1
|
Sharme RK, Quijada M, Terrones M, Rana MM. Thin Conducting Films: Preparation Methods, Optical and Electrical Properties, and Emerging Trends, Challenges, and Opportunities. MATERIALS (BASEL, SWITZERLAND) 2024; 17:4559. [PMID: 39336302 PMCID: PMC11432801 DOI: 10.3390/ma17184559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 08/25/2024] [Accepted: 09/04/2024] [Indexed: 09/30/2024]
Abstract
Thin conducting films are distinct from bulk materials and have become prevalent over the past decades as they possess unique physical, electrical, optical, and mechanical characteristics. Comprehending these essential properties for developing novel materials with tailored features for various applications is very important. Research on these conductive thin films provides us insights into the fundamental principles, behavior at different dimensions, interface phenomena, etc. This study comprehensively analyzes the intricacies of numerous commonly used thin conducting films, covering from the fundamentals to their advanced preparation methods. Moreover, the article discusses the impact of different parameters on those thin conducting films' electronic and optical properties. Finally, the recent future trends along with challenges are also highlighted to address the direction the field is heading towards. It is imperative to review the study to gain insight into the future development and advancing materials science, thus extending innovation and addressing vital challenges in diverse technological domains.
Collapse
Affiliation(s)
- Razia Khan Sharme
- Division of Physics, Engineering, Mathematics and Computer Sciences, and Research on Nanomaterial-Based Integrated Circuits and Electronics (NICE), Delaware State University, Dover, DE 19901, USA;
| | - Manuel Quijada
- NASA Goddard Space Flight Center, 8800 Greenbelt Road, Greenbelt, MD 20771, USA;
| | - Mauricio Terrones
- Department of Physics, The Pennsylvania State University, 104 Davey Lab, PMB 196, University Park, PA 16802, USA;
| | - Mukti M. Rana
- Division of Physics, Engineering, Mathematics and Computer Sciences, and Research on Nanomaterial-Based Integrated Circuits and Electronics (NICE), Delaware State University, Dover, DE 19901, USA;
| |
Collapse
|
2
|
Khoo V, Ng SF, Haw CY, Ong WJ. Additive Manufacturing: A Paradigm Shift in Revolutionizing Catalysis with 3D Printed Photocatalysts and Electrocatalysts Toward Environmental Sustainability. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2401278. [PMID: 38634520 DOI: 10.1002/smll.202401278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 03/28/2024] [Indexed: 04/19/2024]
Abstract
Semiconductor-based materials utilized in photocatalysts and electrocatalysts present a sophisticated solution for efficient solar energy utilization and bias control, a field extensively explored for its potential in sustainable energy and environmental management. Recently, 3D printing has emerged as a transformative technology, offering rapid, cost-efficient, and highly customizable approaches to designing photocatalysts and electrocatalysts with precise structural control and tailored substrates. The adaptability and precision of printing facilitate seamless integration, loading, and blending of diverse photo(electro)catalytic materials during the printing process, significantly reducing material loss compared to traditional methods. Despite the evident advantages of 3D printing, a comprehensive compendium delineating its application in the realm of photocatalysis and electrocatalysis is conspicuously absent. This paper initiates by delving into the fundamental principles and mechanisms underpinning photocatalysts electrocatalysts and 3D printing. Subsequently, an exhaustive overview of the latest 3D printing techniques, underscoring their pivotal role in shaping the landscape of photocatalysts and electrocatalysts for energy and environmental applications. Furthermore, the paper examines various methodologies for seamlessly incorporating catalysts into 3D printed substrates, elucidating the consequential effects of catalyst deposition on catalytic properties. Finally, the paper thoroughly discusses the challenges that necessitate focused attention and resolution for future advancements in this domain.
Collapse
Affiliation(s)
- Valerine Khoo
- School of Energy and Chemical Engineering, Xiamen University Malaysia, Selangor Darul Ehsan, 43900, Malaysia
- Center of Excellence for NaNo Energy & Catalysis Technology (CONNECT), Xiamen University Malaysia, Selangor Darul Ehsan, 43900, Malaysia
| | - Sue-Faye Ng
- School of Energy and Chemical Engineering, Xiamen University Malaysia, Selangor Darul Ehsan, 43900, Malaysia
- Center of Excellence for NaNo Energy & Catalysis Technology (CONNECT), Xiamen University Malaysia, Selangor Darul Ehsan, 43900, Malaysia
| | - Choon-Yian Haw
- School of Energy and Chemical Engineering, Xiamen University Malaysia, Selangor Darul Ehsan, 43900, Malaysia
- Center of Excellence for NaNo Energy & Catalysis Technology (CONNECT), Xiamen University Malaysia, Selangor Darul Ehsan, 43900, Malaysia
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Wee-Jun Ong
- School of Energy and Chemical Engineering, Xiamen University Malaysia, Selangor Darul Ehsan, 43900, Malaysia
- Center of Excellence for NaNo Energy & Catalysis Technology (CONNECT), Xiamen University Malaysia, Selangor Darul Ehsan, 43900, Malaysia
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
- Gulei Innovation Institute, Xiamen University, Zhangzhou, 363200, China
- Shenzhen Research Institute of Xiamen University, Shenzhen, 518057, China
| |
Collapse
|
3
|
Rozyyev V, Gao F, Liu Y, Shevate R, Pathak R, Mane AU, Darling SB, Elam JW. Thiol-Functionalized Adsorbents through Atomic Layer Deposition and Vapor-Phase Silanization for Heavy Metal Ion Removal. ACS APPLIED MATERIALS & INTERFACES 2024; 16:34030-34041. [PMID: 38913653 DOI: 10.1021/acsami.4c03935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
The removal of toxic heavy metal ions from water resources is crucial for environmental protection and public health. In this study, we address this challenge by developing a surface functionalization technique for the selective adsorption of these contaminants. Our approach involves atomic layer deposition (ALD) followed by vapor-phase silanization of porous substrates. We utilized porous silica gel powder (∼100 μm particles, 89 m2/g surface area, ∼30 nm pores) as an initial substrate. This powder was first coated with ∼0.5 nm ALD Al2O3, followed by vapor-phase grafting of a thiol-functional silane. The modified powder, particularly in acidic conditions (pH = 4), showed high selectivity in adsorbing Cd(II), As(V), Pb(II), Hg(II), and Cu(II) heavy metal ions in mixed ion solutions over common benign ions (e.g., Na, K, Ca, and Mg). Langmuir adsorption isotherms and breakthrough adsorption studies were conducted to assess heavy metal binding affinity and revealed the order of Cd(II) < Pb(II) < Cu(II) < As(V) < Hg(II), with a significantly higher affinity for As(V) and Hg(II) ions. Time-dependent uptake studies demonstrated rapid removal of heavy metal ions from aqueous environments, with Hg(II) exhibiting the fastest adsorption kinetics on thiol-modified surfaces. These findings highlight the potential of ALD and vapor-phase silanization to create effective adsorbents for the targeted removal of hazardous contaminants from water.
Collapse
Affiliation(s)
- Vepa Rozyyev
- Applied Materials Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, Illinois 60637, United States
- Advanced Materials for Energy-Water Systems Energy Frontier Research Center, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Feng Gao
- Advanced Materials for Energy-Water Systems Energy Frontier Research Center, Argonne National Laboratory, Lemont, Illinois 60439, United States
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Yining Liu
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, Illinois 60637, United States
- Advanced Materials for Energy-Water Systems Energy Frontier Research Center, Argonne National Laboratory, Lemont, Illinois 60439, United States
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Rahul Shevate
- Applied Materials Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Rajesh Pathak
- Applied Materials Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Anil U Mane
- Applied Materials Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Seth B Darling
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, Illinois 60637, United States
- Advanced Materials for Energy-Water Systems Energy Frontier Research Center, Argonne National Laboratory, Lemont, Illinois 60439, United States
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Jeffrey W Elam
- Applied Materials Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
- Advanced Materials for Energy-Water Systems Energy Frontier Research Center, Argonne National Laboratory, Lemont, Illinois 60439, United States
| |
Collapse
|
4
|
Zaera F. The surface chemistry of the atomic layer deposition of metal thin films. NANOTECHNOLOGY 2024; 35:362001. [PMID: 38888294 DOI: 10.1088/1361-6528/ad54cb] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 06/06/2024] [Indexed: 06/20/2024]
Abstract
In this perspective we discuss the progress made in the mechanistic studies of the surface chemistry associated with the atomic layer deposition (ALD) of metal films and the usefulness of that knowledge for the optimization of existing film growth processes and for the design of new ones. Our focus is on the deposition of late transition metals. We start by introducing some of the main surface-sensitive techniques and approaches used in this research. We comment on the general nature of the metallorganic complexes used as precursors for these depositions, and the uniqueness that solid surfaces and the absence of liquid solvents bring to the ALD chemistry and differentiate it from what is known from metalorganic chemistry in solution. We then delve into the adsorption and thermal chemistry of those precursors, highlighting the complex and stepwise nature of the decomposition of the organic ligands that usually ensued upon their thermal activation. We discuss the criteria relevant for the selection of co-reactants to be used on the second half of the ALD cycle, with emphasis on the redox chemistry often associated with the growth of metallic films starting from complexes with metal cations. Additional considerations include the nature of the substrate and the final structural and chemical properties of the growing films, which we indicate rarely retain the homogeneous 2D structure often aimed for. We end with some general conclusions and personal thoughts about the future of this field.
Collapse
Affiliation(s)
- Francisco Zaera
- Department of Chemistry, University of California, Riverside, CA 92521, United States of America
| |
Collapse
|
5
|
Inico E, Saetta C, Di Liberto G. Impact of quantum size effects to the band gap of catalytic materials: a computational perspective. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2024; 36:361501. [PMID: 38830369 DOI: 10.1088/1361-648x/ad53b5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 06/03/2024] [Indexed: 06/05/2024]
Abstract
The evolution of nanotechnology has facilitated the development of catalytic materials with controllable composition and size, reaching the sub-nanometer limit. Nowadays, a viable strategy for tailoring and optimizing the catalytic activity involves controlling the size of the catalyst. This strategy is underpinned by the fact that the properties and reactivity of objects with dimensions on the order of nanometers can differ from those of the corresponding bulk material, due to the emergence of quantum size effects. Quantum size effects have a deep influence on the band gap of semiconducting catalytic materials. Computational studies are valuable for predicting and estimating the impact of quantum size effects. This perspective emphasizes the crucial role of modeling quantum size effects when simulating nanostructured catalytic materials. It provides a comprehensive overview of the fundamental principles governing the physics of quantum confinement in various experimentally observable nanostructures. Furthermore, this work may serve as a tutorial for modeling the electronic gap of simple nanostructures, highlighting that when working at the nanoscale, the finite dimensions of the material lead to an increase of the band gap because of the emergence of quantum confinement. This aspect is sometimes overlooked in computational chemistry studies focused on surfaces and nanostructures.
Collapse
Affiliation(s)
- Elisabetta Inico
- Dipartimento di Scienza dei Materiali, Università degli Studi di Milano Bicocca, Via R. Cozzi 55, 20125 Milano, Italy
| | - Clara Saetta
- Dipartimento di Scienza dei Materiali, Università degli Studi di Milano Bicocca, Via R. Cozzi 55, 20125 Milano, Italy
| | - Giovanni Di Liberto
- Dipartimento di Scienza dei Materiali, Università degli Studi di Milano Bicocca, Via R. Cozzi 55, 20125 Milano, Italy
| |
Collapse
|
6
|
Zhang Z, Filez M, Solano E, Poonkottil N, Li J, Minjauw MM, Poelman H, Rosenthal M, Brüner P, Galvita VV, Detavernier C, Dendooven J. Controlling Pt nanoparticle sintering by sub-monolayer MgO ALD thin films. NANOSCALE 2024; 16:5362-5373. [PMID: 38375669 DOI: 10.1039/d3nr05884k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/21/2024]
Abstract
Metal nanoparticle (NP) sintering is a major cause of catalyst deactivation, as NP growth reduces the surface area available for reaction. A promising route to halt sintering is to deposit a protective overcoat on the catalyst surface, followed by annealing to generate overlayer porosity for gas transport to the NPs. Yet, such a combined deposition-annealing approach lacks structural control over the cracked protection layer and the number of NP surface atoms available for reaction. Herein, we exploit the tailoring capabilities of atomic layer deposition (ALD) to deposit MgO overcoats on archetypal Pt NP catalysts with thicknesses ranging from sub-monolayers to nm-range thin films. Two different ALD processes are studied for the growth of MgO overcoats on Pt NPs anchored on a SiO2 support, using Mg(EtCp)2 and H2O, and Mg(TMHD)2 and O3, respectively. Spectroscopic ellipsometry and X-ray photoelectron spectroscopy measurements reveal significant growth on both SiO2 and Pt for the former process, while the latter exhibits a drastically lower growth per cycle with an initial chemical selectivity towards Pt. These differences in MgO growth characteristics have implications for the availability of uncoated Pt surface atoms at different stages of the ALD process, as probed by low energy ion scattering, and for the sintering behavior during O2 annealing, as monitored in situ with grazing incidence small angle X-ray scattering (in situ GISAXS). The Mg(TMHD)2-O3 ALD process enables exquisite coverage control allowing a balance between physically blocking the Pt surface to prevent sintering and keeping Pt surface atoms free for reaction. This approach avoids the need for post-annealing, hence also safeguarding the structural integrity of the as-deposited overcoat.
