1
|
Zhang Y, Cui Y, Li M, Cui K, Li R, Xie W, Liu L, Xiao Z. DNA-assembled visible nanodandelions with explosive hydrogen-bond breakage achieving uniform intra-tumor distribution (UITD)-guided photothermal therapy. Biomaterials 2022; 282:121381. [PMID: 35123320 DOI: 10.1016/j.biomaterials.2022.121381] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 01/05/2022] [Accepted: 01/17/2022] [Indexed: 11/02/2022]
Abstract
Photothermal therapy (PTT) has received increasing attention for treating tumors. However, a long-standing challenge in PTT is non-uniform distribution of photothermal agents (PAs) in tumor tissues, resulting in limited therapeutic efficiency. Herein, inspired by dandelions blowing away by the wind, we have designed a DNA-assembled visible GRS-DNA-CuS nanodandelion, which can achieve uniform intra-tumor distribution (UITD) of PAs, thus enhancing the photothermal therapeutic efficiency. GRS-DNA-CuS is featured by the formation of hydrogen bond between the core of single-strand DNA-modified Raman nanoprobes (GRS) and the shell of complementary single-strand DNA-modified CuS PAs. Under Raman imaging-guided 1st NIR irradiation, hydrogen bond in GRS-DNA-CuS is explosively broken, resulting in large-sized GRS-DNA-CuS (∼135 nm) be completely dissociated into GRS and ultra-small CuS PAs (∼12 nm) within 1 min. Such an explosive dissociation instantly enhances the local concentration of ultra-small CuS PAs and slightly rises intra-tumor temperature, thus increasing the diffusion coefficient of PAs and promoting their UITD. This UITD of CuS PAs enhances the photothermal anti-tumor effects. Three out of five tumors are completely eliminated under photoacoustic imaging-guided 2nd NIR irradiation. Overall, this study provides one UITD-guided PTT strategy for highly effective tumor treatment by exerting explosive breakage property of hydrogen bond, broadening the application scope of DNA-assembly technique in oncology field.
Collapse
Affiliation(s)
- Yongming Zhang
- Department of Pharmacology and Chemical Biology, Institute of Molecular Medicine, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Yanna Cui
- Department of Pharmacology and Chemical Biology, Institute of Molecular Medicine, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Mingwang Li
- Department of Pharmacology and Chemical Biology, Institute of Molecular Medicine, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Kai Cui
- Department of Pharmacology and Chemical Biology, Institute of Molecular Medicine, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Ruike Li
- Department of Pharmacology and Chemical Biology, Institute of Molecular Medicine, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Wenhui Xie
- Department of Nuclear Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China
| | - Liu Liu
- Department of Nuclear Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China
| | - Zeyu Xiao
- Department of Pharmacology and Chemical Biology, Institute of Molecular Medicine, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China; Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China.
| |
Collapse
|
2
|
Darii E, Gimbert Y, Alves S, Damont A, Perret A, Woods AS, Fenaille F, Tabet JC. First Direct Evidence of Interpartner Hydride/Deuteride Exchanges for Stored Sodiated Arginine/Fructose-6-phosphate Complex Anions within Salt-Solvated Structures. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2021; 32:1424-1440. [PMID: 33929837 DOI: 10.1021/jasms.1c00040] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Mass spectrometric investigations of noncovalent binding between low molecular weight compounds revealed the existence of gas-phase (GP) noncovalent complex (NCC) ions involving zwitterionic structures. ESI MS is used to prove the formation of stable sodiated NCC anions between fructose (F6P) and arginine (R) moieties. Theoretical calculations indicate a folded solvated salt (i.e., sodiated carboxylate interacting with phosphate) rather than a charge-solvated form. Under standard CID conditions, [(F6P+R-H+Na)-H]- competitively forms two major product ions (PIs) through partner splitting [(R-H+Na) loss] and charge-induced cross-ring cleavage while preserving the noncovalent interactions (noncovalent product ions (NCPIs)). MS/MS experiments combined with in-solution proton/deuteron exchanges (HDXs) demonstrated an unexpected labeling of PIs, i.e., a correlated D-enrichment/D-depletion. An increase in activation time up to 3000 ms favors such processes when limited to two H/D exchanges. These results are rationalized by interpartner hydride/deuteride exchanges (⟨HDX⟩) through stepwise isomerization/dissociation of sodiated NCC-d11 anions. In addition, the D-enrichment/D-depletion discrepancy is further explained by back HDX with residual water in LTQ (selective for the isotopologue NCPIs as shown by PI relaxation experiments). Each isotopologue leads to only one back HDX unlike multiple HDXs generally observed in GP. This behavior shows that NCPIs are zwitterions with charges solvated by a single water molecule, thus generating a back HDX through a relay mechanism, which quenches the charges and prevents further back HDX. By estimating back HDX impact on D-depletion, the interpartner ⟨HDX⟩ complementarity was thus illustrated. This is the first description of interpartner ⟨HDX⟩ and selective back HDX validating salt-solvated structures.
