1
|
Kumar S, Hoshino M, Kerkeni B, García G, Ouerfelli G, Al-Mogren MM, Limão-Vieira P. SF 6 Negative Ion Formation in Charge Transfer Experiments. Molecules 2024; 29:4118. [PMID: 39274966 PMCID: PMC11397648 DOI: 10.3390/molecules29174118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 08/25/2024] [Accepted: 08/27/2024] [Indexed: 09/16/2024] Open
Abstract
In the present work, we report an update and extension of the previous ion-pair formation study of Hubers, M.M.; Los, J. Chem. Phys.1975, 10, 235-259, noting new fragment anions from time-of-flight mass spectrometry. The branching ratios obtained from the negative ions formed in K + SF6 collisions, in a wide energy range from 10.7 up to 213.1 eV in the centre-of-mass frame, show that the main anion is assigned to SF5- and contributing to more than 70% of the total ion yield, followed by the non-dissociated parent anion SF6- and F-. Other less intense anions amounting to <20% are assigned to SF3- and F2-, while a trace contribution at 32u is tentatively assigned to S- formation, although the rather complex intramolecular energy redistribution within the temporary negative ion is formed during the collision. An energy loss spectrum of potassium cation post-collision is recorded showing features that have been assigned with the help of theoretical calculations. Quantum chemical calculations for the lowest-lying unoccupied molecular orbitals in the presence of a potassium atom are performed to support the experimental findings. Apart from the role of the different resonances participating in the formation of different anions, the role of higher-lying electronic-excited states of Rydberg character are noted.
Collapse
Affiliation(s)
- Sarvesh Kumar
- Atomic and Molecular Collisions Laboratory, CEFITEC-Centre of Physics and Technological Research, Department of Physics, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, One Cyclotron Road, Berkeley, CA 94720, USA
| | - Masamitsu Hoshino
- Department of Materials and Life Sciences, Sophia University, Tokyo 102-8554, Japan
| | - Boutheïna Kerkeni
- ISAMM, Université de la Manouba, La Manouba 2010, Tunisia
- Département de Physique, LPMC, Faculté des Sciences de Tunis, Université de Tunis el Manar, Tunis 2092, Tunisia
| | - Gustavo García
- Instituto de Física Fundamental, Consejo Superior de Investigaciones Científicas (CSIC), Serrano 113-bis, 28006 Madrid, Spain
| | - Ghofrane Ouerfelli
- Department of Physics, College of Khurma University, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Muneerah Mogren Al-Mogren
- Department of Chemistry, College of Sciences, King Saud University, P.O. Box 2455, Ryiadh 11451, Saudi Arabia
| | - Paulo Limão-Vieira
- Atomic and Molecular Collisions Laboratory, CEFITEC-Centre of Physics and Technological Research, Department of Physics, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal
| |
Collapse
|
2
|
Lozano AI, Kumar S, Pereira PJS, Kerkeni B, García G, Limão-Vieira P. Low-lying Negative Ion States Probed in Potassium - Ethanol Collisions. Chemphyschem 2024; 25:e202400314. [PMID: 38630012 DOI: 10.1002/cphc.202400314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 04/17/2024] [Indexed: 05/23/2024]
Abstract
Dissociative electron transfer in collisions between neutral potassium atoms and neutral ethanol molecules yields mainly OH-, followed by C2H5O-, O-, CH3 - and CH2 -. The dynamics of negative ions have been investigated by recording time-of-flight mass spectra in a wide range of collision energies from 17.5 to 350 eV in the lab frame, where the branching ratios show a relevant energy dependence for low/intermediate collision energies. The dominant fragmentation channel in the whole energy range investigated has been assigned to the hydroxyl anion in contrast to oxygen anion from dissociative electron attachment (DEA) experiments. This result shows the relevant role of the electron donor in the vicinity of the temporary negative ion formed allowing access to reactions which are not thermodynamically attained in DEA experiments. The electronic state spectroscopy of such negative ions, was obtained from potassium cation energy loss spectra in the forward scattering direction at 205 eV impact energy, showing a prevalent Feshbach resonance at 9.36±0.10 eV withσ O H * / σ C H * ${{\sigma }_{OH}^{^{\ast}}/{\sigma }_{CH}^{^{\ast}}}$ character, while a less pronouncedσ O H * ${{\sigma }_{OH}^{^{\ast}}}$ contribution assigned to a shape resonance has been obtained at 3.16±0.10 eV. Quantum chemical calculations for the lowest-lying unoccupied molecular orbitals in the presence of a potassium atom have been performed to support the experimental findings.
