1
|
Ou SC, Cui D, Patel S. Molecular modeling of ions at interfaces: exploring similarities to hydrophobic solvation through the lens of induced aqueous interfacial fluctuations. Phys Chem Chem Phys 2016; 18:30357-30365. [DOI: 10.1039/c6cp04112d] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Ion specific effects are ubiquitous in chemistry and biology.
Collapse
Affiliation(s)
- Shu-Ching Ou
- Sealy Center for Structural Biology and Molecular Biophysics
- University of Texas Medical Branch
- 301 University Boulevard
- Galveston
- USA
| | - Di Cui
- Department of Chemistry
- Temple University
- Philadelphia
- USA
| | - Sandeep Patel
- Department of Chemistry and Biochemistry
- University of Delaware
- Newark
- USA
| |
Collapse
|
2
|
Ou SC, Cui D, Wezowicz M, Taufer M, Patel S. Free energetics of carbon nanotube association in aqueous inorganic NaI salt solutions: Temperature effects using all-atom molecular dynamics simulations. J Comput Chem 2015; 36:1196-212. [PMID: 25868455 PMCID: PMC4445429 DOI: 10.1002/jcc.23906] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2014] [Revised: 01/22/2015] [Accepted: 02/21/2015] [Indexed: 11/06/2022]
Abstract
In this study, we examine the temperature dependence of free energetics of nanotube association using graphical processing unit-enabled all-atom molecular dynamics simulations (FEN ZI) with two (10,10) single-walled carbon nanotubes in 3 m NaI aqueous salt solution. Results suggest that the free energy, enthalpy and entropy changes for the association process are all reduced at the high temperature, in agreement with previous investigations using other hydrophobes. Via the decomposition of free energy into individual components, we found that solvent contribution (including water, anion, and cation contributions) is correlated with the spatial distribution of the corresponding species and is influenced distinctly by the temperature. We studied the spatial distribution and the structure of the solvent in different regions: intertube, intratube and the bulk solvent. By calculating the fluctuation of coarse-grained tube-solvent surfaces, we found that tube-water interfacial fluctuation exhibits the strongest temperature dependence. By taking ions to be a solvent-like medium in the absence of water, tube-anion interfacial fluctuation shows similar but weaker dependence on temperature, while tube-cation interfacial fluctuation shows no dependence in general. These characteristics are discussed via the malleability of their corresponding solvation shells relative to the nanotube surface. Hydrogen bonding profiles and tetrahedrality of water arrangement are also computed to compare the structure of solvent in the solvent bulk and intertube region. The hydrophobic confinement induces a relatively lower concentration environment in the intertube region, therefore causing different intertube solvent structures which depend on the tube separation. This study is relevant in the continuing discourse on hydrophobic interactions (as they impact generally a broad class of phenomena in biology, biochemistry, and materials science and soft condensed matter research), and interpretations of hydrophobicity in terms of alternative but parallel signatures such as interfacial fluctuations, dewetting transitions, and enhanced fluctuation probabilities at interfaces.
Collapse
Affiliation(s)
- Shu-Ching Ou
- Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware 19716, USA
| | - Di Cui
- Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware 19716, USA
| | - Matthew Wezowicz
- Department of Computer and Information Sciences, University of Delaware, Newark, Delaware 19716, USA
| | - Michela Taufer
- Department of Computer and Information Sciences, University of Delaware, Newark, Delaware 19716, USA
| | - Sandeep Patel
- Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware 19716, USA
| |
Collapse
|
3
|
Ou SC, Patel S. Electrostatic contribution from solvent in modulating single-walled carbon nanotube association. J Chem Phys 2014; 141:114906. [PMID: 25240371 PMCID: PMC4187323 DOI: 10.1063/1.4892566] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2014] [Accepted: 07/28/2014] [Indexed: 11/14/2022] Open
Abstract
We perform all-atom molecular dynamics simulations to compute the potential of mean force (PMF) between two (10,10) single-walled carbon nanotubes solvated in pure nonpolarizable SPC/E and polarizable TIP4P-FQ water, at various temperatures. In general, the reversible work required to bring two nanotubes from a dissociated state (free energy reference) to contact state (free energy minimum) is more favorable and less temperature-dependent in TIP4P-FQ than in SPC/E water models. In contrast, molecular properties and behavior of water such as the spatially-resolved water number density (intertube, intratube, or outer regions), for TIP4P-FQ are more sensitive to temperature than SPC/E. Decomposition of the solvent-induced PMF into different spatial regions suggests that TIP4P-FQ has stronger temperature dependence; the opposing destabilizing/stabilizing contributions from intertube water and more distal water balance each other and suppress the temperature dependence of total association free energy. Further investigation of hydrogen bonding network in intertube water reveals that TIP4P-FQ retains fewer hydrogen bonds than SPC/E, which correlates with the lower water number density in this region. This reduction of hydrogen bonds affects the intertube water dipoles. As the intertube volume decreases, TIP4P-FQ dipole moment approaches the gas phase value; the distribution of dipole magnitude also becomes narrower due to less average polarization/perturbation from other water molecules. Our results imply that the reduction of water under confinement may seem trivial, but underlying effects to structure and free energetics are non-negligible.