Collapse
Affiliation(s)
- Ekaterina Darii
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, 91057 Evry, France
| | - Yves Gimbert
- Département de Chimie Moléculaire, UMR CNRS 5250, Université Grenoble Alpes, 38058 Grenoble, France
- Sorbonne Université, Faculté des Sciences et de l'Ingénierie, Institut Parisien de Chimie Moléculaire (IPCM), F-75005 Paris, France
| | - Sandra Alves
- Sorbonne Université, Faculté des Sciences et de l'Ingénierie, Institut Parisien de Chimie Moléculaire (IPCM), F-75005 Paris, France
| | - Annelaure Damont
- Université Paris-Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS), MetaboHUB, F-91191 Gif sur Yvette, France
| | - Alain Perret
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, 91057 Evry, France
| | - Amina S Woods
- NIDA IRP, NIH Structural Biology Unit Cellular Neurobiology Branch, 333 Cassell Drive, Baltimore, Maryland 21224, United States
- The Johns Hopkins University School of Medicine, Pharmacology and Molecular Sciences, Baltimore, Maryland 21205, United States
| | - François Fenaille
- Université Paris-Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS), MetaboHUB, F-91191 Gif sur Yvette, France
| | - Jean-Claude Tabet
- Sorbonne Université, Faculté des Sciences et de l'Ingénierie, Institut Parisien de Chimie Moléculaire (IPCM), F-75005 Paris, France
- Université Paris-Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS), MetaboHUB, F-91191 Gif sur Yvette, France
| |
Collapse
|
3
|
Shih M, McLuckey SA. Ion/ion Charge Inversion/Attachment in Conjunction with Dipolar DC Collisional Activation as a Selective Screen for Sulfo- and Phosphopeptides. INTERNATIONAL JOURNAL OF MASS SPECTROMETRY 2019; 444:116181. [PMID: 37064606 PMCID: PMC10104595 DOI: 10.1016/j.ijms.2019.116181] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
We describe a gas-phase approach for the rapid screening of polypeptide anions for phosphorylation or sulfonation based on binding strengths to guanidinium-containing reagent ions. The approach relies on the generation of a complex via reaction of mixtures of deprotonated polypeptide anions with dicationic guanidinium-containing reagent ions and subsequent dipolar DC collisional activation of the complexes. The relative strengths of the electrostatic interactions of guanidinium with deprotonated acidic sites follows the order carboxylate<phosph(on)ate<sulf(on)ate. The differences between the binding strengths at these sites allows for the use of an appropriately selected dipolar DC amplitude to lead to significantly different dissociation rates for complexes derived from unmodified peptides versus phosphorylated and sulfated peptides. The difference in binding strengths between guanidinium and phosph(on)ate versus guanidinium and sulf(on)ate is sufficiently great to allow for the dissociation of a large fraction of phosphopeptide complexes with the dissociation of a much smaller fraction of sulfopeptide complexes. DFT calculations and experimental data with model peptides and with a mixture of tryptic peptides spiked with phosphopeptides are presented to illustrate and support this approach. Dissociation rate data are presented that demonstrate the differences in binding strengths for different anion charge-bearing sites and that reveal the DDC conditions most likely to provide the greatest discrimination between unmodified peptides, phosphopeptides, and sulfopeptides.
