4'-bis(2-hydroxynaphthylmethylidene-amino)diphenyl ether) via evolution of CS2 in solution. The compounds were characterized by microanalysis, relevant spectroscopy (FT-IR, UV-visible), mass spectrometry (ESI-MS), and powder and single crystal XRD techniques. In vitro anticancer activity of all the compounds was evaluated against HEP 3B (hepatoma) and IMR 32 (neuroblastoma) by the MTT assay. Remarkably, the binuclear copper(ii) xanthate complexes were found to be extremely active against both the cell lines (IC50: 8.1 ± 0.8 μM (), 8.8 ± 1.7 μM () against HEP 3B and 1.9 ± 0.3 μM () and 7.3 ± 0.6 μM () against IMR 32) and this projects them as good candidates for potent antitumor agents and the IC50 values confirm their better potency than the reference drug cisplatin. The flow-cytometric density plot illustrates the induction of apoptosis in HEP 3B and IMR 32 cells after treatment with , , , and .
Collapse
Affiliation(s)
- Vinay K Singh
- Department of Chemistry, Faculty of Science, The M. S. University of Baroda, Vadodara-390 002, India.
| | - Rahul Kadu
- Department of Chemistry, Faculty of Science, The M. S. University of Baroda, Vadodara-390 002, India.
| | - Hetal Roy
- Department of Zoology, Faculty of Science, The M. S. University of Baroda, Vadodara-390 002, India
| | | | - Shaikh M Mobin
- Department of Chemistry, Indian Institute of Technology Indore-452 017, India
| |
Collapse
|
26
|
Zhao B, Zhang Q, Li Z. Constructing thioether-tethered cyclic peptides via on-resin intra-molecular thiol-ene reaction. J Pept Sci 2016; 22:540-4. [DOI: 10.1002/psc.2902] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Revised: 05/23/2016] [Accepted: 06/01/2016] [Indexed: 01/07/2023]
Affiliation(s)
- Bingchuan Zhao
- School of Chemical Biology and Biotechnology; Peking University Shenzhen Graduate School; Shenzhen 518055 China
| | - Qingzhou Zhang
- School of Chemical Biology and Biotechnology; Peking University Shenzhen Graduate School; Shenzhen 518055 China
| | - Zigang Li
- School of Chemical Biology and Biotechnology; Peking University Shenzhen Graduate School; Shenzhen 518055 China
| |
Collapse
|
27
|
Peptide-based inhibitors of protein–protein interactions. Bioorg Med Chem Lett 2016; 26:707-713. [DOI: 10.1016/j.bmcl.2015.12.084] [Citation(s) in RCA: 115] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2015] [Revised: 12/22/2015] [Accepted: 12/23/2015] [Indexed: 12/22/2022]
|
28
|
Pelay-Gimeno M, Glas A, Koch O, Grossmann TN. Structure-Based Design of Inhibitors of Protein-Protein Interactions: Mimicking Peptide Binding Epitopes. Angew Chem Int Ed Engl 2015; 54:8896-927. [PMID: 26119925 PMCID: PMC4557054 DOI: 10.1002/anie.201412070] [Citation(s) in RCA: 506] [Impact Index Per Article: 56.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Indexed: 12/15/2022]
Abstract
Protein-protein interactions (PPIs) are involved at all levels of cellular organization, thus making the development of PPI inhibitors extremely valuable. The identification of selective inhibitors is challenging because of the shallow and extended nature of PPI interfaces. Inhibitors can be obtained by mimicking peptide binding epitopes in their bioactive conformation. For this purpose, several strategies have been evolved to enable a projection of side chain functionalities in analogy to peptide secondary structures, thereby yielding molecules that are generally referred to as peptidomimetics. Herein, we introduce a new classification of peptidomimetics (classes A-D) that enables a clear assignment of available approaches. Based on this classification, the Review summarizes strategies that have been applied for the structure-based design of PPI inhibitors through stabilizing or mimicking turns, β-sheets, and helices.
