1
|
Skavenborg ML, Møller MS, Mossin S, Waite TD, McKenzie CJ. Sulfonamido-Pincer Complexes of Cu(II) and the Electrocatalysis of O 2 Reduction. Inorg Chem 2023; 62:12741-12749. [PMID: 37535840 DOI: 10.1021/acs.inorgchem.3c01262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/05/2023]
Abstract
Heteroleptic copper complexes of an asymmetrical pincer ligand containing a central anionic sulfonamide donor (pyridine-2-yl-sulfonyl)(quinolin-8-yl)-amide (psq), which contains a central anionic sulfonamido donor have been prepared. Meridional κ3-N,N″,N‴ binding with the co-ligands acetate, chloride, or acetonitrile (MeCN), trans to the central sulfonamido N-donor, is revealed by the X-ray crystal structures of [Cu(OAc)(psq)(H2O)], [CuCl(psq)]2, and [Cu(psq)(MeCN)](PF6). Either overall distorted square pyramidal or octahedral geometries of the copper atom are satisfied by coordinated water in the case of the acetate complex or interactions with periphery sulfonamido oxygen atoms on adjacent molecules in the dimeric chloride and 1D polymeric acetonitrile complexes. The cyclic voltammogram (CV) of [Cu(OAc)(psq)(H2O)] shows a quasi-reversible CuII/CuI reduction at -0.930 V (vs Fc+/Fc0, MeCN), and an irreversible CuII/CuI reduction for [Cu(psq)(MeCN)](PF6) is seen at -0.838 V. This signal is split into two quasi-reversible redox processes on the addition of 2,2,2-trifluoroethanol (TFE). This suggests that TFE pushes a solution equilibrium toward a dimeric acetate complex analogous to [CuCl(psq)]2, which shows two quasi-reversible waves at -0.666 V and -0.904 V vs Fc+/Fc0 consistent with its dimeric solid-state structure. A comparison of the CVs of [Cu(OAc)(psq)(H2O)] under either a N2 or an O2 atmosphere revealed that this complex catalyzes turnover electro-reduction of O2 to H2O2 and H2O. The rate of reaction increases on addition of a weak organic acid, and a coulombic efficiency of 48% for H2O2 was determined by iodometric titration. We propose that a CuI complex formed on electroreduction binds O2 to yield an intermediate superoxide complex. On electron and proton transfer to this species, a bifurcated route back to the O2-activating CuI complex is feasible with either release of H2O2 or O-O cleavage resulting in the liberation of H2O. The CuI complex is regenerated by subsequent reduction and protonation to close the cycle.
Collapse
Affiliation(s)
- Mathias L Skavenborg
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, 5230 Odense M, Denmark
- Water Research Centre, School of Civil and Environmental Engineering, University of New South Wales, Sydney, NSW 2052, Australia
| | - Mads Sondrup Møller
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, 5230 Odense M, Denmark
| | - Susanne Mossin
- Department of Chemistry, Technical University of Denmark, Kemitorvet, Building 207, 2800 Kgs Lyngby, Denmark
| | - T David Waite
- Water Research Centre, School of Civil and Environmental Engineering, University of New South Wales, Sydney, NSW 2052, Australia
| | - Christine J McKenzie
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, 5230 Odense M, Denmark
| |
Collapse
|
2
|
Zhang J, Li S, Fang H. C-H bond activations by the HO˙/(Salophen t-Bu)Co(II) radical pair generated via homolysis of a terminal Co(III)-OH bond. Chem Commun (Camb) 2023; 59:3245-3248. [PMID: 36815508 DOI: 10.1039/d3cc00146f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
Abstract
The reactive HO˙/(Salophent-Bu)Co(II) radical pair was observed to be generated via homolysis of the terminal Co(III)-OH bond in transient (Salophent-Bu)(L)Co(III)(OH) (L = Py, MeOH) complexes as indicated by UV-Vis and EPR measurements. Based on this elementary process, C-H bond activations in acetone, 2-butanone, acetonitrile and benzene were achieved under ambient conditions. For the reactions of the first three substrates, the alkylcobalt(III) complexes were formed as the products.
Collapse
Affiliation(s)
- Jia Zhang
- School of Materials Science and Engineering, Tianjin Key Lab for Rare Earth Materials and Applications, Nankai University, Tianjin, 300350, China.
| | - Songyi Li
- School of Materials Science and Engineering, Tianjin Key Lab for Rare Earth Materials and Applications, Nankai University, Tianjin, 300350, China.
| | - Huayi Fang
- School of Materials Science and Engineering, Tianjin Key Lab for Rare Earth Materials and Applications, Nankai University, Tianjin, 300350, China.