Collapse
Affiliation(s)
- Zhiwei Zhang
- Conformal Coating of Nanomaterials (CoCooN), Department of Solid State Sciences, Ghent University, Krijgslaan 281/S1, 9000 Ghent, Belgium.
| | - Matthias Filez
- Conformal Coating of Nanomaterials (CoCooN), Department of Solid State Sciences, Ghent University, Krijgslaan 281/S1, 9000 Ghent, Belgium.
- Centre for Membrane Separations Adsorption Catalysis and Spectroscopy for Sustainable Solutions (cMACS), KU Leuven, Celestijnenlaan 200F, 3001 Leuven, Belgium
| | - Eduardo Solano
- NCD-SWEET beamline, ALBA synchrotron light source, Carrer de la Llum 2-26, 08290, Cerdanyola del Vallès, Spain
| | - Nithin Poonkottil
- Conformal Coating of Nanomaterials (CoCooN), Department of Solid State Sciences, Ghent University, Krijgslaan 281/S1, 9000 Ghent, Belgium.
| | - Jin Li
- Conformal Coating of Nanomaterials (CoCooN), Department of Solid State Sciences, Ghent University, Krijgslaan 281/S1, 9000 Ghent, Belgium.
| | - Matthias M Minjauw
- Conformal Coating of Nanomaterials (CoCooN), Department of Solid State Sciences, Ghent University, Krijgslaan 281/S1, 9000 Ghent, Belgium.
| | - Hilde Poelman
- Laboratory for Chemical Technology, Ghent University, Technologiepark 125, 9052 Ghent, Belgium
| | - Martin Rosenthal
- DUBBLE beamline, ESRF - The European Synchrotron, 71 Avenue des Martyrs, 38000 Grenoble, France
| | - Philipp Brüner
- IONTOF Technologies GmbH, Heisenbergstr. 15, 48149 Muenster, Germany
| | - Vladimir V Galvita
- Laboratory for Chemical Technology, Ghent University, Technologiepark 125, 9052 Ghent, Belgium
| | - Christophe Detavernier
- Conformal Coating of Nanomaterials (CoCooN), Department of Solid State Sciences, Ghent University, Krijgslaan 281/S1, 9000 Ghent, Belgium.
| | - Jolien Dendooven
- Conformal Coating of Nanomaterials (CoCooN), Department of Solid State Sciences, Ghent University, Krijgslaan 281/S1, 9000 Ghent, Belgium.
| |
Collapse
|
7
|
Heikkinen N, Lehtonen J, Puurunen RL. An atomic layer deposition diffusion-reaction model for porous media with different particle geometries. Phys Chem Chem Phys 2024; 26:7580-7591. [PMID: 38362743 DOI: 10.1039/d3cp05639b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2024]
Abstract
This work presents a diffusion-reaction model for atomic layer deposition (ALD), which has been adapted to describe radial direction reactant transport and adsorption kinetics in a porous particle. Specifically, we present the effect of three particle geometries: spherical, cylindrical and a slab in the diffusion-reaction model. The reactant diffusion propagates as a unidimensional front inside the slab particle, whereas with cylinder and spherical particles, the reactant diffusion approaches the particle centre from two and three dimensions, respectively. Due to additional reactant propagation dimensions, cylindrical and spherical particles require less exposure for full particle penetration. In addition to the particle geometry effect, a sensitivity analysis was used to compare the impact of the particles' physical properties on the achieved penetration depth. The analysis evaluates properties, such as the combined porosity and tortuosity factor, mean pore diameter, specific surface area, pore volume, and particle radius. Furthermore, we address the impact of the reactant molar mass, growth-per-cycle (GPC), sticking probability, reactant exposure and deposition temperature on the simulated diffusion and surface coverage profiles. The diffusion-reaction model presented in this work is relevant for the design and optimization of ALD processes in porous media with different particle geometries.
Collapse
Affiliation(s)
- Niko Heikkinen
- VTT Technical Research Centre of Finland, P.O. Box 1000, FIN-02044 VTT, Espoo, Finland.
| | - Juha Lehtonen
- VTT Technical Research Centre of Finland, P.O. Box 1000, FIN-02044 VTT, Espoo, Finland.
| | - Riikka L Puurunen
- Department of Chemical and Metallurgical Engineering, Aalto University School of Chemical Engineering, Kemistintie 1, Espoo, Finland.
| |
Collapse
|
8
|
Ansari MZ, Hussain I, Mohapatra D, Ansari SA, Rahighi R, Nandi DK, Song W, Kim S. Atomic Layer Deposition-A Versatile Toolbox for Designing/Engineering Electrodes for Advanced Supercapacitors. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2303055. [PMID: 37937382 PMCID: PMC10767429 DOI: 10.1002/advs.202303055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 09/07/2023] [Indexed: 11/09/2023]
Abstract
Atomic layer deposition (ALD) has become the most widely used thin-film deposition technique in various fields due to its unique advantages, such as self-terminating growth, precise thickness control, and excellent deposition quality. In the energy storage domain, ALD has shown great potential for supercapacitors (SCs) by enabling the construction and surface engineering of novel electrode materials. This review aims to present a comprehensive outlook on the development, achievements, and design of advanced electrodes involving the application of ALD for realizing high-performance SCs to date, as organized in several sections of this paper. Specifically, this review focuses on understanding the influence of ALD parameters on the electrochemical performance and discusses the ALD of nanostructured electrochemically active electrode materials on various templates for SCs. It examines the influence of ALD parameters on electrochemical performance and highlights ALD's role in passivating electrodes and creating 3D nanoarchitectures. The relationship between synthesis procedures and SC properties is analyzed to guide future research in preparing materials for various applications. Finally, it is concluded by suggesting the directions and scope of future research and development to further leverage the unique advantages of ALD for fabricating new materials and harness the unexplored opportunities in the fabrication of advanced-generation SCs.
Collapse
Affiliation(s)
- Mohd Zahid Ansari
- School of Materials Science and EngineeringYeungnam University280 Daehak‐RoGyeongsanGyeongbuk38541Republic of Korea
| | - Iftikhar Hussain
- Department of Mechanical EngineeringCity University of Hong Kong83 Tat Chee AvenueKowoonHong Kong
| | - Debananda Mohapatra
- Graduate School of Semiconductor Materials and Devices EngineeringUlsan National Institute of Science & Technology (UNIST)50 UNIST‐gilUlju‐gunUlsan44919Republic of Korea
| | - Sajid Ali Ansari
- Department of PhysicsCollege of ScienceKing Faisal UniversityP.O. Box 400HofufAl‐Ahsa31982Saudi Arabia
| | - Reza Rahighi
- SKKU Advanced Institute of Nano‐Technology (SAINT)Sungkyunkwan University2066 Seobu‐ro, Jangan‐guSuwonGyeonggi‐do16419Republic of Korea
| | - Dip K Nandi
- Plessey Semiconductors LtdTamerton Road RoboroughPlymouthDevonPL6 7BQUK
| | - Wooseok Song
- Thin Film Materials Research CenterKorea Research Institute of Chemical TechnologyDaejeon34114Republic of Korea
| | - Soo‐Hyun Kim
- Graduate School of Semiconductor Materials and Devices EngineeringUlsan National Institute of Science & Technology (UNIST)50 UNIST‐gilUlju‐gunUlsan44919Republic of Korea
- Department of Materials Science and EngineeringUlsan National Institute of Science & Technology (UNIST)50 UNIST‐gilUlju‐gunUlsan44919Republic of Korea
| |
Collapse
|
9
|
Ballai G, Kotnik T, Finšgar M, Pintar A, Kónya Z, Sápi A, Kovačič S. Highly Porous Polymer Beads Coated with Nanometer-Thick Metal Oxide Films for Photocatalytic Oxidation of Bisphenol A. ACS APPLIED NANO MATERIALS 2023; 6:20089-20098. [PMID: 38026613 PMCID: PMC10653210 DOI: 10.1021/acsanm.3c03891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 10/06/2023] [Accepted: 10/09/2023] [Indexed: 12/01/2023]
Abstract
Highly porous metal oxide-polymer nanocomposites are attracting considerable interest due to their unique structural and functional features. A porous polymer matrix brings properties such as high porosity and permeability, while the metal oxide phase adds functionality. For the metal oxide phase to perform its function, it must be fully accessible, and this is possible only at the pore surface, but functioning surfaces require controlled engineering, which remains a challenge. Here, highly porous nanocomposite beads based on thin metal oxide nanocoatings and polymerized high internal phase emulsions (polyHIPEs) are demonstrated. By leveraging the unique properties of polyHIPEs, i.e., a three-dimensional (3D) interconnected network of macropores, and high-precision of the atomic-layer-deposition technique (ALD), we were able to homogeneously coat the entire surface of the pores in polyHIPE beads with TiO2-, ZnO-, and Al2O3-based nanocoatings. Parameters such as nanocoating thickness, growth per cycle (GPC), and metal oxide (MO) composition were systematically controlled by varying the number of deposition cycles and dosing time under specific process conditions. The combination of polyHIPE structure and ALD technique proved advantageous, as MO-nanocoatings with thicknesses between 11 ± 3 and 40 ± 9 nm for TiO2 or 31 ± 6 and 74 ± 28 nm for ZnO and Al2O3, respectively, were successfully fabricated. It has been shown that the number of ALD cycles affects both the thickness and crystallinity of the MO nanocoatings. Finally, the potential of ALD-derived TiO2-polyHIPE beads in photocatalytic oxidation of an aqueous bisphenol A (BPA) solution was demonstrated. The beads exhibited about five times higher activity than nanocomposite beads prepared by the conventional (Pickering) method. Such ALD-derived polyHIPE nanocomposites could find wide application in nanotechnology, sensor development, or catalysis.