Collapse
Affiliation(s)
- Shu-Ching Ou
- Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware 19716, USA
| | - Sandeep Patel
- Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware 19716, USA
| |
Collapse
|
4
|
Holmberg N, Sammalkorpi M, Laasonen K. Ion Transport through a Water–Organic Solvent Liquid–Liquid Interface: A Simulation Study. J Phys Chem B 2014; 118:5957-70. [DOI: 10.1021/jp412162c] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Nico Holmberg
- Department
of Chemistry, Aalto University, Aalto, Finland
| | | | - Kari Laasonen
- Department
of Chemistry, Aalto University, Aalto, Finland
| |
Collapse
|
5
|
Fedoseeva M, Fita P, Vauthey E. Excited-state dynamics of charged dyes at alkane/water interfaces in the presence of salts and ionic surfactants. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2013; 29:14865-14872. [PMID: 24245476 DOI: 10.1021/la402191p] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
The excited-state dynamics of the cationic dye malachite green (MG) and of the dianionic dye eosin B at the dodecane/water interface has been investigated using femtosecond time-resolved surface second harmonic generation (TR-SSHG). By using different probe wavelengths, the contributions of monomeric and aggregated MG to the signal could be spectroscopically distinguished. The effect of the addition of a small amount of surfactants was found to strongly depend on the relative charges of surfactant and dye. For surfactant/dye pairs with opposite charges, the TR-SSHG signal is dominated by the contribution from aggregates, whereas for pairs with the same charges, the signal intensity becomes vanishingly small. These effects are explained in terms of electrostatic interactions between surfactants and dyes that favor either attraction of the dye toward the interface or its repulsion toward the bulk. As a very similar behavior is observed with MG upon addition of NaSCN, we conclude that, in this case, this effect reflects the affinity of SCN¯ for the interface. On the other hand, the guanidinium cation was found to have a different effect than that of a positively charged surfactant on the SSHG signal of MG, indicating this cation does not accumulate in the interfacial region.
Collapse
Affiliation(s)
- Marina Fedoseeva
- Department of Physical Chemistry, University of Geneva , 30 Quai Ernest-Ansermet, Geneva, Switzerland
| | | | | |
Collapse
|
6
|
Dzubiella J, Hansen JP. Effects of salt on the ‘drying’ transition and hydrophobic interaction between nano-sized spherical solutes. Mol Phys 2013. [DOI: 10.1080/00268976.2013.816445] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
7
|
Ou S, Hu Y, Patel S, Wan H. Spherical monovalent ions at aqueous liquid-vapor interfaces: interfacial stability and induced interface fluctuations. J Phys Chem B 2013; 117:11732-42. [PMID: 24032752 DOI: 10.1021/jp406001b] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Ion-specific interfacial behaviors of monovalent halides impact processes such as protein denaturation, interfacial stability, and surface tension modulation, and as such, their molecular and thermodynamic underpinnings garner much attention. We use molecular dynamics simulations of monovalent anions in water to explore effects on distant interfaces. We observe long-ranged ion-induced perturbations of the aqueous environment, as suggested by experiment and theory. Surface stable ions, characterized as such by minima in potentials of mean force computed using umbrella sampling MD simulations, induce larger interfacial fluctuations compared to nonsurface active species, conferring more entropy approaching the interface. Smaller anions and cations show no interfacial potential of mean force minima. The difference is traced to hydration shell properties of the anions, and the coupling of these shells with distant solvent. The effects correlate with the positions of the anions in the Hofmeister series (acknowledging variations in force field ability to recapitulate essential underlying physics), suggesting how differences in induced, nonlocal perturbations of interfaces may be related to different specific-ion effects in dilute biophysical and nanomaterial systems.
Collapse
Affiliation(s)
- Shuching Ou
- Department of Chemistry and Biochemistry, University of Delaware , Newark, Delaware 19716, United States
| | | | | | | |
Collapse
|
8
|
Ou S, Patel S. Temperature dependence and energetics of single ions at the aqueous liquid-vapor interface. J Phys Chem B 2013; 117:6512-23. [PMID: 23537166 DOI: 10.1021/jp401243m] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We investigate temperature-dependence of free energetics with two single halide anions, I(-) and Cl(-), crossing the aqueous liquid-vapor interface through molecular dynamics simulations. The result shows that I(-) has a modest surface stability of 0.5 kcal/mol at 300 K and the stability decreases as the temperature increases, indicating the surface adsorption process for the anion is entropically disfavored. In contrast, Cl(-) shows no such surface state at all temperatures. Decomposition of free energetics reveals that water-water interactions provide a favorable enthalpic contribution, while the desolvation of ion induces an increase in free energy. Calculations of surface fluctuations demonstrate that I(-) generates significantly greater interfacial fluctuations compared to Cl(-). The fluctuation is attributed to the malleability of the solvation shells, which allows for more long-ranged perturbations and solvent density redistribution induced by I(-) as the anion approaches the liquid-vapor interface. The increase in temperature of the solvent enhances the inherent thermally excited fluctuations and consequently reduces the relative contribution from anion to surface fluctuations, which is consistent with the decrease in surface stability of I(-). Our results indicate a strong correlation with induced interfacial fluctuations and anion surface stability; moreover, resulting temperature dependent behavior of induced fluctuations suggests the possibility of a critical level of induced fluctuations associated with surface stability.