| |
Collapse
|
3
|
Daya VP, Jagan R, Chand DK. Self-assembled discrete and polymeric cobalt(II) complexes of a carboxylate appended tripodal tetradentate ligand: reactivity with aerial dioxygen or aqueous hydrogen peroxide. J CHEM SCI 2022. [DOI: 10.1007/s12039-022-02049-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
4
|
Ghosh I, Chakraborty B, Bera A, Paul S, Paine TK. Selective oxygenation of C-H and CC bonds with H 2O 2 by high-spin cobalt(II)-carboxylate complexes. Dalton Trans 2022; 51:2480-2492. [PMID: 35050271 DOI: 10.1039/d1dt02235k] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Four cobalt(II)-carboxylate complexes [(6-Me3-TPA)CoII(benzoate)](BPh4) (1), [(6-Me3-TPA)CoII(benzilate)](ClO4) (2), [(6-Me3-TPA)CoII(mandelate)](BPh4) (3), and [(6-Me3-TPA)CoII(MPA)](BPh4) (4) (HMPA = 2-methoxy-2-phenylacetic acid) of the 6-Me3-TPA (tris((6-methylpyridin-2-yl)methyl)amine) ligand were isolated to investigate their ability in H2O2-dependent selective oxygenation of C-H and CC bonds. All six-coordinate complexes contain a high-spin cobalt(II) center. While the cobalt(II) complexes are inert toward dioxygen, each of these complexes reacts readily with hydrogen peroxide to form a diamagnetic cobalt(III) species, which decays with time leading to the oxidation of the methyl groups on the pyridine rings of the supporting ligand. Intramolecular ligand oxidation by the cobalt-based oxidant is partially inhibited in the presence of external substrates, and the substrates are converted to their corresponding oxidized products. Kinetic studies and labelling experiments indicate the involvement of a metal-based oxidant in affecting the chemo- and stereo-selective catalytic oxygenation of aliphatic C-H bonds and epoxidation of alkenes. An electrophilic cobalt-oxygen species that exhibits a kinetic isotope effect (KIE) value of 5.3 in toluene oxidation by 1 is proposed as the active oxidant. Among the complexes, the cobalt(II)-benzoate (1) and cobalt(II)-MPA (4) complexes display better catalytic activity compared to their α-hydroxy analogues (2 and 3). Catalytic studies with the cobalt(II)-acetonitrile complex [(6-Me3-TPA)CoII(CH3CN)2](ClO4)2 (5) in the presence and absence of externally added benzoate support the role of the carboxylate co-ligand in oxidation reactions. The proposed catalytic reaction involves a carboxylate-bridged dicobalt complex in the activation of H2O2 followed by the oxidation of substrates by a metal-based oxidant.
Collapse
Affiliation(s)
- Ivy Ghosh
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Jadavpur, Kolkata 700 032, India.
| | - Biswarup Chakraborty
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Jadavpur, Kolkata 700 032, India.
| | - Abhijit Bera
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Jadavpur, Kolkata 700 032, India.
| | - Satadal Paul
- Department of Chemistry, Bangabasi Morning College, 19, Rajkumar Chakraborty Sarani, Kolkata - 700 009, India
| | - Tapan Kanti Paine
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Jadavpur, Kolkata 700 032, India.
| |
Collapse
|
5
|
Møller MS, Kongsted J, McKenzie CJ. Preparation of organocobalt(iii) complexes via O 2 activation. Dalton Trans 2021; 50:4819-4829. [PMID: 33877179 DOI: 10.1039/d1dt00563d] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The coupling of selective C-H activation with O2 activation is an important goal for organic synthesis. New experimental and computational results, along with the results from experimental work accumulated over many decades, now unequivocally link O2 activation with C-H activation by the classic Co(salen) complexes. A common holistic mechanistic framework can rationalise the formation of ostensibly diverse peroxo, superoxo, organo and alkoxide complexes of CoIII(salen). DFT calculations show that cobalt(iii)superoxo, dicobalt(iii)peroxo and cobalt(iii)hydroperoxo complexes are all viable intermediates as participants in hydrogen atom transfer reactions, whereas a Co(iv)oxo intermediate is unlikely. The reaction conditions will determine the pathway followed and all pathways are initiated through the initial formation of a superoxo complex, CoIII(salen)(O2˙)(MeOH) (EPR: g = 2.025, A = 19 G). Organo and alkoxide ligands are derived from solvent media and the trends in reactivity reveal that combination of the pKa and BDE of the C-H of the respective solvent substrates are important. These data explain why landmark, structurally characterized, μ2-η1,η2-peroxide and η1-superoxide Co(salen)-O2 adducts were predominantly isolated from solvents with high C-H pKa values (DMSO, DMF, DMA).
Collapse
Affiliation(s)
- Mads Sondrup Møller
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, 5230 Odense M, Denmark.
| | | | | |
Collapse
|
6
|
La Piana L, Viaggi V, Principe L, Di Bella S, Luzzaro F, Viale M, Bertola N, Vecchio G. Polypyridine ligands as potential metallo-β-lactamase inhibitors. J Inorg Biochem 2020; 215:111315. [PMID: 33285370 DOI: 10.1016/j.jinorgbio.2020.111315] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 11/16/2020] [Accepted: 11/16/2020] [Indexed: 11/19/2022]
Abstract
Bacteria have developed multiple resistance mechanisms against the most used antibiotics. In particular, zinc-dependent metallo-β-lactamase producing bacteria are a growing threat, and therapeutic options are limited. Zinc chelators have recently been investigated as metallo-β-lactamase inhibitors, as they are often able to restore carbapenem susceptibility. We synthesized polypyridyl ligands, N,N'-bis(2-pyridylmethyl)-ethylenediamine, N,N,N'-tris(2-pyridylmethyl)-ethylenediamine, N,N'-bis(2-pyridylmethyl)-ethylenediamine-N-acetic acid (N,N,N'-tris(2-pyridylmethyl)-ethylenediamine-N'-acetic acid, which can form zinc(II) complexes. We tested their ability to restore the antibiotic activity of meropenem against three clinical strains isolated from blood and metallo-β-lactamase producers (Klebsiella pneumoniae, Enterobacter cloacae, and Stenotrophomonas maltophilia). We functionalized N,N,N'-tris(2-pyridylmethyl)-ethylenediamine with D-alanyl-D-alanyl-D-alanine methyl ester with the aim to increase bacterial uptake. We observed synergistic activity of four polypyridyl ligands with meropenem against all tested isolates, while the combination N,N'-bis(2-pyridylmethyl)-ethylenediamine and meropenem was synergistic only against New Delhi and Verona integron-encoded metallo-β-lactamase-producing bacteria. All synergistic interactions restored the antimicrobial activity of meropenem, providing a significant decrease of minimal inhibitory concentration value (by 8- to 128-fold). We also studied toxicity of the ligands in two normal peripheral blood lymphocytes.
