1
|
Abstract
Advances in next generation sequencing (NGS) technologies resulted in a broad array of large-scale gene expression studies and an unprecedented volume of whole messenger RNA (mRNA) sequencing data, or the transcriptome (also known as RNA sequencing, or RNA-seq). These include the Genotype Tissue Expression project (GTEx) and The Cancer Genome Atlas (TCGA), among others. Here we cover some of the commonly used datasets, provide an overview on how to begin the analysis pipeline, and how to explore and interpret the data provided by these publicly available resources.
Collapse
Affiliation(s)
- Yazeed Zoabi
- Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Noam Shomron
- Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.
| |
Collapse
|
2
|
Jaye J, Sletten EM. Modular and Processable Fluoropolymers Prepared via a Safe, Mild, Iodo-Ene Polymerization. ACS CENTRAL SCIENCE 2019; 5:982-991. [PMID: 31263757 PMCID: PMC6598165 DOI: 10.1021/acscentsci.9b00128] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Indexed: 05/05/2023]
Abstract
Fluoropolymers have infiltrated society as coatings and insulators. However, low processability, few opportunities for polymer functionalization, and explosive monomers hampering academic investigation of these materials have precluded the extension of the unique properties of perfluorocarbons to the cutting edge of material science. Here, we present semifluorinated iodo-ene polymers as a scaffold to overcome fluoropolymer limitations. A sodium dithionate initiated polymerization of perfluorodiiodides and dienes allows for high-molecular-weight polymers (>100 kDa) to be prepared in the presence of oxygen and water with up to 59 wt % fluorine content. These conditions are sufficiently mild to enable the polymerization of functional dienes, leading to biodegradable fluoropolymers. The iodo-ene polymerization results in the addition of polarizable iodine atoms, which improve polymer processability; yet, these atoms can be removed after processing for enhanced stability. Displacement of the iodine atoms with thiols or azides facilitates covalent surface modification and cross-linking. Finally, the low bond dissociation energy of the C-I bond allows allyl group addition as well as photo-cross-linking. Collectively, the simple synthesis and modular nature of the semifluorinated iodo-ene polymers will enable the convergence of perfluorocarbons and advanced materials.
Collapse
Affiliation(s)
- Joseph
A. Jaye
- Department of Chemistry and
Biochemistry, University of California, Los Angeles, California 90095, United States
| | - Ellen M. Sletten
- Department of Chemistry and
Biochemistry, University of California, Los Angeles, California 90095, United States
| |
Collapse
|
3
|
|
4
|
Flynn GE, Withers JM, Macias G, Sperling JR, Henry SL, Cooper JM, Burley GA, Clark AW. Reversible DNA micro-patterning using the fluorous effect. Chem Commun (Camb) 2018; 53:3094-3097. [PMID: 28243661 PMCID: PMC5358500 DOI: 10.1039/c7cc00288b] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We describe a new method for the immobilisation of DNA into defined patterns with sub-micron resolution, using the fluorous effect. The method is fully reversible via a simple solvent wash, allowing the patterning, regeneration and re-patterning of surfaces with no degradation in binding efficiency following multiple removal/attachment cycles of different DNA sequences.
Collapse
Affiliation(s)
- Gabriella E Flynn
- Biomedical Engineering Research Division, School of Engineering, University of Glasgow, Rankine Building, Oakfield Avenue, Glasgow, UK.
| | - Jamie M Withers
- WestCHEM & Department of Pure & Applied Chemistry, University of Strathclyde, 295 Cathedral Street, Glasgow, G1 1XL, UK.
| | - Gerard Macias
- Biomedical Engineering Research Division, School of Engineering, University of Glasgow, Rankine Building, Oakfield Avenue, Glasgow, UK.
| | - Justin R Sperling
- Biomedical Engineering Research Division, School of Engineering, University of Glasgow, Rankine Building, Oakfield Avenue, Glasgow, UK.
| | - Sarah L Henry
- Biomedical Engineering Research Division, School of Engineering, University of Glasgow, Rankine Building, Oakfield Avenue, Glasgow, UK.
| | - Jonathan M Cooper
- Biomedical Engineering Research Division, School of Engineering, University of Glasgow, Rankine Building, Oakfield Avenue, Glasgow, UK.
| | - Glenn A Burley
- WestCHEM & Department of Pure & Applied Chemistry, University of Strathclyde, 295 Cathedral Street, Glasgow, G1 1XL, UK.
| | - Alasdair W Clark
- Biomedical Engineering Research Division, School of Engineering, University of Glasgow, Rankine Building, Oakfield Avenue, Glasgow, UK.