Collapse
Affiliation(s)
- Gergő Ballai
- Interdisciplinary
Excellence Centre, Department of Applied and Environmental Chemistry, University of Szeged, Rerrich Béla tér 1, H-6720 Szeged, Hungary
| | - Tomaž Kotnik
- Department
of Inorganic Chemistry and Technology, National
Institute of Chemistry, Hajdrihova 19, SI-1001 Ljubljana, Slovenia
- Faculty
of Chemistry and Chemical Technology, University
of Ljubljana, Večna
Pot 113, 1000 Ljubljana, Slovenia
| | - Matjaž Finšgar
- University
of Maribor, Faculty of Chemistry and Chemical Engineering, Smetanova 17, SI-2000 Maribor, Slovenia
| | - Albin Pintar
- Department
of Inorganic Chemistry and Technology, National
Institute of Chemistry, Hajdrihova 19, SI-1001 Ljubljana, Slovenia
| | - Zoltán Kónya
- Interdisciplinary
Excellence Centre, Department of Applied and Environmental Chemistry, University of Szeged, Rerrich Béla tér 1, H-6720 Szeged, Hungary
- MTA-SZTE
Reaction Kinetics and Surface Chemistry Research Group, Rerrich Béla tér 1, H-6720 Szeged, Hungary
| | - András Sápi
- Interdisciplinary
Excellence Centre, Department of Applied and Environmental Chemistry, University of Szeged, Rerrich Béla tér 1, H-6720 Szeged, Hungary
| | - Sebastijan Kovačič
- Department
of Inorganic Chemistry and Technology, National
Institute of Chemistry, Hajdrihova 19, SI-1001 Ljubljana, Slovenia
| |
Collapse
|
10
|
Chen M, Nijboer MP, Kovalgin AY, Nijmeijer A, Roozeboom F, Luiten-Olieman MWJ. Atmospheric-pressure atomic layer deposition: recent applications and new emerging applications in high-porosity/3D materials. Dalton Trans 2023. [PMID: 37376785 PMCID: PMC10392469 DOI: 10.1039/d3dt01204b] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/29/2023]
Abstract
Atomic layer deposition (ALD) is a widely recognized technique for depositing ultrathin conformal films with excellent thickness control at Ångström or (sub)monolayer level. Atmospheric-pressure ALD is an upcoming ALD process with a potentially lower ownership cost of the reactor. In this review, we provide a comprehensive overview of the recent applications and development of ALD approaches emphasizing those based on operation at atmospheric pressure. Each application determines its own specific reactor design. Spatial ALD (s-ALD) has been recently introduced for the commercial production of large-area 2D displays, the surface passivation and encapsulation of solar cells and organic light-emitting diode (OLED) displays. Atmospheric temporal ALD (t-ALD) has opened up new emerging applications such as high-porosity particle coatings, functionalization of capillary columns for gas chromatography, and membrane modification in water treatment and gas purification. The challenges and opportunities for highly conformal coating on porous substrates by atmospheric ALD have been identified. We discuss in particular the pros and cons of both s-ALD and t-ALD in combination with their reactor designs in relation to the coating of 3D and high-porosity materials.
Collapse
Affiliation(s)
- M Chen
- Inorganic Membranes, Department of Science and Technology and MESA+ Institute for Nanotechnology, University of Twente, PO Box 217, 7500 AE Enschede, The Netherlands.
| | - M P Nijboer
- Inorganic Membranes, Department of Science and Technology and MESA+ Institute for Nanotechnology, University of Twente, PO Box 217, 7500 AE Enschede, The Netherlands.
| | - A Y Kovalgin
- Integrated Devices and Systems, Faculty of Electrical Engineering, Mathematics and Computer Science, MESA+ Institute for Nanotechnology, University of Twente, PO Box 217, 7500 AE Enschede, The Netherlands
| | - A Nijmeijer
- Inorganic Membranes, Department of Science and Technology and MESA+ Institute for Nanotechnology, University of Twente, PO Box 217, 7500 AE Enschede, The Netherlands.
| | - F Roozeboom
- Inorganic Membranes, Department of Science and Technology and MESA+ Institute for Nanotechnology, University of Twente, PO Box 217, 7500 AE Enschede, The Netherlands.
| | - M W J Luiten-Olieman
- Inorganic Membranes, Department of Science and Technology and MESA+ Institute for Nanotechnology, University of Twente, PO Box 217, 7500 AE Enschede, The Netherlands.
| |
Collapse
|
11
|
Sun Y, Liu X, Zhu M, Zhang Z, Chen Z, Wang S, Ji Z, Yang H, Wang X. Non-noble metal single atom-based catalysts for electrochemical reduction of CO2: Synthesis approaches and performance evaluation. DECARBON 2023:100018. [DOI: doi.org/10.1016/j.decarb.2023.100018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/25/2023]
|
12
|
Xu Y, Chen H, Xu H, Chen M, Zhou P, Li S, Zhang G, Shi W, Yang X, Ding X, Wei B. Physical Properties of an Ultrathin Al 2O 3/HfO 2 Composite Film by Atomic Layer Deposition and the Application in Thin-Film Transistors. ACS APPLIED MATERIALS & INTERFACES 2023; 15:16874-16881. [PMID: 36942855 DOI: 10.1021/acsami.2c22227] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
A high-quality ultrathin dielectric film is important in the field of microelectronics. We designed a composite structure composed of Al2O3/HfO2 with different Al2O3/HfO2 cycles prepared by atomic layer deposition (ALD) to obtain high-quality ultrathin (1-12 nm) dielectric films. Al2O3 protected HfO2 from interacting with the Si substrate and inhibited the crystallization of the HfO2 film. High permittivity material of HfO2 was adopted to guarantee the good insulating property of the composite film. We investigated the physical properties as well as the growth mode of the composite film and found that the film exhibited a layer growth mode. The water contact angle and grazing-incidence small-angle X-ray scattering analyses revealed that the film was formed physically at 3 nm, while the thickness of the electrically stable film was 10 nm from grazing-incidence wide-angle X-ray scattering and dielectric constant analyses. The composite film was applied as a dielectric layer in thin-film transistors (TFTs). The threshold voltage was decreased to 0.27 V compared to the organic field-effect transistor with the single HfO2 dielectric, and the subthreshold swing was as small as 0.05 V/dec with a carrier mobility of 49.2 cm2/V s. The off-current was as low as 10-11 A, and the on/off ratio was as high as 5.5 × 106. This ALD-prepared composite strategy provides a simple and practical way to obtain the high-quality dielectric film, which shows the potential application in the field of microelectronics.
Collapse
Affiliation(s)
- Yachen Xu
- Microelectronic R&D Center, School of Mechatronic Engineering and Automation, Shanghai University, Shanghai 200072, China
| | - Huimin Chen
- Microelectronic R&D Center, School of Mechatronic Engineering and Automation, Shanghai University, Shanghai 200072, China
| | - Haiyang Xu
- Key Laboratory of Advanced Display and System Applications, Ministry of Education, School of Mechatronic Engineering and Automation, Shanghai University, Shanghai 200072, China
| | - Minyu Chen
- Microelectronic R&D Center, School of Mechatronic Engineering and Automation, Shanghai University, Shanghai 200072, China
- Light, Nanomaterials, Nanotechnologies (L2n) Laboratory, CNRS ERL 7004, University of Technology of Troyes, 12 rue Marie Curie, Troyes, Cedex 10004, France
| | - Pengchao Zhou
- Microelectronic R&D Center, School of Mechatronic Engineering and Automation, Shanghai University, Shanghai 200072, China
| | - Shuzhe Li
- Microelectronic R&D Center, School of Mechatronic Engineering and Automation, Shanghai University, Shanghai 200072, China
| | - Ge Zhang
- Laboratory of Thin Film Optics, Key Laboratory of Materials for High Power Laser, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800, China
| | - Wei Shi
- Key Laboratory of Advanced Display and System Applications, Ministry of Education, School of Mechatronic Engineering and Automation, Shanghai University, Shanghai 200072, China
| | - Xuyong Yang
- Microelectronic R&D Center, School of Mechatronic Engineering and Automation, Shanghai University, Shanghai 200072, China
| | - Xingwei Ding
- Key Laboratory of Advanced Display and System Applications, Ministry of Education, School of Mechatronic Engineering and Automation, Shanghai University, Shanghai 200072, China
| | - Bin Wei
- Microelectronic R&D Center, School of Mechatronic Engineering and Automation, Shanghai University, Shanghai 200072, China
- Key Laboratory of Advanced Display and System Applications, Ministry of Education, School of Mechatronic Engineering and Automation, Shanghai University, Shanghai 200072, China
| |
Collapse
|
13
|
Niu X, Dong G, Li D, Zhang Y, Zhang Y. Atomic layer deposition modified PIM-1 membranes for improved CO2 separation: A comparative study on the microstructure-performance relationships. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.121103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
14
|
Atomic Layer Deposition for Electrochemical Energy: from Design to Industrialization. ELECTROCHEM ENERGY R 2022. [DOI: 10.1007/s41918-022-00146-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
15
|
Abstract
Zeolites with ordered microporous systems, distinct framework topologies, good spatial nanoconfinement effects, and superior (hydro)thermal stability are an ideal scaffold for planting diverse active metal species, including single sites, clusters, and nanoparticles in the framework and framework-associated sites and extra-framework positions, thus affording the metal-in-zeolite catalysts outstanding activity, unique shape selectivity, and enhanced stability and recyclability in the processes of Brønsted acid-, Lewis acid-, and extra-framework metal-catalyzed reactions. Especially, thanks to the advances in zeolite synthesis and characterization techniques in recent years, zeolite-confined extra-framework metal catalysts (denoted as metal@zeolite composites) have experienced rapid development in heterogeneous catalysis, owing to the combination of the merits of both active metal sites and zeolite intrinsic properties. In this review, we will present the recent developments of synthesis strategies for incorporating and tailoring of active metal sites in zeolites and advanced characterization techniques for identification of the location, distribution, and coordination environment of metal species in zeolites. Furthermore, the catalytic applications of metal-in-zeolite catalysts are demonstrated, with an emphasis on the metal@zeolite composites in hydrogenation, dehydrogenation, and oxidation reactions. Finally, we point out the current challenges and future perspectives on precise synthesis, atomic level identification, and practical application of the metal-in-zeolite catalyst system.
Collapse
Affiliation(s)
- Qiang Zhang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, P. R. China.,International Center of Future Science, Jilin University, 2699 Qianjin Street, Changchun 130012, P. R. China
| | - Shiqin Gao
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, P. R. China.,International Center of Future Science, Jilin University, 2699 Qianjin Street, Changchun 130012, P. R. China
| | - Jihong Yu
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, P. R. China.,International Center of Future Science, Jilin University, 2699 Qianjin Street, Changchun 130012, P. R. China
| |
Collapse
|
16
|
Heikkinen N, Lehtonen J, Keskiväli L, Yim J, Shetty S, Ge Y, Reinikainen M, Putkonen M. Modelling atomic layer deposition overcoating formation on a porous heterogeneous catalyst. Phys Chem Chem Phys 2022; 24:20506-20516. [PMID: 35993759 DOI: 10.1039/d2cp02491h] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Atomic layer deposition (ALD) was used to deposit a protective overcoating (Al2O3) on an industrially relevant Co-based Fischer-Tropsch catalyst. A trimethylaluminium/water (TMA/H2O) ALD process was used to prepare ∼0.7-2.2 nm overcoatings on an incipient wetness impregnated Co-Pt/TiO2 catalyst. A diffusion-reaction differential equation model was used to predict precursor transport and the resulting deposited overcoating surface coverage inside a catalyst particle. The model was validated against transmission electron (TEM) and scanning electron (SEM) microscopy studies. The prepared model utilised catalyst physical properties and ALD process parameters to estimate achieved overcoating thickness for 20 and 30 deposition cycles (1.36 and 2.04 nm respectively). The TEM analysis supported these estimates, with 1.29 ± 0.16 and 2.15 ± 0.29 nm average layer thicknesses. In addition to layer thickness estimation, the model was used to predict overcoating penetration into the porous catalyst. The model estimated a penetration depth of ∼19 μm, and cross-sectional scanning electron microscopy supported the prediction with a deepest penetration of 15-18 μm. The model successfully estimated the deepest penetration, however, the microscopy study showed penetration depth fluctuation between 0-18 μm, having an average of 9.6 μm.