Collapse
Affiliation(s)
- Luana La Piana
- Dipartimento di Scienze Chimiche, Università degli Studi di Catania, V.le A. Doria 6, 95125 Catania, Italy
| | - Valentina Viaggi
- Clinical Microbiology and Virology Unit, A. Manzoni Hospital, Via dell'Eremo 9/11, 23900 Lecco, Italy
| | - Luigi Principe
- Clinical Pathology and Microbiology Unit, San Giovanni di Dio Hospital, Largo Bologna, 88900 Crotone, Italy
| | - Stefano Di Bella
- Clinical Department of Medical, Surgical and Health Sciences, Trieste University, strada di Fiume 447, 34149 Trieste, Italy
| | - Francesco Luzzaro
- Clinical Microbiology and Virology Unit, A. Manzoni Hospital, Via dell'Eremo 9/11, 23900 Lecco, Italy
| | - Maurizio Viale
- IRCCS Ospedale Policlinico San Martino, U.O. Bioterapie, L.go R. Benzi 10, 16132 Genova, Italy
| | - Nadia Bertola
- IRCCS Ospedale Policlinico San Martino, U.O. Bioterapie, L.go R. Benzi 10, 16132 Genova, Italy
| | - Graziella Vecchio
- Dipartimento di Scienze Chimiche, Università degli Studi di Catania, V.le A. Doria 6, 95125 Catania, Italy; Consorzio Interuniversitario di Ricerca in Chimica dei Metalli nei Sistemi Biologici (CIRCMSB), Piazza Umberto I 1, 70121 Bari, Italy.
| |
Collapse
|
7
|
Chakraborty B, Ghosh I, Jana RD, Paine TK. Oxidative C-N bond cleavage of (2-pyridylmethyl)amine-based tetradentate supporting ligands in ternary cobalt(ii)-carboxylate complexes. Dalton Trans 2020; 49:3463-3472. [PMID: 32103212 DOI: 10.1039/c9dt04438h] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Three mononuclear cobalt(ii)-carboxylate complexes, [(TPA)CoII(benzilate)]+ (1), [(TPA)CoII(benzoate)]+ (2) and [(iso-BPMEN)CoII(benzoate)]+ (3), of N4 ligands (TPA = tris(2-pyridylmethyl)amine and iso-BPMEN = N1,N1-dimethyl-N2,N2-bis((pyridin-2-yl)methyl)ethane-1,2-diamine) were isolated to investigate their reactivity toward dioxygen. Monodentate (η1) binding of the carboxylates to the metal centre favours the five-coordinate cobalt(ii) complexes (1-3) for dioxygen activation. Complex 1 slowly reacts with dioxygen to enable the oxidative decarboxylation of the coordinated α-hydroxy acid (benzilate). Prolonged exposure of the reaction solution of 2 to dioxygen results in the formation of [(DPA)CoIII(picolinate)(benzoate)]+ (4) and [CoIII(BPCA)2]+ (5) (DPA = di(2-picolyl)amine and HBPCA = bis(2-pyridylcarbonyl)amide), whereas only [(DPEA)CoIII(picolinate)(benzoate)]+ (6) (DPEA = N1,N1-dimethyl-N2-(pyridine-2-ylmethyl)-ethane-1,2-diamine) is isolated from the final oxidised solution of 3. The modified ligand DPA (or DPEA) is formed via the oxidative C-N bond cleavage of the supporting ligands. Further oxidation of the -CH2- moiety to -C([double bond, length as m-dash]O)- takes place in the transformation of DPA to HBPCA on the cobalt(ii) centre. Labelling experiments with 18O2 confirm the incorporation of oxygen atoms from molecular oxygen into the oxidised products. Mixed labelling studies with 16O2 and H2O18 strongly support the involvement of water in the C-N bond cleavage pathway. A comparison of the dioxygen reactivity of the cobalt complexes (1-3) with those of several other five-coordinate mononuclear complexes [(TPA)CoII(X)]+/2+ (X = Cl, CH3CN, acetate, benzoylformate, salicylate and phenylpyruvate) establishes the role of the carboxylate co-ligands in the activation of dioxygen and subsequent oxidative cleavage of the supporting ligands by a metal-oxygen oxidant.
Collapse
Affiliation(s)
- Biswarup Chakraborty
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, India.
| | | | | | | |
Collapse
|
8
|
|
9
|
Chen J, Klein Gebbink RJM. Deuterated N2Py2 Ligands: Building More Robust Non-Heme Iron Oxidation Catalysts. ACS Catal 2019. [DOI: 10.1021/acscatal.8b04463] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Jianming Chen
- Organic Chemistry and Catalysis, Debye Institute for Nanomaterials Science, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands
| | - Robertus J. M. Klein Gebbink
- Organic Chemistry and Catalysis, Debye Institute for Nanomaterials Science, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands
| |
Collapse
|
10
|
Wegeberg C, Browne WR, McKenzie CJ. Catalytic Alkyl Hydroperoxide and Acyl Hydroperoxide Disproportionation by a Nonheme Iron Complex. ACS Catal 2018. [DOI: 10.1021/acscatal.8b02882] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Christina Wegeberg
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, 5230 Odense M, Denmark
- Molecular Inorganic Chemistry, Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Wesley R. Browne
- Molecular Inorganic Chemistry, Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Christine J. McKenzie
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, 5230 Odense M, Denmark
| |
Collapse
|
11
|
Chen J, Unjaroen D, Stepanovic S, van Dam A, Gruden M, Browne WR. Selective Photo-Induced Oxidation with O 2 of a Non-Heme Iron(III) Complex to a Bis(imine-pyridyl)iron(II) Complex. Inorg Chem 2018; 57:4510-4515. [PMID: 29601196 PMCID: PMC5906753 DOI: 10.1021/acs.inorgchem.8b00187] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
![]()
Non-heme iron(II)
complexes of pentadentate N4Py (N,N-bis(2-pyridylmethyl)-N-bis(2-pyridyl)methylamine)
type ligands undergo visible light-driven oxidation to their iron(III)
state in the presence of O2 without ligand degradation.
