1
|
Moreth D, Stevens-Cullinane L, Rees TW, Müller VVL, Pasquier A, Song OR, Warchal S, Howell M, Hess J, Schatzschneider U. Antibacterial activity of Au(I), Pt(II), and Ir(III) biotin conjugates prepared by the iClick reaction: influence of the metal coordination sphere on the biological activity. J Biol Inorg Chem 2024; 29:573-582. [PMID: 39198276 PMCID: PMC7616682 DOI: 10.1007/s00775-024-02073-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 08/10/2024] [Indexed: 09/01/2024]
Abstract
A series of biotin-functionalized transition metal complexes was prepared by iClick reaction from the corresponding azido complexes with a novel alkyne-functionalized biotin derivative ([Au(triazolatoR,R')(PPh3)], [Pt(dpb)(triazolatoR,R')], [Pt(triazolatoR,R')(terpy)]PF6, and [Ir(ppy)(triazolatoR,R')(terpy)]PF6 with dpb = 1,3-di(2-pyridyl)benzene, ppy = 2-phenylpyridine, and terpy = 2,2':6',2''-terpyridine and R = C6H5, R' = biotin). The complexes were compared to reference compounds lacking the biotin moiety. The binding affinity toward avidin and streptavidin was evaluated with the HABA assay as well as isothermal titration calorimetry (ITC). All compounds exhibit the same binding stoichiometry of complex-to-avidin of 4:1, but the ITC results show that the octahedral Ir(III) compound exhibits a higher binding affinity than the square-planar Pt(II) complex. The antibacterial activity of the compounds was evaluated on a series of Gram-negative and Gram-positive bacterial strains. In particular, the neutral Au(I) and Pt(II) complexes showed significant antibacterial activity against Staphylococcus aureus and Enterococcus faecium at very low micromolar concentrations. The cytotoxicity against a range of eukaryotic cell lines was studied and revealed that the octahedral Ir(III) complex was non-toxic, while the square-planar Pt(II) and linear Au(I) complexes displayed non-selective micromolar activity.
Collapse
Affiliation(s)
- Dominik Moreth
- Institut für Anorganische Chemie, Julius-Maximilians-Universität Würzburg, Am Hubland, D-97074, Würzburg, Germany
| | - Lars Stevens-Cullinane
- Biological Inorganic Chemistry Laboratory, The Francis Crick Institute, London, NW1 1AT, UK
- Department of Chemistry, King's College London, Britannia House, 7 Trinity Street, London, SE1 1DB, UK
| | - Thomas W Rees
- Biological Inorganic Chemistry Laboratory, The Francis Crick Institute, London, NW1 1AT, UK
| | - Victoria V L Müller
- Institut für Anorganische Chemie, Julius-Maximilians-Universität Würzburg, Am Hubland, D-97074, Würzburg, Germany
| | - Adrien Pasquier
- High Throughput Screening Science and Technology Platform, The Francis Crick Institute, London, NW1 1AT, UK
| | - Ok-Ryul Song
- High Throughput Screening Science and Technology Platform, The Francis Crick Institute, London, NW1 1AT, UK
| | - Scott Warchal
- High Throughput Screening Science and Technology Platform, The Francis Crick Institute, London, NW1 1AT, UK
| | - Michael Howell
- High Throughput Screening Science and Technology Platform, The Francis Crick Institute, London, NW1 1AT, UK
| | - Jeannine Hess
- Biological Inorganic Chemistry Laboratory, The Francis Crick Institute, London, NW1 1AT, UK
- Department of Chemistry, King's College London, Britannia House, 7 Trinity Street, London, SE1 1DB, UK
| | - Ulrich Schatzschneider
- Institut für Anorganische Chemie, Julius-Maximilians-Universität Würzburg, Am Hubland, D-97074, Würzburg, Germany.
| |
Collapse
|
2
|
Petrovskii SK, Grachova EV, Monakhov KY. Bioorthogonal chemistry of polyoxometalates - challenges and prospects. Chem Sci 2024; 15:4202-4221. [PMID: 38516091 PMCID: PMC10952089 DOI: 10.1039/d3sc06284h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 02/19/2024] [Indexed: 03/23/2024] Open
Abstract
Bioorthogonal chemistry has enabled scientists to carry out controlled chemical processes in high yields in vivo while minimizing hazardous effects. Its extension to the field of polyoxometalates (POMs) could open up new possibilities and new applications in molecular electronics, sensing and catalysis, including inside living cells. However, this comes with many challenges that need to be addressed to effectively implement and exploit bioorthogonal reactions in the chemistry of POMs. In particular, how to protect POMs from the biological environment but make their reactivity selective towards specific bioorthogonal tags (and thereby reduce their toxicity), as well as which bioorthogonal chemistry protocols are suitable for POMs and how reactions can be carried out are questions that we are exploring herein. This perspective conceptualizes and discusses advances in the supramolecular chemistry of POMs, their click chemistry, and POM-based surface engineering to develop innovative bioorthogonal approaches tailored to POMs and to improve POM biological tolerance.
Collapse
Affiliation(s)
| | - Elena V Grachova
- Institute of Chemistry, St Petersburg University Universitetskii pr. 26 St. Petersburg 198504 Russia
| | - Kirill Yu Monakhov
- Leibniz Institute of Surface Engineering (IOM) Permoserstr. 15 Leipzig 04318 Germany
| |
Collapse
|
3
|
Müller VVL, Simpson PV, Peng K, Basu U, Moreth D, Nagel C, Türck S, Oehninger L, Ott I, Schatzschneider U. Taming the Biological Activity of Pd(II) and Pt(II) Complexes with Triazolato "Protective" Groups: 1H, 77Se Nuclear Magnetic Resonance and X-ray Crystallographic Model Studies with Selenocysteine to Elucidate Differential Thioredoxin Reductase Inhibition. Inorg Chem 2023; 62:16203-16214. [PMID: 37713601 DOI: 10.1021/acs.inorgchem.3c02701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/17/2023]
Abstract
The biological activity of Pd(II) and Pt(II) complexes toward three different cancer cell lines as well as inhibition of selenoenzyme thioredoxin reductase (TrxR) was modulated in an unexpected way by the introduction of triazolate as a "protective group" to the inner metal coordination sphere using the iClick reaction of [M(N3)(terpy)]PF6 [M = Pd(II) or Pt(II) and terpy = 2,2':6',2″-terpyridine] with an electron-poor alkyne. In a cell proliferation assay using A549, HT-29, and MDA-MB-231 human cancer cell lines, the palladium compound was significantly more potent than the isostructural platinum analogue and exhibited submicromolar activity on the most responsive cell line. This difference was also reflected in the inhibitory efficiency toward TrxR with IC50 values of 0.1 versus 5.4 μM for the Pd(II) and Pt(II) complexes, respectively. UV/Vis kinetic studies revealed that the Pt compound binds to selenocysteine faster than to cysteine [k = (22.9 ± 0.2)·10-3 vs (7.1 ± 0.2)·10-3 s-1]. Selective triazolato ligand exchange of the title compounds with cysteine (Hcys) and selenocysteine (Hsec)─but not histidine (His) and 9-ethylguanine (9EtG)─was confirmed by 1H, 77Se, and 195Pt NMR spectroscopy. Crystal structures of three of the four ligand exchange products were obtained, including [Pt(sec)(terpy)]PF6 as the first metal complex of selenocysteine to be structurally characterized.