Collapse
Affiliation(s)
- Ana Isabel Lozano
- Atomic and Molecular Collisions Laboratory, CEFITEC, Department of Physics, Universidade NOVA de Lisboa, 2829-516, Caparica, Portugal
- Institut de Recherche en Astrophysique et Planétologie (IRAP), Université Toulouse III - Paul Sabatier, CNRS, CNES, 9 Avenue du Colonel Roche, 31028 Toulouse, France
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, One Cyclotron Road, Berkeley, 94720, California, USA
| | - Sarvesh Kumar
- Atomic and Molecular Collisions Laboratory, CEFITEC, Department of Physics, Universidade NOVA de Lisboa, 2829-516, Caparica, Portugal
- Institut de Recherche en Astrophysique et Planétologie (IRAP), Université Toulouse III - Paul Sabatier, CNRS, CNES, 9 Avenue du Colonel Roche, 31028 Toulouse, France
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, One Cyclotron Road, Berkeley, 94720, California, USA
| | - Pedro J S Pereira
- Atomic and Molecular Collisions Laboratory, CEFITEC, Department of Physics, Universidade NOVA de Lisboa, 2829-516, Caparica, Portugal
- Institut de Recherche en Astrophysique et Planétologie (IRAP), Université Toulouse III - Paul Sabatier, CNRS, CNES, 9 Avenue du Colonel Roche, 31028 Toulouse, France
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, One Cyclotron Road, Berkeley, 94720, California, USA
- Department of Mathematics, Instituto Superior de Engenharia de Lisboa, R. Conselheiro Emídio Navarro 1, 1959-007, Lisboa, Portugal
| | - Boutheïna Kerkeni
- ISAMM, Université de la Manouba, La Manouba, 2010, Tunisia
- Département de Physique, LPMC, Faculté des Sciences de Tunis, Université de Tunis el Manar, Tunis, 2092, Tunisia
| | - Gustavo García
- Instituto de Física Fundamental, Consejo Superior de Investigaciones Científicas (CSIC), Serrano 113-bis, 28006, Madrid, Spain
| | - Paulo Limão-Vieira
- Atomic and Molecular Collisions Laboratory, CEFITEC, Department of Physics, Universidade NOVA de Lisboa, 2829-516, Caparica, Portugal
- Institut de Recherche en Astrophysique et Planétologie (IRAP), Université Toulouse III - Paul Sabatier, CNRS, CNES, 9 Avenue du Colonel Roche, 31028 Toulouse, France
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, One Cyclotron Road, Berkeley, 94720, California, USA
| |
Collapse
|
3
|
Arthur-Baidoo E, Schöpfer G, Ončák M, Chomicz-Mańka L, Rak J, Denifl S. Electron Attachment to 5-Fluorouracil: The Role of Hydrogen Fluoride in Dissociation Chemistry. Int J Mol Sci 2022; 23:8325. [PMID: 35955461 PMCID: PMC9369043 DOI: 10.3390/ijms23158325] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 07/22/2022] [Accepted: 07/25/2022] [Indexed: 12/03/2022] Open
Abstract
We investigate dissociative electron attachment to 5-fluorouracil (5-FU) employing a crossed electron-molecular beam experiment and quantum chemical calculations. Upon the formation of the 5-FU- anion, 12 different fragmentation products are observed, the most probable dissociation channel being H loss. The parent anion, 5-FU-, is not stable on the experimental timescale (~140 µs), most probably due to the low electron affinity of FU; simple HF loss and F- formation are seen only with a rather weak abundance. The initial dynamics upon electron attachment seems to be governed by hydrogen atom pre-dissociation followed by either its full dissociation or roaming in the vicinity of the molecule, recombining eventually into the HF molecule. When the HF molecule is formed, the released energy might be used for various ring cleavage reactions. Our results show that higher yields of the fluorine anion are most probably prevented through both faster dissociation of an H atom and recombination of F- with a proton to form HF. Resonance calculations indicate that F- is formed upon shape as well as core-excited resonances.