| |
Collapse
|
5
|
Lin TH, Lin CH, Liu YJ, Huang CY, Lin YC, Wang SK. Controlling Ligand Spacing on Surface: Polyproline-Based Fluorous Microarray as a Tool in Spatial Specificity Analysis and Inhibitor Development for Carbohydrate-Protein Interactions. ACS APPLIED MATERIALS & INTERFACES 2017; 9:41691-41699. [PMID: 29148699 DOI: 10.1021/acsami.7b13200] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Multivalent carbohydrate-protein interactions are essential for many biological processes. Convenient characterization for multivalent binding property of proteins will aid the development of molecules to manipulate these processes. We exploited the polyproline helix II (PPII) structure as molecular scaffolds to adjust the distances between glycan ligand attachment sites at 9, 18, and 27 Å on a peptide scaffold. Optimized fluorous groups were also introduced to the peptide scaffold for immobilization to the microarray surface through fluorous interaction to control the orientation of the helical scaffolds. Using lectin LecA and antibody 2G12 as model proteins, the binding preference to the 27 Å glycopeptide scaffold, matched the distance of 26 Å between its two galactose binding sites on LecA and 31 Å spacing between oligomannose binding sites on 2G12, respectively. We further demonstrate this microarray system can aid the development of inhibitors by transforming the selected surface-bound scaffold into multivalent ligands in solution. This strategy can be extended to analyze proteins that lacking structural information to speed up the design of potent and selective multivalent ligands.
Collapse
Affiliation(s)
- Tse-Hsueh Lin
- Department of Chemistry, National Tsing Hua University , Hsinchu, Taiwan R.O.C
| | - Cin-Hao Lin
- Department of Chemistry, National Tsing Hua University , Hsinchu, Taiwan R.O.C
| | - Ying-Jie Liu
- Department of Chemistry, National Tsing Hua University , Hsinchu, Taiwan R.O.C
| | - Chun Yi Huang
- Department of Chemistry, National Tsing Hua University , Hsinchu, Taiwan R.O.C
| | - Yen-Cheng Lin
- Department of Chemistry, National Tsing Hua University , Hsinchu, Taiwan R.O.C
| | - Sheng-Kai Wang
- Department of Chemistry, National Tsing Hua University , Hsinchu, Taiwan R.O.C
| |
Collapse
|
6
|
Day RA, Estabrook DA, Logan JK, Sletten EM. Fluorous photosensitizers enhance photodynamic therapy with perfluorocarbon nanoemulsions. Chem Commun (Camb) 2017; 53:13043-13046. [DOI: 10.1039/c7cc07038a] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Photodynamic therapy (PDT) requires a photosensitizer, light and oxygen to induce cell death. Here, we simultaneously deliver oxygen and photosensitizer using perfluorocarbon nanoemulsions.
Collapse
Affiliation(s)
- Rachael A. Day
- Department of Chemistry and Biochemistry
- University of California
- Los Angeles
- 607 Charles E. Young Dr. E
- Los Angeles
| | - Daniel A. Estabrook
- Department of Chemistry and Biochemistry
- University of California
- Los Angeles
- 607 Charles E. Young Dr. E
- Los Angeles
| | - Jessica K. Logan
- Department of Chemistry and Biochemistry
- University of California
- Los Angeles
- 607 Charles E. Young Dr. E
- Los Angeles
| | - Ellen M. Sletten
- Department of Chemistry and Biochemistry
- University of California
- Los Angeles
- 607 Charles E. Young Dr. E
- Los Angeles
| |
Collapse
|
7
|
Zhu YW, Shi YX. A fluorous ethylenediamine promoted direct C H arylation of unactivated arenes with aryl halides. J Fluor Chem 2016. [DOI: 10.1016/j.jfluchem.2016.05.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
8
|
Tang SL, Pohl NLB. Automated fluorous-assisted solution-phase synthesis of β-1,2-, 1,3-, and 1,6-mannan oligomers. Carbohydr Res 2016; 430:8-15. [PMID: 27155895 PMCID: PMC4893899 DOI: 10.1016/j.carres.2016.03.025] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2016] [Revised: 03/29/2016] [Accepted: 03/30/2016] [Indexed: 12/30/2022]
Abstract
Automated solution-phase syntheses of β-1,2-, 1,3-, and 1,6-mannan oligomers have been accomplished by applying a β-directing C-5 carboxylate strategy. Fluorous-tag-assisted purification after each reaction cycle allowed the synthesis of short β-mannan oligomers with limited loading of glycosyl donor-as low as 3.0 equivalents for each glycosylation cycle. This study showed the capability of the automated solution-phase synthesis protocol for synthesizing various challenging glycosides, including use of a C-5 ester as a protecting group that could be converted under reductive conditions to a hydroxymethyl group for chain extension.