Collapse
Affiliation(s)
- Victoria V L Müller
- Institut für Anorganische Chemie, Julius-Maximilians-Universität Würzburg, Am Hubland, D-97074 Würzburg, Germany
| | - Peter V Simpson
- Institut für Anorganische Chemie, Julius-Maximilians-Universität Würzburg, Am Hubland, D-97074 Würzburg, Germany
| | - Kun Peng
- Institut für Anorganische Chemie, Julius-Maximilians-Universität Würzburg, Am Hubland, D-97074 Würzburg, Germany
| | - Uttara Basu
- Institut für Medizinische und Pharmazeutische Chemie, Technische Universität Braunschweig, Beethovenstr. 55, D-38106 Braunschweig, Germany
| | - Dominik Moreth
- Institut für Anorganische Chemie, Julius-Maximilians-Universität Würzburg, Am Hubland, D-97074 Würzburg, Germany
| | - Christoph Nagel
- Institut für Anorganische Chemie, Julius-Maximilians-Universität Würzburg, Am Hubland, D-97074 Würzburg, Germany
| | - Sebastian Türck
- Institut für Medizinische und Pharmazeutische Chemie, Technische Universität Braunschweig, Beethovenstr. 55, D-38106 Braunschweig, Germany
| | - Luciano Oehninger
- Institut für Medizinische und Pharmazeutische Chemie, Technische Universität Braunschweig, Beethovenstr. 55, D-38106 Braunschweig, Germany
| | - Ingo Ott
- Institut für Medizinische und Pharmazeutische Chemie, Technische Universität Braunschweig, Beethovenstr. 55, D-38106 Braunschweig, Germany
| | - Ulrich Schatzschneider
- Institut für Anorganische Chemie, Julius-Maximilians-Universität Würzburg, Am Hubland, D-97074 Würzburg, Germany
| |
Collapse
|
4
|
Moreth D, Hörner G, Müller VVL, Geyer L, Schatzschneider U. Isostructural Series of Ni(II), Pd(II), Pt(II), and Au(III) Azido Complexes with a N^C^N Pincer Ligand to Elucidate Trends in the iClick Reaction Kinetics and Structural Parameters of the Triazolato Products. Inorg Chem 2023; 62:16000-16012. [PMID: 37728290 DOI: 10.1021/acs.inorgchem.3c02122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/21/2023]
Abstract
An isoelectronic and isostructural series of cyclometalated azido complexes [M(N3)(dpb)] with M = Ni(II), Pd(II), Pt(II), and Au(III) based on the N^C^N pincer ligand 1,3-di(2-pyridyl)phenide (dpb) was characterized by X-ray diffraction analysis and investigated for reactivity in the iClick reaction with a wide range of internal and terminal alkynes by using 1H and 19F NMR spectroscopy. Reaction rate constants were found to increase with greater charge density in the order Ni(II) > Pd(II) > Pt(II) > Au(III). Terminal alkynes R-C≡C-R' with strongly electron-withdrawing groups R and R' exhibited faster kinetics than those with electron-donating substituents in the order CF3 > ketone > ester > H > phenyl ≫ amide, while R = CH3 resulted in complete loss of reactivity. Four symmetrical triazolato complexes [M(triazolatoCOOCH3,COOCH3)(dpb)] with M = Ni(II), Pd(II), Pt(II), and Au(III) as well as four nonsymmetrically substituted triazolato complexes [Pt(triazolatoR,R')(dpb)] originating from terminal and internal alkynes were shown by X-ray crystal structure analysis to exclusively feature N2-coordination of the five-membered ring ligand. However, the Pt(II) triazolato complexes exist as a mixture of N1- and N2-coordinated species in solution. Torsion angles between the mean planes of the N^C^N pincer and the triazolato ligand increase from a nearly coplanar to a perpendicular arrangement when going from Au(III)/Pt(II)/Pd(II) to Ni(II), while different substituents R and R' on the alkyne have no influence on the torsion angle and were rationalized by DFT calculations. Finally, a carbohydrate derivative obtained by glucuronic acid conjugation to methyl propiolate demonstrates the facile biofunctionalization of metal complexes via the iClick reaction.
Collapse
Affiliation(s)
- Dominik Moreth
- Institut für Anorganische Chemie, Julius-Maximilians-Universität Würzburg, Am Hubland, D-97074 Würzburg, Germany
| | - Gerald Hörner
- Anorganische Chemie IV, Universität Bayreuth, Universitätsstraße 30, D-95447 Bayreuth, Germany
| | - Victoria V L Müller
- Institut für Anorganische Chemie, Julius-Maximilians-Universität Würzburg, Am Hubland, D-97074 Würzburg, Germany
| | - Lucia Geyer
- Institut für Anorganische Chemie, Julius-Maximilians-Universität Würzburg, Am Hubland, D-97074 Würzburg, Germany
| | - Ulrich Schatzschneider
- Institut für Anorganische Chemie, Julius-Maximilians-Universität Würzburg, Am Hubland, D-97074 Würzburg, Germany
| |
Collapse
|
5
|
Winter M, Ellwanger MA, Limberg N, Pérez-Bitrián A, Voßnacker P, Steinhauer S, Riedel S. Reactivity of [AuF 3 (SIMes)]: Pathway to Unprecedented Structural Motifs. Chemistry 2023; 29:e202301684. [PMID: 37340637 DOI: 10.1002/chem.202301684] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 06/20/2023] [Accepted: 06/20/2023] [Indexed: 06/22/2023]
Abstract
We report on a comprehensive reactivity study starting from [AuF3 (SIMes)] to synthesize different motifs of monomeric gold(III) fluorides. A plethora of different ligands has been introduced in a mono-substitution yielding trans-[AuF2 X(SIMes)] including alkynido, cyanido, azido, and a set of perfluoroalkoxido complexes. The latter were better accomplished via use of perfluorinated carbonyl-bearing molecules, which is unprecedented in gold chemistry. In case of the cyanide and azide, triple substitution gave rise to the corresponding [AuX3 (SIMes)] complexes. Comparison of the chemical shift of the carbene carbon atom in the 13 C{1 H} NMR spectrum, the calculated SIMes affinity and the Au-C bond length in the solid state with related literature-known complexes yields a classification of trans-influences for a variety of ligands attached to the gold center. Therein, the mixed fluorido perfluoroalkoxido complexes have a similar SIMes affinity to AuF3 with a very low Gibbs energy of formation when using the perfluoro carbonyl route.
Collapse
Affiliation(s)
- Marlon Winter
- Fachbereich Biologie, Chemie, Pharmazie, Institut für Chemie und Biochemie - Anorganische Chemie, Freie Universität Berlin, Fabeckstr. 34/36, 14195, Berlin, Germany
| | - Mathias A Ellwanger
- Fachbereich Biologie, Chemie, Pharmazie, Institut für Chemie und Biochemie - Anorganische Chemie, Freie Universität Berlin, Fabeckstr. 34/36, 14195, Berlin, Germany
- Inorganic Chemistry Laboratory, Department of Chemistry, University of Oxford, South Parks Road, OX1 3QR, Oxford, UK
| | - Niklas Limberg
- Fachbereich Biologie, Chemie, Pharmazie, Institut für Chemie und Biochemie - Anorganische Chemie, Freie Universität Berlin, Fabeckstr. 34/36, 14195, Berlin, Germany
| | - Alberto Pérez-Bitrián
- Fachbereich Biologie, Chemie, Pharmazie, Institut für Chemie und Biochemie - Anorganische Chemie, Freie Universität Berlin, Fabeckstr. 34/36, 14195, Berlin, Germany
| | - Patrick Voßnacker
- Fachbereich Biologie, Chemie, Pharmazie, Institut für Chemie und Biochemie - Anorganische Chemie, Freie Universität Berlin, Fabeckstr. 34/36, 14195, Berlin, Germany
| | - Simon Steinhauer
- Fachbereich Biologie, Chemie, Pharmazie, Institut für Chemie und Biochemie - Anorganische Chemie, Freie Universität Berlin, Fabeckstr. 34/36, 14195, Berlin, Germany
| | - Sebastian Riedel
- Fachbereich Biologie, Chemie, Pharmazie, Institut für Chemie und Biochemie - Anorganische Chemie, Freie Universität Berlin, Fabeckstr. 34/36, 14195, Berlin, Germany
| |
Collapse
|
6
|
Zach T, Geyer F, Kiendl B, Mößeler J, Nguyen O, Schmidpeter T, Schuster P, Nagel C, Schatzschneider U. Electrospray Mass Spectrometry to Study Combinatorial iClick Reactions and Multiplexed Kinetics of [Ru(N 3)(N∧N)(terpy)]PF 6 with Alkynes of Different Steric and Electronic Demand. Inorg Chem 2023; 62:2982-2993. [PMID: 36745056 DOI: 10.1021/acs.inorgchem.2c03377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
In a combinatorial approach, a family of ruthenium(II) azido complexes [Ru(N3)(N∧N)(terpy)]PF6 with terpy = 2,2':6',2″-terpyridine and N∧N as a bidentate chelator derived from 2,2'-biypridine and its 4,4'-disubstituted derivatives, 2,2'-bipyrimidine, and 1,10-phenanthroline were reacted with different internal and terminal alkynes to give access to a total of 7 × 7 = 49 triazolato complexes in a room-temperature catalyst-free iClick reaction. The reactants were mixed in a repurposed high-performance liquid chromatography (HPLC) autosampler, and the reaction progress was monitored by direct injection into an electrospray mass spectrometer. The ratio of the peak intensities of [Ru(N3)(N∧N)(terpy)]+ and [Ru(triazolato)(N∧N)(terpy)]+ was converted to a colored heat map for facile visual inspection of the conversion ratio. By automated multiple injections of the reaction mixture in fixed time intervals and plotting peak intensities over reaction time, pseudo-first-order rate constants were easily determined. Finally, nonoverlapping isotope patterns of the azido starting materials and triazolato products enabled multiplexed parallel determination of rate constants for four different ruthenium(II) azido complexes from a single sample vial, thereby reducing experiment time by 75%.
