1
|
Sun F, Li H, Sun D, Fu S, Gu L, Shao X, Wang Q, Dong X, Duan B, Xing F, Wu J, Xiao M, Zhao F, Han JDJ, Liu Q, Fan X, Li C, Wang C, Shi T. Single-cell omics: experimental workflow, data analyses and applications. SCIENCE CHINA. LIFE SCIENCES 2024:10.1007/s11427-023-2561-0. [PMID: 39060615 DOI: 10.1007/s11427-023-2561-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 04/18/2024] [Indexed: 07/28/2024]
Abstract
Cells are the fundamental units of biological systems and exhibit unique development trajectories and molecular features. Our exploration of how the genomes orchestrate the formation and maintenance of each cell, and control the cellular phenotypes of various organismsis, is both captivating and intricate. Since the inception of the first single-cell RNA technology, technologies related to single-cell sequencing have experienced rapid advancements in recent years. These technologies have expanded horizontally to include single-cell genome, epigenome, proteome, and metabolome, while vertically, they have progressed to integrate multiple omics data and incorporate additional information such as spatial scRNA-seq and CRISPR screening. Single-cell omics represent a groundbreaking advancement in the biomedical field, offering profound insights into the understanding of complex diseases, including cancers. Here, we comprehensively summarize recent advances in single-cell omics technologies, with a specific focus on the methodology section. This overview aims to guide researchers in selecting appropriate methods for single-cell sequencing and related data analysis.
Collapse
Affiliation(s)
- Fengying Sun
- Department of Clinical Laboratory, the Affiliated Wuhu Hospital of East China Normal University (The Second People's Hospital of Wuhu City), Wuhu, 241000, China
| | - Haoyan Li
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Dongqing Sun
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration (Tongji University), Ministry of Education, Orthopaedic Department, Tongji Hospital, Bioinformatics Department, School of Life Sciences and Technology, Tongji University, Shanghai, 200082, China
- Frontier Science Center for Stem Cells, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China
| | - Shaliu Fu
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration (Tongji University), Ministry of Education, Orthopaedic Department, Tongji Hospital, Bioinformatics Department, School of Life Sciences and Technology, Tongji University, Shanghai, 200082, China
- Translational Medical Center for Stem Cell Therapy and Institute for Regenerative Medicine, Shanghai East Hospital, Bioinformatics Department, School of Life Sciences and Technology, Tongji University, Shanghai, 200082, China
- Research Institute of Intelligent Computing, Zhejiang Lab, Hangzhou, 311121, China
- Shanghai Research Institute for Intelligent Autonomous Systems, Shanghai, 201210, China
| | - Lei Gu
- Center for Single-cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Xin Shao
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
- National Key Laboratory of Chinese Medicine Modernization, Innovation Center of Yangtze River Delta, Zhejiang University, Jiaxing, 314103, China
| | - Qinqin Wang
- Center for Single-cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Xin Dong
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration (Tongji University), Ministry of Education, Orthopaedic Department, Tongji Hospital, Bioinformatics Department, School of Life Sciences and Technology, Tongji University, Shanghai, 200082, China
- Frontier Science Center for Stem Cells, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China
| | - Bin Duan
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration (Tongji University), Ministry of Education, Orthopaedic Department, Tongji Hospital, Bioinformatics Department, School of Life Sciences and Technology, Tongji University, Shanghai, 200082, China
- Translational Medical Center for Stem Cell Therapy and Institute for Regenerative Medicine, Shanghai East Hospital, Bioinformatics Department, School of Life Sciences and Technology, Tongji University, Shanghai, 200082, China
- Research Institute of Intelligent Computing, Zhejiang Lab, Hangzhou, 311121, China
- Shanghai Research Institute for Intelligent Autonomous Systems, Shanghai, 201210, China
| | - Feiyang Xing
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration (Tongji University), Ministry of Education, Orthopaedic Department, Tongji Hospital, Bioinformatics Department, School of Life Sciences and Technology, Tongji University, Shanghai, 200082, China
- Frontier Science Center for Stem Cells, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China
| | - Jun Wu
- Center for Bioinformatics and Computational Biology, Shanghai Key Laboratory of Regulatory Biology, the Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Minmin Xiao
- Department of Clinical Laboratory, the Affiliated Wuhu Hospital of East China Normal University (The Second People's Hospital of Wuhu City), Wuhu, 241000, China.
| | - Fangqing Zhao
- Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Jing-Dong J Han
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Center for Quantitative Biology (CQB), Peking University, Beijing, 100871, China.
| | - Qi Liu
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration (Tongji University), Ministry of Education, Orthopaedic Department, Tongji Hospital, Bioinformatics Department, School of Life Sciences and Technology, Tongji University, Shanghai, 200082, China.
- Translational Medical Center for Stem Cell Therapy and Institute for Regenerative Medicine, Shanghai East Hospital, Bioinformatics Department, School of Life Sciences and Technology, Tongji University, Shanghai, 200082, China.
- Research Institute of Intelligent Computing, Zhejiang Lab, Hangzhou, 311121, China.
- Shanghai Research Institute for Intelligent Autonomous Systems, Shanghai, 201210, China.
| | - Xiaohui Fan
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China.
- National Key Laboratory of Chinese Medicine Modernization, Innovation Center of Yangtze River Delta, Zhejiang University, Jiaxing, 314103, China.
- Zhejiang Key Laboratory of Precision Diagnosis and Therapy for Major Gynecological Diseases, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, China.
| | - Chen Li
- Center for Single-cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| | - Chenfei Wang
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration (Tongji University), Ministry of Education, Orthopaedic Department, Tongji Hospital, Bioinformatics Department, School of Life Sciences and Technology, Tongji University, Shanghai, 200082, China.
- Frontier Science Center for Stem Cells, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China.
| | - Tieliu Shi
- Department of Clinical Laboratory, the Affiliated Wuhu Hospital of East China Normal University (The Second People's Hospital of Wuhu City), Wuhu, 241000, China.
- Center for Bioinformatics and Computational Biology, Shanghai Key Laboratory of Regulatory Biology, the Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, 200241, China.
- Key Laboratory of Advanced Theory and Application in Statistics and Data Science-MOE, School of Statistics, East China Normal University, Shanghai, 200062, China.
| |
Collapse
|
2
|
Wang H, Tang H, Qiu X, Li Y. Solid-State Glass Nanopipettes: Functionalization and Applications. Chemistry 2024; 30:e202400281. [PMID: 38507278 DOI: 10.1002/chem.202400281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 02/28/2024] [Accepted: 03/19/2024] [Indexed: 03/22/2024]
Abstract
Solid-state glass nanopipettes provide a promising confined space that offers several advantages such as controllable size, simple preparation, low cost, good mechanical stability, and good thermal stability. These advantages make them an ideal choice for various applications such as biosensors, DNA sequencing, and drug delivery. In this review, we first delve into the functionalized nanopipettes for sensing various analytes and the methods used to develop detection means with them. Next, we provide an in-depth overview of the advanced functionalization methodologies of nanopipettes based on diversified chemical kinetics. After that, we present the latest state-of-the-art achievements and potential applications in detecting a wide range of targets, including ions, molecules, biological macromolecules, and single cells. We examine the various challenges that arise when working with these targets, as well as the innovative solutions developed to overcome them. The final section offers an in-depth overview of the current development status, newest trends, and application prospects of sensors. Overall, this review provides a comprehensive and detailed analysis of the current state-of-the-art functionalized nanopipette perception sensing and development of detection means and offers valuable insights into the prospects for this exciting field.
Collapse
Affiliation(s)
- Hao Wang
- Key Laboratory of Green and Precise Synthetic Chemistry and Applications, Ministry of Education, School of Chemistry and Materials Science, Huaibei Normal University, Huaibei, 235000, Anhui, P.R. China
| | - Haoran Tang
- Key Laboratory of Green and Precise Synthetic Chemistry and Applications, Ministry of Education, School of Chemistry and Materials Science, Huaibei Normal University, Huaibei, 235000, Anhui, P.R. China
| | - Xia Qiu
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Key Laboratory of Chemo/Biosensing College of Chemistry and Materials Science, Anhui Normal University, Wuhu, 241000, P.R. China
| | - Yongxin Li
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Key Laboratory of Chemo/Biosensing College of Chemistry and Materials Science, Anhui Normal University, Wuhu, 241000, P.R. China
| |
Collapse
|
3
|
Zhao T, Chen YP, Xie YL, Luo Y, Tang H, Jiang JH. In situ monitoring of ROS secretion from single cells with a dual-nanopore biosensor. Chem Commun (Camb) 2023; 59:14463-14466. [PMID: 37982751 DOI: 10.1039/d3cc04657e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2023]
Abstract
We report here a dual-nanopore biosensor based on modulation of surface charge density coupled with a microwell array chip for in situ monitoring of ROS secretion from single MCF-7 cells.
Collapse
Affiliation(s)
- Tao Zhao
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. China.
| | - Yi-Ping Chen
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. China.
| | - Ya-Li Xie
- Hunan Changsha Ecological Environment Monitoring Center, Changsha 410000, P. R. China
| | - Yang Luo
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. China.
| | - Hao Tang
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. China.
| | - Jian-Hui Jiang
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. China.
| |
Collapse
|
4
|
Karpinski P, Sznitko L, Wisniewska-Belej M, Miniewicz A, Antosiewicz TJ. Optically Controlled Development of a Waveguide from a Reservoir of Microparticles. SMALL METHODS 2023:e2201545. [PMID: 37075735 DOI: 10.1002/smtd.202201545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 03/13/2023] [Indexed: 05/03/2023]
Abstract
Light can be guided without diffraction in prefabricated structures: optical fibers and waveguides or in actively created spatial solitons in optically nonlinear media. Here, an approach in which a self-stabilized optical waveguide develops from a reservoir of building blocks-spherical polymer microparticles (MPs)-and is pushed through an optically passive medium-water-is presented. The optical waveguide, formed by a chain of these microparticles and one microsphere wide, is self-stabilized and propelled by the guided light, while its geometrical and dynamical properties depend on the diameter-to-wavelength ratio. The smallest investigated particles, 500 nm in diameter, form single-mode waveguides up to tens of micrometers long, with the length limited only by optical losses. In contrast, waveguides constructed of larger MPs, 1 and 2.5 µm in diameter, are limited in length to only a few particles due to interference of different modes and beating of light intensity.