Collapse
Affiliation(s)
- Mack Shih
- Department of Chemistry, Purdue University, West Lafayette, IN 47907, USA
| | - Scott A. McLuckey
- Department of Chemistry, Purdue University, West Lafayette, IN 47907, USA
- Address reprint requests to: Dr. Scott A. McLuckey, 560 Oval Drive, Department of Chemistry, Purdue University, West Lafayette, IN 47907-2084, USA, Phone: (765) 494-5270, Fax: (765) 494-0239,
| |
Collapse
|
4
|
Vušurović J, Schneeberger E, Breuker K. Interactions of Protonated Guanidine and Guanidine Derivatives with Multiply Deprotonated RNA Probed by Electrospray Ionization and Collisionally Activated Dissociation. ChemistryOpen 2017; 6:739-750. [PMID: 29226062 PMCID: PMC5715244 DOI: 10.1002/open.201700143] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Revised: 10/06/2017] [Indexed: 11/25/2022] Open
Abstract
Interactions of ribonucleic acid (RNA) with guanidine and guanidine derivatives are important features in RNA-protein and RNA-drug binding. Here we have investigated noncovalently bound complexes of an 8-nucleotide RNA and six different ligands, all of which have a guanidinium moiety, by using electrospray ionization (ESI) and collisionally activated dissociation (CAD) mass spectrometry (MS). The order of complex stability correlated almost linearly with the number of ligand atoms that can potentially be involved in hydrogen-bond or salt-bridge interactions with the RNA, but not with the proton affinity of the ligands. However, ligand dissociation of the complex ions in CAD was generally accompanied by proton transfer from ligand to RNA, which indicated conversion of salt-bridge into hydrogen-bond interactions. The relative stabilities and dissociation pathways of [RNA+m L-n H] n- complexes with different stoichiometries (m=1-5) and net charge (n= 2-5) revealed both specific and unspecific ligand binding to the RNA.
Collapse
Affiliation(s)
- Jovana Vušurović
- Institute of Organic Chemistry and Center for Molecular Biosciences Innsbruck (CMBI)University of InnsbruckInnrain 80–826020InnsbruckAustria
| | - Eva‐Maria Schneeberger
- Institute of Organic Chemistry and Center for Molecular Biosciences Innsbruck (CMBI)University of InnsbruckInnrain 80–826020InnsbruckAustria
| | - Kathrin Breuker
- Institute of Organic Chemistry and Center for Molecular Biosciences Innsbruck (CMBI)University of InnsbruckInnrain 80–826020InnsbruckAustria
| |
Collapse
|
5
|
Johnson GE, Laskin J. Understanding ligand effects in gold clusters using mass spectrometry. Analyst 2016; 141:3573-89. [PMID: 27221357 DOI: 10.1039/c6an00263c] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
This review summarizes recent research on the influence of phosphine ligands on the size, stability, and reactivity of gold clusters synthesized in solution. Sub-nanometer clusters exhibit size- and composition-dependent properties that are unique from those of larger nanoparticles. The highly tunable properties of clusters and their high surface-to-volume ratio make them promising candidates for a variety of technological applications. However, because "each-atom-counts" toward defining cluster properties it is critically important to develop robust synthesis methods to efficiently prepare clusters of predetermined size. For decades phosphines have been known to direct the size-selected synthesis of gold clusters. Despite the preparation of numerous species it is still not understood how different functional groups at phosphine centers affect the size and properties of gold clusters. Using electrospray ionization mass spectrometry (ESI-MS) it is possible to characterize the effect of ligand substitution on the distribution of clusters formed in solution at defined reaction conditions. In addition, ligand exchange reactions on preformed clusters may be monitored using ESI-MS. Collision induced dissociation (CID) may also be employed to obtain qualitative insight into the fragmentation of mixed ligand clusters and the relative binding energies of differently substituted phosphines. Quantitative ligand binding energies and cluster stability may be determined employing surface induced dissociation (SID) in a custom-built Fourier transform ion cyclotron resonance mass spectrometer (FT-ICR-MS). Rice-Ramsperger-Kassel-Marcus (RRKM) based modeling of the SID data allows dissociation energies and entropy values to be extracted. The charge reduction and reactivity of atomically precise gold clusters, including partially ligated species generated in the gas-phase by in source CID, on well-defined surfaces may be explored using ion soft landing (SL) in a custom-built instrument combined with in situ time of flight secondary ion mass spectrometry (TOF-SIMS). Jointly, this multipronged experimental approach allows characterization of the full spectrum of relevant phenomena including cluster synthesis, ligand exchange, thermochemistry, surface immobilization, and reactivity. The fundamental insights obtained from this work will facilitate the directed synthesis of gold clusters with predetermined size and properties for specific applications.
Collapse
Affiliation(s)
- Grant E Johnson
- Physical Sciences Division, Pacific Northwest National Laboratory, P. O. Box 999, MSIN K8-88, Richland, Washington 99352, USA.
| | | |
Collapse
|
6
|
Patrick AL, Polfer NC. H2SO4 and SO3 transfer reactions in a sulfopeptide-basic peptide complex. Anal Chem 2015; 87:9551-4. [PMID: 26335182 DOI: 10.1021/acs.analchem.5b02479] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We report on the intermolecular transfer of sulfuric acid (H2SO4) and sulfur trioxide (SO3) from an acidic sulfopeptide (sSE) to a basic peptide (R3); this is achieved by subjecting a noncovalent complex of sSE + R3 to collisional activation in a quadrupole ion trap. The product ions resulting from the sulfo-group transfers were characterized by MS(3) experiments. Peak assignments were additionally supported by isotope-labeling and energy-resolved collision induced dissiciation (CID) experiments. The observed reactions and their potential implications for proteomics and post-translational modification discovery experiments are discussed.