Collapse
Affiliation(s)
- Eugene Arthur-Baidoo
- Institut für Ionenphysik und Angewandte Physik, Leopold-Franzens Universität Innsbruck, Technikerstraße 25, A-6020 Innsbruck, Austria; (E.A.-B.); (G.S.)
- Center for Molecular Biosciences Innsbruck, Universität Innsbruck, Technikerstraße 25, A-6020 Innsbruck, Austria
| | - Gabriel Schöpfer
- Institut für Ionenphysik und Angewandte Physik, Leopold-Franzens Universität Innsbruck, Technikerstraße 25, A-6020 Innsbruck, Austria; (E.A.-B.); (G.S.)
| | - Milan Ončák
- Institut für Ionenphysik und Angewandte Physik, Leopold-Franzens Universität Innsbruck, Technikerstraße 25, A-6020 Innsbruck, Austria; (E.A.-B.); (G.S.)
| | - Lidia Chomicz-Mańka
- Laboratory of Biological Sensitizers, Physical Chemistry Department, Faculty of Chemistry, University of Gdańsk, Wita Stwosza 63, 80-308 Gdańsk, Poland; (L.C.-M.); (J.R.)
| | - Janusz Rak
- Laboratory of Biological Sensitizers, Physical Chemistry Department, Faculty of Chemistry, University of Gdańsk, Wita Stwosza 63, 80-308 Gdańsk, Poland; (L.C.-M.); (J.R.)
| | - Stephan Denifl
- Institut für Ionenphysik und Angewandte Physik, Leopold-Franzens Universität Innsbruck, Technikerstraße 25, A-6020 Innsbruck, Austria; (E.A.-B.); (G.S.)
- Center for Molecular Biosciences Innsbruck, Universität Innsbruck, Technikerstraße 25, A-6020 Innsbruck, Austria
| |
Collapse
|
4
|
Kumar S, Ben Chouikha I, Kerkeni B, García G, Limão-Vieira P. Bound Electron Enhanced Radiosensitisation of Nimorazole upon Charge Transfer. Molecules 2022; 27:molecules27134134. [PMID: 35807379 PMCID: PMC9268075 DOI: 10.3390/molecules27134134] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 06/23/2022] [Accepted: 06/24/2022] [Indexed: 02/01/2023] Open
Abstract
This novel work reports nimorazole (NIMO) radiosensitizer reduction upon electron transfer in collisions with neutral potassium (K) atoms in the lab frame energy range of 10–400 eV. The negative ions formed in this energy range were time-of-flight mass analyzed and branching ratios were obtained. Assignment of different anions showed that more than 80% was due to the formation of the non-dissociated parent anion NIMO•− at 226 u and nitrogen dioxide anion NO2− at 46 u. The rich fragmentation pattern revealed that significant collision induced the decomposition of the 4-nitroimidazole ring, as well as other complex internal reactions within the temporary negative ion formed after electron transfer to neutral NIMO. Other fragment anions were only responsible for less than 20% of the total ion yield. Additional information on the electronic state spectroscopy of nimorazole was obtained by recording a K+ energy loss spectrum in the forward scattering direction (θ ≈ 0°), allowing us to determine the most accessible electronic states within the temporary negative ion. Quantum chemical calculations on the electronic structure of NIMO in the presence of a potassium atom were performed to help assign the most significant lowest unoccupied molecular orbitals participating in the collision process. Electron transfer was shown to be a relevant process for nimorazole radiosensitisation through efficient and prevalent non-dissociated parent anion formation.
Collapse
Affiliation(s)
- Sarvesh Kumar
- Atomic and Molecular Collisions Laboratory, CEFITEC, Department of Physics, Universidade NOVA de Lisboa, Campus de Caparica, 2829-516 Caparica, Portugal;
| | - Islem Ben Chouikha
- Département de Physique, LPMC, Faculté des Sciences de Tunis, Université de Tunis el Manar, Tunis 2092, Tunisia;
| | - Boutheïna Kerkeni
- Département de Physique, LPMC, Faculté des Sciences de Tunis, Université de Tunis el Manar, Tunis 2092, Tunisia;
- ISAMM, Université de La Manouba, La Manouba 2010, Tunisia
- Correspondence: (B.K.); (P.L.-V.)