Collapse
Affiliation(s)
- Pawel Karpinski
- Faculty of Chemistry, Wroclaw University of Science and Technology, Wroclaw, 50-370, Poland
| | - Lech Sznitko
- Faculty of Chemistry, Wroclaw University of Science and Technology, Wroclaw, 50-370, Poland
| | | | - Andrzej Miniewicz
- Faculty of Chemistry, Wroclaw University of Science and Technology, Wroclaw, 50-370, Poland
| | | |
Collapse
|
5
|
Nano-Electrochemical Characterization of a 3D Bioprinted Cervical Tumor Model. Cancers (Basel) 2023; 15:cancers15041327. [PMID: 36831668 PMCID: PMC9954750 DOI: 10.3390/cancers15041327] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 01/31/2023] [Accepted: 02/13/2023] [Indexed: 02/22/2023] Open
Abstract
Current cancer research is limited by the availability of reliable in vivo and in vitro models that are able to reproduce the fundamental hallmarks of cancer. Animal experimentation is of paramount importance in the progress of research, but it is becoming more evident that it has several limitations due to the numerous differences between animal tissues and real, in vivo human tissues. 3D bioprinting techniques have become an attractive tool for many basic and applied research fields. Concerning cancer, this technology has enabled the development of three-dimensional in vitro tumor models that recreate the characteristics of real tissues and look extremely promising for studying cancer cell biology. As 3D bioprinting is a relatively recently developed technique, there is still a lack of characterization of the chemical cellular microenvironment of 3D bioprinted constructs. In this work, we fabricated a cervical tumor model obtained by 3D bioprinting of HeLa cells in an alginate-based matrix. Characterization of the spheroid population obtained as a function of culturing time was performed by phase-contrast and confocal fluorescence microscopies. Scanning electrochemical microscopy and platinum nanoelectrodes were employed to characterize oxygen concentrations-a fundamental characteristic of the cellular microenvironment-with a high spatial resolution within the 3D bioprinted cervical tumor model; we also demonstrated that the diffusion of a molecular model of drugs in the 3D bioprinted construct, in which the spheroids were embedded, could be measured quantitatively over time using scanning electrochemical microscopy.
Collapse
|
6
|
Fang J, Huang S, Liu F, He G, Li X, Huang X, Chen HJ, Xie X. Semi-Implantable Bioelectronics. NANO-MICRO LETTERS 2022; 14:125. [PMID: 35633391 PMCID: PMC9148344 DOI: 10.1007/s40820-022-00818-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 02/09/2022] [Indexed: 06/15/2023]
Abstract
Developing techniques to effectively and real-time monitor and regulate the interior environment of biological objects is significantly important for many biomedical engineering and scientific applications, including drug delivery, electrophysiological recording and regulation of intracellular activities. Semi-implantable bioelectronics is currently a hot spot in biomedical engineering research area, because it not only meets the increasing technical demands for precise detection or regulation of biological activities, but also provides a desirable platform for externally incorporating complex functionalities and electronic integration. Although there is less definition and summary to distinguish it from the well-reviewed non-invasive bioelectronics and fully implantable bioelectronics, semi-implantable bioelectronics have emerged as highly unique technology to boost the development of biochips and smart wearable device. Here, we reviewed the recent progress in this field and raised the concept of "Semi-implantable bioelectronics", summarizing the principle and strategies of semi-implantable device for cell applications and in vivo applications, discussing the typical methodologies to access to intracellular environment or in vivo environment, biosafety aspects and typical applications. This review is meaningful for understanding in-depth the design principles, materials fabrication techniques, device integration processes, cell/tissue penetration methodologies, biosafety aspects, and applications strategies that are essential to the development of future minimally invasive bioelectronics.
Collapse
Affiliation(s)
- Jiaru Fang
- State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-Sen University, Guangzhou, 510006, People's Republic of China
| | - Shuang Huang
- State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-Sen University, Guangzhou, 510006, People's Republic of China
| | - Fanmao Liu
- State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-Sen University, Guangzhou, 510006, People's Republic of China
| | - Gen He
- State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-Sen University, Guangzhou, 510006, People's Republic of China
| | - Xiangling Li
- State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-Sen University, Guangzhou, 510006, People's Republic of China
| | - Xinshuo Huang
- State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-Sen University, Guangzhou, 510006, People's Republic of China
| | - Hui-Jiuan Chen
- State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-Sen University, Guangzhou, 510006, People's Republic of China
| | - Xi Xie
- State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-Sen University, Guangzhou, 510006, People's Republic of China.
| |
Collapse
|
7
|
Wu WT, Chen X, Jiao YT, Fan WT, Liu YL, Huang WH. Versatile Construction of Biomimetic Nanosensors for Electrochemical Monitoring of Intracellular Glutathione. Angew Chem Int Ed Engl 2022; 61:e202115820. [PMID: 35134265 DOI: 10.1002/anie.202115820] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Indexed: 11/08/2022]
Abstract
The current strategies for nanoelectrode functionalization usually involve sophisticated modification procedures, uncontrollable and unstable modifier assembly, as well as a limited variety of modifiers. To address this issue, we propose a versatile strategy for large-scale synthesis of biomimetic molecular catalysts (BMCs) modified nanowires (NWs) to construct functionalized electrochemical nanosensors. This design protocol employs an easy, controllable and stable assembly of diverse BMCs-poly(3,4-ethylenedioxythiophene) (PEDOT) composites on conductive NWs. The intrinsic catalytic activity of BMCs combined with outstanding electron transfer ability of conductive polymer enables the nanosensors to sensitively and selectively detect various biomolecules. Further application of sulfonated cobalt phthalocyanine functionalized nanosensors achieves real-time electrochemical monitoring of intracellular glutathione levels and its redox homeostasis in single living cells for the first time.
Collapse
Affiliation(s)
- Wen-Tao Wu
- Sauvage Center for Molecular Sciences, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China
| | - Xi Chen
- Sauvage Center for Molecular Sciences, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China
| | - Yu-Ting Jiao
- Sauvage Center for Molecular Sciences, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China
| | - Wen-Ting Fan
- Sauvage Center for Molecular Sciences, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China
| | - Yan-Ling Liu
- Sauvage Center for Molecular Sciences, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China
| | - Wei-Hua Huang
- Sauvage Center for Molecular Sciences, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China
| |
Collapse
|
8
|
Adegoke KA, Maxakato NW. Porous metal oxide electrocatalytic nanomaterials for energy conversion: Oxygen defects and selection techniques. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2021.214389] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
9
|
Song L, Chingin K, Wang M, Zhong D, Chen H, Xu J. Polarity-Specific Profiling of Metabolites in Single Cells by Probe Electrophoresis Mass Spectrometry. Anal Chem 2022; 94:4175-4182. [PMID: 35235307 DOI: 10.1021/acs.analchem.1c03997] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Sensitive analysis of metabolites in a single cell is of fundamental significance for the better understanding of biological variability, differential susceptibility in disease therapy, and cell-to-cell heterogeneity as well. Herein, polarity-specific profiling of metabolites in a single cell was implemented by probe electrophoresis mass spectrometry (PEMS), which combined electrophoresis sampling of metabolites from a single cell and nanoelectrospray ionization-mass spectrometry (nanoESI-MS) analysis of the sampled metabolites. Enhanced extraction of either negatively or positively charged metabolites from a single cell was achieved by applying a DC voltage offset of +2.0 and -2.0 V to the probe, respectively. The experimental data demonstrated that PEMS features high throughput (≥200 peaks) and high sensitivity (≥10-times signal enhancement for [Choline + H]+, [Glutamine + H]+, [Arginine + H]+, etc.) in comparison with direct nanoESI-MS analysis. The biological effects of CdSe quantum dots (QDs) and γ-radiation on Allium cepa cells were investigated by PEMS, which revealed that CdSe QDs lead to the increase of intracellular amines while γ-radiation causes the decrease of intracellular acids. Therefore, this work provides an alternative platform to probe novel insights of cells by sensitive analysis of polarity-specific metabolites in a single cell.
Collapse
Affiliation(s)
- Lili Song
- Jiangxi Key Laboratory for Mass Spectrometry and Instrumentation, East China University of Technology, Nanchang 330013, People's Republic of China
| | - Konstantin Chingin
- Jiangxi Key Laboratory for Mass Spectrometry and Instrumentation, East China University of Technology, Nanchang 330013, People's Republic of China
| | - Meng Wang
- Jiangxi Key Laboratory for Mass Spectrometry and Instrumentation, East China University of Technology, Nanchang 330013, People's Republic of China
| | - Dacai Zhong
- Jiangxi Key Laboratory for Mass Spectrometry and Instrumentation, East China University of Technology, Nanchang 330013, People's Republic of China
| | - Huanwen Chen
- Jiangxi Key Laboratory for Mass Spectrometry and Instrumentation, East China University of Technology, Nanchang 330013, People's Republic of China
| | - Jiaquan Xu
- Jiangxi Key Laboratory for Mass Spectrometry and Instrumentation, East China University of Technology, Nanchang 330013, People's Republic of China
| |
Collapse
|
10
|
Wu W, Chen X, Jiao Y, Fan W, Liu Y, Huang W. Versatile Construction of Biomimetic Nanosensors for Electrochemical Monitoring of Intracellular Glutathione. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202115820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Wen‐Tao Wu
- Sauvage Center for Molecular Sciences, College of Chemistry and Molecular Sciences Wuhan University Wuhan 430072 China
| | - Xi Chen
- Sauvage Center for Molecular Sciences, College of Chemistry and Molecular Sciences Wuhan University Wuhan 430072 China
| | - Yu‐Ting Jiao
- Sauvage Center for Molecular Sciences, College of Chemistry and Molecular Sciences Wuhan University Wuhan 430072 China
| | - Wen‐Ting Fan
- Sauvage Center for Molecular Sciences, College of Chemistry and Molecular Sciences Wuhan University Wuhan 430072 China
| | - Yan‐Ling Liu
- Sauvage Center for Molecular Sciences, College of Chemistry and Molecular Sciences Wuhan University Wuhan 430072 China
| | - Wei‐Hua Huang
- Sauvage Center for Molecular Sciences, College of Chemistry and Molecular Sciences Wuhan University Wuhan 430072 China
| |
Collapse
|
11
|
Tang Y, Gao L, Feng W, Guo C, Yang Q, Li F, Le XC. The CRISPR-Cas toolbox for analytical and diagnostic assay development. Chem Soc Rev 2021; 50:11844-11869. [PMID: 34611682 DOI: 10.1039/d1cs00098e] [Citation(s) in RCA: 95] [Impact Index Per Article: 31.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) and CRISPR-associated (Cas) systems have revolutionized biological and biomedical sciences in many ways. The last few years have also seen tremendous interest in deploying the CRISPR-Cas toolbox for analytical and diagnostic assay development because CRISPR-Cas is one of the most powerful classes of molecular machineries for the recognition and manipulation of nucleic acids. In the short period of development, many CRISPR-enabled assays have already established critical roles in clinical diagnostics, biosensing, and bioimaging. We describe in this review the recent advances and design principles of CRISPR mediated analytical tools with an emphasis on the functional roles of CRISPR-Cas machineries as highly efficient binders and molecular scissors. We highlight the diverse engineering approaches for molecularly modifying CRISPR-Cas machineries and for devising better readout platforms. We discuss the potential roles of these new approaches and platforms in enhancing assay sensitivity, specificity, multiplexity, and clinical outcomes. By illustrating the biochemical and analytical processes, we hope this review will help guide the best use of the CRISPR-Cas toolbox in detecting, quantifying and imaging biologically and clinically important molecules and inspire new ideas, technological advances and engineering strategies for addressing real-world challenges such as the on-going COVID-19 pandemic.