Collapse
Affiliation(s)
- Tristan Zach
- Institut für Anorganische Chemie, Julius-Maximilians-Universität Würzburg, Am Hubland, D-97074Würzburg, Germany
| | - Florian Geyer
- Institut für Anorganische Chemie, Julius-Maximilians-Universität Würzburg, Am Hubland, D-97074Würzburg, Germany
| | - Benjamin Kiendl
- Institut für Anorganische Chemie, Julius-Maximilians-Universität Würzburg, Am Hubland, D-97074Würzburg, Germany
| | - Jan Mößeler
- Institut für Anorganische Chemie, Julius-Maximilians-Universität Würzburg, Am Hubland, D-97074Würzburg, Germany
| | - Olivier Nguyen
- Institut für Anorganische Chemie, Julius-Maximilians-Universität Würzburg, Am Hubland, D-97074Würzburg, Germany
| | - Thomas Schmidpeter
- Institut für Anorganische Chemie, Julius-Maximilians-Universität Würzburg, Am Hubland, D-97074Würzburg, Germany
| | - Patrick Schuster
- Institut für Anorganische Chemie, Julius-Maximilians-Universität Würzburg, Am Hubland, D-97074Würzburg, Germany
| | - Christoph Nagel
- Institut für Anorganische Chemie, Julius-Maximilians-Universität Würzburg, Am Hubland, D-97074Würzburg, Germany
| | - Ulrich Schatzschneider
- Institut für Anorganische Chemie, Julius-Maximilians-Universität Würzburg, Am Hubland, D-97074Würzburg, Germany
| |
Collapse
|
7
|
Li Y, Shen YH, Esper AM, Tidwell JR, Veige AS, Martin CD. Probing borafluorene B-C bond insertion with gold acetylide and azide. Dalton Trans 2023; 52:668-674. [PMID: 36537567 DOI: 10.1039/d2dt03672j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The reaction of Ph3PAuN3 with 9-Ph-9-borafluorene resulted in complexation of the azide to boron while a gold acetylide reacted with 9-Ph-9-borafluorene to insert the acetylide carbon to access a six-membered boracycle with an exocyclic double bond.
Collapse
Affiliation(s)
- Yijie Li
- Baylor University, Department of Chemistry and Biochemistry, One Bear Place #97348, Waco, TX 76798, USA.
| | - Yu-Hsuan Shen
- University of Florida, Department of Chemistry, Center for Catalysis, Gainesville, FL 32611, USA
| | - Alec M Esper
- University of Florida, Department of Chemistry, Center for Catalysis, Gainesville, FL 32611, USA
| | - John R Tidwell
- Baylor University, Department of Chemistry and Biochemistry, One Bear Place #97348, Waco, TX 76798, USA.
| | - Adam S Veige
- University of Florida, Department of Chemistry, Center for Catalysis, Gainesville, FL 32611, USA
| | - Caleb D Martin
- Baylor University, Department of Chemistry and Biochemistry, One Bear Place #97348, Waco, TX 76798, USA.
| |
Collapse
|
8
|
Mansour AM, Shehab OR. Triazolato Pd(II) and Pt(II) complexes of 2,6-bis(1-ethylbenzimidazol-2'-yl)pyridine formed via catalyst-free [3+2] click reactions. Inorganica Chim Acta 2023. [DOI: 10.1016/j.ica.2023.121379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
9
|
Shen YH, Ghiviriga I, Abboud KA, Schanze KS, Veige AS. iClick synthesis of network metallopolymers. Dalton Trans 2022; 51:18520-18527. [PMID: 36444537 DOI: 10.1039/d2dt01624a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Described is an approach to preparing the first iClick network metallopolymers with porous properties. Treating digoldazido complex 2-AuN3 with trigoldacetylide 3-AuPPh3 or 3-AuPEt3, trialkyne 3-H, tetragoldacetylide 4-AuPPh3, or tetraalkyne 4-H in CH2Cl2 affords five iClick network metallopolymers 5-AuPPh3, 5-AuPEt3, 5-H, 6-AuPPh3, and 6-H. Confirmation of the iClick network metallopolymers comes from FTIR, 13C solid-state cross-coupling magic angle spinning (CPMAS) NMR spectroscopy, thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), and nitrogen and CO2 sorption analysis. Employing model complexes 7-AuPPh3, 7-AuPEt3, 7-H, 8-AuPPh3, and 8-H provides structural insights due to the insolubility of iClick network metallopolymers.
Collapse
Affiliation(s)
- Yu-Hsuan Shen
- University of Florida, Department of Chemistry, Center for Catalysis, P.O. Box 117200, Gainesville, FL, 32611, USA.
| | - Ion Ghiviriga
- University of Florida, Department of Chemistry, Center for Catalysis, P.O. Box 117200, Gainesville, FL, 32611, USA.
| | - Khalil A Abboud
- University of Florida, Department of Chemistry, Center for Catalysis, P.O. Box 117200, Gainesville, FL, 32611, USA.
| | - Kirk S Schanze
- University of Texas at San Antonio, Department of Chemistry, One UTSA Circle, San Antonio, TX 78249, USA
| | - Adam S Veige
- University of Florida, Department of Chemistry, Center for Catalysis, P.O. Box 117200, Gainesville, FL, 32611, USA.
| |
Collapse
|
10
|
Bayer L, Birenheide BS, Krämer F, Lebedkin S, Breher F. Heterobimetallic Gold/Ruthenium Complexes Synthesized via Post-functionalization and Applied in Dual Photoredox Gold Catalysis. Chemistry 2022; 28:e202201856. [PMID: 35924459 DOI: 10.1002/chem.202201856] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Indexed: 01/07/2023]
Abstract
The synthesis of heterobimetallic AuI /RuII complexes of the general formula syn- and anti-[{AuCl}(L1∩L2){Ru(bpy)2 }][PF6 ]2 is reported. The ditopic bridging ligand L1∩L2 refers to a P,N hybrid ligand composed of phosphine and bipyridine substructures, which was obtained via a post-functionalization strategy based on Diels-Alder reaction between a phosphole and a maleimide moiety. It was found that the stereochemistry at the phosphorus atom of the resulting 7-phosphanorbornene backbone can be controlled by executing the metal coordination and the cycloaddition reaction in a different order. All precursors, as well as the mono- and multimetallic complexes, were isolated and fully characterized by various spectroscopic methods such as NMR, IR, and UV-vis spectroscopy as well as cyclic voltammetry. Photophysical measurements show efficient phosphorescence for the investigated monometallic complex anti-[(L1∩L2){Ru(bpy)2 }][PF6 ]2 and the bimetallic analogue syn-[{AuCl}(L1∩L2){Ru(bpy)2 }][PF6 ]2 , thus indicating a small influence of the {AuCl} fragment on the photoluminescence properties. The heterobimetallic AuI /RuII complexes syn- and anti-[{AuCl}(L1∩L2){Ru(bpy)2 }][PF6 ]2 are both active catalysts in the P-arylation of aryldiazonium salts promoted by visible light with H-phosphonate affording arylphosphonates in yields of up to 91 %. Both dinuclear complexes outperform their monometallic counterparts.
Collapse
Affiliation(s)
- Lea Bayer
- Karlsruhe Institute of Technology (KIT), Institute of Inorganic Chemistry, Division Molecular Chemistry, Engesserstraße 15, 76131, Karlsruhe, Germany
| | - Bernhard S Birenheide
- Karlsruhe Institute of Technology (KIT), Institute of Inorganic Chemistry, Division Molecular Chemistry, Engesserstraße 15, 76131, Karlsruhe, Germany
| | - Felix Krämer
- Karlsruhe Institute of Technology (KIT), Institute of Inorganic Chemistry, Division Molecular Chemistry, Engesserstraße 15, 76131, Karlsruhe, Germany
| | - Sergei Lebedkin
- Karlsruhe Institute of Technology (KIT), Institute of Nanotechnology, Postfach 3630, 76021, Karlsruhe, Germany
| | - Frank Breher
- Karlsruhe Institute of Technology (KIT), Institute of Inorganic Chemistry, Division Molecular Chemistry, Engesserstraße 15, 76131, Karlsruhe, Germany
| |
Collapse
|
11
|
N-Heterocyclic Carbene Platinum-Butadiyne Click/iClick Complexes. Towards Blue-Violet Phosphorescence. J Organomet Chem 2022. [DOI: 10.1016/j.jorganchem.2022.122440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
12
|
Görlich T, Frost DS, Boback N, Coles NT, Dittrich B, Müller P, Jones WD, Müller C. Photochemical C( sp)-C( sp2) Bond Activation in Phosphaalkynes: A New Route to Reactive Terminal Cyaphido Complexes L nM-C≡P. J Am Chem Soc 2021; 143:19365-19373. [PMID: 34757730 DOI: 10.1021/jacs.1c07370] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The photochemical activation of the C(sp)-C(sp2) bond in Pt(0)-η2-aryl-phosphaalkyne complexes leads selectively to coordination compounds of the type LnPt(aryl)(C≡P). The oxidative addition reaction is a novel, clean, and atom-economic route for the synthesis of reactive terminal Pt(II)-cyaphido complexes, which can undergo [3 + 2] cycloaddition reactions with organic azides, yielding the corresponding Pt(II)-triazaphospholato complexes. The C-C bond cleavage reaction is thermodynamically uphill. Upon heating, the reverse and quantitative reductive elimination toward the Pt(0)-phosphaalkyne-π-complex is observed.