| | - Gustavo García
- Instituto de Física Fundamental, Consejo Superior de Investigaciones Científicas, Serrano 113-bis, 28006 Madrid, Spain;
| | - Paulo Limão-Vieira
- Atomic and Molecular Collisions Laboratory, CEFITEC, Department of Physics, Universidade NOVA de Lisboa, Campus de Caparica, 2829-516 Caparica, Portugal;
- Correspondence: (B.K.); (P.L.-V.)
| |
Collapse
|
5
|
da Silva FF, Cunha T, Rebelo A, Gil A, Calhorda MJ, García G, Ingólfsson O, Limão-Vieira P. Electron-Transfer-Induced Side-Chain Cleavage in Tryptophan Facilitated through Potassium-Induced Transition-State Stabilization in the Gas Phase. J Phys Chem A 2021; 125:2324-2333. [DOI: 10.1021/acs.jpca.1c00690] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Filipe Ferreira da Silva
- Atomic and Molecular Collisions Laboratory, CEFITEC, Department of Physics, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal
| | - Tiago Cunha
- Atomic and Molecular Collisions Laboratory, CEFITEC, Department of Physics, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal
| | - Andre Rebelo
- Atomic and Molecular Collisions Laboratory, CEFITEC, Department of Physics, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal
| | - Adrià Gil
- BioISI -Biosystems & Integrative Sciences Institute, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal
- CIC nanoGUNE BRTA, Tolosa Hiribidea, 76, E-20018 Donostia − San Sebastián, Euskadi, Spain
| | - Maria José Calhorda
- BioISI -Biosystems & Integrative Sciences Institute, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal
| | - Gustavo García
- Instituto de Física Fundamental, Consejo Superior de Investigaciones Científicas (CSIC), Serrano 113-bis, 28006 Madrid, Spain
| | - Oddur Ingólfsson
- Chemistry and Science Institute, University of Iceland, Dunhagi 3, 107 Reykjavik, Iceland
| | - Paulo Limão-Vieira
- Atomic and Molecular Collisions Laboratory, CEFITEC, Department of Physics, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal
| |
Collapse
|
6
|
Lozano AI, Maioli LS, Pamplona B, Romero J, Mendes M, Ferreira da Silva F, Kossoski F, Probst M, Süβ D, Bettega MHF, García G, Limão-Vieira P. Selective bond breaking of halothane induced by electron transfer in potassium collisions. Phys Chem Chem Phys 2020; 22:23837-23846. [PMID: 33073277 DOI: 10.1039/d0cp02570d] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We present novel experimental results of negative ion formation of halothane (C2HBrClF3) upon electron transfer from hyperthermal neutral potassium atoms (K°) in the collision energy range of 8-1000 eV. The experiments were performed in a crossed molecular beam setup allowing a comprehensive analysis of the time-of-flight (TOF) mass negative ions fragmentation pattern and a detailed knowledge of the collision dynamics in the energy range investigated. Such TOF mass spectra data show that the only negative ions formed are Br-, Cl- and F-, with a strong energy dependence in the low-energy collision region, with the bromine anion being the most abundant and sole fragment at the lowest collision energy probed. In addition, potassium cation (K+) energy loss spectra in the forward scattering direction were obtained in a hemispherical energy analyser at different K° impact energies. In order to support our experimental findings, ab initio quantum chemical calculations have been performed to help interpret the role of the electronic structure of halothane. Potential energy curves were obtained along the C-X (X = Br, Cl) coordinate to lend support to the dissociation processes yielding anion formation.
Collapse
Affiliation(s)
- A I Lozano
- Atomic and Molecular Collisions Laboratory, CEFITEC, Department of Physics, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
The Role of Electron Transfer in the Fragmentation of Phenyl and Cyclohexyl Boronic Acids. Int J Mol Sci 2019; 20:ijms20225578. [PMID: 31717298 PMCID: PMC6888488 DOI: 10.3390/ijms20225578] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 11/05/2019] [Accepted: 11/06/2019] [Indexed: 11/17/2022] Open
Abstract
In this study, novel measurements of negative ion formation in neutral potassium-neutral boronic acid collisions are reported in electron transfer experiments. The fragmentation pattern of phenylboronic acid is comprehensively investigated for a wide range of collision energies, i.e., from 10 to 1000 eV in the laboratory frame, allowing some of the most relevant dissociation channels to be probed. These studies were performed in a crossed molecular beam set up using a potassium atom as an electron donor. The negative ions formed in the collision region were mass analysed with a reflectron time-of-flight mass spectrometer. In the unimolecular decomposition of the temporary negative ion, the two most relevant yields were assigned to BO- and BO2-. Moreover, the collision-induced reaction was shown to be selective, i.e., at energies below 100 eV, it mostly formed BO-, while at energies above 100 eV, it mostly formed BO2-. In order to further our knowledge on the complex internal reaction mechanisms underlying the influence of the hybridization state of the boron atom, cyclohexylboronic acid was also investigated in the same collision energy range, where the main dissociation channel yielded BO2-. The experimental results for phenyl boronic acid are supported by ab initio theoretical calculations of the lowest unoccupied molecular orbitals (LUMOs) accessed in the collision process.