Collapse
Affiliation(s)
- Marta Pelay-Gimeno
- Chemical Genomics Centre of the Max Planck SocietyOtto-Hahn-Strasse 15, 44227 Dortmund (Germany) E-mail:
| | - Adrian Glas
- Chemical Genomics Centre of the Max Planck SocietyOtto-Hahn-Strasse 15, 44227 Dortmund (Germany) E-mail:
| | - Oliver Koch
- TU Dortmund University, Department of Chemistry and Chemical BiologyOtto-Hahn-Strasse 6, 44227 Dortmund (Germany)
| | - Tom N Grossmann
- Chemical Genomics Centre of the Max Planck SocietyOtto-Hahn-Strasse 15, 44227 Dortmund (Germany) E-mail:
- TU Dortmund University, Department of Chemistry and Chemical BiologyOtto-Hahn-Strasse 6, 44227 Dortmund (Germany)
| |
Collapse
|
29
|
Pelay-Gimeno M, Glas A, Koch O, Grossmann TN. Strukturbasierte Entwicklung von Protein-Protein-Interaktionsinhibitoren: Stabilisierung und Nachahmung von Peptidliganden. Angew Chem Int Ed Engl 2015. [DOI: 10.1002/ange.201412070] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
30
|
Solid phase synthesis of constrained 13-membered peptide macrocycles employing Fukuyama–Mitsunobu alkylations. Tetrahedron Lett 2015. [DOI: 10.1016/j.tetlet.2015.03.091] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
31
|
Sawyer TK, Guerlavais V, Darlak K, Feyfant E. Macrocyclic α-Helical Peptide Drug Discovery. MACROCYCLES IN DRUG DISCOVERY 2014. [DOI: 10.1039/9781782623113-00339] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Macrocyclic α-helical peptides have emerged as a promising new drug class and within the scope of hydrocarbon-stapled peptides such molecules have advanced into the clinic. The overarching concept of designing proteomimetics of an α-helical ‘ligand’ which binds its cognate ‘target’ relative to α-helical interfacing protein-protein interactions has been well-validated and expanded through numerous investigations for a plethora of therapeutic targets oftentimes referred to as “undruggable” with respect to other modalities (e.g., small-molecule or proteins). This chapter highlights the evolution of macrocyclic α-helical peptides in terms of target space, biophysical and computational chemistry, structural diversity and synthesis, drug design and chemical biology. It is noteworthy that hydrocarbon-stapled peptides have successfully risen to the summit of such drug discovery campaigns.
Collapse
|
32
|
Hill TA, Shepherd NE, Diness F, Fairlie DP. Constraining cyclic peptides to mimic protein structure motifs. Angew Chem Int Ed Engl 2014; 53:13020-41. [PMID: 25287434 DOI: 10.1002/anie.201401058] [Citation(s) in RCA: 306] [Impact Index Per Article: 30.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2014] [Revised: 04/02/2013] [Indexed: 12/18/2022]
Abstract
Many proteins exert their biological activities through small exposed surface regions called epitopes that are folded peptides of well-defined three-dimensional structures. Short synthetic peptide sequences corresponding to these bioactive protein surfaces do not form thermodynamically stable protein-like structures in water. However, short peptides can be induced to fold into protein-like bioactive conformations (strands, helices, turns) by cyclization, in conjunction with the use of other molecular constraints, that helps to fine-tune three-dimensional structure. Such constrained cyclic peptides can have protein-like biological activities and potencies, enabling their uses as biological probes and leads to therapeutics, diagnostics and vaccines. This Review highlights examples of cyclic peptides that mimic three-dimensional structures of strand, turn or helical segments of peptides and proteins, and identifies some additional restraints incorporated into natural product cyclic peptides and synthetic macrocyclic peptidomimetics that refine peptide structure and confer biological properties.
Collapse
Affiliation(s)
- Timothy A Hill
- Division of Chemistry and Structural Biology, Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072 (Australia)
| | | | | | | |
Collapse
|
33
|
Hill TA, Shepherd NE, Diness F, Fairlie DP. Fixierung cyclischer Peptide: Mimetika von Proteinstrukturmotiven. Angew Chem Int Ed Engl 2014. [DOI: 10.1002/ange.201401058] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
34
|
Barnard A, Long K, Yeo DJ, Miles JA, Azzarito V, Burslem GM, Prabhakaran P, A. Edwards T, Wilson AJ. Orthogonal functionalisation of α-helix mimetics. Org Biomol Chem 2014; 12:6794-9. [PMID: 25065821 PMCID: PMC4157654 DOI: 10.1039/c4ob00915k] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2014] [Accepted: 07/07/2014] [Indexed: 12/26/2022]
Abstract
α-Helix mediated protein-protein interactions are of major therapeutic importance. As such, the design of inhibitors of this class of interaction is of significant interest. We present methodology to modify N-alkylated aromatic oligoamide α-helix mimetics using 'click' chemistry. The effect is shown to modulate the binding properties of a series of selective p53/hDM2 inhibitors.