Under mildly basic conditions, however, highly selective base catalyzed
ligand degradation with O2, to form a well-defined pyridyl-imine
iron(II) complex and an iron(III) picolinate complex, is accelerated
photochemically. Specifically, a pyridyl-CH2 moiety is
lost from the ligand, yielding a potentially N4 coordinating ligand
containing an imine motif. The involvement of reactive oxygen species
other than O2 is excluded; instead, deprotonation at the
benzylic positions to generate an amine radical is proposed as the
rate determining step. The selective nature of the transformation
holds implications for efforts to increase catalyst robustness through
ligand design. Photoaccelerated oxidation
of an aminopyridyl ligand bound
to an Fe(III) ion to a well-defined imine-based Fe(II) complex involves
initial alkyl C−H deprotonation followed by reaction with O2 to form an alkyl peroxyl radical. Intramolecular C−H
abstraction followed by C−N bond cleavage yields picoline aldehyde
and a pyridyl-imine complex. The selectivity of the reaction prevents
further oxidation and holds implications for ligand degradation under
conditions used in oxidation catalysis with peroxides.
Collapse
Affiliation(s)
- Juan Chen
- Stratingh Institute for Chemistry, Faculty of Science and Engineering , University of Groningen , Nijenborgh 4 , 9747AG Groningen , The Netherlands
| | - Duenpen Unjaroen
- Stratingh Institute for Chemistry, Faculty of Science and Engineering , University of Groningen , Nijenborgh 4 , 9747AG Groningen , The Netherlands
| | - Stepan Stepanovic
- University of Belgrade , Faculty of Chemistry , Studentski trg 12-16 , 11000 Belgrade , Serbia
| | - Annie van Dam
- Interfaculty Mass Spectrometry Center , University of Groningen , Groningen , The Netherlands
| | - Maja Gruden
- University of Belgrade , Faculty of Chemistry , Studentski trg 12-16 , 11000 Belgrade , Serbia
| | - Wesley R Browne
- Stratingh Institute for Chemistry, Faculty of Science and Engineering , University of Groningen , Nijenborgh 4 , 9747AG Groningen , The Netherlands
| |
Collapse
|
12
|
de Sousa DP, Miller CJ, Chang Y, Waite TD, McKenzie CJ. Electrochemically Generated cis-Carboxylato-Coordinated Iron(IV) Oxo Acid-Base Congeners as Promiscuous Oxidants of Water Pollutants. Inorg Chem 2017; 56:14936-14947. [PMID: 29039183 DOI: 10.1021/acs.inorgchem.7b02208] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The nonheme iron(IV) oxo complex [FeIV(O)(tpenaH)]2+ and its conjugate base [FeIV(O)(tpena)]+ [tpena- = N,N,N'-tris(2-pyridylmethyl)ethylenediamine-N'-acetate] have been prepared electrochemically in water by bulk electrolysis of solutions prepared from [FeIII2(μ-O)(tpenaH)2](ClO4)4 at potentials over 1.3 V (vs NHE) using inexpensive and commercially available carbon-based electrodes. Once generated, these iron(IV) oxo complexes persist at room temperature for minutes to half an hour over a wide range of pH values. They are capable of rapidly decomposing aliphatic and aromatic alcohols, alkanes, formic acid, phenols, and the xanthene dye rhodamine B. The oxidation of formic acid to carbon dioxide demonstrates the capacity for total mineralization of organic compounds. A radical hydrogen-atom-abstraction mechanism is proposed with a reactivity profile for the series that is reminiscent of oxidations by the hydroxyl radical. Facile regeneration of [FeIV(O)(tpenaH)]2+/ [FeIV(O)(tpena)]+ and catalytic turnover in the oxidation of cyclohexanol under continuous electrolysis demonstrates the potential of the application of [FeIII(tpena)]2+ as an electrocatalyst. The promiscuity of the electrochemically generated iron(IV) oxo complexes, in terms of the broad range of substrates examined, represents an important step toward the goal of cost-effective electrocatalytic water purification.
Collapse
Affiliation(s)
- David P de Sousa
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark , Campusvej 55, 5320 Odense, Denmark
| | - Christopher J Miller
- Water Research Centre, School of Civil and Environmental Engineering, University of New South Wales , Sydney, New South Wales 2052, Australia
| | - Yingyue Chang
- Water Research Centre, School of Civil and Environmental Engineering, University of New South Wales , Sydney, New South Wales 2052, Australia
| | - T David Waite
- Water Research Centre, School of Civil and Environmental Engineering, University of New South Wales , Sydney, New South Wales 2052, Australia
| | - Christine J McKenzie
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark , Campusvej 55, 5320 Odense, Denmark
| |
Collapse
|
13
|
Cao R, Saracini C, Ginsbach JW, Kieber-Emmons MT, Siegler MA, Solomon EI, Fukuzumi S, Karlin KD. Peroxo and Superoxo Moieties Bound to Copper Ion: Electron-Transfer Equilibrium with a Small Reorganization Energy. J Am Chem Soc 2016; 138:7055-66. [PMID: 27228314 DOI: 10.1021/jacs.6b02404] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Oxygenation of [Cu2(UN-O(-))(DMF)](2+) (1), a structurally characterized dicopper Robin-Day class I mixed-valent Cu(II)Cu(I) complex, with UN-O(-) as a binucleating ligand and where dimethylformamide (DMF) binds to the Cu(II) ion, leads to a superoxo-dicopper(II) species [Cu(II)2(UN-O(-))(O2(•-))](2+) (2). The formation kinetics provide that kon = 9 × 10(-2) M(-1) s(-1) (-80 °C), ΔH(‡) = 31.1 kJ mol(-1) and ΔS(‡) = -99.4 J K(-1) mol(-1) (from -60 to -90 °C data). Complex 2 can be reversibly reduced to the peroxide species [Cu(II)2(UN-O(-))(O2(2-))](+) (3), using varying outer-sphere ferrocene or ferrocenium redox reagents. A Nernstian analysis could be performed by utilizing a monodiphenylamine substituted ferrocenium salt to oxidize 3, leading to an equilibrium mixture with Ket = 5.3 (-80 °C); a standard reduction potential for the superoxo-peroxo pair is calculated to be E° = +130 mV vs SCE. A literature survey shows that this value falls into the range of biologically relevant redox reagents, e.g., cytochrome c and an organic solvent solubilized ascorbate anion. Using mixed-isotope resonance Raman (rRaman) spectroscopic characterization, accompanied by DFT calculations, it is shown that the superoxo complex consists of a mixture of μ-1,2- (2(1,2)) and μ-1,1- (2(1,1)) isomers, which are in rapid equilibrium. The electron transfer process involves only the μ-1,2-superoxo complex [Cu(II)2(UN-O(-))(μ-1,2-O2(•-))](2+) (2(1,2)) and μ-1,2-peroxo structures [Cu(II)2(UN-O(-))(O2(2-))](+) (3) having a small bond reorganization energy of 0.4 eV (λin). A stopped-flow kinetic study results reveal an outer-sphere electron transfer process with a total reorganization energy (λ) of 1.1 eV between 2(1,2) and 3 calculated in the context of Marcus theory.