Collapse
|
8
|
Zhang M, Xu J, Wang X. The theoretical investigation on the properties of fluorine-substituted uracil. COMPUT THEOR CHEM 2019. [DOI: 10.1016/j.comptc.2019.04.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
9
|
Mendes M, Pamplona B, Kumar S, da Silva FF, Aguilar A, García G, Bacchus-Montabonel MC, Limao-Vieira P. Ion-Pair Formation in Neutral Potassium-Neutral Pyrimidine Collisions: Electron Transfer Experiments. Front Chem 2019; 7:264. [PMID: 31058139 PMCID: PMC6482480 DOI: 10.3389/fchem.2019.00264] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Accepted: 04/01/2019] [Indexed: 11/13/2022] Open
Abstract
We report novel data on ion-pair formation in hyperthermal (30–800 eV) neutral potassium collisions with neutral pyrimidine (Pyr, C4H4N2) molecules. In this collision regime, negative ions formed by electron transfer from the alkali atom to the target molecule were time-of-flight mass analyzed and the fragmentation patterns and branching ratios have been obtained. The most abundant product anions have been assigned to CN− and C2H− and the electron transfer mechanisms are comprehensively discussed. Particular importance is also given to the efficient loss of integrity of the pyrimidine ring in the presence of an extra electron, which is in contrast to dissociative electron attachment experiments yielding the dehydrogenated parent anion. Theoretical calculations were performed for pyrimidine in the presence of a potassium atom and provided a strong basis for the assignment of the lowest unoccupied molecular orbitals accessed in the collision process. In order to further our knowledge about the collision dynamics, potassium cation (K+) energy loss spectrum has been obtained and within this context, we also discuss the role of the accessible electronic states. A vertical electron affinity of (−5.69 ± 0.20) eV was obtained and may be assigned to a π3*(b1) state that leads to CN− formation.
Collapse
Affiliation(s)
- Mónica Mendes
- Atomic and Molecular Collisions Laboratory, Centre of Physics and Technological Research (CEFITEC), Department of Physics, Universidade NOVA de Lisboa, Costa de Caparica, Portugal.,Instituto de Física Fundamental, Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | - Beatriz Pamplona
- Atomic and Molecular Collisions Laboratory, Centre of Physics and Technological Research (CEFITEC), Department of Physics, Universidade NOVA de Lisboa, Costa de Caparica, Portugal
| | - Sarvesh Kumar
- Atomic and Molecular Collisions Laboratory, Centre of Physics and Technological Research (CEFITEC), Department of Physics, Universidade NOVA de Lisboa, Costa de Caparica, Portugal
| | - Filipe Ferreira da Silva
- Atomic and Molecular Collisions Laboratory, Centre of Physics and Technological Research (CEFITEC), Department of Physics, Universidade NOVA de Lisboa, Costa de Caparica, Portugal
| | - Antonio Aguilar
- Departament de Ciència de Materials i Química Física, Universitat de Barcelona, Barcelona, Spain
| | - Gustavo García
- Instituto de Física Fundamental, Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | | | - Paulo Limao-Vieira
- Atomic and Molecular Collisions Laboratory, Centre of Physics and Technological Research (CEFITEC), Department of Physics, Universidade NOVA de Lisboa, Costa de Caparica, Portugal
| |
Collapse
|
10
|
Ameixa J, Arthur-Baidoo E, Meißner R, Makurat S, Kozak W, Butowska K, Ferreira da Silva F, Rak J, Denifl S. Low-energy electron-induced decomposition of 5-trifluoromethanesulfonyl-uracil: A potential radiosensitizer. J Chem Phys 2018; 149:164307. [PMID: 30384761 DOI: 10.1063/1.5050594] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
5-trifluoromethanesulfonyl-uracil (OTfU), a recently proposed radiosensitizer, is decomposed in the gas-phase by attachment of low-energy electrons. OTfU is a derivative of uracil with a triflate (OTf) group at the C5-position, which substantially increases its ability to undergo effective electron-induced dissociation. We report a rich assortment of fragments formed upon dissociative electron attachment (DEA), mostly by simple bond cleavages (e.g., dehydrogenation or formation of OTf-). The most favorable DEA channel corresponds to the formation of the triflate anion alongside with the reactive uracil-5-yl radical through the cleavage of the O-C5 bond, particularly at about 0 eV. Unlike for halouracils, the parent anion was not detected