Collapse
Affiliation(s)
- Anna Barnard
- School of Chemistry , University of Leeds , Woodhouse Lane , Leeds , LS2 9JT , UK
- Astbury Centre for Structural and Molecular Biology , University of Leeds , Woodhouse Lane , Leeds , LS2 9JT , UK .
| | - Kérya Long
- School of Chemistry , University of Leeds , Woodhouse Lane , Leeds , LS2 9JT , UK
- Astbury Centre for Structural and Molecular Biology , University of Leeds , Woodhouse Lane , Leeds , LS2 9JT , UK .
| | - David J. Yeo
- School of Chemistry , University of Leeds , Woodhouse Lane , Leeds , LS2 9JT , UK
- Astbury Centre for Structural and Molecular Biology , University of Leeds , Woodhouse Lane , Leeds , LS2 9JT , UK .
| | - Jennifer A. Miles
- School of Chemistry , University of Leeds , Woodhouse Lane , Leeds , LS2 9JT , UK
- Astbury Centre for Structural and Molecular Biology , University of Leeds , Woodhouse Lane , Leeds , LS2 9JT , UK .
| | - Valeria Azzarito
- School of Chemistry , University of Leeds , Woodhouse Lane , Leeds , LS2 9JT , UK
- Astbury Centre for Structural and Molecular Biology , University of Leeds , Woodhouse Lane , Leeds , LS2 9JT , UK .
| | - George M. Burslem
- School of Chemistry , University of Leeds , Woodhouse Lane , Leeds , LS2 9JT , UK
- Astbury Centre for Structural and Molecular Biology , University of Leeds , Woodhouse Lane , Leeds , LS2 9JT , UK .
| | - Panchami Prabhakaran
- School of Chemistry , University of Leeds , Woodhouse Lane , Leeds , LS2 9JT , UK
- Astbury Centre for Structural and Molecular Biology , University of Leeds , Woodhouse Lane , Leeds , LS2 9JT , UK .
| | - Thomas A. Edwards
- Astbury Centre for Structural and Molecular Biology , University of Leeds , Woodhouse Lane , Leeds , LS2 9JT , UK .
- School of Molecular and Cellular Biology , University of Leeds , Woodhouse Lane , Leeds , LS2 9JT , UK
| | - Andrew J. Wilson
- School of Chemistry , University of Leeds , Woodhouse Lane , Leeds , LS2 9JT , UK
- Astbury Centre for Structural and Molecular Biology , University of Leeds , Woodhouse Lane , Leeds , LS2 9JT , UK .
| |
Collapse
|
35
|
Effects of side chains in helix nucleation differ from helix propagation. Proc Natl Acad Sci U S A 2014; 111:6636-41. [PMID: 24753597 DOI: 10.1073/pnas.1322833111] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Helix-coil transition theory connects observable properties of the α-helix to an ensemble of microstates and provides a foundation for analyzing secondary structure formation in proteins. Classical models account for cooperative helix formation in terms of an energetically demanding nucleation event (described by the σ constant) followed by a more facile propagation reaction, with corresponding s constants that are sequence dependent. Extensive studies of folding and unfolding in model peptides have led to the determination of the propagation constants for amino acids. However, the role of individual side chains in helix nucleation has not been separately accessible, so the σ constant is treated as independent of sequence. We describe here a synthetic model that allows the assessment of the role of individual amino acids in helix nucleation. Studies with this model lead to the surprising conclusion that widely accepted scales of helical propensity are not predictive of helix nucleation. Residues known to be helix stabilizers or breakers in propagation have only a tenuous relationship to residues that favor or disfavor helix nucleation.