Collapse
Affiliation(s)
- Yanan Tang
- Analytical & Testing Center, College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu, Sichuan, 610064, China.
| | - Lu Gao
- Analytical & Testing Center, College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu, Sichuan, 610064, China.
| | - Wei Feng
- Department of Chemistry, Brock University, St. Catharines, Ontario, L2S 3A1, Canada
| | - Chen Guo
- Analytical & Testing Center, College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu, Sichuan, 610064, China.
| | - Qianfan Yang
- Analytical & Testing Center, College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu, Sichuan, 610064, China.
| | - Feng Li
- Analytical & Testing Center, College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu, Sichuan, 610064, China. .,Department of Chemistry, Brock University, St. Catharines, Ontario, L2S 3A1, Canada
| | - X Chris Le
- Division of Analytical and Environmental Toxicology, Department of Laboratory Medicine and Pathology, Faculty of Medicine and Dentistry, University of Alberta, Alberta, T6G 2G3, Canada
| |
Collapse
|
12
|
Zhang D, Zhang X. Bioinspired Solid-State Nanochannel Sensors: From Ionic Current Signals, Current, and Fluorescence Dual Signals to Faraday Current Signals. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2100495. [PMID: 34117705 DOI: 10.1002/smll.202100495] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 02/21/2021] [Indexed: 06/12/2023]
Abstract
Inspired from bioprotein channels of living organisms, constructing "abiotic" analogues, solid-state nanochannels, to achieve "smart" sensing towards various targets, is highly seductive. When encountered with certain stimuli, dynamic switch of terminal modified probes in terms of surface charge, conformation, fluorescence property, electric potential as well as wettability can be monitored via transmembrane ionic current, fluorescence intensity, faraday current signals of nanochannels and so on. Herein, the modification methodologies of nanochannels and targets-detecting application are summarized in ions, small molecules, as well as biomolecules, and systematically reviewed are the nanochannel-based detection means including 1) by transmembrane current signals; 2) by the coordination of current- and fluorescence-dual signals; 3) by faraday current signals from nanochannel-based electrode. The coordination of current and fluorescence dual signals offers great benefits for synchronous temporal and spatial monitoring. Faraday signals enable the nanoelectrode to monitor both redox and non-redox components. Notably, by incorporation with confined effect of tip region of a needle-like nanopipette, glorious in-vivo monitoring is conferred on the nanopipette detector at high temporal-spatial resolution. In addition, some outlooks for future application in reliable practical samples analysis and leading research endeavors in the related fantastic fields are provided.
Collapse
Affiliation(s)
- Dan Zhang
- Cancer Centre and Centre of Reproduction, Development and Aging, Faculty of Health Sciences, University of Macau, Macau, SAR, 999078, China
| | - Xuanjun Zhang
- Cancer Centre and Centre of Reproduction, Development and Aging, Faculty of Health Sciences, University of Macau, Macau, SAR, 999078, China
| |
Collapse
|
13
|
Shi M, Wang L, Xie Z, Zhao L, Zhang X, Zhang M. High-Content Label-Free Single-Cell Analysis with a Microfluidic Device Using Programmable Scanning Electrochemical Microscopy. Anal Chem 2021; 93:12417-12425. [PMID: 34464090 DOI: 10.1021/acs.analchem.1c02507] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The cellular heterogeneity and plasticity are often overlooked due to the averaged bulk assay in conventional methods. Optical imaging-based single-cell analysis usually requires specific labeling of target molecules inside or on the surface of the cell membrane, interfering with the physiological homeostasis of the cell. Scanning electrochemical microscopy (SECM), as an alternative approach, enables label-free imaging of single cells, which still confronts the challenge that the long-time scanning process is not feasible for large-scale analysis at the single-cell level. Herein, we developed a methodology combining a programmable SECM (P-SECM) with an addressable microwell array, which dramatically shortened the time consumption for the topography detection of the micropits array occupied by the polystyrene beads as well as the evaluation of alkaline phosphatase (ALP) activity of the 82 single cells compared with the traditional SECM imaging. This new arithmetic was based on the line scanning approach, enabling analysis of over 900 microwells within 1.2 h, which is 10 times faster than conventional SECM imaging. By implementing this configuration with the dual-mediator-based voltage-switching (VSM) mode, we investigated the activity of ALP, a promising marker for cancer stem cells, in hundreds of tumor and stromal cells on a single microwell device. The results discovered that not only a higher ALP activity is presented in cancer cells but also the heterogeneous distribution of kinetic constant (kf value) of ALP activity can be obtained at the single-cell level. By directly relating large numbers of addressed cells on the scalable microfluidic device to the deterministic routing of the above SECM tip, our platform holds potential as a high-content screening tool for label-free single-cell analysis.
Collapse
Affiliation(s)
- Mi Shi
- Beijing Key Laboratory for Bioengineering and Sensing Technology, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Lin Wang
- Beijing Key Laboratory for Bioengineering and Sensing Technology, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Zhenda Xie
- Institute for Advanced Study, Tsinghua University, Beijing 100084, China
| | - Liang Zhao
- Beijing Key Laboratory for Bioengineering and Sensing Technology, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China.,Centre of Excellence for Environmental Safety and Biological Effects, Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, China
| | - Xueji Zhang
- Beijing Key Laboratory for Bioengineering and Sensing Technology, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China.,School of Biomedical Engineering, Health Science Centre, Shenzhen University, Shenzhen, Guangdong 518060, China
| | - Meiqin Zhang
- Beijing Key Laboratory for Bioengineering and Sensing Technology, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| |
Collapse
|
14
|
Probing low-copy-number proteins in single living cells using single-cell plasmonic immunosandwich assays. Nat Protoc 2021; 16:3522-3546. [PMID: 34089021 DOI: 10.1038/s41596-021-00547-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 03/29/2021] [Indexed: 12/15/2022]
Abstract
Cellular heterogeneity is pervasive and of paramount importance in biology. Single-cell analysis techniques are indispensable for understanding the heterogeneity and functions of cells. Low-copy-number proteins (fewer than 1,000 molecules per cell) perform multiple crucial functions such as gene expression, cellular metabolism and cell signaling. The expression level of low-copy-number proteins of individual cells provides key information for the in-depth understanding of biological processes and diseases. However, the quantitative analysis of low-copy-number proteins in a single cell still remains challenging. To overcome this, we developed an approach called single-cell plasmonic immunosandwich assay (scPISA) for the quantitative measurement of low-copy-number proteins in single living cells. scPISA combines in vivo microextraction for specific enrichment of target proteins from cells and a state-of-the-art technique called plasmon-enhanced Raman scattering for ultrasensitive detection of low-copy-number proteins. Plasmon-enhanced Raman scattering detection relies on the plasmonic coupling effect (hot-spot) between silver-based plasmonic nanotags and a gold-based extraction microprobe, which dramatically enhances the signal intensity of the surface-enhanced Raman scattering of the nanotags and thereby enables sensitivity at the single-molecule level. scPISA is a straightforward and minimally invasive technique, taking only ~6-15 min (from in vivo extraction to Raman spectrum readout). It is generally applicable to all freely floating intracellular proteins provided that appropriate antibodies or alternatives (for example, molecularly imprinted polymers or aptamers) are available. The entire protocol takes ~4-7 d to complete, including material fabrication, single-cell manipulation, protein labeling, signal acquisition and data analysis.
Collapse
|
15
|
Ma C, Wu S, Zhou Y, Wei H, Zhang J, Chen Z, Zhu J, Lin Y, Zhu W. Bio‐Coreactant‐Enhanced Electrochemiluminescence Microscopy of Intracellular Structure and Transport. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202012171] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Cheng Ma
- State Key Laboratory of Analytical Chemistry for Life Science School of Chemistry and Chemical Engineering Nanjing University Nanjing 210023 P. R. China
| | - Shaojun Wu
- State Key Laboratory of Analytical Chemistry for Life Science School of Chemistry and Chemical Engineering Nanjing University Nanjing 210023 P. R. China
| | - Yang Zhou
- School of Mechanical and Materials Engineering Washington State University Pullman WA 99164 USA
| | - Hui‐Fang Wei
- State Key Laboratory of Analytical Chemistry for Life Science School of Chemistry and Chemical Engineering Nanjing University Nanjing 210023 P. R. China
| | - Jianrong Zhang
- State Key Laboratory of Analytical Chemistry for Life Science School of Chemistry and Chemical Engineering Nanjing University Nanjing 210023 P. R. China
| | - Zixuan Chen
- State Key Laboratory of Analytical Chemistry for Life Science School of Chemistry and Chemical Engineering Nanjing University Nanjing 210023 P. R. China
| | - Jun‐Jie Zhu
- State Key Laboratory of Analytical Chemistry for Life Science School of Chemistry and Chemical Engineering Nanjing University Nanjing 210023 P. R. China
| | - Yuehe Lin
- School of Mechanical and Materials Engineering Washington State University Pullman WA 99164 USA
| | - Wenlei Zhu
- School of Mechanical and Materials Engineering Washington State University Pullman WA 99164 USA
| |
Collapse
|
16
|
Ma C, Wu S, Zhou Y, Wei HF, Zhang J, Chen Z, Zhu JJ, Lin Y, Zhu W. Bio-Coreactant-Enhanced Electrochemiluminescence Microscopy of Intracellular Structure and Transport. Angew Chem Int Ed Engl 2021; 60:4907-4914. [PMID: 33188721 DOI: 10.1002/anie.202012171] [Citation(s) in RCA: 72] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 10/24/2020] [Indexed: 12/14/2022]
Abstract
A bio-coreactant-enhanced electrochemiluminescence (ECL) microscopy realizes the ECL imaging of intracellular structure and dynamic transport. This microscopy uses Ru(bpy)3 2+ as the electrochemical molecular antenna connecting extracellular and intracellular environments, and uses intracellular biomolecules as the coreactants of ECL reactions via a "catalytic route". Accordingly, intracellular structures are identified without using multiple labels, and autophagy involving DNA oxidative damage is detected using nuclear ECL signals. A time-resolved image sequence discloses the universal edge effect of cellular electroporation due to the influence of the geometric properties of cell membranes on the induced transmembrane voltage. The dynamic transport of Ru(bpy)3 3+ in the different cellular compartments unveils the heterogeneous intracellular diffusivity correlating with the actin cytoskeleton. In addition to single-cell studies, the bio-coreactant-enhanced ECL microscopy is used to image a slice of a mouse liver and a colony of Shewanella oneidensis MR-1.