in our experiments. The experimental findings are accounted by a comprehensive theoretical study carried out at the M06-2X/aug-cc-pVTZ level. The latter comprises the thermodynamic thresholds for the formation of the observed anions calculated under the experimental conditions (383.15 K and 3 × 10-11 atm). The energy-resolved ion yield of the dehydrogenated parent anion, (OTfU-H)-, is discussed in terms of vibrational Feshbach resonances arising from the coupling between the dipole bound state and vibrational levels of the transient negative ion. We also report the mass spectrum of the cations obtained through ionization of OTfU by electrons with a kinetic energy of 70 eV. The current study endorses OTfU as a potential radiosensitizer agent with possible applications in radio-chemotherapy.
Collapse
Affiliation(s)
- J Ameixa
- Institut für Ionenphysik und Angewandte Physik and Center for Molecular Biosciences (CMBI), Leopold-Franzens Universität Innsbruck, Technikerstraße 25/3, 6020 Innsbruck, Austria
| | - E Arthur-Baidoo
- Institut für Ionenphysik und Angewandte Physik and Center for Molecular Biosciences (CMBI), Leopold-Franzens Universität Innsbruck, Technikerstraße 25/3, 6020 Innsbruck, Austria
| | - R Meißner
- Institut für Ionenphysik und Angewandte Physik and Center for Molecular Biosciences (CMBI), Leopold-Franzens Universität Innsbruck, Technikerstraße 25/3, 6020 Innsbruck, Austria
| | - S Makurat
- Laboratory of Biological Sensitizers, Physical Chemistry Department, Faculty of Chemistry, University of Gdańsk, 80-308 Gdańsk, Poland
| | - W Kozak
- Laboratory of Biological Sensitizers, Physical Chemistry Department, Faculty of Chemistry, University of Gdańsk, 80-308 Gdańsk, Poland
| | - K Butowska
- Laboratory of Biophysics, Department of Molecular and Cellular Biology, Intercollegiate Faculty of Biotechnology of the University of Gdańsk and Medical University of Gdańsk, 80-307 Gdańsk, Poland
| | - F Ferreira da Silva
- Laboratório de Colisões Atómicas e Moleculares, CEFITEC, Departamento de Física, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, Campus de Caparica, 2829-516 Caparica, Portugal
| | - J Rak
- Laboratory of Biological Sensitizers, Physical Chemistry Department, Faculty of Chemistry, University of Gdańsk, 80-308 Gdańsk, Poland
| | - S Denifl
- Institut für Ionenphysik und Angewandte Physik and Center for Molecular Biosciences (CMBI), Leopold-Franzens Universität Innsbruck, Technikerstraße 25/3, 6020 Innsbruck, Austria
| |
Collapse
|
11
|
Cunha T, Mendes M, Ferreira da Silva F, Eden S, García G, Bacchus-Montabonel MC, Limão-Vieira P. Electron transfer driven decomposition of adenine and selected analogs as probed by experimental and theoretical methods. J Chem Phys 2018; 148:134301. [PMID: 29626890 DOI: 10.1063/1.5021888] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We report on a combined experimental and theoretical study of electron-transfer-induced decomposition of adenine (Ad) and a selection of analog molecules in collisions with potassium (K) atoms. Time-of-flight negative ion mass spectra have been obtained in a wide collision energy range (6-68 eV in the centre-of-mass frame), providing a comprehensive investigation of the fragmentation patterns of purine (Pu), adenine (Ad), 9-methyl adenine (9-mAd), 6-dimethyl adenine (6-dimAd), and 2-D adenine (2-DAd). Following our recent communication about selective hydrogen loss from the transient negative ions (TNIs) produced in these collisions [T. Cunha et al., J. Chem. Phys. 148, 021101 (2018)], this work focuses on the production of smaller fragment anions. In the low-energy part of the present range, several dissociation channels that are accessible in free electron attachment experiments are absent from the present mass spectra, notably NH2 loss from adenine and 9-methyl adenine. This can be understood in terms of a relatively long transit time of the K+ cation in the vicinity of the TNI tending to enhance the likelihood of intramolecular electron transfer. In this case, the excess energy can be redistributed through the available degrees of freedom inhibiting fragmentation pathways. Ab initio theoretical calculations were performed for 9-methyl adenine (9-mAd) and adenine (Ad) in the presence of a potassium atom and provided a strong basis for the assignment of the lowest unoccupied molecular orbitals accessed in the collision process.