Collapse
Affiliation(s)
- Shu-Lun Tang
- Department of Chemistry, Iowa State University, Ames, IA 50011, USA
| | - Nicola L B Pohl
- Department of Chemistry, Iowa State University, Ames, IA 50011, USA; Department of Chemistry, Indiana University, Bloomington, IN 47405, USA.
| |
Collapse
|
9
|
Mende M, Bednarek C, Wawryszyn M, Sauter P, Biskup MB, Schepers U, Bräse S. Chemical Synthesis of Glycosaminoglycans. Chem Rev 2016; 116:8193-255. [DOI: 10.1021/acs.chemrev.6b00010] [Citation(s) in RCA: 144] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Marco Mende
- Institute
of Organic Chemistry, Karlsruhe Institute of Technology (KIT), Fritz-Haber-Weg 6, D-76131 Karlsruhe, Germany
| | - Christin Bednarek
- Institute
of Organic Chemistry, Karlsruhe Institute of Technology (KIT), Fritz-Haber-Weg 6, D-76131 Karlsruhe, Germany
| | - Mirella Wawryszyn
- Institute
of Organic Chemistry, Karlsruhe Institute of Technology (KIT), Fritz-Haber-Weg 6, D-76131 Karlsruhe, Germany
| | - Paul Sauter
- Institute
of Organic Chemistry, Karlsruhe Institute of Technology (KIT), Fritz-Haber-Weg 6, D-76131 Karlsruhe, Germany
| | - Moritz B. Biskup
- Division
2—Informatics, Economics and Society, Karlsruhe Institute of Technology (KIT), Kaiserstraße 12, D-76131 Karlsruhe, Germany
| | - Ute Schepers
- Institute
of Toxicology and Genetics, Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, D-76344 Eggenstein-Leopoldshafen, Germany
| | - Stefan Bräse
- Institute
of Organic Chemistry, Karlsruhe Institute of Technology (KIT), Fritz-Haber-Weg 6, D-76131 Karlsruhe, Germany
- Institute
of Toxicology and Genetics, Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, D-76344 Eggenstein-Leopoldshafen, Germany
| |
Collapse
|
10
|
Tang SL, Linz LB, Bonning BC, Pohl NLB. Automated Solution-Phase Synthesis of Insect Glycans to Probe the Binding Affinity of Pea Enation Mosaic Virus. J Org Chem 2015; 80:10482-9. [PMID: 26457763 PMCID: PMC4640232 DOI: 10.1021/acs.joc.5b01428] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Indexed: 11/29/2022]
Abstract
Pea enation mosaic virus (PEMV)--a plant RNA virus transmitted exclusively by aphids--causes disease in multiple food crops. However, the aphid-virus interactions required for disease transmission are poorly understood. For virus transmission, PEMV binds to a heavily glycosylated receptor aminopeptidase N in the pea aphid gut and is transcytosed across the gut epithelium into the aphid body cavity prior to release in saliva as the aphid feeds. To investigate the role of glycans in PEMV-aphid interactions and explore the possibility of viral control through blocking a glycan interaction, we synthesized insect N-glycan terminal trimannosides by automated solution-phase synthesis. The route features a mannose building block with C-5 ester enforcing a β-linkage, which also provides a site for subsequent chain extension. The resulting insect N-glycan terminal trimannosides with fluorous tags were used in a fluorous microarray to analyze binding with fluorescein isothiocyanate-labeled PEMV; however, no specific binding between the insect glycan and PEMV was detected. To confirm these microarray results, we removed the fluorous tag from the trimannosides for isothermal titration calorimetry studies with unlabeled PEMV. The ITC studies confirmed the microarray results and suggested that this particular glycan-PEMV interaction is not involved in virus uptake and transport through the aphid.
Collapse
Affiliation(s)
- Shu-Lun Tang
- Department
of Chemistry, Hach Hall, Iowa State University, Ames, Iowa 50011, United States
| | - Lucas B. Linz
- Department
of Entomology, 339 Science
II, Iowa State University, Ames, Iowa 50011, United States
| | - Bryony C. Bonning
- Department
of Entomology, 339 Science
II, Iowa State University, Ames, Iowa 50011, United States
| | - Nicola L. B. Pohl
- Department
of Chemistry, Simon Hall, Indiana University, Bloomington, Indiana 47405, United States
| |
Collapse
|
11
|
Huang W, Proctor A, Sims CE, Allbritton NL, Zhang Q. Fluorous enzymatic synthesis of phosphatidylinositides. Chem Commun (Camb) 2014; 50:2928-31. [PMID: 24496473 DOI: 10.1039/c4cc00022f] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A fluorous tagging strategy coupled with enzymatic synthesis is introduced to efficiently synthesize multiple phosphatidylinositides, which are then directly immobilized on a fluorous polytetrafluoroethylene (PTFE) membrane to probe protein-lipid interactions.