Collapse
Affiliation(s)
- Cheng Ma
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China
| | - Shaojun Wu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China
| | - Yang Zhou
- School of Mechanical and Materials Engineering, Washington State University, Pullman, WA, 99164, USA
| | - Hui-Fang Wei
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China
| | - Jianrong Zhang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China
| | - Zixuan Chen
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China
| | - Jun-Jie Zhu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China
| | - Yuehe Lin
- School of Mechanical and Materials Engineering, Washington State University, Pullman, WA, 99164, USA
| | - Wenlei Zhu
- School of Mechanical and Materials Engineering, Washington State University, Pullman, WA, 99164, USA
| |
Collapse
|
17
|
Zhang K, Xiong T, Wu F, Yue Q, Ji W, Yu P, Mao L. Real-time and in-situ intracellular ATP assay with polyimidazolium brush-modified nanopipette. Sci China Chem 2020. [DOI: 10.1007/s11426-020-9715-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
18
|
Higgins SG, Becce M, Belessiotis-Richards A, Seong H, Sero JE, Stevens MM. High-Aspect-Ratio Nanostructured Surfaces as Biological Metamaterials. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e1903862. [PMID: 31944430 PMCID: PMC7610849 DOI: 10.1002/adma.201903862] [Citation(s) in RCA: 109] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 10/02/2019] [Indexed: 04/14/2023]
Abstract
Materials patterned with high-aspect-ratio nanostructures have features on similar length scales to cellular components. These surfaces are an extreme topography on the cellular level and have become useful tools for perturbing and sensing the cellular environment. Motivation comes from the ability of high-aspect-ratio nanostructures to deliver cargoes into cells and tissues, access the intracellular environment, and control cell behavior. These structures directly perturb cells' ability to sense and respond to external forces, influencing cell fate, and enabling new mechanistic studies. Through careful design of their nanoscale structure, these systems act as biological metamaterials, eliciting unusual biological responses. While predominantly used to interface eukaryotic cells, there is growing interest in nonanimal and prokaryotic cell interfacing. Both experimental and theoretical studies have attempted to develop a mechanistic understanding for the observed behaviors, predominantly focusing on the cell-nanostructure interface. This review considers how high-aspect-ratio nanostructured surfaces are used to both stimulate and sense biological systems.
Collapse
Affiliation(s)
- Stuart G. Higgins
- Department of Bioengineering, Imperial College London, London, SW7 2AZ, UK
| | | | | | - Hyejeong Seong
- Department of Bioengineering, Imperial College London, London, SW7 2AZ, UK
| | - Julia E. Sero
- Department of Bioengineering, Imperial College London, London, SW7 2AZ, UK
| | - Molly M. Stevens
- Department of Materials, Imperial College London, London, SW7 2AZ, UK
- Department of Bioengineering, Imperial College London, London, SW7 2AZ, UK
- Institute of Biomedical Engineering, Imperial College London, London, SW7 2AZ, UK
| |
Collapse
|
19
|
Ly NH, Joo SW. Recent advances in cancer bioimaging using a rationally designed Raman reporter in combination with plasmonic gold. J Mater Chem B 2020; 8:186-198. [DOI: 10.1039/c9tb01598a] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Gold nanomaterials (AuNMs) have been widely implemented for the purpose of bioimaging of cancer and tumor cells in combination with Raman spectral markers.
Collapse
Affiliation(s)
| | - Sang-Woo Joo
- Department of Chemistry
- Soongsil University
- Seoul 06978
- Korea
- Department of Information Communication, Materials
| |
Collapse
|
20
|
Abstract
Single-cell level metabolomics gives a snapshot of small molecules, intermediates, and products of cellular metabolism within a biological system. These small molecules, typically less than 1 kDa in molecular weight, often provide the basis of biochemical heterogeneity within cells. The molecular differences between cells with a cell type are often attributed to random stochastic biochemical processes, cell cycle stages, environmental stress, and diseased states. In this chapter, current limitations and challenges in single-cell analysis by mass spectrometry will be discussed alongside the prospects of single-cell metabolomics in systems biology. A few selected example of the recent development in mass spectrometry tools to unravel single-cell metabolomics will be described as well.
Collapse
|
21
|
Liao QL, Jiang H, Zhang XW, Qiu QF, Tang Y, Yang XK, Liu YL, Huang WH. A single nanowire sensor for intracellular glucose detection. NANOSCALE 2019; 11:10702-10708. [PMID: 31140521 DOI: 10.1039/c9nr01997a] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Glucose metabolism plays an important role in cell energy supply, and quantitative detection of the intracellular glucose level is particularly important for understanding many physiological processes. Glucose electrochemical sensors are widely used for blood and extracellular glucose detection. However, intracellular glucose detection cannot be achieved by these sensors owing to their large size and consequent low spatial resolution. Herein, we developed a single nanowire glucose sensor for electrochemical detection of intracellular glucose by depositing Pt nanoparticles (Pt NPs) on a SiC@C nanowire and further immobilizing glucose oxidase (GOD) thereon. Glucose was converted by GOD to an electroactive product H2O2 which was further electro-catalyzed by Pt NPs. The glucose nanowire sensor is endowed with a high sensitivity, high spatial-temporal resolution and enzyme specificity due to its nanoscale size and enzymatic reaction. This allows the real-time monitoring of the intracellular glucose level, and the increase of the intracellular glucose level induced by a novel potential hypoglycemic agent, reinforcing its potential application in lowering the blood glucose level. This work provides a versatile method for the construction of enzyme-modified nanosensors to electrochemically detect intracellular non-electroactive molecules, which is of great benefit for physiological and pathological studies.
Collapse
Affiliation(s)
- Quan-Lan Liao
- Key Laboratory of Analytical Chemistry for Biology and Medicine Ministry of Education, College of Chemistry and Molecular Sciences Wuhan University, Wuhan 430072, P. R. China.
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Yu R, Ying Y, Gao R, Long Y. Confined Nanopipette Sensing: From Single Molecules, Single Nanoparticles, to Single Cells. Angew Chem Int Ed Engl 2019; 58:3706-3714. [DOI: 10.1002/anie.201803229] [Citation(s) in RCA: 129] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Revised: 05/25/2018] [Indexed: 01/09/2023]
Affiliation(s)
- Ru‐Jia Yu
- Key Laboratory for Advanced MaterialsSchool of Chemistry & Molecular EngineeringEast China University of Science and Technology Shanghai 200237 P. R. China
| | - Yi‐Lun Ying
- Key Laboratory for Advanced MaterialsSchool of Chemistry & Molecular EngineeringEast China University of Science and Technology Shanghai 200237 P. R. China
| | - Rui Gao
- Key Laboratory for Advanced MaterialsSchool of Chemistry & Molecular EngineeringEast China University of Science and Technology Shanghai 200237 P. R. China
| | - Yi‐Tao Long
- Key Laboratory for Advanced MaterialsSchool of Chemistry & Molecular EngineeringEast China University of Science and Technology Shanghai 200237 P. R. China
| |
Collapse
|
23
|
Huang JA, Caprettini V, Zhao Y, Melle G, Maccaferri N, Deleye L, Zambrana-Puyalto X, Ardini M, Tantussi F, Dipalo M, De Angelis F. On-Demand Intracellular Delivery of Single Particles in Single Cells by 3D Hollow Nanoelectrodes. NANO LETTERS 2019; 19:722-731. [PMID: 30673248 PMCID: PMC6378653 DOI: 10.1021/acs.nanolett.8b03764] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Delivery of molecules into intracellular compartments is one of the fundamental requirements in molecular biology. However, the possibility of delivering a precise number of nano-objects with single-particle resolution is still an open challenge. Here we present an electrophoretic platform based on 3D hollow nanoelectrodes to enable delivery of single nanoparticles into single selected cells and monitoring of the single-particle delivery by surface-enhanced Raman scattering (SERS). The gold-coated hollow nanoelectrode capable of confinement and enhancement of electromagnetic fields upon laser illumination can distinguish the SERS signals of a single nanoparticle flowing through the nanoelectrode. Tight wrapping of cell membranes around the nanoelectrodes allows effective membrane electroporation such that single gold nanorods are delivered on demand into a living cell by electrophoresis. The capability of the 3D hollow nanoelectrodes to porate cells and reveal single emitters from the background in continuous flow is promising for the analysis of both intracellular delivery and sampling.