Collapse
Affiliation(s)
- T Cunha
- Atomic and Molecular Collisions Laboratory, CEFITEC, Department of Physics, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal
| | - M Mendes
- Atomic and Molecular Collisions Laboratory, CEFITEC, Department of Physics, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal
| | - F Ferreira da Silva
- Atomic and Molecular Collisions Laboratory, CEFITEC, Department of Physics, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal
| | - S Eden
- School of Physical Sciences, The Open University, Walton Hall, MK7 6AA Milton Keynes, United Kingdom
| | - G García
- Instituto de Física Fundamental, Consejo Superior de Investigaciones Científicas (CSIC), Serrano 113-bis, 28006 Madrid, Spain
| | - M-C Bacchus-Montabonel
- Institut Lumiére Matiére, Université Lyon, Université Claude Bernard Lyon 1, CNRS, 69622 Villeurbanne, France
| | - P Limão-Vieira
- Atomic and Molecular Collisions Laboratory, CEFITEC, Department of Physics, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal
| |
Collapse
|
12
|
|
13
|
Oller JC, Ellis-Gibbings L, da Silva FF, Limão-Vieira P, García G. Novel experimental setup for time-of-flight mass spectrometry ion detection in collisions of anionic species with neutral gas-phase molecular targets. EPJ TECHNIQUES AND INSTRUMENTATION 2015; 2:13. [PMID: 26322266 PMCID: PMC4551146 DOI: 10.1140/epjti/s40485-015-0023-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Accepted: 08/04/2015] [Indexed: 06/04/2023]
Abstract
We report a novel experimental setup for studying collision induced products resulting from the interaction of anionic beams with a neutral gas-phase molecular target. The precursor projectile was admitted into vacuum through a commercial pulsed valve, with the anionic beam produced in a hollow cathode discharge-induced plasma, and guided to the interaction region by a set of deflecting plates where it was made to interact with the target beam. Depending on the collision energy regime, negative and positive species can be formed in the collision region and ions were time-of-flight (TOF) mass-analysed. Here, we present data on O2 precursor projectile, where we show clear evidence of O- and O2- formation from the hollow cathode source as well as preliminary results on the interaction of these anions with nitromethane, CH3NO2. The negative ions formed in such collisions were analysed using time-of-flight mass spectrometry. The five most dominant product anions were assigned to H-, O-, NO-, CNO- and CH3NO2-.
Collapse
Affiliation(s)
- J C Oller
- />Instituto de Física Fundamental, Consejo Superior de Investigaciones Científicas, Serrano 113-bis, 28006 Madrid, Spain
- />Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas, Avenida Complutense 22, 28040 Madrid, Spain
| | - L. Ellis-Gibbings
- />Instituto de Física Fundamental, Consejo Superior de Investigaciones Científicas, Serrano 113-bis, 28006 Madrid, Spain
| | - F. Ferreira da Silva
- />Laboratório de Colisões Atómicas e Moleculares, CEFITEC, Departamento de Física, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516, Caparica, Portugal
| | - P. Limão-Vieira
- />Laboratório de Colisões Atómicas e Moleculares, CEFITEC, Departamento de Física, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516, Caparica, Portugal
| | - G. García
- />Instituto de Física Fundamental, Consejo Superior de Investigaciones Científicas, Serrano 113-bis, 28006 Madrid, Spain
- />Centre of Medical Radiation Physics, University of Wollongong, Wollongong, NSW 2522 Australia
| |
Collapse
|
14
|
Almeida D, Bacchus-Montabonel MC, da Silva FF, García G, Limão-Vieira P. Potassium-uracil/thymine ring cleavage enhancement as studied in electron transfer experiments and theoretical calculations. J Phys Chem A 2014; 118:6547-52. [PMID: 24818533 DOI: 10.1021/jp503164a] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We report experimental and theoretical studies on ring cleavage enhancement in collisions of potassium atoms with uracil/thymine to further increase the understanding of the complex mechanisms yielding such fragmentation pathways. In these electron transfer processes time-of-flight (TOF) negative ion mass spectra were obtained in the collision energy range 13.5-23.0 eV. We note that CNO(-) is the major ring breaking anion formed and its threshold formation is discussed within the collision energy range studied. Such a decomposition process is supported by the first theoretical calculations to clarify how DNA/RNA pyrimidine base fragmentation is enhanced in electron transfer processes yielding ion-pair formation.