Collapse
Affiliation(s)
- Tim Görlich
- Freie Universität Berlin, Institut für Chemie und Biochemie, Fabeckstr. 34/36, 14195 Berlin, Germany
| | - Daniel S Frost
- Freie Universität Berlin, Institut für Chemie und Biochemie, Fabeckstr. 34/36, 14195 Berlin, Germany
| | - Nico Boback
- Freie Universität Berlin, Institut für Chemie und Biochemie, Fabeckstr. 34/36, 14195 Berlin, Germany
| | - Nathan T Coles
- Freie Universität Berlin, Institut für Chemie und Biochemie, Fabeckstr. 34/36, 14195 Berlin, Germany
| | - Birger Dittrich
- Mathematisch-Naturwissenschaftliche Fakultät, Universität Zürich, Winterthurerstrasse 190, Zürich, CH-8057, Switzerland
| | - Peter Müller
- Massachusetts Institute of Technology, Department of Chemistry, Cambridge, Massachusetts 02139-4307, United States
| | - William D Jones
- Department of Chemistry, University of Rochester, Rochester, New York 14627, United States
| | - Christian Müller
- Freie Universität Berlin, Institut für Chemie und Biochemie, Fabeckstr. 34/36, 14195 Berlin, Germany
| |
Collapse
|
13
|
|
14
|
Shen YH, Esper AM, Ghiviriga I, Abboud KA, Schanze KS, Ehm C, Veige AS. SPAAC iClick: progress towards a bioorthogonal reaction in-corporating metal ions. Dalton Trans 2021; 50:12681-12691. [PMID: 34545891 DOI: 10.1039/d1dt02626g] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Combining strain-promoted azide-alkyne cycloaddition (SPAAC) and inorganic click (iClick) reactivity provides access to metal 1,2,3-triazolates. Experimental and computational insights demonstrate that iClick reactivity of the tested metal azides (LM-N3, M = Au, W, Re, Ru and Pt) depends on the accessibility of the azide functionality rather than electronic effects imparted by the metal. SPAAC iClick reactivity with cyclooctyne is observed when the azide functionality is sterically unencumbered, e.g. [Au(N3)(PPh3)] (Au-N3), [W(η3-allyl)(N3)(bpy)(CO)2] (W-N3), and [Re(N3)(bpy)(CO)3] [bpy = 2,2'-bipyridine] (Re-N3). Increased steric bulk and/or preequilibria with high activation barriers prevent SPAAC iClick reactivity for the complexes [Ru(N3)(Tp)(PPh3)2] [Tp = tris(pyrazolyl)borate] (Ru-N3), [Pt(N3)(CH3)(PiPr3)2] [iPr = isopropyl] (Pt(II)-N3), and [Pt(N3)(CH3)3]4 ((PtN3)4). Based on these computational insights, the SPAAC iClick reactivity of [Pt(N3)(CH3)3(P(CH3)3)2] (Pt(IV)-N3) was successfully predicted.
Collapse
Affiliation(s)
- Yu-Hsuan Shen
- University of Florida, Department of Chemistry, Center for Catalysis, P.O. Box 117200, Gainesville, FL, 32611, USA.
| | - Alec M Esper
- University of Florida, Department of Chemistry, Center for Catalysis, P.O. Box 117200, Gainesville, FL, 32611, USA.
| | - Ion Ghiviriga
- University of Florida, Department of Chemistry, Center for Catalysis, P.O. Box 117200, Gainesville, FL, 32611, USA.
| | - Khalil A Abboud
- University of Florida, Department of Chemistry, Center for Catalysis, P.O. Box 117200, Gainesville, FL, 32611, USA.
| | - Kirk S Schanze
- University of Texas at San Antonio, Department of Chemistry, One UTSA Circle, San Antonio, TX 78249, USA
| | - Christian Ehm
- Dipartimento di Scienze Chimiche, Università di Napoli Federico II, Via Cintia, 80126 Napoli, Italy.
| | - Adam S Veige
- University of Florida, Department of Chemistry, Center for Catalysis, P.O. Box 117200, Gainesville, FL, 32611, USA.
| |
Collapse
|
15
|
Peng K, Moreth D, Schatzschneider U. C^N^N Coordination Accelerates the iClick Reaction of Square-Planar Palladium(II) and Platinum(II) Azido Complexes with Electron-Poor Alkynes and Enables Cycloaddition with Terminal Alkynes. Organometallics 2021. [DOI: 10.1021/acs.organomet.1c00293] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Kun Peng
- Institut für Anorganische Chemie, Julius-Maximilians-Universität Würzburg, Am Hubland, D-97074 Würzburg, Germany
| | - Dominik Moreth
- Institut für Anorganische Chemie, Julius-Maximilians-Universität Würzburg, Am Hubland, D-97074 Würzburg, Germany
| | - Ulrich Schatzschneider
- Institut für Anorganische Chemie, Julius-Maximilians-Universität Würzburg, Am Hubland, D-97074 Würzburg, Germany
| |
Collapse
|
16
|
Kaur J, Saxena M, Rishi N. An Overview of Recent Advances in Biomedical Applications of Click Chemistry. Bioconjug Chem 2021; 32:1455-1471. [PMID: 34319077 DOI: 10.1021/acs.bioconjchem.1c00247] [Citation(s) in RCA: 82] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Cu(I)-catalyzed azide-alkyne cycloaddition (CuAAC) is a modular and bio-orthogonal approach that is being adopted for the efficient synthesis of organic and bioorganic compounds. It leads to the selective formation of 1,4-disubstituted 1,2,3-triazole units connecting readily accessible building blocks via a stable and biocompatible linkage. The vast array of the bioconjugation applications of click chemistry has been attributed to its fast reaction kinetics, quantitative yields, minimal byproducts, and high chemospecificity and regioselectivity. These combined advantages make click reactions quite suitable for the lead identification and the development of pharmaceutical agents in the fields of medicinal chemistry and drug discovery. In this review, we have outlined the key aspects, the mechanistic details and merits and demerits of the click reaction. In addition, we have also discussed the recent pharmaceutical applications of click chemistry, ranging from the development of anticancer, antibacterial, and antiviral agents to that of biomedical imaging agents and clinical therapeutics.
Collapse
Affiliation(s)
- Jasleen Kaur
- Amity Institute of Virology and Immunology, Amity University, Noida 201313, Uttar Pradesh, India
| | - Mokshika Saxena
- Amity Institute of Virology and Immunology, Amity University, Noida 201313, Uttar Pradesh, India
| | - Narayan Rishi
- Amity Institute of Virology and Immunology, Amity University, Noida 201313, Uttar Pradesh, India
| |
Collapse
|
17
|
Mansour AM, Radacki K, Shehab OR. Role of the ancillary ligand in controlling the lysozyme affinity and electronic properties of terpyridine fac-Re(CO) 3 complexes. Dalton Trans 2021; 50:1197-1201. [PMID: 33475110 DOI: 10.1039/d0dt04140h] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The lysozyme binding affinity and the electronic properties of [ReX(CO)3(terpy-κ2N1,N2)] (X = Br- and triazolateCOOCH2CH3,CF3) were reported. The triazolate complex was prepared in a [3 + 2] cycloaddition click reaction. The bromo compound reacted with lysozyme affording adducts with Re(CO)3+ fragments, while the triazolate compound persisted. A red shift of the MLCT band of the triazolate compound in progressively less polar solvents may be due to the negative solvatochromism.
Collapse
Affiliation(s)
- Ahmed M Mansour
- Department of Chemistry, Faculty of Science, Cairo University, Gamma Street, Giza, Cairo 12613, Egypt.
| | - Krzysztof Radacki
- Institut für Anorganische Chemie, Julius-Maximilians-Universität Würzburg, Am Hubland, D-97074 Würzburg, Germany
| | - Ola R Shehab
- Department of Chemistry, Faculty of Science, Cairo University, Gamma Street, Giza, Cairo 12613, Egypt.
| |
Collapse
|
18
|
Mansour AM, Radacki K. Terpyridine based ReX(CO)3 compounds (X = Br–, N3– and triazolate): Spectroscopic and DFT studies. Polyhedron 2021. [DOI: 10.1016/j.poly.2020.114954] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
19
|
Petrovskii SK, Khistiaeva VV, Sizova AA, Sizov VV, Paderina AV, Koshevoy IO, Monakhov KY, Grachova EV. Hexavanadate-Organogold(I) Hybrid Compounds: Synthesis by the Azide-Alkyne Cycloaddition and Density Functional Theory Study of an Intriguing Electron Density Distribution. Inorg Chem 2020; 59:16122-16126. [PMID: 33103900 DOI: 10.1021/acs.inorgchem.0c02621] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The fully oxidized Lindqvist-type hexavanadate compounds decorated by phosphine-derivatized Au(I) moieties oriented in a transoid fashion (n-Bu4N)2[V6O13{(OCH2)3CCH2(N3C2C6H5)AuP(C6H4OMe)3}2] (POMNAu) and (n-Bu4N)2[V6O13{(OCH2)3CCH2OCH2(C2N3H)AuP(C6H4OMe)3}2] (POMCAu) have been prepared by azide-alkyne cycloaddition reactions and characterized by various techniques, including NMR, IR, and UV/vis spectroscopy and electrospray ionization mass spectrometry. Electronic structure calculations unveil the potential of these model hybrid junctions for application in controlled charge-transport experiments on substrate surfaces.