Collapse
Affiliation(s)
- Jian-An Huang
- Istituto
Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy
| | - Valeria Caprettini
- Istituto
Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy
- DIBRIS, University of Genoa, Via all’Opera Pia 13, 16145 Genova, Italy
| | - Yingqi Zhao
- Istituto
Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy
| | - Giovanni Melle
- Istituto
Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy
- DIBRIS, University of Genoa, Via all’Opera Pia 13, 16145 Genova, Italy
| | | | - Lieselot Deleye
- Istituto
Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy
| | | | - Matteo Ardini
- Istituto
Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy
| | | | - Michele Dipalo
- Istituto
Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy
| | | |
Collapse
|
24
|
Yu R, Ying Y, Gao R, Long Y. Detektieren mit Nanopipetten im eingeschränkten Raum: von einzelnen Molekülen über Nanopartikel hin zu der Zelle. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201803229] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Ru‐Jia Yu
- Key Laboratory for Advanced MaterialsSchool of Chemistry & Molecular EngineeringEast China University of Science and Technology Shanghai 200237 VR China
| | - Yi‐Lun Ying
- Key Laboratory for Advanced MaterialsSchool of Chemistry & Molecular EngineeringEast China University of Science and Technology Shanghai 200237 VR China
| | - Rui Gao
- Key Laboratory for Advanced MaterialsSchool of Chemistry & Molecular EngineeringEast China University of Science and Technology Shanghai 200237 VR China
| | - Yi‐Tao Long
- Key Laboratory for Advanced MaterialsSchool of Chemistry & Molecular EngineeringEast China University of Science and Technology Shanghai 200237 VR China
| |
Collapse
|
25
|
Li Y, Xin H, Zhang Y, Lei H, Zhang T, Ye H, Saenz JJ, Qiu CW, Li B. Living Nanospear for Near-Field Optical Probing. ACS NANO 2018; 12:10703-10711. [PMID: 30265516 DOI: 10.1021/acsnano.8b05235] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Optical nanoprobes, designed to emit or collect light in the close proximity of a sample, have been extensively used to sense and image at nanometer resolution. However, the available nanoprobes, constructed from artificial materials, are incompatible and invasive when interfacing with biological systems. In this work, we report a fully biocompatible nanoprobe for subwavelength probing of localized fluorescence from leukemia single-cells in human blood. The bioprobe is built on a tapered fiber tip apex by optical trapping of a yeast cell (1.4 μm radius) and a chain of Lactobacillus acidophilus cells (2 μm length and 200 nm radius), which act as a high-aspect-ratio nanospear. Light propagating along the bionanospear can be focused into a spot with a full width at half-maximum (fwhm) of 190 nm on the surface of single cells. Fluorescence signals are detected in real time at subwavelength spatial resolution. These noninvasive and biocompatible optical probes will find applications in imaging and manipulation of biospecimens.
Collapse
Affiliation(s)
- Yuchao Li
- Institute of Nanophotonics , Jinan University , Guangzhou 511443 , China
| | - Hongbao Xin
- Institute of Nanophotonics , Jinan University , Guangzhou 511443 , China
| | - Yao Zhang
- Institute of Nanophotonics , Jinan University , Guangzhou 511443 , China
| | - Hongxiang Lei
- School of Materials Science and Engineering , Sun Yat-Sen University , Guangzhou , 510275 , China
| | - Tianhang Zhang
- Graduate School for Integrative Sciences and Engineering , National University of Singapore, Centre for Life Sciences (CeLS) , #05-01, 28 Medical Drive Singapore 117456 , Singapore
- Department of Electrical and Computer Engineering , National University of Singapore , Singapore 117583 , Singapore
| | - Huapeng Ye
- Department of Electrical and Computer Engineering , National University of Singapore , Singapore 117583 , Singapore
| | - Juan Jose Saenz
- Donostia International Physics Center (DIPC) , Paseo Manuel de Lardizabal 4 , Donostia-San Sebastian 20018 , Spain
- IKERBASQUE, Basque Foundation for Science , 48013 Bilbao , Spain
| | - Cheng-Wei Qiu
- Graduate School for Integrative Sciences and Engineering , National University of Singapore, Centre for Life Sciences (CeLS) , #05-01, 28 Medical Drive Singapore 117456 , Singapore
- Department of Electrical and Computer Engineering , National University of Singapore , Singapore 117583 , Singapore
| | - Baojun Li
- Institute of Nanophotonics , Jinan University , Guangzhou 511443 , China
| |
Collapse
|
26
|
Voci S, Goudeau B, Valenti G, Lesch A, Jović M, Rapino S, Paolucci F, Arbault S, Sojic N. Surface-Confined Electrochemiluminescence Microscopy of Cell Membranes. J Am Chem Soc 2018; 140:14753-14760. [PMID: 30336008 DOI: 10.1021/jacs.8b08080] [Citation(s) in RCA: 197] [Impact Index Per Article: 32.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Herein is reported a surface-confined microscopy based on electrochemiluminescence (ECL) that allows to image the plasma membrane of single cells at the interface with an electrode. By analyzing photoluminescence (PL), ECL and AFM images of mammalian CHO cells, we demonstrate that, in contrast to the wide-field fluorescence, ECL emission is confined to the immediate vicinity of the electrode surface and only the basal membrane of the cell becomes luminescent. The resulting ECL microscopy reveals details that are not resolved by classic fluorescence microscopy, without any light irradiation and specific setup. The thickness of the ECL-emitting regions is ∼500 nm due to the unique ECL mechanism that involves short-lifetime electrogenerated radicals. In addition, the reported ECL microscopy is a dynamic technique that reflects the transport properties through the cell membranes and not only the specific labeling of the membranes. Finally, disposable transparent carbon nanotube (CNT)-based electrodes inkjet-printed on classic microscope glass coverslips were used to image cells in both reflection and transmission configurations. Therefore, our approach opens new avenues for ECL as a surface-confined microscopy to develop single cell assays and to image the dynamics of biological entities in cells or in membranes.
Collapse
Affiliation(s)
- Silvia Voci
- University of Bordeaux , Bordeaux INP, ISM, UMR CNRS 5255 , 33607 Pessac , France
| | - Bertrand Goudeau
- University of Bordeaux , Bordeaux INP, ISM, UMR CNRS 5255 , 33607 Pessac , France
| | - Giovanni Valenti
- Department of Chemistry "G. Ciamician" , University of Bologna , Via Selmi 2 , 40126 Bologna , Italy
| | - Andreas Lesch
- Laboratory of Physical and Analytical Electrochemistry , EPFL Valais Wallis , Rue de l'Industrie 17, CP 440 , CH-1951 Sion , Switzerland
| | - Milica Jović
- Laboratory of Physical and Analytical Electrochemistry , EPFL Valais Wallis , Rue de l'Industrie 17, CP 440 , CH-1951 Sion , Switzerland
| | - Stefania Rapino
- Department of Chemistry "G. Ciamician" , University of Bologna , Via Selmi 2 , 40126 Bologna , Italy
| | - Francesco Paolucci
- Department of Chemistry "G. Ciamician" , University of Bologna , Via Selmi 2 , 40126 Bologna , Italy
| | - Stéphane Arbault
- University of Bordeaux , Bordeaux INP, ISM, UMR CNRS 5255 , 33607 Pessac , France
| | - Neso Sojic
- University of Bordeaux , Bordeaux INP, ISM, UMR CNRS 5255 , 33607 Pessac , France
| |
Collapse
|
27
|
Bioinspired, nanoscale approaches in contemporary bioanalytics (Review). Biointerphases 2018; 13:040801. [DOI: 10.1116/1.5037582] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
28
|
Evolution of Nanoporous Surface Layers on Gas-Atomized Ti 60Cu 39Au₁ Powders during Dealloying. NANOMATERIALS 2018; 8:nano8080581. [PMID: 30061477 PMCID: PMC6116246 DOI: 10.3390/nano8080581] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/07/2018] [Revised: 07/19/2018] [Accepted: 07/23/2018] [Indexed: 01/05/2023]
Abstract
Nanoporous golf ball-shaped powders with a surface porous layer consisting of fcc Cu and Cu3Au phases have been fabricated by selectively dissolving gas-atomized Ti60Cu39Au1 powders in 0.13 M HF solution. The distribution profiles of the Ti2Cu and TiCu intermetallic phases and powder size play an important role of the propagation of the selective corrosion frontiers. The final nanoporous structure has a bimodal characteristic with a finer nanoporous structure at the ridges, and rougher structure at the shallow pits. The powders with a size of 18–75 m dealloy faster due to their high crystallinity and larger powder size, and these with a powder size of smaller than 18 m tend to deepen uniformly. The formation of the Cu3Au intermetallic phases and the finer nanoporous structure at the ridges proves that minor Au addition inhibits the fast diffusion of Cu adatoms and decreases surface diffusion by more than two orders. The evolution of the surface nanoporous structure with negative tree-like structures is considered to be controlled by a percolation dissolution mechanism.
Collapse
|
29
|
Ying YL, Hu YX, Gao R, Yu RJ, Gu Z, Lee LP, Long YT. Asymmetric Nanopore Electrode-Based Amplification for Electron Transfer Imaging in Live Cells. J Am Chem Soc 2018. [PMID: 29529376 DOI: 10.1021/jacs.7b12106] [Citation(s) in RCA: 173] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Capturing real-time electron transfer, enzyme activity, molecular dynamics, and biochemical messengers in living cells is essential for understanding the signaling pathways and cellular communications. However, there is no generalizable method for characterizing a broad range of redox-active species in a single living cell at the resolution of cellular compartments. Although nanoelectrodes have been applied in the intracellular detection of redox-active species, the fabrication of nanoelectrodes to maximize the signal-to-noise ratio of the probe remains challenging because of the stringent requirements of 3D fabrication. Here, we report an asymmetric nanopore electrode-based amplification mechanism for the real-time monitoring of NADH in a living cell. We used a two-step 3D fabrication process to develop a modified asymmetric nanopore electrode with a diameter down to 90 nm, which allowed for the detection of redox metabolism in living cells. Taking advantage of the asymmetric geometry, the above 90% potential drop at the two terminals of the nanopore electrode converts the faradaic current response into an easily distinguishable bubble-induced transient ionic current pattern. Therefore, the current signal was amplified by at least 3 orders of magnitude, which was dynamically linked to the presence of trace redox-active species. Compared to traditional wire electrodes, this wireless asymmetric nanopore electrode exhibits a high signal-to-noise ratio by increasing the current resolution from nanoamperes to picoamperes. The asymmetric nanopore electrode achieves the highly sensitive and selective probing of NADH concentrations as low as 1 pM. Moreover, it enables the real-time nanopore monitoring of the respiration chain (i.e., NADH) in a living cell and the evaluation of the effects of anticancer drugs in an MCF-7 cell. We believe that this integrated wireless asymmetric nanopore electrode provides promising building blocks for the future imaging of electron transfer dynamics in live cells.