Collapse
Affiliation(s)
- D Almeida
- Laboratório de Colisões Atómicas e Moleculares, CEFITEC, Departamento de Física, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa , 2829-516 Caparica, Portugal
| | | | | | | | | |
Collapse
|
15
|
Almeida D, Ferreira da Silva F, Eden S, García G, Limão-Vieira P. New Fragmentation Pathways in K–THF Collisions As Studied by Electron-Transfer Experiments: Negative Ion Formation. J Phys Chem A 2014; 118:690-6. [DOI: 10.1021/jp407997w] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- D. Almeida
- Laboratório
de Colisões Atómicas e Moleculares, CEFITEC, Departamento de Fı́sica, Faculdade de Ciências
e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal
| | - F. Ferreira da Silva
- Laboratório
de Colisões Atómicas e Moleculares, CEFITEC, Departamento de Fı́sica, Faculdade de Ciências
e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal
| | - S. Eden
- Department
of Physical Sciences, The Open University, Walton Hall, Milton Keynes MK7 6AA, United Kingdom
| | - G. García
- Instituto de Fı́sica Fundamental, Consejo Superior de Investigaciones Cientı́ficas, Serrano 113-bis, 28006 Madrid, Spain
- Centre
for Medical Radiation Physics, University of Wollongong, NSW 2522, Australia
| | - P. Limão-Vieira
- Laboratório
de Colisões Atómicas e Moleculares, CEFITEC, Departamento de Fı́sica, Faculdade de Ciências
e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal
- Department
of Physical Sciences, The Open University, Walton Hall, Milton Keynes MK7 6AA, United Kingdom
| |
Collapse
|
16
|
Almeida D, Ferreira da Silva F, García G, Limão-Vieira P. Dynamic of negative ions in potassium-D-ribose collisions. J Chem Phys 2013; 139:114304. [DOI: 10.1063/1.4820949] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
|
17
|
Almeida D, Kinzel D, Ferreira da Silva F, Puschnigg B, Gschliesser D, Scheier P, Denifl S, García G, González L, Limão-Vieira P. N-site de-methylation in pyrimidine bases as studied by low energy electrons and ab initio calculations. Phys Chem Chem Phys 2013; 15:11431-40. [PMID: 23743926 DOI: 10.1039/c3cp50548k] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Electron transfer and dissociative electron attachment to 3-methyluracil (3meU) and 1-methylthymine (1meT) yielding anion formation have been investigated in atom-molecule collision and electron attachment experiments, respectively. The former has been studied in the collision energy range 14-100 eV whereas the latter in the 0-15 eV incident electron energy range. In the present studies, emphasis is given to the reaction channel resulting in the loss of the methyl group from the N-sites with the extra charge located on the pyrimidine ring. This particular reaction channel has neither been approached in the context of dissociative electron attachment nor in atom-molecule collisions yet. Quantum chemical calculations have been performed in order to provide some insight into the dissociation mechanism involved along the N-CH3 bond reaction coordinate. The calculations provide support to the threshold value derived from the electron transfer measurements, allowing for a better understanding of the role of the potassium cation as a stabilising agent in the collision complex. The present comparative study gives insight into the dynamics of the decaying transient anion and more precisely into the competition between dissociation and auto-detachment.
Collapse
Affiliation(s)
- D Almeida
- Laboratório de Colisões Atómicas e Moleculares, CEFITEC, Departamento de Física, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal
| | | | | | | | | | | | | | | | | | | |
Collapse
|