Collapse
Affiliation(s)
- Niko Heikkinen
- VTT Technical Research Centre of Finland, P.O.Box 1000, FIN-02044 VTT, Espoo, Finland.
| | - Juha Lehtonen
- VTT Technical Research Centre of Finland, P.O.Box 1000, FIN-02044 VTT, Espoo, Finland.
| | - Laura Keskiväli
- VTT Technical Research Centre of Finland, P.O.Box 1000, FIN-02044 VTT, Espoo, Finland.
| | - Jihong Yim
- Department of Chemical and Metallurgical Engineering, Aalto University School of Chemical Engineering, Kemistintie 1, Espoo, Finland.
| | - Shwetha Shetty
- University of Helsinki, Department of Chemistry, P.O.Box 55, FIN-00014, Helsinki, Finland.
| | - Yanling Ge
- VTT Technical Research Centre of Finland, P.O.Box 1000, FIN-02044 VTT, Espoo, Finland.
| | - Matti Reinikainen
- VTT Technical Research Centre of Finland, P.O.Box 1000, FIN-02044 VTT, Espoo, Finland.
| | - Matti Putkonen
- University of Helsinki, Department of Chemistry, P.O.Box 55, FIN-00014, Helsinki, Finland.
| |
Collapse
|
17
|
Zhu L, Yang GL, Ding WJ, Cao YQ, Li WM, Li AD. Growth behavior of Ir metal formed by atomic layer deposition in the nanopores of anodic aluminum oxide. Dalton Trans 2022; 51:9664-9672. [PMID: 35704906 DOI: 10.1039/d2dt01358d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The conformal coating or surface modification in high aspect ratio nanostructures is a tough challenge using traditional physical/chemical vapor deposition, especially for metal deposition. In this work, the growth behavior of iridium (Ir) metal formed by atomic layer deposition (ALD) in anodic aluminum oxide (AAO) templates was explored deeply. It is found that the surface hydrophilicity is crucial for the nucleation of ALD Ir. An in situ ALD Al2O3 layer with an ultra-hydrophilic surface can greatly promote the nucleation of ALD Ir in AAO nanopores. The effect of the Ir precursor pulse time, diameter, and length of AAO nanopores on the infiltration depth of ALD Ir was investigated systematically. The results show that the infiltration depth of ALD Ir in AAO nanopores is in proportion to the pore diameter and the square root of the Ir precursor pulse time, which follows a diffusion-limited model. Furthermore, the Ir precursor pulse time to obtain conformal Ir coating throughout all the AAO channels is in proportion to the square of the aspect ratio of AAO templates. In addition, the conformal Ir deposition in AAO nanopores is also related to the Ir precursor purge time and the O2 partial pressure. Insufficient Ir purge time could cause a CVD-like reaction, leading to the reduction of the infiltration depth in AAO. Higher O2 partial pressure can facilitate Ir nucleation with more Ir precursor consumption at the entrance of nanopores, decreasing the infiltration depth in AAO nanopores, so appropriate O2 partial pressure should be chosen for ALD Ir in high aspect ratio materials. Above all, our research is valuable for surface modification or coating of metal by ALD in high aspect ratio nanostructures for 3D microelectronics, nano-fabrication, catalysis and energy fields.
Collapse
Affiliation(s)
- Lin Zhu
- National Laboratory of Solid State Microstructures, Materials Science and Engineering Department, College of Engineering and Applied Sciences, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, P. R. China.
| | - Geng-Lai Yang
- National Laboratory of Solid State Microstructures, Materials Science and Engineering Department, College of Engineering and Applied Sciences, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, P. R. China.
| | - Wen-Juan Ding
- National Laboratory of Solid State Microstructures, Materials Science and Engineering Department, College of Engineering and Applied Sciences, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, P. R. China. .,Jiangsu Leadmicro Nano-Technology Co., Ltd, Wuxi, Jiangsu, People's Republic of China
| | - Yan-Qiang Cao
- Institute of Micro-nano Photonic & Beam Steering, School of Science, Nanjing University of Science and Technology, Nanjing 210094, P. R. China
| | - Wei-Ming Li
- National Laboratory of Solid State Microstructures, Materials Science and Engineering Department, College of Engineering and Applied Sciences, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, P. R. China. .,Jiangsu Leadmicro Nano-Technology Co., Ltd, Wuxi, Jiangsu, People's Republic of China
| | - Ai-Dong Li
- National Laboratory of Solid State Microstructures, Materials Science and Engineering Department, College of Engineering and Applied Sciences, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, P. R. China.
| |
Collapse
|
18
|
Lee K, Yoon S, Hong S, Kim H, Oh K, Moon J. Al 2O 3-Coated Si-Alloy Prepared by Atomic Layer Deposition as Anodes for Lithium-Ion Batteries. MATERIALS (BASEL, SWITZERLAND) 2022; 15:4189. [PMID: 35744248 PMCID: PMC9231070 DOI: 10.3390/ma15124189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 06/06/2022] [Accepted: 06/10/2022] [Indexed: 12/10/2022]
Abstract
Silicon-based anodes can increase the energy density of Li-ion batteries (LIBs) owing to their large weights and volumetric capacities. However, repeated charging and discharging can rapidly deteriorate the electrochemical properties because of a large volume change in the electrode. In this study, a commercial Fe-Si powder was coated with Al2O3 layers of different thicknesses via atomic layer deposition (ALD) to prevent the volume expansion of Si and suppress the formation of crack-induced solid electrolyte interfaces. The Al2O3 content was controlled by adjusting the trimethyl aluminum exposure time, and higher Al2O3 contents significantly improved the electrochemical properties. In 300 cycles, the capacity retention rate of a pouch full-cell containing the fabricated anodes increased from 69.8% to 72.3% and 79.1% depending on the Al2O3 content. The powder characterization and coin and pouch cell cycle evaluation results confirmed the formation of an Al2O3 layer on the powder surface. Furthermore, the expansion rate observed during the charging/discharging of the pouch cell indicated that the deposited layer suppressed the powder expansion and improved the cell stability. Thus, the performance of an LIB containing Si-alloy anodes can be improved by coating an ALD-synthesized protective Al2O3 layer.
Collapse
Affiliation(s)
- Kikang Lee
- Research and Development Center, MK Electron, Yongin-si 17030, Korea; (K.L.); (S.H.)
- Department of Materials Science and Engineering, Seoul National University, Seoul-si 08826, Korea;
| | - Sungho Yoon
- Electronic Convergence Materials and Device Research Center, Korea Electronics Technology Institute (KETI), Seongnam-si 13509, Korea; (S.Y.); (H.K.)
- Department of Mechanical Engineering, Sungkyunkwan University, Suwon-si 16419, Korea
| | - Sunghoon Hong
- Research and Development Center, MK Electron, Yongin-si 17030, Korea; (K.L.); (S.H.)
| | - Hyunmi Kim
- Electronic Convergence Materials and Device Research Center, Korea Electronics Technology Institute (KETI), Seongnam-si 13509, Korea; (S.Y.); (H.K.)
| | - Kyuhwan Oh
- Department of Materials Science and Engineering, Seoul National University, Seoul-si 08826, Korea;
| | - Jeongtak Moon
- Research and Development Center, MK Electron, Yongin-si 17030, Korea; (K.L.); (S.H.)
| |
Collapse
|
19
|
Practically applicable water oxidation electrodes from 3D-printed Ti6Al4V scaffolds with surface nanostructuration and iridium catalyst coating. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.140308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
20
|
Redekop EA, Yablonsky GS, Gleaves JT. Truth is, we all are transients: A perspective on the time-dependent nature of reactions and those who study them. Catal Today 2022. [DOI: 10.1016/j.cattod.2022.05.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
21
|
Abstract
Noble-metal nanoparticles (NMNPs), with their outstanding properties, have been arousing the interest of scientists for centuries. Although our knowledge of them is much more significant today, and we can obtain NMNPs in various sizes, shapes, and compositions, our interest in them has not waned. When talking about noble metals, gold, silver, and platinum come to mind first. Still, we cannot forget about elements belonging to the so-called platinum group, such as ruthenium, rhodium, palladium, osmium, and iridium, whose physical and chemical properties are very similar to those of platinum. It makes them highly demanded and widely used in various applications. This review presents current knowledge on the preparation of all noble metals in the form of nanoparticles and their assembling with carbon supports. We focused on the catalytic applications of these materials in the fuel-cell field. Furthermore, the influence of supporting materials on the electrocatalytic activity, stability, and selectivity of noble-metal-based catalysts is discussed.
Collapse
|
22
|
Pulinthanathu Sree S, Breynaert E, Kirschhock CEA, Martens JA. Hierarchical COK-X Materials for Applications in Catalysis and Adsorptive Separation and Controlled Release. FRONTIERS IN CHEMICAL ENGINEERING 2022. [DOI: 10.3389/fceng.2022.810443] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Over the years, COK has developed a family of silicate materials and metal–organic framework hybrids with hierarchical porosity and functionality, coined zeogrids, zeotiles, and COK-x (stemming from the Flemish name of the laboratory “Centrum voor Oppervlaktechemie en Katalyse”). Several of these materials have unique features relevant to heterogeneous catalysis, molecular separation, and controlled release and found applications in the field of green chemistry, environmental protection, and pharmaceutical formulation. Discovery of a new material typically occurs by serendipity, but the research was always guided by hypothesis. This review provides insight in the process of tuning initial research hypotheses to match material properties to specific applications. This review describes the synthesis, structure, properties, and applications of 12 different materials. Some have simple synthesis protocols, facilitating upscaling and reproduction and rendering them attractive also in this respect.
Collapse
|
23
|
Zaera F. Designing Sites in Heterogeneous Catalysis: Are We Reaching Selectivities Competitive With Those of Homogeneous Catalysts? Chem Rev 2022; 122:8594-8757. [PMID: 35240777 DOI: 10.1021/acs.chemrev.1c00905] [Citation(s) in RCA: 69] [Impact Index Per Article: 34.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
A critical review of different prominent nanotechnologies adapted to catalysis is provided, with focus on how they contribute to the improvement of selectivity in heterogeneous catalysis. Ways to modify catalytic sites range from the use of the reversible or irreversible adsorption of molecular modifiers to the immobilization or tethering of homogeneous catalysts and the development of well-defined catalytic sites on solid surfaces. The latter covers methods for the dispersion of single-atom sites within solid supports as well as the use of complex nanostructures, and it includes the post-modification of materials via processes such as silylation and atomic layer deposition. All these methodologies exhibit both advantages and limitations, but all offer new avenues for the design of catalysts for specific applications. Because of the high cost of most nanotechnologies and the fact that the resulting materials may exhibit limited thermal or chemical stability, they may be best aimed at improving the selective synthesis of high value-added chemicals, to be incorporated in organic synthesis schemes, but other applications are being explored as well to address problems in energy production, for instance, and to design greener chemical processes. The details of each of these approaches are discussed, and representative examples are provided. We conclude with some general remarks on the future of this field.
Collapse
Affiliation(s)
- Francisco Zaera
- Department of Chemistry and UCR Center for Catalysis, University of California, Riverside, California 92521, United States
| |
Collapse
|
24
|
Celik E, Cop P, Negi RS, Mazilkin A, Ma Y, Klement P, Schörmann J, Chatterjee S, Brezesinski T, Elm MT. Design of Ordered Mesoporous CeO 2-YSZ Nanocomposite Thin Films with Mixed Ionic/Electronic Conductivity via Surface Engineering. ACS NANO 2022; 16:3182-3193. [PMID: 35138801 DOI: 10.1021/acsnano.1c11032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Mixed ionic and electronic conductors represent a technologically relevant materials system for electrochemical device applications in the field of energy storage and conversion. Here, we report about the design of mixed-conducting nanocomposites by facile surface modification using atomic layer deposition (ALD). ALD is the method of choice, as it allows coating of even complex surfaces. Thermally stable mesoporous thin films of 8 mol-% yttria-stabilized zirconia (YSZ) with different pore sizes of 17, 24, and 40 nm were prepared through an evaporation-induced self-assembly process. The free surface of the YSZ films was uniformly coated via ALD with a ceria layer of either 3 or 7 nm thickness. Electrochemical impedance spectroscopy was utilized to probe the influence of the coating on the charge-transport properties. Interestingly, the porosity is found to have no effect at all. In contrast, the thickness of the ceria surface layer plays an important role. While the nanocomposites with a 7 nm coating only show ionic conductivity, those with a 3 nm coating exhibit mixed conductivity. The results highlight the possibility of tailoring the electrical transport properties by varying the coating thickness, thereby providing innovative design principles for the next-generation electrochemical devices.