Collapse
|
36
|
Gupta RK, Sharma G, Pandey R, Kumar A, Koch B, Li PZ, Xu Q, Pandey DS. DNA/Protein Binding, Molecular Docking, and in Vitro Anticancer Activity of Some Thioether-Dipyrrinato Complexes. Inorg Chem 2013; 52:13984-96. [DOI: 10.1021/ic401662d] [Citation(s) in RCA: 124] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
| | | | | | | | | | - Pei-Zhou Li
- National Institute of Advanced Industrial Science and Technology (AIST), 1-8-31, Midorigaoka, Ikeda, Osaka 563-8577, Japan
| | - Qiang Xu
- National Institute of Advanced Industrial Science and Technology (AIST), 1-8-31, Midorigaoka, Ikeda, Osaka 563-8577, Japan
| | | |
Collapse
|
37
|
Yeo DJ, Warriner SL, Wilson AJ. Monosubstituted alkenyl amino acids for peptide "stapling". Chem Commun (Camb) 2013; 49:9131-3. [PMID: 24005767 DOI: 10.1039/c3cc45231j] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Alkenylglycine amino acids were assessed as potential candidates for hydrocarbon stapling and shown to be effective in stapling of the BID BH3 peptide.
Collapse
Affiliation(s)
- David J Yeo
- School of Chemistry, University of Leeds, Woodhouse Lane, Leeds LS2 9JT, UK.
| | | | | |
Collapse
|
38
|
Inhibition of α-helix-mediated protein-protein interactions using designed molecules. Nat Chem 2013; 5:161-73. [PMID: 23422557 DOI: 10.1038/nchem.1568] [Citation(s) in RCA: 572] [Impact Index Per Article: 52.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2012] [Accepted: 01/07/2013] [Indexed: 12/21/2022]
Abstract
Inhibition of protein-protein interactions (PPIs) represents a significant challenge because it is unclear how they can be effectively and selectively targeted using small molecules. Achieving this goal is critical given the defining role of these interactions in biological processes. A rational approach to inhibitor design based on the secondary structure at the interface is the focus of much research, and different classes of designed ligands have emerged, some of which effectively and selectively disrupt targeted PPIs. This Review discusses the relevance of PPIs and, in particular, the importance of α-helix-mediated PPIs to chemical biology and drug discovery with a focus on designing inhibitors, including constrained peptides, foldamers and proteomimetic-derived ligands. In doing so, key challenges and major advances in developing generic approaches for the elaboration of PPI inhibitors are highlighted. The challenges faced in developing such ligands as drug leads--and how criteria applied to these may differ from conventional small-molecule drugs--are summarized.
Collapse
|
39
|
New modalities in conformationally constrained peptides for potency, selectivity and cell permeation. Future Med Chem 2013; 5:831-49. [DOI: 10.4155/fmc.13.25] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
There has been a resurgence of interest in peptide pharmaceuticals as they have an advantage of potency, selectivity and less toxicity compared with small-molecule therapeutics. The main draw back of peptides is lack of stability to biological media. Constraining a peptide has been one of the approaches to improving in vivo stability of the peptides. Several new modalities in constraining peptides have been developed over recent years and this review highlights some of the new developments. The newer cyclization strategies have rendered, in some cases, oral activity, cell permeability, improved potency at the target receptor, selectivity against receptor subtypes and improved stability to enzymes. As chemists further understand the rules governing cell permeability, oral absorption and enhancing stability of peptides, we can expect to see more peptides entering clinic for many unmet medical needs.
Collapse
|
40
|
Abstract
Oligomers composed of β(3)-amino acid residues and a mixture of α- and β(3)-residues have emerged as proteolytically stable structural mimics of α-helices. An attractive feature of these oligomers is that they adopt defined conformations in short sequences. In this manuscript, we evaluate the impact of β(3)-residues as compared to their α-amino acid analogs in prenucleated helices. Our hydrogen-deuterium exchange results suggest that heterogeneous sequences composed of "αααβ" repeats are conformationally more rigid than the corresponding homogeneous α-peptide helices, with the macrocycle templating the helical conformation having a significant influence.
Collapse
Affiliation(s)
- Anupam Patgiri
- Department of Chemistry, New York University, New York, New York 10003, USA
| | | | | |
Collapse
|
41
|
Miller SE, Kallenbach NR, Arora PS. Reversible α-helix formation controlled by a hydrogen bond surrogate. Tetrahedron 2011; 68:4434-4437. [PMID: 23144512 DOI: 10.1016/j.tet.2011.12.068] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Strategically placed covalent linkages have been shown to stabilize helical conformations in short peptide sequences. Here we report the synthesis of a stabilized α-helix that utilizes an internal disulfide linkage. Structural analysis indicates that the dynamic nature of the disulfide bridge allows for the reversible formation of an α-helix through oxidation and reduction reactions.
Collapse
Affiliation(s)
- Stephen E Miller
- Department of Chemistry, New York University, New York, NY 10003, USA
| | | | | |
Collapse
|