Collapse
Affiliation(s)
- Yi-Lun Ying
- Key Laboratory for Advanced Materials & School of Chemistry and Molecular Engineering , East China University of Science and Technology , Shanghai 200237 , PR China
| | - Yong-Xu Hu
- Key Laboratory for Advanced Materials & School of Chemistry and Molecular Engineering , East China University of Science and Technology , Shanghai 200237 , PR China
| | - Rui Gao
- Key Laboratory for Advanced Materials & School of Chemistry and Molecular Engineering , East China University of Science and Technology , Shanghai 200237 , PR China
| | - Ru-Jia Yu
- Key Laboratory for Advanced Materials & School of Chemistry and Molecular Engineering , East China University of Science and Technology , Shanghai 200237 , PR China
| | - Zhen Gu
- Key Laboratory for Advanced Materials & School of Chemistry and Molecular Engineering , East China University of Science and Technology , Shanghai 200237 , PR China
| | - Luke P Lee
- Biomedical Institute for Global Health Research and Technology , National University of Singapore , 117599 Singapore.,Departments of Bioengineering, Electrical Engineering, and Computer Sciences , ∥Berkeley Sensor and Actuator Center , and ⊥Biophysics Graduate Program , University of California , Berkeley , California 94720 , United States
| | - Yi-Tao Long
- Key Laboratory for Advanced Materials & School of Chemistry and Molecular Engineering , East China University of Science and Technology , Shanghai 200237 , PR China
| |
Collapse
|
30
|
Geng W, Wang L, Jiang N, Cao J, Xiao YX, Wei H, Yetisen AK, Yang XY, Su BL. Single cells in nanoshells for the functionalization of living cells. NANOSCALE 2018; 10:3112-3129. [PMID: 29393952 DOI: 10.1039/c7nr08556g] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Inspired by the characteristics of cells in live organisms, new types of hybrids have been designed comprising live cells and abiotic materials having a variety of structures and functionalities. The major goal of these studies is to uncover hybridization approaches that promote cell stabilization and enable the introduction of new functions into living cells. Single-cells in nanoshells have great potential in a large number of applications including bioelectronics, cell protection, cell therapy, and biocatalysis. In this review, we discuss the results of investigations that have focused on the synthesis, structuration, functionalization, and applications of these single-cells in nanoshells. We describe synthesis methods to control the structural and functional features of single-cells in nanoshells, and further develop their applications in sustainable energy, environmental remediation, green biocatalysis, and smart cell therapy. Perceived limitations of single-cells in nanoshells have been also identified.
Collapse
Affiliation(s)
- Wei Geng
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, 122, Luoshi Road, Wuhan, 430070, China.
| | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Super-Resolution Fluorescence Microscopy for Single Cell Imaging. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1068:59-71. [DOI: 10.1007/978-981-13-0502-3_6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
32
|
Hu T, Zhang JL. Mass-spectrometry-based lipidomics. J Sep Sci 2017; 41:351-372. [PMID: 28859259 DOI: 10.1002/jssc.201700709] [Citation(s) in RCA: 94] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Revised: 08/17/2017] [Accepted: 08/18/2017] [Indexed: 01/09/2023]
Abstract
Lipids, which have a core function in energy storage, signalling and biofilm structures, play important roles in a variety of cellular processes because of the great diversity of their structural and physiochemical properties. Lipidomics is the large-scale profiling and quantification of biogenic lipid molecules, the comprehensive study of their pathways and the interpretation of their physiological significance based on analytical chemistry and statistical analysis. Lipidomics will not only provide insight into the physiological functions of lipid molecules but will also provide an approach to discovering important biomarkers for diagnosis or treatment of human diseases. Mass-spectrometry-based analytical techniques are currently the most widely used and most effective tools for lipid profiling and quantification. In this review, the field of mass-spectrometry-based lipidomics was discussed. Recent progress in all essential steps in lipidomics was carefully discussed in this review, including lipid extraction strategies, separation techniques and mass-spectrometry-based analytical and quantitative methods in lipidomics. We also focused on novel resolution strategies for difficult problems in determining C=C bond positions in lipidomics. Finally, new technologies that were developed in recent years including single-cell lipidomics, flux-based lipidomics and multiomics technologies were also reviewed.
Collapse
Affiliation(s)
- Ting Hu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing, PR China
| | - Jin-Lan Zhang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing, PR China
| |
Collapse
|
33
|
Abstract
Analysis of individual cells at the subcellular level is important for understanding diseases and accelerating drug discovery. Nanoscale endoscopes allow minimally invasive probing of individual cell interiors. Several such instruments have been presented previously, but they are either too complex to fabricate or require sophisticated external detectors because of low signal collection efficiency. Here we present a nanoendoscope that can locally excite fluorescence in labelled cell organelles and collect the emitted signal for spectral analysis. Finite Difference Time Domain (FDTD) simulations have shown that with an optimized nanoendoscope taper profile, the light emission and collection was localized within ~100 nm. This allows signal detection to be used for nano-photonic sensing of the proximity of fluorophores. Upon insertion into the individual organelles of living cells, the nanoendoscope was fabricated and resultant fluorescent signals collected. This included the signal collection from the nucleus of Acridine orange labelled human fibroblast cells, the nucleus of Hoechst stained live liver cells and the mitochondria of MitoTracker Red labelled MDA-MB-231 cells. The endoscope was also inserted into a live organism, the yellow fluorescent protein producing nematode Caenorhabditis elegans, and a fluorescent signal was collected. To our knowledge this is the first demonstration of in vivo, local fluorescence signal collection on the sub-organelle level.
Collapse
|
34
|
Lussier F, Brulé T, Vishwakarma M, Das T, Spatz JP, Masson JF. Dynamic-SERS Optophysiology: A Nanosensor for Monitoring Cell Secretion Events. NANO LETTERS 2016; 16:3866-71. [PMID: 27172291 DOI: 10.1021/acs.nanolett.6b01371] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
We monitored metabolite secretion near living cells using a plasmonic nanosensor. The nanosensor created from borosilicate nanopipettes analogous to the patch clamp was decorated with Au nanoparticles and served as a surface-enhanced Raman scattering (SERS) substrate with addressable location. With this nanosensor, we acquired SERS locally near Madin-Darby canine kidney (MDCKII) epithelial cells, and we detected multiple metabolites, such as pyruvate, lactate, ATP, and urea simultaneously. These plasmonic nanosensors were capable of monitoring metabolites in the extracellular medium with enough sensitivity to detect an increase in metabolite concentration following the lyses of MDCKII cells with a nonionic surfactant. The plasmonic nanosensors also allowed a relative quantification of a chemical gradient for a metabolite near cells, as demonstrated with a decrease in relative lactate to pyruvate concentration further away from the MDCKII cells. This SERS optophysiology technique for the sensitive and nondestructive monitoring of extracellular metabolites near living cells is broadly applicable to different cellular and tissue models and should therefore provide a powerful tool for cellular studies.
Collapse
Affiliation(s)
- Félix Lussier
- Department of Chemistry, Université de Montréal , C.P. 6128 Succ. Centre-Ville, Montreal, Quebec, H3C 3J7 Canada
| | - Thibault Brulé
- Department of Chemistry, Université de Montréal , C.P. 6128 Succ. Centre-Ville, Montreal, Quebec, H3C 3J7 Canada
| | - Medhavi Vishwakarma
- Max Planck Institute for Medical Research , Department of Biointerface Science & Technology, Jahnstraße 29, 69120 Heidelberg, Germany
| | - Tamal Das
- Max Planck Institute for Medical Research , Department of Biointerface Science & Technology, Jahnstraße 29, 69120 Heidelberg, Germany
| | - Joachim P Spatz
- Max Planck Institute for Medical Research , Department of Biointerface Science & Technology, Jahnstraße 29, 69120 Heidelberg, Germany
- Department of Biophysical Chemistry, University of Heidelberg , INF 253, D-69120 Heidelberg, Germany
| | - Jean-François Masson
- Department of Chemistry, Université de Montréal , C.P. 6128 Succ. Centre-Ville, Montreal, Quebec, H3C 3J7 Canada
- Centre for Self-Assembled Chemical Structures (CSACS) , 801 Sherbrooke St. West, Montreal, Quebec, H3A 2K6 Canada
| |
Collapse
|
35
|
Golshadi M, Wright LK, Dickerson IM, Schrlau MG. High-Efficiency Gene Transfection of Cells through Carbon Nanotube Arrays. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2016; 12:3014-3020. [PMID: 27059518 DOI: 10.1002/smll.201503878] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Revised: 03/04/2016] [Indexed: 06/05/2023]
Abstract
Introducing nucleic acids into mammalian cells is a crucial step to elucidate biochemical pathways, and to modify gene expression and cellular development in immortalized cells, primary cells, and stem cells. Current transfection technologies are time consuming and limited by the size of genetic cargo, the inefficient introduction of test molecules into large populations of target cells, and the cytotoxicity of the techniques. A novel method of introducing genes and biomolecules into tens of thousands of mammalian cells has been developed through an array of aligned hollow carbon nanotubes, manufactured by template-based nanofabrication processes, to achieve rapid high-efficiency transfer with low cytotoxicity. The utilization of carbon nanotube arrays for gene transfection overcomes molecular weight limits of current technologies and can be adapted to deliver drugs or proteins in addition to nucleic acids.
Collapse
Affiliation(s)
- Masoud Golshadi
- Department of Microsystems Engineering, Rochester Institute of Technology, Rochester, NY, 14623, USA
| | - Leslie K Wright
- School of Life Sciences, Rochester Institute of Technology, Rochester, NY, 14623, USA
| | - Ian M Dickerson
- Department of Neuroscience, University of Rochester Medical Center, Rochester, NY, 14642, USA
| | - Michael G Schrlau
- Department of Mechanical Engineering, Rochester Institute of Technology, Rochester, NY, 14623, USA
| |
Collapse
|
36
|
Nanoelectrodes: Applications in electrocatalysis, single-cell analysis and high-resolution electrochemical imaging. Trends Analyt Chem 2016. [DOI: 10.1016/j.trac.2016.01.018] [Citation(s) in RCA: 126] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
37
|
Zeidan E, Kepley CL, Sayes C, Sandros MG. Surface plasmon resonance: a label-free tool for cellular analysis. Nanomedicine (Lond) 2016; 10:1833-46. [PMID: 26080702 DOI: 10.2217/nnm.15.31] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Surface plasmon resonance (SPR) is a popular technique that allows for sensitive, specific, label-free and real-time assessment of biomolecular interactions. SPR is a nondestructive, modular and flexible tool for various applications in biomedical sciences ranging from cell sorting, cell surface characterization and drug discovery. In this review, we will discuss more specifically how SPR is used to monitor the dynamics of various types of cellular binding events and morphological adherence changes in response to external stimuli.