Collapse
Affiliation(s)
- Erdogan Celik
- Center for Materials Research, Justus-Liebig-University Giessen, Heinrich-Buff-Ring 16, 35392 Giessen, Germany
| | - Pascal Cop
- Center for Materials Research, Justus-Liebig-University Giessen, Heinrich-Buff-Ring 16, 35392 Giessen, Germany
- Institute of Physical Chemistry, Justus-Liebig-University Giessen, Heinrich-Buff-Ring 17, 35392 Giessen, Germany
| | - Rajendra S Negi
- Center for Materials Research, Justus-Liebig-University Giessen, Heinrich-Buff-Ring 16, 35392 Giessen, Germany
| | - Andrey Mazilkin
- Institute of Nanotechnology, Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| | - Yanjiao Ma
- Institute of Nanotechnology, Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| | - Philip Klement
- Center for Materials Research, Justus-Liebig-University Giessen, Heinrich-Buff-Ring 16, 35392 Giessen, Germany
- Institute of Experimental Physics I, Justus-Liebig-University Giessen, Heinrich-Buff-Ring 16, 35392 Giessen, Germany
| | - Jörg Schörmann
- Center for Materials Research, Justus-Liebig-University Giessen, Heinrich-Buff-Ring 16, 35392 Giessen, Germany
- Institute of Experimental Physics I, Justus-Liebig-University Giessen, Heinrich-Buff-Ring 16, 35392 Giessen, Germany
| | - Sangam Chatterjee
- Center for Materials Research, Justus-Liebig-University Giessen, Heinrich-Buff-Ring 16, 35392 Giessen, Germany
- Institute of Experimental Physics I, Justus-Liebig-University Giessen, Heinrich-Buff-Ring 16, 35392 Giessen, Germany
| | - Torsten Brezesinski
- Institute of Nanotechnology, Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| | - Matthias T Elm
- Center for Materials Research, Justus-Liebig-University Giessen, Heinrich-Buff-Ring 16, 35392 Giessen, Germany
- Institute of Physical Chemistry, Justus-Liebig-University Giessen, Heinrich-Buff-Ring 17, 35392 Giessen, Germany
- Institute of Experimental Physics I, Justus-Liebig-University Giessen, Heinrich-Buff-Ring 16, 35392 Giessen, Germany
| |
Collapse
|
25
|
Redokop E, Poelman H, Filez M, Ramachandran RK, Dendooven J, Detavernier C, Marin GB, Olsbye U, Galvita V. Aligning time-resolved kinetics (TAP) and surface spectroscopy (AP-XPS) for a more comprehensive understanding of ALD-derived 2D and 3D model catalysts. Faraday Discuss 2022; 236:485-509. [DOI: 10.1039/d1fd00120e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Spectro-kinetic characterization of complex catalytic materials, i.e. relating the observed reaction kinetics to spectroscopic descriptors of the catalyst state, presents a fundamental challenge with a potentially significant impact on various...
Collapse
|
26
|
Sosnov EA, Malkov AA, Malygin AA. Nanotechnology of Molecular Layering in Production of Inorganic and Hybrid Materials for Various Functional Purposes: II. Molecular Layering Technology and Prospects for Its Commercialization and Development in the XXI Century. RUSS J APPL CHEM+ 2021. [DOI: 10.1134/s1070427221090020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
27
|
Xu H, Yu W, Zhang J, Zhou Z, Zhang H, Ge H, Wang G, Qin Y. Rhodium nanoparticles confined in titania nanotubes for efficient Hydrogen evolution from Ammonia Borane. J Colloid Interface Sci 2021; 609:755-763. [PMID: 34823851 DOI: 10.1016/j.jcis.2021.11.078] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 11/14/2021] [Accepted: 11/15/2021] [Indexed: 12/17/2022]
Abstract
Designing efficient catalysts for hydrogen evolution from hydrolysis of ammonia borane (AB) have attracted considerable attention. Rhodium (Rh) based catalysts with rational design present remarkable catalytic performance for the reaction. Herein, we report the confined Rh@TiO2 catalysts synthesized by atomic layer deposition combining with the sacrificial template approach, in which the Rh nanoparticles are uniformly confined on the inner surface of the porous titania nanotubes. The optimized catalysts show high catalytic activity with a turnover frequency value of 334.1 molH2·molRh-1·min-1 and better durability. Mechanistic investigation demonstrates that the cleavage of OH bands in water should be the rate determining step, and the appropriate concentration of NaOH can further enhance the hydrogen evolution activity. The catalysts can also achieve the hydrogenation of various organic substrates using AB as the hydrogen source. In addition, our present strategy is general and can be extended to the synthesis of other confined catalysts for various catalytic reactions.
Collapse
Affiliation(s)
- Hao Xu
- Interdisciplinary Research Center of Biology & Catalysis, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China; School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an 710072, China; State Key Laboratory Base of Eco-Chemical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Wenlong Yu
- State Key Laboratory Base of Eco-Chemical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Jiankang Zhang
- Interdisciplinary Research Center of Biology & Catalysis, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China
| | - Zhan Zhou
- College of Chemistry and Chemical Engineering, Henan Key Laboratory of Function-Oriented Porous Materials, Luoyang Normal University, Luoyang 471934, China
| | - Hongxia Zhang
- State Key Laboratory Base of Eco-Chemical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Huibin Ge
- Interdisciplinary Research Center of Biology & Catalysis, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China
| | - Guangjian Wang
- State Key Laboratory Base of Eco-Chemical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Yong Qin
- Interdisciplinary Research Center of Biology & Catalysis, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China; State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan 030001, China
| |
Collapse
|
28
|
Goodman ED, Asundi AS, Hoffman AS, Bustillo KC, Stebbins JF, Bare SR, Bent SF, Cargnello M. Monolayer Support Control and Precise Colloidal Nanocrystals Demonstrate Metal-Support Interactions in Heterogeneous Catalysts. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2104533. [PMID: 34535919 DOI: 10.1002/adma.202104533] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2021] [Revised: 07/22/2021] [Indexed: 06/13/2023]
Abstract
Electronic and geometric interactions between active and support phases are critical in determining the activity of heterogeneous catalysts, but metal-support interactions are challenging to study. Here, it is demonstrated how the combination of the monolayer-controlled formation using atomic layer deposition (ALD) and colloidal nanocrystal synthesis methods leads to catalysts with sub-nanometer precision of active and support phases, thus allowing for the study of the metal-support interactions in detail. The use of this approach in developing a fundamental understanding of support effects in Pd-catalyzed methane combustion is demonstrated. Uniform Pd nanocrystals are deposited onto Al2 O3 /SiO2 spherical supports prepared with control over morphology and Al2 O3 layer thicknesses ranging from sub-monolayer to a ≈4 nm thick uniform coating. Dramatic changes in catalytic activity depending on the coverage and structure of Al2 O3 situated at the Pd/Al2 O3 interface are observed, with even a single monolayer of alumina contributing an order of magnitude increase in reaction rate. By building the Pd/Al2 O3 interface up layer-by-layer and using uniform Pd nanocrystals, this work demonstrates the importance of controlled and tunable materials in determining metal-support interactions and catalyst activity.
Collapse
Affiliation(s)
- Emmett D Goodman
- Department of Chemical Engineering, Stanford University, Stanford, CA, 94305, USA
| | - Arun S Asundi
- Department of Chemical Engineering, Stanford University, Stanford, CA, 94305, USA
| | - Adam S Hoffman
- SSRL, SLAC National Accelerator Laboratory, Menlo Park, CA, 94025, USA
| | - Karen C Bustillo
- National Center for Electron Microscopy, Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Jonathan F Stebbins
- Department of Geological Sciences, Stanford University, Stanford, CA, 94305, USA
| | - Simon R Bare
- SSRL, SLAC National Accelerator Laboratory, Menlo Park, CA, 94025, USA
| | - Stacey F Bent
- Department of Chemical Engineering, Stanford University, Stanford, CA, 94305, USA
| | - Matteo Cargnello
- Department of Chemical Engineering, Stanford University, Stanford, CA, 94305, USA
| |
Collapse
|
29
|
Zhou X, Heiranian M, Yang M, Epsztein R, Gong K, White CE, Hu S, Kim JH, Elimelech M. Selective Fluoride Transport in Subnanometer TiO 2 Pores. ACS NANO 2021; 15:16828-16838. [PMID: 34637268 DOI: 10.1021/acsnano.1c07210] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Synthesizing nanopores which mimic the functionality of ion-selective biological channels has been a challenging yet promising approach to advance technologies for precise ion-ion separations. Inspired by the facilitated fluoride (F-) permeation in the biological fluoride channel, we designed a highly fluoride-selective TiO2 film using the atomic layer deposition (ALD) technique. The subnanometer voids within the fabricated TiO2 film (4 Å < d < 12 Å, with two distinct peaks at 5.5 and 6.5 Å), created by the hindered diffusion of ALD precursors (d = 7 Å), resulted in more than eight times faster permeation of sodium fluoride compared to other sodium halides. We show that the specific Ti-F interactions compensate for the energy penalty of F- dehydration during the partitioning of F- ions into the pore and allow for an intrapore accumulation of F- ions. Concomitantly, the accumulation of F- ions on the pore walls also enhances the transport of sodium (Na+) cations due to electrostatic interactions. Molecular dynamics simulations probing the ion concentration and mobility within the TiO2 pore further support our proposed mechanisms for the selective F- transport and enhanced Na+ permeation in the TiO2 film. Overall, our work provides insights toward the design of ion-selective nanopores using the ALD technique.
Collapse
Affiliation(s)
- Xuechen Zhou
- Department of Chemical and Environmental Engineering, Yale University, New Haven, Connecticut 06511, United States
| | - Mohammad Heiranian
- Department of Chemical and Environmental Engineering, Yale University, New Haven, Connecticut 06511, United States
| | - Meiqi Yang
- Department of Chemical and Environmental Engineering, Yale University, New Haven, Connecticut 06511, United States
| | - Razi Epsztein
- Faculty of Civil and Environmental Engineering, Technion-Israel Institute of Technology, Technion City, Haifa 32000, Israel
| | - Kai Gong
- Department of Civil and Environmental Engineering and the Andlinger Center for Energy and the Environment, Princeton University, Princeton, New Jersey 08544, United States
| | - Claire E White
- Department of Civil and Environmental Engineering and the Andlinger Center for Energy and the Environment, Princeton University, Princeton, New Jersey 08544, United States
| | - Shu Hu
- Department of Chemical and Environmental Engineering, Yale University, New Haven, Connecticut 06511, United States
| | - Jae-Hong Kim
- Department of Chemical and Environmental Engineering, Yale University, New Haven, Connecticut 06511, United States
| | - Menachem Elimelech
- Department of Chemical and Environmental Engineering, Yale University, New Haven, Connecticut 06511, United States
| |
Collapse
|
30
|
Srinath NV, Longo A, Poelman H, Ramachandran RK, Feng JY, Dendooven J, Reyniers MF, Galvita VV. In Situ XAS/SAXS Study of Al 2O 3-Coated PtGa Catalysts for Propane Dehydrogenation. ACS Catal 2021. [DOI: 10.1021/acscatal.1c03146] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
| | - Alessandro Longo
- Istituto per lo Studio dei Materiali Nanostrutturati (ISMN), CNR, UOS Palermo, Via Ugo La Malfa, 153, 90146 Palermo, Italy
| | - Hilde Poelman
- Laboratory for Chemical Technology, Ghent University, Technologiepark 125, B-9052 Ghent, Belgium
| | - Ranjith K. Ramachandran
- Department of Solid State Sciences, CoCooN Group, Ghent University, Krijgslaan 281/S1, B-9000 Ghent, Belgium
| | - Ji-Yu Feng
- Department of Solid State Sciences, CoCooN Group, Ghent University, Krijgslaan 281/S1, B-9000 Ghent, Belgium
| | - Jolien Dendooven
- Department of Solid State Sciences, CoCooN Group, Ghent University, Krijgslaan 281/S1, B-9000 Ghent, Belgium
| | - Marie-Françoise Reyniers
- Laboratory for Chemical Technology, Ghent University, Technologiepark 125, B-9052 Ghent, Belgium
| | - Vladimir. V. Galvita
- Laboratory for Chemical Technology, Ghent University, Technologiepark 125, B-9052 Ghent, Belgium
| |
Collapse
|
31
|
Chen X, Wu L, Yang H, Qin Y, Ma X, Li N. Tailoring the Microporosity of Polymers of Intrinsic Microporosity for Advanced Gas Separation by Atomic Layer Deposition. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202016901] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Xiuling Chen
- State Key Laboratory of Coal Conversion Institute of Coal Chemistry Chinese Academy of Sciences Taiyuan 030001 China
- Hubei Key Laboratory of Radiation Chemistry and Functional Materials Hubei University of Science and Technology Xianning 437100 China
| | - Lei Wu
- State Key Laboratory of Coal Conversion Institute of Coal Chemistry Chinese Academy of Sciences Taiyuan 030001 China
| | - Huimin Yang
- State Key Laboratory of Coal Conversion Institute of Coal Chemistry Chinese Academy of Sciences Taiyuan 030001 China
| | - Yong Qin
- State Key Laboratory of Coal Conversion Institute of Coal Chemistry Chinese Academy of Sciences Taiyuan 030001 China
| | - Xiaohua Ma
- State Key Laboratory of Separation Membranes and Membrane Processes School of Materials Science and Engineering Tiangong University Tianjin 300387 P. R. China
| | - Nanwen Li
- State Key Laboratory of Coal Conversion Institute of Coal Chemistry Chinese Academy of Sciences Taiyuan 030001 China
| |
Collapse
|
32
|
Chen X, Wu L, Yang H, Qin Y, Ma X, Li N. Tailoring the Microporosity of Polymers of Intrinsic Microporosity for Advanced Gas Separation by Atomic Layer Deposition. Angew Chem Int Ed Engl 2021; 60:17875-17880. [PMID: 33547845 DOI: 10.1002/anie.202016901] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Revised: 02/01/2021] [Indexed: 11/09/2022]
Abstract
Tailoring the microporosity of intrinsically microporous polymers at the atomic level is one of the biggest challenges in achieving high-performance polymeric gas separation membranes. In this study, for the first time, the Al2 O3 atomic layer deposition (ALD) technique was used to modify the microporosity of a typical polymer of intrinsic microporosity (PIM-1) at the atomic level. PIM-1 with six ALD cycles (PIM-1-Al2 O3 -6) exhibited simultaneous high thermal, mechanical, pure- and mixed-gas separation, and anti-aging properties. The O2 /N2 , H2 /N2 , and H2 /CH4 separation performances were adequate above the latest trade-off lines. PIM-1-Al2 O3 -6 showed CO2 and O2 permeabilities of 624 and 188 Barrer, combined with CO2 /CH4 and O2 /N2 selectivities of 56.2 and 8.8, respectively. This significantly enhanced performance was attributed to the strong size sieving effect induced by the Al2 O3 deposition.