Collapse
Affiliation(s)
- Shuching Ou
- Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware 19716, USA
| | | |
Collapse
|
9
|
Ou S, Patel S, Bauer BA. Free energetics of carbon nanotube association in pure and aqueous ionic solutions. J Phys Chem B 2012; 116:8154-68. [PMID: 22780909 PMCID: PMC3562760 DOI: 10.1021/jp3025717] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Carbon nanotubes are a promising platform across a broad spectrum of applications ranging from separations technology, drug delivery, to bio(electronic) sensors. Proper dispersion of carbon nanotube materials is important to retaining the electronic properties of nanotubes. Experimentally it has been shown that salts can regulate the dispersing properties of CNTs in aqueous system with surfactants (Niyogi, S.; Densmore, C. G.; Doorn, S. K. J. Am. Chem. Soc.2009, 131, 1144-1153); details of the physicochemical mechanisms underlying such effects continue to be explored. We address the effects of inorganic monovalent salts (NaCl and NaI) on dispersion stability of carbon nanotubes.We perform all-atom molecular dynamics simulations using nonpolarizable interaction models to compute the potential of mean force between two (10,10) single-walled carbon nanotubes (SWNTs) in the presence of NaCl/NaI and compare to the potential of mean force between SWNTs in pure water. Addition of salts enhances stability of the contact state between two SWNT's on the order of 4 kcal/mol. The ion-specific spatial distribution of different halide anions gives rise to starkly different contributions to the free energy stability of nanotubes in the contact state. Iodide anion directly stabilizes the contact state to a much greater extent than chloride anion. The enhanced stability arises from the locally repulsive forces imposed on nanotubes by the surface-segregated iodide anion. Within the time scale of our simulations, both NaI and NaCl solutions stabilize the contact state by equivalent amounts. The marginally higher stability for contact state in salt solutions recapitulates results for small hydrophobic solutes in NaCl solutions (Athawale, M. V.; Sarupria, S.; Garde, S. J. Phys. Chem. B2008, 112, 5661-5670) as well as single-walled carbon nanotubes in NaCl and CaCl2 aqueous solutions.
Collapse
Affiliation(s)
- Shuching Ou
- Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware 19716, USA
| | - Sandeep Patel
- Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware 19716, USA
| | - Brad A. Bauer
- Department of Physical and Biological Sciences, The College of Saint Rose, Albany, New York 12203, USA
| |
Collapse
|
10
|
Bauer BA, Ou S, Siva K, Patel S. Dynamics and energetics of hydrophobically confined water. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2012; 85:051506. [PMID: 23004766 PMCID: PMC4214077 DOI: 10.1103/physreve.85.051506] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2012] [Indexed: 06/01/2023]
Abstract
The effects of water confined in regions between self-assembling entities is relevant to numerous contexts such as macromolecular association, protein folding, protein-ligand association, and nanomaterials self-assembly. Thus assessing the impact of confined water, and the ability of current modeling techniques to capture the salient features of confined water is important and timely. We present molecular dynamics simulation results investigating the effect of confined water on qualitative features of potentials of mean force describing the free energetics of self-assembly of large planar hydrophobic plates. We consider several common explicit water models including the TIP3P, TIP4P, SPC/E, TIP4P-FQ, and SWM4-NDP, the latter two being polarizable models. Examination of the free energies for filling and unfilling the volume confined between the two plates (both in the context of average number of confined water molecules and "depth" of occupancy) suggests TIP4P-FQ water molecules generally occupy the confined volume at separation distances larger than observed for other models under the same conditions. The connection between this tendency of TIP4P-FQ water and the lack of a pronounced barrier in the potential of mean force for plate-plate association in TIP4P-FQ water is explored by artificially, but systematically, populating the confined volume with TIP4P-FQ water at low plate-plate separation distances. When the critical separation distance [denoting the crossover from an unoccupied (dry) confined interior to a filled (wet) interior] for TIP4P-FQ is reduced by 0.5 Å using this approach, a barrier is observed; we rationalize this effect based on increased resistant forces introduced by confined water molecules at these low separations. We also consider the dynamics of water molecules in the confined region between the hydrophobes. We find that the TIP4P-FQ water model exhibits nonbulklike dynamics, with enhanced lateral diffusion relative to bulk. This is consistent with the reduced intermolecular water-water interaction indicated by a decreased molecular dipole moment in the interplate region. Analysis of velocity autocorrelation functions and associated power spectra indicate that the interplate region for TIP4P-FQ at a plate separation of 14.4 Å approaches characteristics of the pure water liquid-vapor interface. This is in stark contrast to the other water models (including the polarizable SWM4-NDP model).
Collapse
|