Collapse
Affiliation(s)
- Effat Zeidan
- University of North Carolina at Greensboro, Department of Nanoscience, 2907 E Lee Street, Greensboro, NC, 27401, USA
| | - Christopher L Kepley
- University of North Carolina at Greensboro, Department of Nanoscience, 2907 E Lee Street, Greensboro, NC, 27401, USA
| | - Christie Sayes
- University of North Carolina at Greensboro, Department of Nanoscience, 2907 E Lee Street, Greensboro, NC, 27401, USA
| | - Marinella G Sandros
- University of North Carolina at Greensboro, Department of Nanoscience, 2907 E Lee Street, Greensboro, NC, 27401, USA
| |
Collapse
|
38
|
Zheng XT, Ma XQ, Li CM. Highly efficient nuclear delivery of anti-cancer drugs using a bio-functionalized reduced graphene oxide. J Colloid Interface Sci 2016; 467:35-42. [DOI: 10.1016/j.jcis.2015.12.052] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Revised: 12/28/2015] [Accepted: 12/29/2015] [Indexed: 12/31/2022]
|
39
|
Chang L, Hu J, Chen F, Chen Z, Shi J, Yang Z, Li Y, Lee LJ. Nanoscale bio-platforms for living cell interrogation: current status and future perspectives. NANOSCALE 2016; 8:3181-3206. [PMID: 26745513 DOI: 10.1039/c5nr06694h] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
The living cell is a complex entity that dynamically responds to both intracellular and extracellular environments. Extensive efforts have been devoted to the understanding intracellular functions orchestrated with mRNAs and proteins in investigation of the fate of a single-cell, including proliferation, apoptosis, motility, differentiation and mutations. The rapid development of modern cellular analysis techniques (e.g. PCR, western blotting, immunochemistry, etc.) offers new opportunities in quantitative analysis of RNA/protein expression up to a single cell level. The recent entries of nanoscale platforms that include kinds of methodologies with high spatial and temporal resolution have been widely employed to probe the living cells. In this tutorial review paper, we give insight into background introduction and technical innovation of currently reported nanoscale platforms for living cell interrogation. These highlighted technologies are documented in details within four categories, including nano-biosensors for label-free detection of living cells, nanodevices for living cell probing by intracellular marker delivery, high-throughput platforms towards clinical current, and the progress of microscopic imaging platforms for cell/tissue tracking in vitro and in vivo. Perspectives for system improvement were also discussed to solve the limitations remains in current techniques, for the purpose of clinical use in future.
Collapse
Affiliation(s)
- Lingqian Chang
- NSF Nanoscale Science and Engineering Center (NSEC), The Ohio State University, Columbus, OH 43212, USA.
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Biteen JS, Blainey PC, Cardon ZG, Chun M, Church GM, Dorrestein PC, Fraser SE, Gilbert JA, Jansson JK, Knight R, Miller JF, Ozcan A, Prather KA, Quake SR, Ruby EG, Silver PA, Taha S, van den Engh G, Weiss PS, Wong GCL, Wright AT, Young TD. Tools for the Microbiome: Nano and Beyond. ACS NANO 2016; 10:6-37. [PMID: 26695070 DOI: 10.1021/acsnano.5b07826] [Citation(s) in RCA: 94] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
The microbiome presents great opportunities for understanding and improving the world around us and elucidating the interactions that compose it. The microbiome also poses tremendous challenges for mapping and manipulating the entangled networks of interactions among myriad diverse organisms. Here, we describe the opportunities, technical needs, and potential approaches to address these challenges, based on recent and upcoming advances in measurement and control at the nanoscale and beyond. These technical needs will provide the basis for advancing the largely descriptive studies of the microbiome to the theoretical and mechanistic understandings that will underpin the discipline of microbiome engineering. We anticipate that the new tools and methods developed will also be more broadly useful in environmental monitoring, medicine, forensics, and other areas.
Collapse
Affiliation(s)
- Julie S Biteen
- Department of Chemistry, University of Michigan , Ann Arbor, Michigan 48109, United States
| | - Paul C Blainey
- Department of Biological Engineering, Massachusetts Institute of Technology , and Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02138, United States
| | - Zoe G Cardon
- The Ecosystems Center, Marine Biological Laboratory , Woods Hole, Massachusetts 02543-1015, United States
| | - Miyoung Chun
- The Kavli Foundation , Oxnard, California 93030, United States
| | - George M Church
- Wyss Institute for Biologically Inspired Engineering and Biophysics Program, Harvard University , Boston, Massachusetts 02115, United States
| | | | - Scott E Fraser
- Translational Imaging Center, University of Southern California , Molecular and Computational Biology, Los Angeles, California 90089, United States
| | - Jack A Gilbert
- Institute for Genomic and Systems Biology, Argonne National Laboratory , Argonne, Illinois 60439, United States
- Department of Ecology and Evolution and Department of Surgery, University of Chicago , Chicago, Illinois 60637, United States
| | - Janet K Jansson
- Earth and Biological Sciences Division, Pacific Northwest National Laboratory , Richland, Washington 99352, United States
| | | | | | | | | | | | - Edward G Ruby
- Kewalo Marine Laboratory, University of Hawaii-Manoa , Honolulu, Hawaii 96813, United States
| | - Pamela A Silver
- Wyss Institute for Biologically Inspired Engineering and Biophysics Program, Harvard University , Boston, Massachusetts 02115, United States
| | - Sharif Taha
- The Kavli Foundation , Oxnard, California 93030, United States
| | - Ger van den Engh
- Center for Marine Cytometry , Concrete, Washington 98237, United States
- Instituto Milenio de Oceanografía, Universidad de Concepción , Concepción, Chile
| | | | | | - Aaron T Wright
- Earth and Biological Sciences Division, Pacific Northwest National Laboratory , Richland, Washington 99352, United States
| | | |
Collapse
|
41
|
Yuan F, Zhang DW, Liu JX, Zhou YL, Zhang XX. Phytochemical profiling in single plant cell by high performance liquid chromatography-mass spectrometry. Analyst 2016; 141:6338-6343. [DOI: 10.1039/c6an01539e] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A simple and universal method was successfully established to profile and identify bioactive phytochemicals and common metabolites in the single plant cell by using high performance liquid chromatography coupled with high resolution electrospray ionization mass spectrometry.
Collapse
Affiliation(s)
- Fang Yuan
- Beijing National Laboratory for Molecular Sciences (BNLMS)
- Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education
- College of Chemistry
- Peking University
- Beijing 100871
| | - De-Wen Zhang
- School of Engineering and Materials Science
- Queen Mary University of London
- London E1 4NS
- UK
- China Academy of Engineering Physics
| | - Jing-Xin Liu
- Petrochina Research Institute
- Petrochina Company Limited
- Beijing
- China
| | - Ying-Lin Zhou
- Beijing National Laboratory for Molecular Sciences (BNLMS)
- Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education
- College of Chemistry
- Peking University
- Beijing 100871
| | - Xin-Xiang Zhang
- Beijing National Laboratory for Molecular Sciences (BNLMS)
- Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education
- College of Chemistry
- Peking University
- Beijing 100871
| |
Collapse
|
42
|
Xu JQ, Liu YL, Wang Q, Duo HH, Zhang XW, Li YT, Huang WH. Photocatalytically Renewable Micro-electrochemical Sensor for Real-Time Monitoring of Cells. Angew Chem Int Ed Engl 2015. [DOI: 10.1002/ange.201507354] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
43
|
Xu J, Liu Y, Wang Q, Duo H, Zhang X, Li Y, Huang W. Photocatalytically Renewable Micro‐electrochemical Sensor for Real‐Time Monitoring of Cells. Angew Chem Int Ed Engl 2015; 54:14402-6. [DOI: 10.1002/anie.201507354] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Revised: 09/09/2015] [Indexed: 01/01/2023]
Affiliation(s)
- Jia‐Quan Xu
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072 (China)
| | - Yan‐Ling Liu
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072 (China)
| | - Qian Wang
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072 (China)
| | - Huan‐Huan Duo
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072 (China)
| | - Xin‐Wei Zhang
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072 (China)
| | - Yu‐Tao Li
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072 (China)
| | - Wei‐Hua Huang
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072 (China)
| |
Collapse
|
44
|
Yang D, Hong H, Seo YH, Kim LH, Ryu W. Three-Dimensional Rapid Prototyping of Multidirectional Polymer Nanoprobes for Single Cell Insertion. ACS APPLIED MATERIALS & INTERFACES 2015; 7:16873-16880. [PMID: 26144221 DOI: 10.1021/acsami.5b05254] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Three-dimensional (3D) thermal drawing at nanoscale as a novel rapid prototyping method was demonstrated to create multidirectional polymer nanoprobes for single cell analysis. This 3D drawing enables simple and rapid fabrication of polymeric nanostructures with high aspect ratio. The effect of thermal drawing parameters, such as drawing speeds, dipping depths, and contact duration on the final geometry of polymer nanostructures was investigated. Vertically aligned and L-shaped nanoprobes were fabricated and their insertion into living single cells such as algal cells and human neural stem cells was demonstrated. This technique can be extended to create more complex 3D structures by controlling drawing steps and directions on any surface.
Collapse
Affiliation(s)
- Dasom Yang
- Department of Mechanical Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 120-749, Republic of Korea
| | - Hyeonaug Hong
- Department of Mechanical Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 120-749, Republic of Korea
| | - Yoon Ho Seo
- Department of Mechanical Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 120-749, Republic of Korea
| | - Lo Hyun Kim
- Department of Mechanical Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 120-749, Republic of Korea
| | - WonHyoung Ryu
- Department of Mechanical Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 120-749, Republic of Korea
| |
Collapse
|
45
|
Li YT, Zhang SH, Wang XY, Zhang XW, Oleinick AI, Svir I, Amatore C, Huang WH. Real-time Monitoring of Discrete Synaptic Release Events and Excitatory Potentials within Self-reconstructed Neuromuscular Junctions. Angew Chem Int Ed Engl 2015; 54:9313-8. [PMID: 26079517 DOI: 10.1002/anie.201503801] [Citation(s) in RCA: 81] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2015] [Indexed: 01/09/2023]
Abstract
Chemical synaptic transmission is central to the brain functions. In this regard, real-time monitoring of chemical synaptic transmission during neuronal communication remains a great challenge. In this work, in vivo-like oriented neural networks between superior cervical ganglion (SCG) neurons and their effector smooth muscle cells (SMC) were assembled in a microfluidic device. This allowed amperometric detection of individual neurotransmitter release events inside functional SCG-SMC synapse with carbon fiber nanoelectrodes as well as recording of postsynaptic potential using glass nanopipette electrodes. The high vesicular release activities essentially involved complex events arising from flickering fusion pores as quantitatively established based on simulations. This work allowed for the first time monitoring in situ chemical synaptic transmission under conditions close to those found in vivo, which may yield important and new insights into the nature of neuronal communications.