Collapse
Affiliation(s)
- Stanislav K Petrovskii
- Institute of Chemistry, St. Petersburg State University, Universitetskii pr. 26, 198504 St. Petersburg, Russia
| | - Viktoria V Khistiaeva
- Institute of Chemistry, St. Petersburg State University, Universitetskii pr. 26, 198504 St. Petersburg, Russia.,Department of Chemistry, University of Eastern Finland, 80101 Joensuu, Finland
| | - Anastasia A Sizova
- Institute of Chemistry, St. Petersburg State University, Universitetskii pr. 26, 198504 St. Petersburg, Russia
| | - Vladimir V Sizov
- Institute of Chemistry, St. Petersburg State University, Universitetskii pr. 26, 198504 St. Petersburg, Russia
| | - Aleksandra V Paderina
- Institute of Chemistry, St. Petersburg State University, Universitetskii pr. 26, 198504 St. Petersburg, Russia
| | - Igor O Koshevoy
- Department of Chemistry, University of Eastern Finland, 80101 Joensuu, Finland
| | - Kirill Yu Monakhov
- Leibniz Institute of Surface Engineering (IOM), Permoserstraße 15, 04318 Leipzig, Germany
| | - Elena V Grachova
- Institute of Chemistry, St. Petersburg State University, Universitetskii pr. 26, 198504 St. Petersburg, Russia
| |
Collapse
|
20
|
Levchenko V, Øien-Ødegaard S, Wragg D, Tilset M. Crystal structure of (N^C) cyclo-metalated Au III diazide at 100 K. Acta Crystallogr E Crystallogr Commun 2020; 76:1725-1727. [PMID: 33209341 PMCID: PMC7643232 DOI: 10.1107/s2056989020012955] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 09/22/2020] [Indexed: 11/19/2022]
Abstract
The title compound, an (N^C)-cyclo-metalated gold(III) diazide, namely, di-azido-[5-eth-oxy-carbonyl-2-(5-eth-oxy-carbonyl-pyridin-2-yl)phenyl-κ2 C 1,N]gold(III), [Au(C17H16NO4)(N3)2] or Au(ppyEt)(N3)2, was synthesized by reacting Au(ppyEt)Cl2 with NaN3 in water for 24 h. The complex has been structurally characterized and features a gold center with a square-planar environment. The Au-N(azide) bond lengths are significantly different depending on the influence of the atom trans to the azide group [Au-N(trans to C) of 2.067 (2) Å versus Au-N(trans to N) of 2.042 (2) Å]. The azide groups are twisted in-and-out of plane by 56.2 (2)°.
Collapse
Affiliation(s)
- Volodymyr Levchenko
- Department of Chemistry and Center for Materials Science and Nanotechnology (SMN), University of Oslo, PO Box 1126 Blindern, N-0318 Oslo, Norway
| | - Sigurd Øien-Ødegaard
- Department of Chemistry and Center for Materials Science and Nanotechnology (SMN), University of Oslo, PO Box 1126 Blindern, N-0318 Oslo, Norway
| | - David Wragg
- Department of Chemistry and Center for Materials Science and Nanotechnology (SMN), University of Oslo, PO Box 1126 Blindern, N-0318 Oslo, Norway
| | - Mats Tilset
- Department of Chemistry and Center for Materials Science and Nanotechnology (SMN), University of Oslo, PO Box 1126 Blindern, N-0318 Oslo, Norway
| |
Collapse
|
21
|
Spectroscopic and antimicrobial activity of photoactivatable tricarbonyl Mn(I) terpyridine compounds. Inorganica Chim Acta 2020. [DOI: 10.1016/j.ica.2020.119806] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
22
|
Deciphering the Mechanism of Silver Catalysis of “Click” Chemistry in Water by Combining Experimental and MEDT Studies. Catalysts 2020. [DOI: 10.3390/catal10090956] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
A combined experimental study and molecular electron density theory (MEDT) analysis was carried out to investigate the click of 1,2,3-triazole derivatives by Ag(I)-catalyzed azide-alkyne cycloaddition (AgAAC) reaction as well as its corresponding mechanistic pathway. Such a synthetic protocol leads to the regioselective formation of 1,4-disubstituted-1,2,3-triazoles in the presence of AgCl as catalyst and water as reaction solvent at room temperature and pressure. The MEDT was performed by applying Density Functional Theory (DFT) calculations at both B3LYP/6-31G(d,p) (LANL2DZ for Ag) and ωB97XD/6-311G(d,p) (LANL2DZ for Ag) levels with a view to decipher the observed regioselectivity in AgAAC reactions, and so to set out the number of silver(I) species and their roles in the formation of 1,4-disubstituted-1,2,3-triazoles. The comparison of the values of the energy barriers for the mono- and dinuclear Ag(I)-acetylide in the AgAAC reaction paths shows that the calculated energy barriers of dinuclear processes are smaller than those of the mononuclear one. The type of intramolecular interactions in the investigated AgAAC click chemistry reaction accounts for the regioselective formation of the 1,4-regiosisomeric triazole isomer. The ionic character of the starting compounds, namely Ag-acetylide, is revealed for the first time. This finding rules out any type of covalent interaction, involving the silver(I) complexes, along the reaction pathway. Electron localization function (ELF) topological analysis of the electronic structure of the stationary points reaffirmed the zw-type (zwitterionic-type) mechanism of the AgAAC reactions.
Collapse
|
23
|
Zeman CJ, Shen YH, Heller JK, Abboud KA, Schanze KS, Veige AS. Excited-State Turn-On of Aurophilicity and Tunability of Relativistic Effects in a Series of Digold Triazolates Synthesized via iClick. J Am Chem Soc 2020; 142:8331-8341. [PMID: 32267156 DOI: 10.1021/jacs.0c01624] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
iClick reactions between Au(I) acetylides PPh3Au-C≡CR, where R = nitrophenyl (PhNO2), phenyl (Ph), thiophene (Th), bithiophene (biTh), and dimethyl aniline (PhNMe2), and Au(I)-azide PPh3AuN3 provide digold complexes of the general formula R-1,5-bis-triphenylphosphinegold(I) 1,2,3-triazolate (Au2-R). Within the digold triazolate complexes the Au(I) atoms are held in close proximity but beyond the distance typically observed for aurophilic bonding. Though no bond exists in the ground state, time-dependent density functional theory interrogation of the complexes reveals excited states with significant aurophilic bonding. The series of complexes allows for tuning of the excited-state "turn-on" of aurophilicity, where ligand to metal charge transfer (LMCT) induces the aurophilic bonding. Complexes containing ligand-localized excited states, however, do not exhibit aurophilicity in the excited state. As a control experiment, a monogold complex was synthesized. The computed excited state of the monogold species exhibited LMCT to the gold ion as in the dinuclear cases, but without a partnering gold ion only a distinct N-Au-P bending occurs, revealing a potential mechanism for the excited-state turn-on of aurophilic bonding. Analysis of the steady-state electronic spectra indicates that LMCT states are achievable for compounds with sufficiently strong electron-donating ligands, and in digold complexes this is associated with enhanced fluorescence, suggestive of an aurophilic interaction.
Collapse
Affiliation(s)
- Charles J Zeman
- Department of Chemistry, Center for Catalysis, University of Florida, P.O. Box 117200, Gainesville, Florida 32611, United States.,Department of Chemistry, University of Texas at San Antonio, One UTSA Circle, San Antonio, Texas 78249, United States
| | - Yu-Hsuan Shen
- Department of Chemistry, Center for Catalysis, University of Florida, P.O. Box 117200, Gainesville, Florida 32611, United States
| | - Jessica K Heller
- Department of Chemistry, Center for Catalysis, University of Florida, P.O. Box 117200, Gainesville, Florida 32611, United States
| | - Khalil A Abboud
- Department of Chemistry, Center for Catalysis, University of Florida, P.O. Box 117200, Gainesville, Florida 32611, United States
| | - Kirk S Schanze
- Department of Chemistry, University of Texas at San Antonio, One UTSA Circle, San Antonio, Texas 78249, United States
| | - Adam S Veige
- Department of Chemistry, Center for Catalysis, University of Florida, P.O. Box 117200, Gainesville, Florida 32611, United States
| |
Collapse
|
24
|
Peng K, Einsele R, Irmler P, Winter RF, Schatzschneider U. The iClick Reaction of a BODIPY Platinum(II) Azido Complex with Electron-Poor Alkynes Provides Triazolate Complexes with Good 1O2 Sensitization Efficiency. Organometallics 2020. [DOI: 10.1021/acs.organomet.0c00128] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Kun Peng
- Institut für Anorganische Chemie, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Richard Einsele
- Institut für Anorganische Chemie, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Peter Irmler
- Fachbereich Chemie, Universität Konstanz, Universitätsstr. 10, 78457 Konstanz, Germany
| | - Rainer F. Winter
- Fachbereich Chemie, Universität Konstanz, Universitätsstr. 10, 78457 Konstanz, Germany
| | - Ulrich Schatzschneider
- Institut für Anorganische Chemie, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
| |
Collapse
|
25
|
Farrer NJ, Griffith DM. Exploiting azide-alkyne click chemistry in the synthesis, tracking and targeting of platinum anticancer complexes. Curr Opin Chem Biol 2020; 55:59-68. [PMID: 31945705 PMCID: PMC7254056 DOI: 10.1016/j.cbpa.2019.12.001] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Revised: 11/24/2019] [Accepted: 12/02/2019] [Indexed: 12/31/2022]
Abstract
Click chemistry is fundamentally important to medicinal chemistry and chemical biology. It represents a powerful and versatile tool, which can be exploited to develop novel Pt-based anticancer drugs and to better understand the biological effects of Pt-based anticancer drugs at a cellular level. Innovative azide-alkyne cycloaddition-based approaches are being used to functionalise Pt-based complexes with biomolecules to enhance tumour targeting. Valuable information in relation to the mechanisms of action and resistance of Pt-based drugs is also being revealed through click-based detection, isolation and tracking of Pt drug surrogates in biological and cellular environments. Although less well-explored, inorganic Pt-click reactions enable synthesis of novel (potentially multimetallic) Pt complexes and provide plausible routes to introduce functional groups and monitoring Pt-azido drug localisation.