Collapse
Affiliation(s)
- Xiuling Chen
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan, 030001, China.,Hubei Key Laboratory of Radiation Chemistry and Functional Materials, Hubei University of Science and Technology, Xianning, 437100, China
| | - Lei Wu
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan, 030001, China
| | - Huimin Yang
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan, 030001, China
| | - Yong Qin
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan, 030001, China
| | - Xiaohua Ma
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Materials Science and Engineering, Tiangong University, Tianjin, 300387, P. R. China
| | - Nanwen Li
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan, 030001, China
| |
Collapse
|
33
|
Xu D, Yin J, Gao Y, Zhu D, Wang S. Atomic-Scale Designing of Zeolite Based Catalysts by Atomic Layer Deposition. Chemphyschem 2021; 22:1287-1301. [PMID: 33844400 DOI: 10.1002/cphc.202100116] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 04/12/2021] [Indexed: 12/15/2022]
Abstract
Zeolite-supported catalysts have been widely used in the field of heterogeneous catalysis. Atomic-scale governing the metal or acid sites on zeolites still encounters great challenge in controllable synthesis and developing of novel catalysts. Atomic layer deposition (ALD), owing to its unique character of self-limiting surface reactions, becomes one of the most promising and controllable strategies to tailor the metallic deposition sites in atomic scale precisely. In this review, we present a comprehensive summary and viewpoint of recent research in designing and engineering the structural of zeolite-based catalysts via ALD method. A prior focus is laid on the deposition of metals on the zeolites with emphasis on the isolated states of metals, followed by introducing the selected metals into channels of zeolites associates with identifying the location of metals in and/or out of the channels. Subsequently, detailed analysis of tailoring the acid sites of different zeolites is provided. Assisted synthesis of zeolite and the regioselective deposition of metal on special sites to modify the structures of zeolites are also critically discussed. We further summarize the challenges of ALD with respect to engineering the active sites in heterogeneous zeolite-based catalysts and provide the perspectives on the development in this field.
Collapse
Affiliation(s)
- Dan Xu
- Energy Research Institute, School of Energy and Power Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250014, People's Republic of China
| | - Junqing Yin
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan, 030001, People's Republic of China
| | - Ya Gao
- Energy Research Institute, School of Energy and Power Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250014, People's Republic of China
| | - Di Zhu
- Energy Research Institute, School of Energy and Power Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250014, People's Republic of China
| | - Shuyuan Wang
- Energy Research Institute, School of Energy and Power Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250014, People's Republic of China
| |
Collapse
|
34
|
Fonseca J, Lu J. Single-Atom Catalysts Designed and Prepared by the Atomic Layer Deposition Technique. ACS Catal 2021. [DOI: 10.1021/acscatal.1c01200] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Javier Fonseca
- Nanomaterial Laboratory for Catalysis and Advanced Separations, Department of Chemical Engineering, Northeastern University, 313 Snell Engineering Center, 360 Huntington Avenue, Boston, Massachusetts 02115-5000, United States
| | - Junling Lu
- Department of Chemical Physics, Hefei National Laboratory for Physical Sciences at the Microscale, iChEM, University of Science and Technology of China, Hefei, Anhui 230026, China
| |
Collapse
|
35
|
Xu H, Akbari MK, Zhuiykov S. 2D Semiconductor Nanomaterials and Heterostructures: Controlled Synthesis and Functional Applications. NANOSCALE RESEARCH LETTERS 2021; 16:94. [PMID: 34032946 PMCID: PMC8149775 DOI: 10.1186/s11671-021-03551-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 05/17/2021] [Indexed: 06/01/2023]
Abstract
Two-dimensional (2D) semiconductors beyond graphene represent the thinnest stable known nanomaterials. Rapid growth of their family and applications during the last decade of the twenty-first century have brought unprecedented opportunities to the advanced nano- and opto-electronic technologies. In this article, we review the latest progress in findings on the developed 2D nanomaterials. Advanced synthesis techniques of these 2D nanomaterials and heterostructures were summarized and their novel applications were discussed. The fabrication techniques include the state-of-the-art developments of the vapor-phase-based deposition methods and novel van der Waals (vdW) exfoliation approaches for fabrication both amorphous and crystalline 2D nanomaterials with a particular focus on the chemical vapor deposition (CVD), atomic layer deposition (ALD) of 2D semiconductors and their heterostructures as well as on vdW exfoliation of 2D surface oxide films of liquid metals.
Collapse
Affiliation(s)
- Hongyan Xu
- School of Materials Science and Engineering, North University of China, Taiyuan, 030051 People’s Republic of China
| | - Mohammad Karbalaei Akbari
- Centre for Environmental and Energy Research, Ghent University Global Campus, 119-5 Songdomunhwa-ro, Yeonsu-gu, Incheon, 21985 South Korea
- Department of Solid State Science, Faculty of Science, Ghent University, Krijgslaan 281/S1, 9000 Ghent, Belgium
| | - Serge Zhuiykov
- School of Materials Science and Engineering, North University of China, Taiyuan, 030051 People’s Republic of China
- Centre for Environmental and Energy Research, Ghent University Global Campus, 119-5 Songdomunhwa-ro, Yeonsu-gu, Incheon, 21985 South Korea
- Department of Solid State Science, Faculty of Science, Ghent University, Krijgslaan 281/S1, 9000 Ghent, Belgium
| |
Collapse
|
36
|
Zhuang L, Corkery P, Lee DT, Lee S, Kooshkbaghi M, Xu Z, Dai G, Kevrekidis IG, Tsapatsis M. Numerical simulation of atomic layer deposition for thin deposit formation in a mesoporous substrate. AIChE J 2021. [DOI: 10.1002/aic.17305] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Liwei Zhuang
- School of Chemical Engineering East China University of Science and Technology Shanghai China
- Department of Chemical and Biomolecular Engineering Johns Hopkins University Baltimore Maryland USA
- Institute for NanoBio Technology Johns Hopkins University Baltimore Maryland USA
| | - Peter Corkery
- Department of Chemical and Biomolecular Engineering Johns Hopkins University Baltimore Maryland USA
- Institute for NanoBio Technology Johns Hopkins University Baltimore Maryland USA
| | - Dennis T. Lee
- Department of Chemical and Biomolecular Engineering Johns Hopkins University Baltimore Maryland USA
- Institute for NanoBio Technology Johns Hopkins University Baltimore Maryland USA
| | - Seungjoon Lee
- Department of Chemical and Biomolecular Engineering Johns Hopkins University Baltimore Maryland USA
| | - Mahdi Kooshkbaghi
- Program in Applied and Computational Mathematics Princeton University Princeton New Jersey USA
| | - Zhen‐liang Xu
- School of Chemical Engineering East China University of Science and Technology Shanghai China
| | - Gance Dai
- School of Chemical Engineering East China University of Science and Technology Shanghai China
| | - Ioannis G. Kevrekidis
- Department of Chemical and Biomolecular Engineering Johns Hopkins University Baltimore Maryland USA
| | - Michael Tsapatsis
- Department of Chemical and Biomolecular Engineering Johns Hopkins University Baltimore Maryland USA
- Institute for NanoBio Technology Johns Hopkins University Baltimore Maryland USA
- Applied Physics Laboratory Johns Hopkins University Laurel Maryland USA
| |
Collapse
|
37
|
Yu Y, Zhou Z, Xu L, Ding Y, Fang G. Reaction mechanism of atomic layer deposition of aluminum sulfide using trimethylaluminum and hydrogen sulfide. Phys Chem Chem Phys 2021; 23:9594-9603. [PMID: 33885104 DOI: 10.1039/d1cp00864a] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Atomic layer deposition (ALD) is a nanopreparation technique for materials and is widely used in the fields of microelectronics, energy and catalysis. ALD methods for metal sulfides, such as Al2S3 and Li2S, have been developed for lithium-ion batteries and solid-state electrolytes. In this work, using density functional theory calculations, the possible reaction pathways of the ALD of Al2S3 using trimethylaluminum (TMA) and H2S were investigated at the M06-2X/6-311G(d, p) level. Al2S3 ALD can be divided into two consecutive and complementary half-reactions involving TMA and H2S, respectively. In the TMA half-reaction, the methyl group can be eliminated through the reaction with the sulfhydryl group on the surface. This process is a ligand exchange reaction between the methyl and sulfhydryl groups via a four-membered ring transition state. TMA half-reaction with the sulfhydrylated surface is more difficult than that with the hydroxylated surface. When the temperature increases, the reaction requires more energy, owing to the contribution of the entropy. In the H2S half-reaction, the methyl group on the surface can further react with the H2S precursor via a four-membered ring transition state. The orientation of H2S and more molecules have minimal effect on the H2S half-reaction. The reaction involving H2S through a six-membered ring transition state is unfavorable. In addition, the methyl and sulfhydryl groups on the surface can both react with the adjacent sulfhydryl group on the subsurface to form and release CH4 or H2S in the two half-reactions. Furthermore, sulfhydryl elimination occurs more easily than methyl elimination on the surface. These findings for the TMA and H2S half-reactions of Al2S3 ALD may be used for studying precursor chemistry and improvements in the preparation of other metal sulfides for emerging applications.
Collapse
Affiliation(s)
- Yanghong Yu
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, China.
| | | | | | | | | |
Collapse
|
38
|
Celik E, Ma Y, Brezesinski T, Elm MT. Ordered mesoporous metal oxides for electrochemical applications: correlation between structure, electrical properties and device performance. Phys Chem Chem Phys 2021; 23:10706-10735. [PMID: 33978649 DOI: 10.1039/d1cp00834j] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Ordered mesoporous metal oxides with a high specific surface area, tailored porosity and engineered interfaces are promising materials for electrochemical applications. In particular, the method of evaporation-induced self-assembly allows the formation of nanocrystalline films of controlled thickness on polar substrates. In general, mesoporous materials have the advantage of benefiting from a unique combination of structural, chemical and physical properties. This Perspective article addresses the structural characteristics and the electrical (charge-transport) properties of mesoporous metal oxides and how these affect their application in energy storage, catalysis and gas sensing.