Collapse
Affiliation(s)
- Rui Cao
- Department of Chemistry, Johns Hopkins University , Baltimore, Maryland 21218, United States
| | - Claudio Saracini
- Department of Chemistry, Johns Hopkins University , Baltimore, Maryland 21218, United States.,Department of Chemistry and Nano Science, Ewha Womans University , Seoul 120-750, Korea
| | - Jake W Ginsbach
- Department of Chemistry, Stanford University , Stanford, California 94305, United States
| | | | - Maxime A Siegler
- Department of Chemistry, Johns Hopkins University , Baltimore, Maryland 21218, United States
| | - Edward I Solomon
- Department of Chemistry, Stanford University , Stanford, California 94305, United States
| | - Shunichi Fukuzumi
- Faculty of Science and Engineering, ALCA, SENTAN, Japan Science and Technology Agency (JST), Meijo University , Nagoya, Aichi 468-0073, Japan.,Department of Chemistry and Nano Science, Ewha Womans University , Seoul 120-750, Korea
| | - Kenneth D Karlin
- Department of Chemistry, Johns Hopkins University , Baltimore, Maryland 21218, United States
| |
Collapse
|
14
|
Wegeberg C, McKee V, McKenzie CJ. A coordinatively flexible hexadentate ligand gives structurally isomeric complexesM2(L)X3(M= Cu, Zn;X= Br, Cl). ACTA CRYSTALLOGRAPHICA SECTION C-STRUCTURAL CHEMISTRY 2016; 72:68-74. [DOI: 10.1107/s2053229615023773] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2015] [Accepted: 12/10/2015] [Indexed: 11/10/2022]
Abstract
Polypyridyl multidentate ligands based on ethylenediamine backbones are important metal-binding agents with applications in biomimetics and homogeneous catalysis. The seemingly hexadentate tpena ligand [systematic name:N,N,N′-tris(pyridin-2-ylmethyl)ethylenediamine-N′-acetate] reacts with zinc chloride and zinc bromide to form trichlorido[μ-N,N,N′-tris(pyridin-2-ylmethyl)ethylenediamine-N′-acetato]dizinc(II), [Zn2(C22H24N5O2)Cl3], and tribromido[μ-N,N,N′-tris(pyridin-2-ylmethyl)ethylenediamine-N′-acetato]dizinc(II), [Zn2Br3(C22H24N5O2)]. One ZnIIion shows the anticipated N5O coordination in an irregular six-coordinate site and is linked by ananticarboxylate bridge to a tetrahedral ZnX3(X= Cl or Br) unit. In contrast, the CuIIions in aquatribromido[μ-N,N,N′-tris(pyridin-2-ylmethyl)ethylenediamine-N′-acetato]dicopper(II)–tribromido[μ-N,N,N′-tris(pyridin-2-ylmethyl)ethylenediamine-N′-acetato]dicopper(II)–water (1/1/6.5) [Cu2Br3(C22H24N5O2)][Cu2Br3(C22H24N5O2)(H2O)]·6.5H2O, occupy two tpena-chelated sites, one a trigonal bipyramidal N3Cl2site and the other a square-planar N2OCl site. In all three cases, electrospray ionization mass spectra were dominated by a misleading ion assignable to [M(tpena)]+(M= Zn2+and Cu2+).
Collapse
|
15
|
Davila R, Farias N, Carolina Sañudo E, Vega A, Escuer A, Soler M, Manzur J. Dinuclear cobalt(iii) and mixed valence trinuclear MnIII–MnII–MnIII complexes with a tripodal bridging pyridylaminophenol ligand. NEW J CHEM 2016. [DOI: 10.1039/c5nj03670d] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Two new complexes with the tripodal N-(2-pyridyl-methyl)-N,N-bis-[2′-hydroxy-5′-methyl-benzyl]-amine, one CoIII dimer and a linear mixed valence MnIII–MnII–MnIII have been synthesized and characterized.