Collapse
Affiliation(s)
- Amanda L Patrick
- Department of Chemistry, University of Florida , P.O. Box 117200, Gainesville, Florida 32611, United States
| | - Nicolas C Polfer
- Department of Chemistry, University of Florida , P.O. Box 117200, Gainesville, Florida 32611, United States
| |
Collapse
|
7
|
Laskin J. Surface-induced dissociation: a unique tool for studying energetics and kinetics of the gas-phase fragmentation of large ions. EUROPEAN JOURNAL OF MASS SPECTROMETRY (CHICHESTER, ENGLAND) 2015; 21:377-389. [PMID: 26307719 DOI: 10.1255/ejms.1358] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Surface-induced dissociation (SID) is a valuable tool for investigating the activation and dissociation of large ions in tandem mass spectrometry. This account summarizes key findings from studies of the energetics and mechanisms of complex ion dissociation in which SID experiments were combined with Rice-Ramsperger-Kassel-Marcus modeling of the experimental data. These studies used time- and collision-energy-resolved SID experiments and SID combined with resonant ejection of selected fragment ions on a specially designed Fourier transform ion cyclotron resonance (FT-ICR) mass spectrometer. Fast-ion activation by collision with a surface combined with the long and variable timescale of FT-ICR mass spectrometry is perfectly suited to studying the energetics and dynamics of complex ion dissociation in the gas phase. Modeling of time- and collision-energy-resolved SID enables the accurate determination of energy and entropy effects in the dissociation process. It has been demonstrated that entropy effects play an important role in determining the dissociation rates of both covalent and noncovalent bonds in large gaseous ions. SID studies have provided important insights on the competition between charge-directed and charge-remote fragmentation in even-electron peptide ions and the role of the charge and radical site on the energetics of the dissociation of odd-electron peptide ions. Furthermore, this work examined factors that affect the strength of noncovalent binding, as well as the competition between covalent and noncovalent bond cleavages and between proton and electron transfer in model systems. Finally, SID studies have been used to understand the factors affecting nucleation and growth of clusters in solution and in the gas phase.
Collapse
Affiliation(s)
- Julia Laskin
- Physical Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99354, USA..
| |
Collapse
|
8
|
Liu X, Tabet JC, Cole RB. Evidence for ion-ion interactions between peptides and anions (HSO₄⁻ or ClO₄⁻) derived from high-acidity acids. JOURNAL OF MASS SPECTROMETRY : JMS 2014; 49:490-497. [PMID: 24913401 DOI: 10.1002/jms.3364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2013] [Revised: 03/08/2014] [Accepted: 03/12/2014] [Indexed: 06/03/2023]
Abstract
The existence of gas-phase electrostatic ion-ion interactions between protonated sites on peptides ([Glu] Fibrinopeptide B, Angiotensin I and [Asn(1), Val(5)]-Angiotensin II) and attaching anions (ClO4(-) and HSO4(-)) derived from strong inorganic acids has been confirmed by CID MS/MS. Evidence for ion-ion interactions comes especially from the product ions formed during the first dissociation step, where, in addition to the expected loss of the anion or neutral acid, other product ions are also observed that require covalent bond cleavage (i.e. H2O loss when several carboxylate groups are present, or NH3 loss when only one carboxylate group is present). For [[Glu] Fibrinopeptide B + HSO4](-), under CID, H2O water loss was found to require less energy than H2SO4 departure. This indicates that the interaction between HSO4(-) and the peptide is stronger than the covalent bond holding the hydroxyl group, and must be an ion-ion interaction. The strength and stability of this type of ion-pairing interaction are highly dependent on the accessibility of additional mobile charges to the site. Positive mobile charges such as protons from the peptide can be transferred to the attaching anion to possibly form a neutral that may depart from the complex. Alternatively, an ion-ion interaction can be disrupted by a competing proximal additional negatively charged site of the peptide that can potentially form a salt bridge with the positively charged site and thereby facilitate the attaching anion's departure.