Collapse
Affiliation(s)
- Yu-Tao Li
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, and LIA NanoBioCatEchem, Wuhan University, Wuhan 430072 (China)
| | - Shu-Hui Zhang
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, and LIA NanoBioCatEchem, Wuhan University, Wuhan 430072 (China)
| | - Xue-Ying Wang
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, and LIA NanoBioCatEchem, Wuhan University, Wuhan 430072 (China)
| | - Xin-Wei Zhang
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, and LIA NanoBioCatEchem, Wuhan University, Wuhan 430072 (China)
| | - Alexander I Oleinick
- Ecole Normale Supérieure, Département de Chimie, UMR 8640 (CNRS-ENS-UPMC and LIA NanoBioCatEchem, 24 rue Lhomond, 75005 Paris(France)
| | - Irina Svir
- Ecole Normale Supérieure, Département de Chimie, UMR 8640 (CNRS-ENS-UPMC and LIA NanoBioCatEchem, 24 rue Lhomond, 75005 Paris(France)
| | - Christian Amatore
- Ecole Normale Supérieure, Département de Chimie, UMR 8640 (CNRS-ENS-UPMC and LIA NanoBioCatEchem, 24 rue Lhomond, 75005 Paris(France).
| | - Wei-Hua Huang
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, and LIA NanoBioCatEchem, Wuhan University, Wuhan 430072 (China).
| |
Collapse
|
46
|
Li YT, Zhang SH, Wang XY, Zhang XW, Oleinick AI, Svir I, Amatore C, Huang WH. Real-time Monitoring of Discrete Synaptic Release Events and Excitatory Potentials within Self-reconstructed Neuromuscular Junctions. Angew Chem Int Ed Engl 2015. [DOI: 10.1002/ange.201503801] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
47
|
Carraz M, Lavergne C, Jullian V, Wright M, Gairin JE, Gonzales de la Cruz M, Bourdy G. Antiproliferative activity and phenotypic modification induced by selected Peruvian medicinal plants on human hepatocellular carcinoma Hep3B cells. JOURNAL OF ETHNOPHARMACOLOGY 2015; 166:185-199. [PMID: 25701751 DOI: 10.1016/j.jep.2015.02.028] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2014] [Revised: 02/06/2015] [Accepted: 02/10/2015] [Indexed: 06/04/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The high incidence of human hepatocellular carcinoma (HCC) in Peru and the wide use of medicinal plants in this country led us to study the activity against HCC cells in vitro of somes species used locally against liver and digestive disorders. MATERIALS AND METHODS Ethnopharmacological survey: Medicinal plant species with a strong convergence of use for liver and digestive diseases were collected fresh in the wild or on markets, in two places of Peru: Chiclayo (Lambayeque department, Chiclayo province) and Huaraz (Ancash department, Huaraz province). Altogether 51 species were collected and 61 ethanol extracts were prepared to be tested. Biological assessment: All extracts were first assessed against the HCC cell line Hep3B according a 3-step multi-parametric phenotypic assay. It included 1) the evaluation of phenotypic changes on cells by light microscopy, 2) the measurement of the antiproliferative activity and 3) the analysis of the cytoskeleton and mitosis by immunofluorescence. Best extracts were further assessed against other HCC cell lines HepG2, PLC/PRF/5 and SNU-182 and their toxicity measured in vitro on primary human hepatocytes. RESULTS Ethnopharmacological survey: Some of the species collected had a high reputation spreading over the surveyed locations for treating liver problems, i.e. Baccharis genistelloides, Bejaria aestuans, Centaurium pulchellum, Desmodium molliculum, Dipsacus fullonum, Equisetum bogotense, Gentianella spp., Krameria lapacea, Otholobium spp., Schkuhria pinnata, Taraxacum officinale. Hep3B evaluation: Fourteen extracts from 13 species (Achyrocline alata, Ambrosia arborescens, Baccharis latifolia, Hypericum laricifolium, Krameria lappacea, Niphidium crassifolium, Ophryosporus chilca, Orthrosanthus chimboracensis, Otholobium pubescens, Passiflora ligularis, Perezia coerulescens, Perezia multiflora and Schkuhria pinnata) showed a significant antiproliferative activity against Hep3B cells (IC50≤ 50µg/mL). This was associated with a lack of toxicity on primary human hepatocytes in vitro. Immunofluorescence experiments on Hep3B cells showed that crude extracts of Schkuhria pinnata and Orthrosanthus chimboracensis could block Hep3B cells in mitosis with an original phenotype. Crude extracts of Perezia coerulescens, Perezia multiflora, Achyrocline alata, Ophryosporus chilca, Otholobium pubescens and Hypericum laricifolium could modify the overall microtubule cytoskeletal dynamics of Hep3B cells in interphase by an original mechanism. CONCLUSIONS Our method allowed us to select 9 extracts which displayed antiproliferative activities associated with original cellular phenotypes on Hep3B cells, regarding known microtubule-targeting drugs. Both chemical and cellular studies are ongoing in order to elucidate natural compounds and cellular mechanisms responsible of the activities described.
Collapse
Affiliation(s)
- Maëlle Carraz
- Université de Toulouse; UPS; UMR 152 Pharma-DEV; Université Toulouse 3; Faculté, des Sciences Pharmaceutiques; 35 Chemin des Maraîchers, F-31062 Toulouse cedex 9, France; Institut de Recherche pour le Développement; IRD; UMR 152 Pharma-DEV, F-31062 Toulouse cedex 9, France.
| | - Cédric Lavergne
- Université de Toulouse; UPS; UMR 152 Pharma-DEV; Université Toulouse 3; Faculté, des Sciences Pharmaceutiques; 35 Chemin des Maraîchers, F-31062 Toulouse cedex 9, France
| | - Valérie Jullian
- Université de Toulouse; UPS; UMR 152 Pharma-DEV; Université Toulouse 3; Faculté, des Sciences Pharmaceutiques; 35 Chemin des Maraîchers, F-31062 Toulouse cedex 9, France; Institut de Recherche pour le Développement; IRD; UMR 152 Pharma-DEV, Mission IRD, Casilla 18-1209 Lima, Peru
| | - Michel Wright
- Université de Toulouse; UPS; UMR 152 Pharma-DEV; Université Toulouse 3; Faculté, des Sciences Pharmaceutiques; 35 Chemin des Maraîchers, F-31062 Toulouse cedex 9, France; Centre Nationalde la Recherche Scientifique; CNRS; UMR 152 Pharma-DEV; Faculté, des Sciences Pharmaceutiques; 35 Chemin des Maraîchers, F-31062 Toulouse cedex 9, France
| | - Jean Edouard Gairin
- Université de Toulouse; UPS; UMR 152 Pharma-DEV; Université Toulouse 3; Faculté, des Sciences Pharmaceutiques; 35 Chemin des Maraîchers, F-31062 Toulouse cedex 9, France
| | | | - Geneviève Bourdy
- Université de Toulouse; UPS; UMR 152 Pharma-DEV; Université Toulouse 3; Faculté, des Sciences Pharmaceutiques; 35 Chemin des Maraîchers, F-31062 Toulouse cedex 9, France; Institut de Recherche pour le Développement; IRD; UMR 152 Pharma-DEV, F-31062 Toulouse cedex 9, France
| |
Collapse
|
48
|
Quan Q, Zhang Y. Lab-on-a-Tip (LOT): Where Nanotechnology Can Revolutionize Fibre Optics. Nanobiomedicine (Rij) 2015; 2:3. [PMID: 29942369 PMCID: PMC5997371 DOI: 10.5772/60518] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2014] [Accepted: 03/02/2015] [Indexed: 12/22/2022] Open
Abstract
Recently developed lab-on-a-chip technologies integrate multiple traditional assays on a single chip with higher sensitivity, faster assay time, and more streamlined sample operation. We discuss the prospects of the lab-on-a-tip platform, where assays can be integrated on a miniaturized tip for in situ and in vivo analysis. It will resolve some of the limitations of available lab-on-a-chip platforms and enable next generation multifunctional in vivo sensors, as well as analytical techniques at the single cell or even sub-cellular levels.
Collapse
Affiliation(s)
- Qimin Quan
- Rowland Institute at Harvard University, Cambridge, MA, USA
| | - Yiying Zhang
- Geriatric Anesthesia Research Unit, Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
| |
Collapse
|
49
|
Zhang Q, Li Y, Sun H, Zeng L, Li X, Yuan B, Ning C, Dong H, Chen X. hMSCs bridging across micro-patterned grooves. RSC Adv 2015. [DOI: 10.1039/c5ra06414g] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
hMSCs spanned across a groove with 100 μm width.
Collapse
Affiliation(s)
- Qing Zhang
- Department of Biomedical Engineering
- School of Materials Science and Engineering
- P.R. China
- National Engineering Research Center for Tissue Restoration and Reconstruction
- P.R. China
| | - Yuli Li
- Department of Biomedical Engineering
- School of Materials Science and Engineering
- P.R. China
- National Engineering Research Center for Tissue Restoration and Reconstruction
- P.R. China
| | - Hao Sun
- Bruker Nano Surfaces Division
- Bruker (Beijing) Scientific Technology Co. Ltd
- Beijing 100081
- P.R. China
| | - Lei Zeng
- Department of Biomedical Engineering
- School of Materials Science and Engineering
- P.R. China
- National Engineering Research Center for Tissue Restoration and Reconstruction
- P.R. China
| | - Xian Li
- Department of Biomedical Engineering
- School of Materials Science and Engineering
- P.R. China
- National Engineering Research Center for Tissue Restoration and Reconstruction
- P.R. China
| | - Bo Yuan
- Department of Biomedical Engineering
- School of Materials Science and Engineering
- P.R. China
- National Engineering Research Center for Tissue Restoration and Reconstruction
- P.R. China
| | - Chengyun Ning
- Department of Biomedical Engineering
- School of Materials Science and Engineering
- P.R. China
- National Engineering Research Center for Tissue Restoration and Reconstruction
- P.R. China
| | - Hua Dong
- Department of Biomedical Engineering
- School of Materials Science and Engineering
- P.R. China
- National Engineering Research Center for Tissue Restoration and Reconstruction
- P.R. China
| | - Xiaofeng Chen
- Department of Biomedical Engineering
- School of Materials Science and Engineering
- P.R. China
- National Engineering Research Center for Tissue Restoration and Reconstruction
- P.R. China
| |
Collapse
|
50
|
Shen Y, Fukuda T. State of the art: micro-nanorobotic manipulation in single cell analysis. ACTA ACUST UNITED AC 2014. [DOI: 10.1186/s40638-014-0021-4] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|