Collapse
Affiliation(s)
- Ruben Davila
- Deapartamento de Ciencia de los Materiales
- Facultad de Ciencias Físicas y Matemáticas
- Universidad de Chile
- Santiago
- Chile
| | - Nicolas Farias
- Deapartamento de Ciencia de los Materiales
- Facultad de Ciencias Físicas y Matemáticas
- Universidad de Chile
- Santiago
- Chile
| | - E. Carolina Sañudo
- Departament de Química Inorgánica
- Universitat de Barcelona
- 08028-Barcelona
- Spain
| | - Andrés Vega
- Departamento de Ciencias Químicas
- Facultad de Ciencias Exactas
- Universidad Andres Bello
- Viña del Mar
- Chile
| | - Albert Escuer
- Departament de Química Inorgánica
- Universitat de Barcelona
- 08028-Barcelona
- Spain
| | - Mónica Soler
- Deapartamento de Ciencia de los Materiales
- Facultad de Ciencias Físicas y Matemáticas
- Universidad de Chile
- Santiago
- Chile
| | - Jorge Manzur
- Deapartamento de Ciencia de los Materiales
- Facultad de Ciencias Físicas y Matemáticas
- Universidad de Chile
- Santiago
- Chile
| |
Collapse
|
16
|
Deville C, Padamati SK, Sundberg J, McKee V, Browne WR, McKenzie CJ. O2
Activation and Double CH Oxidation by a Mononuclear Manganese(II) Complex. Angew Chem Int Ed Engl 2015; 55:545-9. [DOI: 10.1002/anie.201508372] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2015] [Revised: 10/14/2015] [Indexed: 11/09/2022]
|
17
|
Deville C, Padamati SK, Sundberg J, McKee V, Browne WR, McKenzie CJ. O2
Activation and Double CH Oxidation by a Mononuclear Manganese(II) Complex. Angew Chem Int Ed Engl 2015. [DOI: 10.1002/ange.201508372] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
18
|
de Sousa DP, Wegeberg C, Vad MS, Mørup S, Frandsen C, Donald WA, McKenzie CJ. Halogen-Bonding-Assisted Iodosylbenzene Activation by a Homogenous Iron Catalyst. Chemistry 2015; 22:3810-20. [DOI: 10.1002/chem.201503112] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Revised: 09/22/2015] [Indexed: 11/11/2022]
Affiliation(s)
- David P. de Sousa
- Department of Physics, Chemistry and Pharmacy; University of Southern; Campusvej 55 5230 Odense M Denmark
| | - Christina Wegeberg
- Department of Physics, Chemistry and Pharmacy; University of Southern; Campusvej 55 5230 Odense M Denmark
| | - Mads Sørensen Vad
- Department of Physics, Chemistry and Pharmacy; University of Southern; Campusvej 55 5230 Odense M Denmark
| | - Steen Mørup
- Department of Physics; Technical University of Denmark; 2800 >Kongens Lyngby Denmark
| | - Cathrine Frandsen
- Department of Physics; Technical University of Denmark; 2800 >Kongens Lyngby Denmark
| | - William A. Donald
- School of Chemistry; University of New South Wales; Sydney, NSW Australia
| | - Christine J. McKenzie
- Department of Physics, Chemistry and Pharmacy; University of Southern; Campusvej 55 5230 Odense M Denmark
| |
Collapse
|
19
|
Aron AT, Ramos-Torres KM, Cotruvo JA, Chang CJ. Recognition- and reactivity-based fluorescent probes for studying transition metal signaling in living systems. Acc Chem Res 2015. [PMID: 26215055 PMCID: PMC4542203 DOI: 10.1021/acs.accounts.5b00221] [Citation(s) in RCA: 179] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
![]()
Metals are essential for life, playing critical
roles in all aspects
of the central dogma of biology (e.g., the transcription and translation
of nucleic acids and synthesis of proteins). Redox-inactive alkali,
alkaline earth, and transition metals such as sodium, potassium, calcium,
and zinc are widely recognized as dynamic signals, whereas redox-active
transition metals such as copper and iron are traditionally thought
of as sequestered by protein ligands, including as static enzyme cofactors,
in part because of their potential to trigger oxidative stress and
damage via Fenton chemistry. Metals in biology can be broadly categorized
into two pools: static and labile. In the former, proteins and other
macromolecules tightly bind metals; in the latter, metals are bound relatively
weakly to cellular ligands, including proteins and low molecular weight
ligands. Fluorescent probes can be useful tools for
studying the roles of transition metals in their labile forms. Probes
for imaging transition metal dynamics in living systems must meet
several stringent criteria. In addition to exhibiting desirable photophysical
properties and biocompatibility, they must be selective and show a
fluorescence turn-on response to the metal of interest. To meet this
challenge, we have pursued two general strategies for metal detection,
termed “recognition” and “reactivity”.
Our design of transition metal probes makes use of a recognition-based
approach for copper and nickel and a reactivity-based approach for
cobalt and iron. This Account summarizes progress in our laboratory
on both the development and application of fluorescent probes to identify
and study the signaling roles of transition metals in biology. In
conjunction with complementary methods for direct metal detection
and genetic and/or pharmacological manipulations, fluorescent probes
for transition metals have helped reveal a number of principles underlying transition metal dynamics. In this Account, we give three
recent examples from our laboratory and collaborations in which applications
of chemical probes reveal that labile copper contributes to various
physiologies. The first example shows that copper is an endogenous
regulator of neuronal activity, the second illustrates cellular prioritization
of mitochondrial copper homeostasis, and the third identifies the “cuprosome” as a new copper storage compartment in Chlamydomonas reinhardtii green algae. Indeed, recognition-
and reactivity-based fluorescent probes have helped to uncover new
biological roles for labile transition metals, and the further development
of fluorescent probes, including ones with varied Kd values and new reaction triggers and recognition receptors,
will continue to reveal exciting and new biological roles for labile
transition metals.