Collapse
Affiliation(s)
- Xiaohua Liu
- Department of Chemistry, University of New Orleans, 2000 Lakeshore Dr., New Orleans, LA, 70148, USA
| | | | | |
Collapse
|
9
|
Johnson GE, Priest T, Laskin J. Size-dependent stability toward dissociation and ligand binding energies of phosphine ligated gold cluster ions. Chem Sci 2014. [DOI: 10.1039/c4sc00849a] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
|
10
|
Woods AS, Jackson SN, Egan T, Lewis EK, Tabet JC, Schultz JA. MALDI/post ionization-ion mobility mass spectrometry of noncovalent complexes of dopamine receptors' epitopes. J Proteome Res 2013; 12:1668-77. [PMID: 23469763 PMCID: PMC4144030 DOI: 10.1021/pr301004w] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Protein domains involved in receptor heteromer formation are disordered and rich in the amino acids necessary for the formation of noncovalent complexes (NCX). We present mass spectral NCX data from proteins and protein receptors' epitopes obtained by combining ion mobility (IM) and MALDI. We focus on NCX involved in heteromer formation occurring between epitopes of the Dopamine D2 (D2R) and Adenosine A2A receptors (A2AR) as well as D2R and the α2 nicotinic (NR) receptor's subunit. The IM data yield information on the gas phase conformation of the singly charged NCX which are observed either directly from MALDI or as codesorbed neutrals that are subsequently postionized by a time-delayed excimer laser pulse directed onto a portion of the neutral plume created by the MALDI desorption laser. Imaging mass spectrometry of the matrix/epitope dried droplet surface shows that the acidic and basic epitopes and their NCX are found to be spatially collocated within regions as small as 25 × 50 μm(2). Subtle differences in the relative abundance of protonated and cationized NCX and epitopes are measured in spatial regions near the sodium-rich outer border of the droplet.
Collapse
MESH Headings
- Calmodulin/chemistry
- Epitopes/analysis
- Epitopes/chemistry
- Image Processing, Computer-Assisted
- Mass Spectrometry/methods
- Peptides/analysis
- Peptides/chemistry
- Receptor, Adenosine A2A/chemistry
- Receptor, Adenosine A2A/immunology
- Receptor, Adenosine A2A/metabolism
- Receptors, Dopamine/chemistry
- Receptors, Dopamine/immunology
- Receptors, Dopamine D2/chemistry
- Receptors, Dopamine D2/immunology
- Receptors, Dopamine D2/physiology
- Receptors, Nicotinic/chemistry
- Receptors, Nicotinic/immunology
- Receptors, Nicotinic/metabolism
- Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization/methods
Collapse
|
11
|
Barbacci D, Jackson SN, Muller L, Egan T, Lewis EK, Schultz JA, Woods AS. Cellular membrane phospholipids act as a depository for quaternary amine containing drugs thus competing with the acetylcholine/nicotinic receptor. J Proteome Res 2012; 11:3382-9. [PMID: 22506649 PMCID: PMC4144022 DOI: 10.1021/pr300184g] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
We previously demonstrated that ammonium- or guanidinium-phosphate interactions are key to forming noncovalent complexes (NCXs) through salt bridge formation with G-protein coupled receptors (GPCR), which are immersed in the cell membrane's lipids. The present work highlights MALDI ion mobility coupled to orthogonal time-of-flight mass spectrometry (MALDI IM oTOF MS) as a method to determine qualitative and relative quantitative affinity of drugs to form NCXs with targeted GPCRs' epitopes in a model system using, bis-quaternary amine based drugs, α- and β- subunit epitopes of the nicotinic acetylcholine receptor' (nAChR) and phospholipids. Bis-quaternary amines proved to have a strong affinity for all nAChR epitopes and negatively charged phospholipids, even in the presence of the physiological neurotransmitter acetylcholine. Ion mobility baseline separated isobaric phosphatidyl ethanolamine and a matrix cluster, providing an accurate estimate for phospholipid counts. Overall this technique is a powerful method for screening drugs' interactions with targeted lipids and protein respectively containing quaternary amines and guanidinium moieties.
Collapse
Affiliation(s)
- Damon Barbacci
- Integrative Neuroscience, NIDA IRP, NIH, Baltimore, MD 21224, USA
- Ionwerks Inc., Houston, Texas, 77002, USA
| | | | - Ludovic Muller
- Integrative Neuroscience, NIDA IRP, NIH, Baltimore, MD 21224, USA
| | | | | | | | - Amina S. Woods
- Integrative Neuroscience, NIDA IRP, NIH, Baltimore, MD 21224, USA
| |
Collapse
|