Collapse
Affiliation(s)
- Nicola J Farrer
- Chemistry Research Laboratory, University of Oxford, 12 Mansfield Road, Oxford, OX1 3TA, UK
| | - Darren M Griffith
- Department of Chemistry, RCSI, 123 St. Stephens Green, Dublin 2, Ireland; SSPC, Synthesis and Solid State Pharmaceutical Centre, Ireland.
| |
Collapse
|
26
|
Beto CC, Zeman CJ, Yang Y, Bullock JD, Holt ED, Kane AQ, Makal TA, Yang X, Ghiviriga I, Schanze KS, Veige AS. An Application Exploiting Aurophilic Bonding and iClick to Produce White Light Emitting Materials. Inorg Chem 2020; 59:1893-1904. [PMID: 31961144 DOI: 10.1021/acs.inorgchem.9b03195] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The paper focuses on exploiting aurophilic bonding to produce white light emitting materials. Inorganic Click (iClick) is employed to link two or four Au(I) metal ions through a triazolate bridge. Depending on the choice of phosphine ligand (PEt3 or PPh3), dinuclear Au2-FO or tetranuclear Au4-FO complexes can be controllably synthesized (FO = 2-(9,9-dioctylfluoreneyl-)). The iClick products Au2-FO and Au4-FO are characterized by combustion analysis and multinuclear NMR, TOCSY 1D, 1H-13C gHMBC, and 1H-13C gHSQC. In addition, the photophysical properties of Au2-FO and Au4-FO were examined in THF solution. Transient absorption spectroscopy was employed to elucidate the excited state features of the gold compounds. Solution processed OLEDs were fabricated and characterized, which gave white light electroluminescence with CIE coordinates (0.34, 0.36), as seen referenced to CIE standard illuminant D65 (0.31, 0.32). TDDFT computational analysis of Au2-FO and Au4-FO reveals the origin of light emission. In the case of Au4-FO, direct excitation leads to increased aurophilic bonding in the excited state, and as a result the emission profile is broadened to cover a larger region of the visible spectrum, thus giving white light emission. Designing molecules that can access or increase aurophilic bonding in the excited state provides another tool for fine-tuning the emission profiles of gold complexes.
Collapse
Affiliation(s)
- Christopher C Beto
- Department of Chemistry, Center for Catalysis , University of Florida , P.O. Box 117200 , Gainesville , Florida 32611 , United States
| | - Charles J Zeman
- Department of Chemistry, Center for Catalysis , University of Florida , P.O. Box 117200 , Gainesville , Florida 32611 , United States
| | - Yajing Yang
- Department of Chemistry , University of Texas at San Antonio , One UTSA Circle , San Antonio , Texas 78249 , United States
| | - James D Bullock
- Department of Chemistry, Center for Catalysis , University of Florida , P.O. Box 117200 , Gainesville , Florida 32611 , United States
| | - Ethan D Holt
- Department of Chemistry, Center for Catalysis , University of Florida , P.O. Box 117200 , Gainesville , Florida 32611 , United States
| | - Alexander Q Kane
- Department of Chemistry, Center for Catalysis , University of Florida , P.O. Box 117200 , Gainesville , Florida 32611 , United States
| | - Trevor A Makal
- Department of Chemistry, Center for Catalysis , University of Florida , P.O. Box 117200 , Gainesville , Florida 32611 , United States
| | - Xi Yang
- Department of Chemistry, Center for Catalysis , University of Florida , P.O. Box 117200 , Gainesville , Florida 32611 , United States
| | - Ion Ghiviriga
- Department of Chemistry, Center for Catalysis , University of Florida , P.O. Box 117200 , Gainesville , Florida 32611 , United States
| | - Kirk S Schanze
- Department of Chemistry , University of Texas at San Antonio , One UTSA Circle , San Antonio , Texas 78249 , United States
| | - Adam S Veige
- Department of Chemistry, Center for Catalysis , University of Florida , P.O. Box 117200 , Gainesville , Florida 32611 , United States
| |
Collapse
|
27
|
Heravi MM, Dehghani M, Zadsirjan V, Ghanbarian M. Alkynes as Privileged Synthons in Selected Organic Name Reactions. Curr Org Synth 2020; 16:205-243. [PMID: 31975673 DOI: 10.2174/1570179416666190126100744] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Revised: 01/03/2018] [Accepted: 01/10/2018] [Indexed: 12/28/2022]
Abstract
BACKGROUND Alkynes are actually basic chemicals, serving as privileged synthons for planning new organic reactions for assemblage of a reactive motif, which easily undergoes a further desirable transformation. Name reactions, in organic chemistry are referred to those reactions which are well-recognized and reached to such status for being called as their explorers, discoverers or developers. Alkynes have been used in various name reactions. In this review, we try to underscore the applications of alkynes as privileged synthons in prevalent name reactions such as Huisgen 1,3-dipolar cycloaddtion via Click reaction, Sonogashira reaction, and Hetero Diels-Alder reaction. OBJECTIVE In this review, we try to underscore the applications of alkynes as privileged synthons in the formation of heterocycles, focused on the selected reactions of alkynes as a synthon or impending utilization in synthetic organic chemistry, which have reached such high status for being included in the list of name reactions in organic chemistry. CONCLUSION Alkynes (including acetylene) are an unsaturated hydrocarbon bearing one or more triple C-C bond. Remarkably, alkynes and their derivatives are frequently being used as molecular scaffolds for planning new organic reactions and installing reactive functional group for further reaction. It is worth mentioning that in general, the terminal alkynes are more useful and more frequently being used in the art of organic synthesis. Remarkably, alkynes have found different applications in pharmacology, nanotechnology, as well as being known as appropriate starting precursors for the total synthesis of natural products and biologically active complex compounds. They are predominantly applied in various name reactions such as Sonogashira, Glaser reaction, Friedel-crafts reaction, Castro-Stephens coupling, Huisgen 1.3-dipolar cycloaddtion reaction via Click reaction, Sonogashira reaction, hetero-Diels-Alder reaction. In this review, we tried to impress the readers by presenting selected name reactions, which use the alkynes as either stating materials or precursors. We disclosed the applications of alkynes as a privileged synthons in several popular reactions, which reached to such high status being classified as name reactions. They are thriving and well known and established name reactions in organic chemistry such as Regioselective, 1,3-dipolar Huisgen cycloaddtion reaction via Click reaction, Sonogashira reaction and Diels-Alder reaction.