Collapse
Affiliation(s)
- Erdogan Celik
- Center for Materials Research, Justus Liebig University Giessen, 35392 Giessen, Germany.
| | - Yanjiao Ma
- Institute of Nanotechnology, Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz Platz 1, 76344 Eggenstein-Leopoldshafen, Germany.
| | - Torsten Brezesinski
- Institute of Nanotechnology, Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz Platz 1, 76344 Eggenstein-Leopoldshafen, Germany.
| | - Matthias T Elm
- Center for Materials Research, Justus Liebig University Giessen, 35392 Giessen, Germany. and Institute of Experimental Physics I, Justus Liebig University Giessen, 35392 Giessen, Germany and Institute of Physical Chemistry, Justus Liebig University Giessen, 35392 Giessen, Germany
| |
Collapse
|
39
|
Ramachandran RK, Dendooven J, Detavernier C. Controlled synthesis of Fe-Pt nanoalloys using atomic layer deposition. NANOTECHNOLOGY 2021; 32:095602. [PMID: 33120377 DOI: 10.1088/1361-6528/abc5f5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
We report the phase and size-controlled synthesis of Fe-Pt nanoalloys, prepared via a two-step synthesis procedure. The first step is the deposition of bilayers consisting of iron oxide and Pt films of desired thicknesses using atomic layer deposition, followed by a temperature-programmed reduction treatment of the film under H2/N2 atmosphere. This method enables the phase pure synthesis of all three Fe-Pt alloy phases, namely Fe3Pt, FePt, and FePt3, as revealed by in situ x-ray diffraction and x-ray fluorescence measurements. It is also demonstrated that by changing the total thickness of the bilayers while keeping the Pt/(Pt + Fe) atomic ratio constant, the size of the resulting bimetallic nanoparticles can be tuned, as confirmed by scanning electron microscopic measurements.
Collapse
Affiliation(s)
- Ranjith K Ramachandran
- Department of Solid State Sciences, COCOON, Ghent University, Krijgslaan 281/S1, B-9000 Ghent, Belgium
| | - Jolien Dendooven
- Department of Solid State Sciences, COCOON, Ghent University, Krijgslaan 281/S1, B-9000 Ghent, Belgium
| | - Christophe Detavernier
- Department of Solid State Sciences, COCOON, Ghent University, Krijgslaan 281/S1, B-9000 Ghent, Belgium
| |
Collapse
|
40
|
Santo Domingo Peñaranda J, Nisula M, Vandenbroucke SST, Minjauw MM, Li J, Werbrouck A, Keukelier J, Pitillas Martínez AI, Dendooven J, Detavernier C. Converting molecular layer deposited alucone films into Al 2O 3/alucone hybrid multilayers by plasma densification. Dalton Trans 2021; 50:1224-1232. [PMID: 33351866 DOI: 10.1039/d0dt03896b] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Alucones are one of the best-known films in the Molecular Layer Deposition (MLD) field. In this work, we prove that alucone/Al2O3 nanolaminate synthesis can be successfully performed by alternating alucone MLD growth with static O2 plasma exposures. Upon plasma treatment, only the top part of the alucone is densified into Al2O3, while the rest of the film remains relatively unaltered. X-ray reflectivity (XRR) and X-ray photoelectron spectroscopy (XPS) depth profiling show that the process yields a bilayer structure, which remains stable in air. Fourier-transform infrared spectroscopy (FTIR) measurements show that Al2O3 features are generated after plasma treatment, while the original alucone features remain, confirming that plasma treatment results in a bilayer structure. Also, an intermediate carboxylate is created in the interface. Calculations of Al atom density during plasma exposure point towards a partial loss of Al atoms during plasma treatment, in addition to the removal of the glycerol backbone. The effect of different process parameters has been studied. Densification at the highest temperature possible (200 °C) has the best alucone preservation without hindering its thermal stability. In addition, operating at the lowest plasma power is found the most beneficial for the film, but there is a threshold that must be surpassed to achieve successful densification. About 70% of the original alucone film thickness can be expected to remain after densification, but thicker films may result in more diffuse interfaces. Additionally, this process has also been successfully performed in multilayers, showing real potential for encapsulation applications.
Collapse
Affiliation(s)
- Juan Santo Domingo Peñaranda
- Department of Solid State Sciences, CoCooN research group, Ghent University, Krijgslaan 281, S1, 9000 Gent, Belgium.
| | - Mikko Nisula
- Department of Solid State Sciences, CoCooN research group, Ghent University, Krijgslaan 281, S1, 9000 Gent, Belgium.
| | - Sofie S T Vandenbroucke
- Department of Solid State Sciences, CoCooN research group, Ghent University, Krijgslaan 281, S1, 9000 Gent, Belgium. and IMEC, Kapeldreef 75, B-3001 Leuven, Belgium
| | - Matthias M Minjauw
- Department of Solid State Sciences, CoCooN research group, Ghent University, Krijgslaan 281, S1, 9000 Gent, Belgium.
| | - Jin Li
- Department of Solid State Sciences, CoCooN research group, Ghent University, Krijgslaan 281, S1, 9000 Gent, Belgium.
| | - Andreas Werbrouck
- Department of Solid State Sciences, CoCooN research group, Ghent University, Krijgslaan 281, S1, 9000 Gent, Belgium.
| | - Jonas Keukelier
- Department of Solid State Sciences, CoCooN research group, Ghent University, Krijgslaan 281, S1, 9000 Gent, Belgium. and IMEC, Kapeldreef 75, B-3001 Leuven, Belgium
| | - Andrea I Pitillas Martínez
- Department of Solid State Sciences, CoCooN research group, Ghent University, Krijgslaan 281, S1, 9000 Gent, Belgium. and IMEC, Kapeldreef 75, B-3001 Leuven, Belgium and M2S, Centre for Surface Chemistry and Catalysis, University of Leuven, Celestijnenlaan 200F, B-3001 Leuven, Belgium
| | - Jolien Dendooven
- Department of Solid State Sciences, CoCooN research group, Ghent University, Krijgslaan 281, S1, 9000 Gent, Belgium.
| | - Christophe Detavernier
- Department of Solid State Sciences, CoCooN research group, Ghent University, Krijgslaan 281, S1, 9000 Gent, Belgium.
| |
Collapse
|
41
|
Ultralow Loading Ruthenium on Alumina Monoliths for Facile, Highly Recyclable Reduction of p-Nitrophenol. Catalysts 2021. [DOI: 10.3390/catal11020165] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The pervasive use of toxic nitroaromatics in industrial processes and their prevalence in industrial effluent has motivated the development of remediation strategies, among which is their catalytic reduction to the less toxic and synthetically useful aniline derivatives. While this area of research has a rich history with innumerable examples of active catalysts, the majority of systems rely on expensive precious metals and are submicron- or even a few-nanometer-sized colloidal particles. Such systems provide invaluable academic insight but are unsuitable for practical application. Herein, we report the fabrication of catalysts based on ultralow loading of the semiprecious metal ruthenium on 2–4 mm diameter spherical alumina monoliths. Ruthenium loading is achieved by atomic layer deposition (ALD) and catalytic activity is benchmarked using the ubiquitous para-nitrophenol, NaBH4 aqueous reduction protocol. Recyclability testing points to a very robust catalyst system with intrinsic ease of handling.
Collapse
|
42
|
Wu N, Ji X, Li L, Zhu J, Lu X. Mesoscience in supported nano-metal catalysts based on molecular thermodynamic modeling: A mini review and perspective. Chem Eng Sci 2021. [DOI: 10.1016/j.ces.2020.116164] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
43
|
Oppelt KT, Sevéry L, Utters M, Tilley SD, Hamm P. Flexible to rigid: IR spectroscopic investigation of a rhenium-tricarbonyl-complex at a buried interface. Phys Chem Chem Phys 2021; 23:4311-4316. [PMID: 33587068 DOI: 10.1039/d0cp06546c] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
This work explores the solid-liquid interface of a rhenium-tricarbonyl complex embedded in a layer of zirconium oxide deposited by atomic layer deposition (ALD). Time-resolved and steady state infrared spectroscopy were applied to reveal the correlations between the thickness of the ALD layer and the spectroscopic response of the system. We observed a transition of the molecular environment from flexible to rigid, as well as limitations to ligand exchange and excited state quenching on the embedded complexes, when the ALD layer is roughly of the same height as the molecules.
Collapse
Affiliation(s)
- Kerstin T Oppelt
- Department of Chemistry, University of Zurich, Winterthurerstr. 190, CH-8057 Zürich, Switzerland.
| | - Laurent Sevéry
- Department of Chemistry, University of Zurich, Winterthurerstr. 190, CH-8057 Zürich, Switzerland.
| | - Mirjam Utters
- Department of Chemistry, University of Zurich, Winterthurerstr. 190, CH-8057 Zürich, Switzerland.
| | - S David Tilley
- Department of Chemistry, University of Zurich, Winterthurerstr. 190, CH-8057 Zürich, Switzerland.
| | - Peter Hamm
- Department of Chemistry, University of Zurich, Winterthurerstr. 190, CH-8057 Zürich, Switzerland.
| |
Collapse
|
44
|
High-Temperature Atomic Layer Deposition of GaN on 1D Nanostructures. NANOMATERIALS 2020; 10:nano10122434. [PMID: 33291493 PMCID: PMC7762107 DOI: 10.3390/nano10122434] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 11/30/2020] [Accepted: 12/02/2020] [Indexed: 02/05/2023]
Abstract
Silica nanosprings (NS) were coated with gallium nitride (GaN) by high-temperature atomic layer deposition. The deposition temperature was 800 °C using trimethylgallium (TMG) as the Ga source and ammonia (NH3) as the reactive nitrogen source. The growth of GaN on silica nanosprings was compared with deposition of GaN thin films to elucidate the growth properties. The effects of buffer layers of aluminum nitride (AlN) and aluminum oxide (Al2O3) on the stoichiometry, chemical bonding, and morphology of GaN thin films were determined with X-ray photoelectron spectroscopy (XPS), high-resolution x-ray diffraction (HRXRD), and atomic force microscopy (AFM). Scanning and transmission electron microscopy of coated silica nanosprings were compared with corresponding data for the GaN thin films. As grown, GaN on NS is conformal and amorphous. Upon introducing buffer layers of Al2O3 or AlN or combinations thereof, GaN is nanocrystalline with an average crystallite size of 11.5 ± 0.5 nm. The electrical properties of the GaN coated NS depends on whether or not a buffer layer is present and the choice of the buffer layer. In addition, the IV curves of GaN coated NS and the thin films (TF) with corresponding buffer layers, or lack thereof, show similar characteristic features, which supports the conclusion that atomic layer deposition (ALD) of GaN thin films with and without buffer layers translates to 1D nanostructures.
Collapse
|
45
|
Shah D, Patel DI, Major GH, Argyle MD, Linford MR. A new holder/container with a porous cover for atomic layer deposition on particles, with transport analysis and detailed characterization of the resulting materials. SURF INTERFACE ANAL 2020. [DOI: 10.1002/sia.6895] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Dhruv Shah
- Department of Chemistry and Biochemistry Brigham Young University Provo UT 84602 USA
| | - Dhananjay I. Patel
- Department of Chemistry and Biochemistry Brigham Young University Provo UT 84602 USA
| | - George H. Major
- Department of Chemistry and Biochemistry Brigham Young University Provo UT 84602 USA
| | - Morris D. Argyle
- Department of Chemical Engineering Brigham Young University Provo UT 84602 USA
| | - Matthew R. Linford
- Department of Chemistry and Biochemistry Brigham Young University Provo UT 84602 USA
| |
Collapse
|
46
|
Kumar R, Mondal K, Panda PK, Kaushik A, Abolhassani R, Ahuja R, Rubahn HG, Mishra YK. Core-shell nanostructures: perspectives towards drug delivery applications. J Mater Chem B 2020; 8:8992-9027. [PMID: 32902559 DOI: 10.1039/d0tb01559h] [Citation(s) in RCA: 77] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Nanosystems have shown encouraging outcomes and substantial progress in the areas of drug delivery and biomedical applications. However, the controlled and targeted delivery of drugs or genes can be limited due to their physicochemical and functional properties. In this regard, core-shell type nanoparticles are promising nanocarrier systems for controlled and targeted drug delivery applications. These functional nanoparticles are emerging as a particular class of nanosystems because of their unique advantages, including high surface area, and easy surface modification and functionalization. Such unique advantages can facilitate the use of core-shell nanoparticles for the selective mingling of two or more different functional properties in a single nanosystem to achieve the desired physicochemical properties that are essential for effective targeted drug delivery. Several types of core-shell nanoparticles, such as metallic, magnetic, silica-based, upconversion, and carbon-based core-shell nanoparticles, have been designed and developed for drug delivery applications. Keeping the scope, demand, and challenges in view, the present review explores state-of-the-art developments and advances in core-shell nanoparticle systems, the desired structure-property relationships, newly generated properties, the effects of parameter control, surface modification, and functionalization, and, last but not least, their promising applications in the fields of drug delivery, biomedical applications, and tissue engineering. This review also supports significant future research for developing multi-core and shell-based functional nanosystems to investigate nano-therapies that are needed for advanced, precise, and personalized healthcare systems.