Collapse
Affiliation(s)
- Weigang Huang
- Division of Chemical Biology and Medicinal Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| | | | | | | | | |
Collapse
|
12
|
Song X, Heimburg-Molinaro J, Cummings RD, Smith DF. Chemistry of natural glycan microarrays. Curr Opin Chem Biol 2014; 18:70-7. [PMID: 24487062 DOI: 10.1016/j.cbpa.2014.01.001] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2013] [Revised: 12/30/2013] [Accepted: 01/03/2014] [Indexed: 12/16/2022]
Abstract
Glycan microarrays have become indispensable tools for studying protein-glycan interactions. Along with chemo-enzymatic synthesis, glycans isolated from natural sources have played important roles in array development and will continue to be a major source of glycans. N-glycans and O-glycans from glycoproteins, and glycans from glycosphingolipids (GSLs) can be released from corresponding glycoconjugates with relatively mature methods, although isolation of large numbers and quantities of glycans is still very challenging. Glycosylphosphatidylinositol (GPI) anchors and glycosaminoglycans (GAGs) are less represented on current glycan microarrays. Glycan microarray development has been greatly facilitated by bifunctional fluorescent linkers, which can be applied in a 'Shotgun Glycomics' approach to incorporate isolated natural glycans. Glycan presentation on microarrays may affect glycan binding by GBPs, often through multivalent recognition by the GBP.
Collapse
Affiliation(s)
- Xuezheng Song
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322, United States.
| | - Jamie Heimburg-Molinaro
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322, United States
| | - Richard D Cummings
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322, United States
| | - David F Smith
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322, United States
| |
Collapse
|
13
|
Hwang J, Yu H, Malekan H, Sugiarto G, Li Y, Qu J, Nguyen V, Wu D, Chen X. Highly efficient one-pot multienzyme (OPME) synthesis of glycans with fluorous-tag assisted purification. Chem Commun (Camb) 2014; 50:3159-62. [PMID: 24473465 DOI: 10.1039/c4cc00070f] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Oligo(ethylene glycol)-linked light fluorous tags have been found to be optimal for conjugating to glycans for both high-yield enzymatic glycosylation reactions using one-pot multienzyme (OPME) systems and quick product purification using fluorous solid-phase extraction (FSPE) cartridges. The combination of OPME glycosylation systems and the FSPE cartridge purification scheme provides a highly effective strategy for facile synthesis and purification of glycans.
Collapse
Affiliation(s)
- Joel Hwang
- Department of Chemistry, University of California, One Shields Avenue, Davis, California 95616, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Wang Y, Borlak J, Tong W. Toxicogenomics – A Drug Development Perspective. GENOMIC BIOMARKERS FOR PHARMACEUTICAL DEVELOPMENT 2014:127-155. [DOI: 10.1016/b978-0-12-397336-8.00006-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
15
|
Beloqui A, Calvo J, Serna S, Yan S, Wilson IBH, Martin-Lomas M, Reichardt NC. Analysis of Microarrays by MALDI-TOF MS. Angew Chem Int Ed Engl 2013. [DOI: 10.1002/ange.201302455] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
16
|
Beloqui A, Calvo J, Serna S, Yan S, Wilson IBH, Martin-Lomas M, Reichardt NC. Analysis of microarrays by MALDI-TOF MS. Angew Chem Int Ed Engl 2013; 52:7477-81. [PMID: 23757366 DOI: 10.1002/anie.201302455] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2013] [Indexed: 01/21/2023]
Abstract
Ligand libraries can be printed onto a sandwich composed of activated lipids embedded in a hydrophobic layer conjugated to an indium-tin oxide (ITO) surface. Arrays produced this way can be analyzed by fluorescence spectroscopy and mass spectrometry. Applications include the assignment of enzyme specificity, the profiling of glycoforms and the identification of lectins.
Collapse
Affiliation(s)
- Ana Beloqui
- CICbiomaGUNE, Biofunctional Nanomaterials Unit, Paseo Miramon 182, 20009 San Sebastian, Spain
| | | | | | | | | | | | | |
Collapse
|
17
|
Etxebarria J, Serna S, Beloqui A, Martin-Lomas M, Reichardt NC. Three-Dimensional Arrays Using GlycoPEG Tags: Glycan Synthesis, Purification and Immobilisation. Chemistry 2013; 19:4776-85. [DOI: 10.1002/chem.201204004] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2012] [Revised: 01/10/2013] [Indexed: 11/11/2022]
|
18
|
Vincent JM. Recent advances of fluorous chemistry in material sciences. Chem Commun (Camb) 2012; 48:11382-91. [DOI: 10.1039/c2cc34750d] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|