Collapse
Affiliation(s)
- Majid M Heravi
- Department of Chemistry, School of Science, Alzahra University, Vanak, Tehran, Iran
| | - Mahzad Dehghani
- Department of Chemistry, School of Science, Alzahra University, Vanak, Tehran, Iran
| | - Vahideh Zadsirjan
- Department of Chemistry, School of Science, Alzahra University, Vanak, Tehran, Iran
| | - Manijheh Ghanbarian
- Department of Chemistry, School of Science, Alzahra University, Vanak, Tehran, Iran
| |
Collapse
|
28
|
Mansour AM, Shehab OR, Radacki K. Role of Sulfonate Appendage in the Protein Binding Affinity of Half-Sandwich Ruthenium(II)(η6
-p
-Cym) Complexes. Eur J Inorg Chem 2020. [DOI: 10.1002/ejic.201901089] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Ahmed M. Mansour
- Chemistry Department; Faculty of Science; Cairo University; Gamma Street, Giza 12613 Cairo Egypt
| | - Ola R. Shehab
- Chemistry Department; Faculty of Science; Cairo University; Gamma Street, Giza 12613 Cairo Egypt
| | - Krzysztof Radacki
- Institut für Anorganische Chemie; Faculty of Science; Julius-Maximilians-Universität Würzburg; Am Hubland 97074 Würzburg Germany
| |
Collapse
|
29
|
Kumar R, Ujjval R, Thirupathi N. Half Sandwich Electron Deficient
N
,
N′
,
N′′
‐Triarylguanidinatoruthenium(II) Complexes: Syntheses, Reactivity Studies, and Structural Aspects. Eur J Inorg Chem 2019. [DOI: 10.1002/ejic.201900616] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Robin Kumar
- Department of Chemistry University of Delhi Delhi 110 007 India
| | - Rishabh Ujjval
- Department of Chemistry University of Delhi Delhi 110 007 India
| | | |
Collapse
|
30
|
Peng K, Mawamba V, Schulz E, Löhr M, Hagemann C, Schatzschneider U. iClick Reactions of Square-Planar Palladium(II) and Platinum(II) Azido Complexes with Electron-Poor Alkynes: Metal-Dependent Preference for N1 vs N2 Triazolate Coordination and Kinetic Studies with 1H and 19F NMR Spectroscopy. Inorg Chem 2019; 58:11508-11521. [PMID: 31393709 DOI: 10.1021/acs.inorgchem.9b01304] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Two square-planar palladium(II) and platinum(II) azido complexes [M(N3)(L)] with L = N-phenyl-2-[1-(2-pyridinyl)ethylidene]hydrazine carbothioamide reacted with four different electron-poor alkynes R-C≡C-R' with R = R' = COOCH3, COOEt, COOCH2CH2OCH3 or R = CF3, R' = COOEt in a [3 + 2] cycloaddition "iClick" reaction. The resulting triazolate complexes [M(triazolateR,R')(L)] were isolated by simple precipitation and/or washing in high purity and good yield. Six out of the eight new compounds feature the triazolate ligand coordinated to the metal center via the N2 nitrogen atom, but fortuitous solubility properties allowed isolation of the N1 isomer in two cases from acetone. When the solvent was changed to DMSO, the N1 → N2 isomerization could be studied by NMR spectroscopy and took several days to complete. 19F NMR studies of the iClick reaction with F3C-C≡C-COOEt led to identification of a putative early linear intermediate in addition to the N1 and N2 isomers, however with the latter as the final product. Rate constants determined by 1H or 19F NMR spectroscopy increased in the order Pd > Pt and CF3/COOEt > COOR/COOR with R = CH3, Et, CH2CH2OCH3. The second-order rate constant k2 > 3.7 M-1 s-1 determined for the reaction of [Pd(N3)(L)] with F3C-C≡C-COOEt is the fastest observed for an iClick reaction so far and compares favorably with that of the most evolved strained alkynes reported for the SPAAC (strain-promoted azide-alkyne cycloaddition) to date. Selected title compounds were evaluated for their anticancer activity on the GaMG human glioblastoma brain cancer cell line and gave EC50 values in the low micromolar range (2-16 μM). The potency of the Pd(II) complexes increased with the chain length of the substituents in the 4- and 5-positions of the triazolate ligand.
Collapse
Affiliation(s)
- Kun Peng
- Institut für Anorganische Chemie , Julius-Maximilians-Universität Würzburg , Am Hubland , D-97074 Würzburg , Germany
| | - Viviane Mawamba
- Institut für Anorganische Chemie , Julius-Maximilians-Universität Würzburg , Am Hubland , D-97074 Würzburg , Germany
| | - Ellina Schulz
- Universitätsklinikum Würzburg , Neurochirurgische Klinik und Poliklinik, Tumorbiologisches Labor , Josef-Schneider-Straße 11 , D-97080 Würzburg , Germany
| | - Mario Löhr
- Universitätsklinikum Würzburg , Neurochirurgische Klinik und Poliklinik, Tumorbiologisches Labor , Josef-Schneider-Straße 11 , D-97080 Würzburg , Germany
| | - Carsten Hagemann
- Universitätsklinikum Würzburg , Neurochirurgische Klinik und Poliklinik, Tumorbiologisches Labor , Josef-Schneider-Straße 11 , D-97080 Würzburg , Germany
| | - Ulrich Schatzschneider
- Institut für Anorganische Chemie , Julius-Maximilians-Universität Würzburg , Am Hubland , D-97074 Würzburg , Germany
| |
Collapse
|
31
|
Synthesis of ruthenium triazolato complexes by the [3 + 2] cycloaddition of a ruthenium azido complex with acetylacetylenes. Inorganica Chim Acta 2019. [DOI: 10.1016/j.ica.2019.05.031] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
32
|
Praveen C. Carbophilic activation of π-systems via gold coordination: Towards regioselective access of intermolecular addition products. Coord Chem Rev 2019. [DOI: 10.1016/j.ccr.2019.04.010] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
33
|
Haiduc I. ReviewInverse coordination. Organic nitrogen heterocycles as coordination centers. A survey of molecular topologies and systematization. Part 1. Five-membered and smaller rings. J COORD CHEM 2019. [DOI: 10.1080/00958972.2019.1641702] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Ionel Haiduc
- Facultatea de Chimie, Universitatea Babeş-Bolyai, Cluj-Napoca, Romania
| |
Collapse
|
34
|
Peng K, Friedrich A, Schatzschneider U. 2,2':6',2''-Terpyridine switches from tridentate to monodentate coordination in a gold(iii) terpy complex upon reaction with sodium azide. Chem Commun (Camb) 2019; 55:8142-8145. [PMID: 31240290 DOI: 10.1039/c9cc04113c] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Reaction of [AuCl(terpy-κ3-N1,1',1'')]Cl2 with an excess of sodium azide did not result in the expected exchange of the chlorido by an azido ligand to give [Au(N3)(terpy-κ3-N1,1',1'')]2+. Instead, X-ray structure analysis showed that the isolated product is [Au(N3)3(terpy-κ1-N1)], in which the terpyridine ligand is in a very rare monodentate coordination mode. This is also the dominant species in solution, together with a minor amount of [Au(N3)2(terpy-κ2-N1,1')]+. The stability of the tris(azido)gold(iii) moiety relative to other possible species was also confirmed by DFT calculations.
Collapse
Affiliation(s)
- Kun Peng
- Institut für Anorganische Chemie, Julius-Maximilians-Universität Würzburg, Am Hubland, D-97074 Würzburg, Germany.
| | - Alexandra Friedrich
- Institut für Anorganische Chemie, Julius-Maximilians-Universität Würzburg, Am Hubland, D-97074 Würzburg, Germany.
| | - Ulrich Schatzschneider
- Institut für Anorganische Chemie, Julius-Maximilians-Universität Würzburg, Am Hubland, D-97074 Würzburg, Germany.
| |
Collapse
|
35
|
Beto CC, Yang Y, Zeman CJ, Ghiviriga I, Schanze KS, Veige AS. Cu-Catalyzed Azide-Pt-Acetylide Cycloaddition: Progress toward a Conjugated Metallopolymer via iClick. Organometallics 2018. [DOI: 10.1021/acs.organomet.8b00737] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Christopher C. Beto
- Department of Chemistry, Center for Catalysis, University of Florida, P.O. Box 117200, Gainesville, Florida 32611, United States
| | - Yajing Yang
- Department of Chemistry, Center for Catalysis, University of Florida, P.O. Box 117200, Gainesville, Florida 32611, United States
| | - Charles J. Zeman
- Department of Chemistry, Center for Catalysis, University of Florida, P.O. Box 117200, Gainesville, Florida 32611, United States
| | - Ion Ghiviriga
- Department of Chemistry, Center for Catalysis, University of Florida, P.O. Box 117200, Gainesville, Florida 32611, United States
| | - Kirk S. Schanze
- Department of Chemistry, University of Texas at San Antonio, One UTSA Circle, San Antonio, Texas 78249, United States
| | | |
Collapse
|
36
|
Silva PJ, Bernardo CEP. Influence of Alkyne and Azide Substituents on the Choice of the Reaction Mechanism of the Cu +-Catalyzed Addition of Azides to Iodoalkynes. J Phys Chem A 2018; 122:7497-7507. [PMID: 30141932 DOI: 10.1021/acs.jpca.8b06894] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The cycloaddition of azides to iodoalkynes is strongly enhanced by some Cu+-complexes. We have studied computationally six reaction pathways for the cycloaddition of 24 combinations of azide and iodoalkyne to identify the dominant pathways and the influence of reactant structure on the evolution of the reaction. Two pathways were found to be operating for distinct sets of reactants. In the first pathway, initial complexation of iodoalkyne by Cu+ is followed by the binding of the azide to the metal through its substituted nitrogen atom, followed by attack of the nonhalogenated alkyne carbon by the terminal nitrogen atom. This pathway is generally followed by aromatic or electron-deficient azides, unless the iodoalkyne bears an electron-withdrawing group. The second pathway is a single-step mechanism similar (apart from the alkyne bond weakening caused by complexation) to that observed in the absence of catalyst. Electron-deficient iodoalkynes and methyl azides strongly prefer this mechanism, regardless of the identity of the reaction partners. The catalytic gain obtained through the use of Cu+ depends only partially on its direct effect on the energy of the transition state (relative to that of the infinitely separated reactants) and may be lost if the iodoalkyne itself strongly interacts with the catalyst through the formation of too strong a π-complex.