Collapse
Affiliation(s)
- Allegra T. Aron
- Department of Chemistry, ‡Department of Molecular and Cell
Biology, and the §Howard Hughes
Medical Institute, University of California, Berkeley, California 94720, United States
| | - Karla M. Ramos-Torres
- Department of Chemistry, ‡Department of Molecular and Cell
Biology, and the §Howard Hughes
Medical Institute, University of California, Berkeley, California 94720, United States
| | - Joseph A. Cotruvo
- Department of Chemistry, ‡Department of Molecular and Cell
Biology, and the §Howard Hughes
Medical Institute, University of California, Berkeley, California 94720, United States
| | - Christopher J. Chang
- Department of Chemistry, ‡Department of Molecular and Cell
Biology, and the §Howard Hughes
Medical Institute, University of California, Berkeley, California 94720, United States
| |
Collapse
|
20
|
Maity D, Raj A, Karthigeyan D, Kundu TK, Govindaraju T. A switch-on near-infrared fluorescence-ready probe for Cu(I): live cell imaging. Supramol Chem 2015. [DOI: 10.1080/10610278.2015.1041953] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Debabrata Maity
- New Chemistry Unit, Bioorganic Chemistry Laboratory, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur P.O., Bangalore-560064, India
| | - Anand Raj
- New Chemistry Unit, Bioorganic Chemistry Laboratory, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur P.O., Bangalore-560064, India
| | - D. Karthigeyan
- Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur P.O., Bangalore-560064, India
| | - Tapas K. Kundu
- Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur P.O., Bangalore-560064, India
| | - T. Govindaraju
- New Chemistry Unit, Bioorganic Chemistry Laboratory, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur P.O., Bangalore-560064, India
| |
Collapse
|
21
|
Deville C, Finsel M, de Sousa DP, Szafranowska B, Behnken J, Svane S, Bond AD, Seidler-Egdal RK, McKenzie CJ. Too Many Cooks Spoil the Broth - Variable Potencies of Oxidizing Mn Complexes of a Hexadentate Carboxylato Ligand. Eur J Inorg Chem 2015. [DOI: 10.1002/ejic.201500210] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
22
|
|
23
|
Zhang P, Wang M, Yang Y, Zheng D, Han K, Sun L. Highly efficient molecular nickel catalysts for electrochemical hydrogen production from neutral water. Chem Commun (Camb) 2014; 50:14153-6. [DOI: 10.1039/c4cc05511j] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Nickel complexes containing N5-pentadentate scaffolds display a TON of H2 evolution of up to 308 000 over 60 h electrolysis in neutral water at −1.25 V vs. SHE without considerable loss in activity.
Collapse
Affiliation(s)
- Peili Zhang
- State Key Laboratory of Fine Chemicals
- DUT-KTH Joint Education and Research Center on Molecular Devices
- Dalian University of Technology (DUT)
- Dalian 116024, China
| | - Mei Wang
- State Key Laboratory of Fine Chemicals
- DUT-KTH Joint Education and Research Center on Molecular Devices
- Dalian University of Technology (DUT)
- Dalian 116024, China
| | - Yong Yang
- State Key Laboratory of Fine Chemicals
- DUT-KTH Joint Education and Research Center on Molecular Devices
- Dalian University of Technology (DUT)
- Dalian 116024, China
| | - Dehua Zheng
- State Key Laboratory of Fine Chemicals
- DUT-KTH Joint Education and Research Center on Molecular Devices
- Dalian University of Technology (DUT)
- Dalian 116024, China
| | - Kai Han
- State Key Laboratory of Fine Chemicals
- DUT-KTH Joint Education and Research Center on Molecular Devices
- Dalian University of Technology (DUT)
- Dalian 116024, China
| | - Licheng Sun
- State Key Laboratory of Fine Chemicals
- DUT-KTH Joint Education and Research Center on Molecular Devices
- Dalian University of Technology (DUT)
- Dalian 116024, China
- Department of Chemistry
| |
Collapse
|
24
|
Grau M, Kyriacou A, Cabedo Martinez F, de Wispelaere IM, White AJP, Britovsek GJP. Unraveling the origins of catalyst degradation in non-heme iron-based alkane oxidation. Dalton Trans 2014; 43:17108-19. [DOI: 10.1039/c4dt02067g] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A series of iron(ii) complexes with tetradentate and pentadentate pyridyl amine ligands has been used for the oxidation of cyclohexane with hydrogen peroxide. Ligand degradation is observed under oxidising conditions via oxidative N-dealkylation.
Collapse
Affiliation(s)
- Michaela Grau
- Department of Chemistry
- Imperial College London
- London, UK
| | | | | | | | | | | |
Collapse
|
25
|
Haack P, Kärgel A, Greco C, Dokic J, Braun B, Pfaff FF, Mebs S, Ray K, Limberg C. Access to a Cu(II)-O-Cu(II) motif: spectroscopic properties, solution structure, and reactivity. J Am Chem Soc 2013; 135:16148-60. [PMID: 24134722 PMCID: PMC3946511 DOI: 10.1021/ja406721a] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
We report a complex with a rare Cu(II)-O-Cu(II) structural motif that is stable at room temperature, which allows its in-depth characterization by a variety of spectroscopic methods. Interest in such compounds is fueled by the recent discovery that a Cu(II)-O-Cu(II) species on the surface of Cu-ZSM-5 is capable of oxidizing methane to methanol, and this in turn ties into mechanistic discussions on the methane oxidation at the dicopper site within the particulate methane monooxygenase. For the synthesis of our Cu2O complex we have developed a novel, neutral ligand system, FurNeu, exhibiting two N-(N',N'-dimethylaminoethyl)(2-pyridylmethyl)amino binding pockets connected by a dibenzofuran spacer. The reaction of FurNeu with CuCl yielded [FurNeu](Cu2(μ-Cl))(CuCl2), 1, demonstrating the geometric potential of the ligand to stabilize Cu-X-Cu moieties. A Cu(I) precursor with weakly coordinating anions was chosen in the next step, namely [Cu(NCCH3)4]OTf, which led to the formation of [FurNeu](Cu(NCCH3))2(OTf)2, 3. Treatment of 3 with O2 or PhIO led to identical green solutions, whose UV-vis spectra were markedly different from the one displayed by [FurNeu](Cu)2(OTf)4, 4, prepared independently from FurNeu and Cu(OTf)2. Further investigations including PhIO consumption experiments, NMR and UV-vis spectroscopy, HR-ESI mass spectrometry, and protonation studies led to the identification of the green product as [FurNeu](Cu2(μ-O))(OTf)2, 5. DOSY NMR spectroscopy confirmed its monomeric character. Over longer periods of time 5 decomposes to give [Cu(picoloyl)2], formed through an oxidative N-dealkylation reaction followed by further oxidation of the ligand. Due to its slow decomposition reaction, all attempts to crystallize 5 failed. However, its structure in solution could be determined by EXAFS analysis in combination with DFT calculations, which revealed a Cu-O-Cu angle that amounts to 105.17°. Moreover, TDDFT calculations helped to rationalize the UV-vis absorptions of 5. The reactivity of complex 5 with 2,4-di-tert-butylphenol, DTBP, was also investigated; the initially formed biphenol product, TBBP, was found to further react in the presence of excessive O2 to yield 2,4,7,9-tetra-tert-butyloxepino[2,3-b]benzofuran, TBOBF, via an intermediate diphenoquinone. It turned out that 5, or its precursor 3, can even be employed as a catalyst for the oxidation of DTBP to TBBP or for the oxidation of TBBP to TBOBF.