Collapse
Affiliation(s)
- Raj Kumar
- Faculty of Engineering and Institute of Nanotechnology and Advanced Materials, Bar Ilan University, Ramat Gan-52900, Israel.
| | - Kunal Mondal
- Materials Science and Engineering Department, Idaho National Laboratory, Idaho Falls, ID 83415, USA.
| | - Pritam Kumar Panda
- Condensed Matter Theory Group, Materials Theory Division, Department of Physics and Astronomy, Uppsala University, Box 516, SE-75120, Uppsala, Sweden
| | - Ajeet Kaushik
- NanoBioTech Laboratory, Department of Natural Sciences, Division of Sciences, Art, & Mathematics, Florida Polytechnic University, Lakeland, FL-33805, USA
| | - Reza Abolhassani
- Mads Clausen Institute, NanoSYD, University of Southern Denmark, Alsion 2, DK-6400, Sønderborg, Denmark.
| | - Rajeev Ahuja
- Condensed Matter Theory Group, Materials Theory Division, Department of Physics and Astronomy, Uppsala University, Box 516, SE-75120, Uppsala, Sweden and Applied Materials Physics, Department of Materials Science and Engineering, Royal Institute of Technology (KTH), SE-10044 Stockholm, Sweden
| | - Horst-Günter Rubahn
- Mads Clausen Institute, NanoSYD, University of Southern Denmark, Alsion 2, DK-6400, Sønderborg, Denmark.
| | - Yogendra Kumar Mishra
- Mads Clausen Institute, NanoSYD, University of Southern Denmark, Alsion 2, DK-6400, Sønderborg, Denmark.
| |
Collapse
|
47
|
Wu H, Zhang B, Liang H, Zhai L, Wang G, Qin Y. Distance Effect of Ni-Pt Dual Sites for Active Hydrogen Transfer in Tandem Reaction. Innovation (N Y) 2020; 1:100029. [PMID: 34557707 PMCID: PMC8454767 DOI: 10.1016/j.xinn.2020.100029] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 07/26/2020] [Indexed: 11/25/2022] Open
Abstract
Unveiling the distance effect between different sites in multifunctional catalysts remains a major challenge. Herein, we investigate the distance effect by constructing a dual-site distance-controlled tandem catalyst with a five-layered TiO2/Pt/TiO2/Ni/TiO2 tubular nanostructure by template-assisted atomic layer deposition. In this catalyst, the Ni and Pt sites are separated by a porous TiO2 interlayer, and the distance between them can be precisely controlled on the subnanometer scale by altering the thickness of the interlayer, while the inner and outer porous TiO2 layers are designed for structural stability. The catalyst exhibits superior performance for the tandem hydrazine hydrate decomposition to hydrogen and subsequent nitrobenzene hydrogenation when the Ni and Pt site distance is on the subnanometer level. The performance increases with the decrease of the distance and is better than the catalyst without the TiO2 interlayer. Isotopic and kinetic experiments reveal that the distance effect controls the transfer of active hydrogen, which is the rate-determining step of the tandem reaction in a water solvent. Reduced Ti species with oxygen vacancies on the TiO2 interlayer provide the active sites for hydrogen transfer with -Ti-OH surface intermediates via the continuous chemisorption/desorption of water. A smaller distance induces the generation of more active sites for hydrogen transfer and thus higher efficiency in the synergy of Ni and Pt sites. Our work provides new insight for the distance effect of different active sites and the mechanism of intermediate transfer in tandem reactions. The distance effect is an interesting and important topic in catalysis The distance of Ni-Pt dual sites is precisely controlled in subnanometer scale on a TiO2/Pt/TiO2/Ni/TiO2 five-layer catalyst by ALD The distance controls the water-assisted hydrogen transfer, determining the overall efficiency of the tandem reaction A close distance in subnanometer induces more active sites for hydrogen transfer and efficient synergy of Ni and Pt sites
Collapse
Affiliation(s)
- Huibin Wu
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan 030001, PR China.,Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Bin Zhang
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan 030001, PR China.,Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Haojie Liang
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan 030001, PR China.,Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Liming Zhai
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan 030001, PR China.,Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Guofu Wang
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan 030001, PR China
| | - Yong Qin
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan 030001, PR China.,Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
48
|
De Coster V, Poelman H, Dendooven J, Detavernier C, Galvita VV. Designing Nanoparticles and Nanoalloys for Gas-Phase Catalysis with Controlled Surface Reactivity Using Colloidal Synthesis and Atomic Layer Deposition. Molecules 2020; 25:E3735. [PMID: 32824236 PMCID: PMC7464189 DOI: 10.3390/molecules25163735] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 08/10/2020] [Accepted: 08/14/2020] [Indexed: 11/17/2022] Open
Abstract
Supported nanoparticles are commonly applied in heterogeneous catalysis. The catalytic performance of these solid catalysts is, for a given support, dependent on the nanoparticle size, shape, and composition, thus necessitating synthesis techniques that allow for preparing these materials with fine control over those properties. Such control can be exploited to deconvolute their effects on the catalyst's performance, which is the basis for knowledge-driven catalyst design. In this regard, bottom-up synthesis procedures based on colloidal chemistry or atomic layer deposition (ALD) have proven successful in achieving the desired level of control for a variety of fundamental studies. This review aims to give an account of recent progress made in the two aforementioned synthesis techniques for the application of controlled catalytic materials in gas-phase catalysis. For each technique, the focus goes to mono- and bimetallic materials, as well as to recent efforts in enhancing their performance by embedding colloidal templates in porous oxide phases or by the deposition of oxide overlayers via ALD. As a recent extension to the latter, the concept of area-selective ALD for advanced atomic-scale catalyst design is discussed.
Collapse
Affiliation(s)
- Valentijn De Coster
- Laboratory for Chemical Technology (LCT), Ghent University, Technologiepark 125, 9052 Ghent, Belgium; (V.D.C.); (H.P.)
| | - Hilde Poelman
- Laboratory for Chemical Technology (LCT), Ghent University, Technologiepark 125, 9052 Ghent, Belgium; (V.D.C.); (H.P.)
| | - Jolien Dendooven
- Department of Solid State Sciences, CoCooN, Ghent University, Krijgslaan 281/S1, 9000 Ghent, Belgium; (J.D.); (C.D.)
| | - Christophe Detavernier
- Department of Solid State Sciences, CoCooN, Ghent University, Krijgslaan 281/S1, 9000 Ghent, Belgium; (J.D.); (C.D.)
| | - Vladimir V. Galvita
- Laboratory for Chemical Technology (LCT), Ghent University, Technologiepark 125, 9052 Ghent, Belgium; (V.D.C.); (H.P.)
| |
Collapse
|
49
|
Precursor-surface interactions revealed during plasma-enhanced atomic layer deposition of metal oxide thin films by in-situ spectroscopic ellipsometry. Sci Rep 2020; 10:10392. [PMID: 32587273 PMCID: PMC7316976 DOI: 10.1038/s41598-020-66409-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Accepted: 05/15/2020] [Indexed: 11/17/2022] Open
Abstract
We find that a five-phase (substrate, mixed native oxide and roughness interface layer, metal oxide thin film layer, surface ligand layer, ambient) model with two-dynamic (metal oxide thin film layer thickness and surface ligand layer void fraction) parameters (dynamic dual box model) is sufficient to explain in-situ spectroscopic ellipsometry data measured within and across multiple cycles during plasma-enhanced atomic layer deposition of metal oxide thin films. We demonstrate our dynamic dual box model for analysis of in-situ spectroscopic ellipsometry data in the photon energy range of 0.7–3.4 eV measured with time resolution of few seconds over large numbers of cycles during the growth of titanium oxide (TiO2) and tungsten oxide (WO3) thin films, as examples. We observe cyclic surface roughening with fast kinetics and subsequent roughness reduction with slow kinetics, upon cyclic exposure to precursor materials, leading to oscillations of the metal thin film thickness with small but positive growth per cycle. We explain the cyclic surface roughening by precursor-surface interactions leading to defect creation, and subsequent surface restructuring. Atomic force microscopic images before and after growth, x-ray photoelectron spectroscopy, and x-ray diffraction investigations confirm structural and chemical properties of our thin films. Our proposed dynamic dual box model may be generally applicable to monitor and control metal oxide growth in atomic layer deposition, and we include data for SiO2 and Al2O3 as further examples.
Collapse
|
50
|
Najem M, Nada AA, Weber M, Sayegh S, Razzouk A, Salameh C, Eid C, Bechelany M. Palladium/Carbon Nanofibers by Combining Atomic Layer Deposition and Electrospinning for Organic Pollutant Degradation. MATERIALS 2020; 13:ma13081947. [PMID: 32326154 PMCID: PMC7215890 DOI: 10.3390/ma13081947] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 04/14/2020] [Accepted: 04/16/2020] [Indexed: 11/23/2022]
Abstract
As organic dyes are a major source of pollution, it is important to develop novel and efficient heterogeneous catalysts with high activity for their degradation. In this work, two innovative techniques, atomic layer deposition and electrospinning, were used to prepare palladium nanoparticles (Pd NPs) supported on carbon nanofibers (CNFs). The sample morphology was investigated using scanning and transmission electron microscopy. This showed the presence of nanofibers of several micrometers in length and with a mean diameter of 200 nm. Moreover, the size of the highly dispersed Pd NPs was about 7 nm. X-ray photoelectron spectroscopy visually validated the inclusion of metallic Pd. The prepared nano-catalysts were then used to reduce methyl orange (MO) in the presence of sodium borohydride (NaBH4). The Freundlich isotherm model was the most suitable model to explain the adsorption equilibrium for MO onto the Pd/CNF catalysts. Using 5 mL MO dye-solution (0.0305 mM) and 1 mL NaBH4 (0.026 mM), a 98.9% of catalytic activity was achieved in 240 min by 0.01 g of the prepared nano-catalysts Pd/C (0.016 M). Finally, no loss of catalytic activity was observed when such catalysts were used again. These results represent a promising avenue for the degradation of organic pollutants and for heterogeneous catalysis.
Collapse
Affiliation(s)
- Melissa Najem
- Institut Européen des Membranes, IEM–UMR 5635, ENSCM, CNRS, University Montpellier, 34730 Montpellier, France; (M.N.); (A.A.N.); (M.W.); (S.S.); (C.S.)
| | - Amr A. Nada
- Institut Européen des Membranes, IEM–UMR 5635, ENSCM, CNRS, University Montpellier, 34730 Montpellier, France; (M.N.); (A.A.N.); (M.W.); (S.S.); (C.S.)
- Department of Analysis and Evaluation, Egyptian Petroleum Research Institute, Cairo, Nasr City P.B. 11727, Egypt
| | - Matthieu Weber
- Institut Européen des Membranes, IEM–UMR 5635, ENSCM, CNRS, University Montpellier, 34730 Montpellier, France; (M.N.); (A.A.N.); (M.W.); (S.S.); (C.S.)
| | - Syreina Sayegh
- Institut Européen des Membranes, IEM–UMR 5635, ENSCM, CNRS, University Montpellier, 34730 Montpellier, France; (M.N.); (A.A.N.); (M.W.); (S.S.); (C.S.)
- Laboratory of Chemical Analyses, Faculty of Sciences 2, Lebanese University, Fanar B.P. 90656, Lebanon;
| | - Antonio Razzouk
- Laboratory of Chemical Analyses, Faculty of Sciences 2, Lebanese University, Fanar B.P. 90656, Lebanon;
| | - Chrystelle Salameh
- Institut Européen des Membranes, IEM–UMR 5635, ENSCM, CNRS, University Montpellier, 34730 Montpellier, France; (M.N.); (A.A.N.); (M.W.); (S.S.); (C.S.)
| | - Cynthia Eid
- EC2M, Faculty of Science 2, Fanar Campus, Lebanese University, Fanar B.P. 90656, Lebanon;
| | - Mikhael Bechelany
- Institut Européen des Membranes, IEM–UMR 5635, ENSCM, CNRS, University Montpellier, 34730 Montpellier, France; (M.N.); (A.A.N.); (M.W.); (S.S.); (C.S.)
- Correspondence:
| |
Collapse
|