Collapse
Affiliation(s)
- Peter Haack
- Humboldt-Universität zu Berlin, Institut für Chemie, Brook-Taylor-Str. 2, 12489 Berlin, Germany
| | - Anne Kärgel
- Humboldt-Universität zu Berlin, Institut für Chemie, Brook-Taylor-Str. 2, 12489 Berlin, Germany
| | - Claudio Greco
- Humboldt-Universität zu Berlin, Institut für Chemie, Brook-Taylor-Str. 2, 12489 Berlin, Germany
| | | | - Beatrice Braun
- Humboldt-Universität zu Berlin, Institut für Chemie, Brook-Taylor-Str. 2, 12489 Berlin, Germany
| | - Florian F. Pfaff
- Humboldt-Universität zu Berlin, Institut für Chemie, Brook-Taylor-Str. 2, 12489 Berlin, Germany
| | - Stefan Mebs
- Humboldt-Universität zu Berlin, Institut für Chemie, Brook-Taylor-Str. 2, 12489 Berlin, Germany
| | - Kallol Ray
- Humboldt-Universität zu Berlin, Institut für Chemie, Brook-Taylor-Str. 2, 12489 Berlin, Germany
| | - Christian Limberg
- Humboldt-Universität zu Berlin, Institut für Chemie, Brook-Taylor-Str. 2, 12489 Berlin, Germany
| |
Collapse
|
26
|
|
27
|
Maity D, Sarkar B, Maiti S, Govindaraju T. A Highly Selective Reaction-Based Two-Photon Probe for Copper(I) in Aqueous Media. Chempluschem 2013; 78:785-788. [DOI: 10.1002/cplu.201300089] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2013] [Revised: 05/16/2013] [Indexed: 11/11/2022]
|
28
|
Maity D, Raj A, Karthigeyan D, Kundu TK, Govindaraju T. Reaction-based probes for Co(ii) and Cu(i) with dual output modes: fluorescence live cell imaging. RSC Adv 2013. [DOI: 10.1039/c3ra41588k] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
|
29
|
Zhang P, Wang M, Gloaguen F, Chen L, Quentel F, Sun L. Electrocatalytic hydrogen evolution from neutral water by molecular cobalt tripyridine–diamine complexes. Chem Commun (Camb) 2013; 49:9455-7. [DOI: 10.1039/c3cc43491e] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
30
|
Maity D, Kumar V, Govindaraju T. Reactive probes for ratiometric detection of Co2+ and Cu+ based on excited-state intramolecular proton transfer mechanism. Org Lett 2012. [PMID: 23194428 DOI: 10.1021/ol302904c] [Citation(s) in RCA: 96] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
An excited-state intramolecular proton transfer (ESIPT) mechanism based two reactive probes HBTCo and HBTCu is reported for the selective detection of Co(2+) and Cu(+) respectively in a reducing aqueous environment. Co(2+) and Cu(+) mediated oxidative benzylic ether (C-O) bond cleavage offers ratiometric detection of these metal ions.
Collapse
Affiliation(s)
- Debabrata Maity
- Bioorganic Chemistry Laboratory, New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur P.O., Bangalore-560064, India
| | | | | |
Collapse
|
31
|
Lennartson A, McKenzie CJ. An Iron(III) Iodosylbenzene Complex: A Masked Non-Heme FeVO. Angew Chem Int Ed Engl 2012. [DOI: 10.1002/ange.201202487] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
32
|
Lennartson A, McKenzie CJ. An Iron(III) Iodosylbenzene Complex: A Masked Non-Heme FeVO. Angew Chem Int Ed Engl 2012; 51:6767-70. [DOI: 10.1002/anie.201202487] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2012] [Indexed: 11/08/2022]
|
33
|
Au-Yeung HY, New EJ, Chang CJ. A selective reaction-based fluorescent probe for detecting cobalt in living cells. Chem Commun (Camb) 2012; 48:5268-70. [PMID: 22531796 DOI: 10.1039/c2cc31681a] [Citation(s) in RCA: 102] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
A reaction-based strategy exploiting cobalt-mediated oxidative C-O bond cleavage affords a selective turn-on fluorescent probe for paramagnetic Co(2+) in water and in living cells.
Collapse
Affiliation(s)
- Ho Yu Au-Yeung
- Department of Chemistry and the Howard Hughes Medical Institute, University of California, Berkeley, California 94720, USA
| | | | | |
Collapse
|
34
|
Vad MS, Lennartson A, Nielsen A, Harmer J, McGrady JE, Frandsen C, Mørup S, McKenzie CJ. An aqueous non-heme Fe(iv)oxo complex with a basic group in the second coordination sphere. Chem Commun (Camb) 2012; 48:10880-2. [DOI: 10.1039/c2cc35746a] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|