Collapse
Affiliation(s)
- Pedro J Silva
- FP-ENAS/Fac. de Ciências da Saúde , Univ. Fernando Pessoa , Rua Carlos da Maia, 296 , 4200-150 Porto , Portugal
| | - Carlos E P Bernardo
- FP-ENAS/Fac. de Ciências da Saúde , Univ. Fernando Pessoa , Rua Carlos da Maia, 296 , 4200-150 Porto , Portugal
| |
Collapse
|
37
|
Farrer NJ, Sharma G, Sayers R, Shaili E, Sadler PJ. Platinum(iv) azido complexes undergo copper-free click reactions with alkynes. Dalton Trans 2018; 47:10553-10560. [PMID: 29480314 PMCID: PMC6083821 DOI: 10.1039/c7dt04183g] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Accepted: 01/05/2018] [Indexed: 01/09/2023]
Abstract
We report our investigations into the first examples of copper-free 1,3-dipolar cycloaddition (click) reactions of electrophiles with a PtIV azido complex. The Pt-IV azido complex trans, trans, trans-[PtIV(py)2(N3)2(OH)2] (1) was reactive towards dimethyl acetylenedicarboxylate (DMAD) (2), diethyl acetylenedicarboxylate DEACD (3), N-[(1R,8S,9s)-bicyclo[6.1.0]non-4-yn-9-ylmethyloxycarbonyl]-1,8-diamino-3,6-dioxaoctane (BCN) (11) and dibenzocyclooctyne-amine (DBCO) (12) resulting in formation of the corresponding mono (a) and bis-substituted (b) complexes. Complexes of 2 undergo further reactions between the Pt centre and the carbonyl group to form 2a' and 2b'. This is not seen for the products of the corresponding PtII azido complex trans-[Pt(py)2(N3)2] with acetylene 2. Novel complexes 2a', 2b', 11a and 11b have been characterised by multinuclear NMR, IR and UV-vis spectroscopy and ESI-MS. These reactions represent new synthetic routes to novel Pt(iv) complexes.
Collapse
Affiliation(s)
- Nicola J. Farrer
- Chemistry Research Laboratory
, University of Oxford
,
12 Mansfield Road
, Oxford
, OX1 3TA
, UK
.
; Tel: +44 (0)1865 285155
| | - Gitanjali Sharma
- Chemistry Research Laboratory
, University of Oxford
,
12 Mansfield Road
, Oxford
, OX1 3TA
, UK
.
; Tel: +44 (0)1865 285155
| | - Rachel Sayers
- Chemistry Research Laboratory
, University of Oxford
,
12 Mansfield Road
, Oxford
, OX1 3TA
, UK
.
; Tel: +44 (0)1865 285155
| | - Evyenia Shaili
- Department of Chemistry
, University of Warwick
,
Gibbet Hill Road
, Coventry
, CV4 7AL
, UK
| | - Peter J. Sadler
- Department of Chemistry
, University of Warwick
,
Gibbet Hill Road
, Coventry
, CV4 7AL
, UK
| |
Collapse
|
38
|
Beto CC, Holt ED, Yang Y, Ghiviriga I, Schanze KS, Veige AS. A new synthetic route to in-chain metallopolymers via copper(i) catalyzed azide-platinum-acetylide iClick. Chem Commun (Camb) 2018; 53:9934-9937. [PMID: 28829464 DOI: 10.1039/c7cc06289c] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
The first example of an in-chain metallo-poly(triazolate) synthesized by CuAAC is reported. Azido-platinum-acetylide (A-M-B) monomers are catalytically polymerized with copper(i) acetate to yield 1,2,3-triazolate linked Pt(ii) units. The metallopolymers are characterized by multinuclear NMR, IR, UV/Vis, GPC, and MS.
Collapse
Affiliation(s)
- C C Beto
- University of Florida, Department of Chemistry, Center for Catalysis, P. O. Box 117200, Gainesville, FL 32611, USA.
| | | | | | | | | | | |
Collapse
|
39
|
Schmid P, Maier M, Pfeiffer H, Belz A, Henry L, Friedrich A, Schönfeld F, Edkins K, Schatzschneider U. Catalyst-free room-temperature iClick reaction of molybdenum(ii) and tungsten(ii) azide complexes with electron-poor alkynes: structural preferences and kinetic studies. Dalton Trans 2018; 46:13386-13396. [PMID: 28933494 DOI: 10.1039/c7dt03096g] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Two isostructural and isoelectronic group VI azide complexes of the general formula [M(η3-allyl)(N3)(bpy)(CO)2] with M = Mo, W and bpy = 2,2'-bipyridine were prepared and fully characterized, including X-ray structure analysis. Both reacted smoothly with electron-poor alkynes such as dimethyl acetylenedicarboxylate (DMAD) and 4,4,4-trifluoro-2-butynoic acid ethyl ester in a catalyst-free room-temperature iClick [3 + 2] cycloaddition reaction. Reaction with phenyl(trifluoromethyl)acetylene, on the other hand, did not lead to any product formation. X-ray structures of the four triazolate complexes isolated showed the monodentate ligand to be N2-coordinated in all cases, which requires a 1,2-shift of the nitrogen from the terminal azide to the triazolate cycloaddition product. On the other hand, a 19F NMR spectroscopic study of the reaction of the fluorinated alkyne with the tungsten azide complex at 27 °C allowed detection of the N1-coordinated intermediate. With this method, the second-order rate constant was determined as (7.3 ± 0.1) × 10-2 M-1 s-1, which compares favorably with that of first-generation compounds such as difluorocyclooctyne (DIFO) used in the strain-promoted azide-alkyne cycloaddition (SPAAC). In contrast, the reaction of the molybdenum analogue was too fast to be studied with NMR methods. Alternatively, solution IR studies revealed pseudo-first order rate constants of 0.4 to 6.5 × 10-3 s-1, which increased in the order of Mo > W and F3C-C[triple bond, length as m-dash]C-COOEt > DMAD.
Collapse
Affiliation(s)
- Paul Schmid
- Institut für Anorganische Chemie, Julius-Maximilians-Universität Würzburg, Am Hubland, D-97074 Würzburg, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Kumar R, Kishan R, Thomas JM, Chinnappan S, Thirupathi N. Probing the factors that influence the conformation of a guanidinato ligand in [(η5-C5Me5)M(NN)X] (NN = chelating N,N′,N′′-tri(o-substituted aryl)guanidinate(1−); X = chloro, azido and triazolato). NEW J CHEM 2018. [DOI: 10.1039/c7nj03766j] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The conformational difference illustrated is ascribed to a subtle repulsive interaction between the o-Cl substituent of two proximal aryl rings in the guanidinate ligand.
Collapse
Affiliation(s)
- Robin Kumar
- Department of Chemistry
- University of Delhi
- Delhi 110 007
- India
| | - Ram Kishan
- Department of Chemistry
- University of Delhi
- Delhi 110 007
- India
| | - Jisha Mary Thomas
- Catalysis and Energy Laboratory
- Department of Chemistry
- Pondicherry University (A Central University)
- Puducherry 605014
- India
| | - Sivasankar Chinnappan
- Catalysis and Energy Laboratory
- Department of Chemistry
- Pondicherry University (A Central University)
- Puducherry 605014
- India
| | | |
Collapse
|
41
|
Mansour AM, Friedrich A. IClick cycloaddition reaction of light-triggered manganese(i) carbonyl complexes. NEW J CHEM 2018. [DOI: 10.1039/c8nj01838c] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
For a binuclear blue-light-induced CO-releasing manganese(i) tricarbonyl complex bearing bidentate ligand, the effect of the ancillary ligand on the dark stability and photolysis process was studied.
Collapse
Affiliation(s)
- Ahmed M. Mansour
- Department of Chemistry
- Faculty of Science
- Cairo University
- Cairo 12613
- Egypt
| | - Alexandra Friedrich
- Institut für Anorganische Chemie
- Julius-Maximilians-Universität Würzburg
- D-97074 Würzburg
- Germany
| |
Collapse
|
42
|
Waag-Hiersch L, Mößeler J, Schatzschneider U. Electronic Influences on the Stability and Kinetics of Cp* Rhodium(III) Azide Complexes in the iClick Reaction with Electron-Poor Alkynes. Eur J Inorg Chem 2017. [DOI: 10.1002/ejic.201700199] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Luisa Waag-Hiersch
- Institut für Anorganische Chemie; Julius-Maximilians-Universität Würzburg; Am Hubland 97074 Würzburg Germany
| | - Jan Mößeler
- Institut für Anorganische Chemie; Julius-Maximilians-Universität Würzburg; Am Hubland 97074 Würzburg Germany
| | - Ulrich Schatzschneider
- Institut für Anorganische Chemie; Julius-Maximilians-Universität Würzburg; Am Hubland 97074 Würzburg Germany
| |
Collapse
|
43
|
Yang X, VenkatRamani S, Beto CC, Del Castillo TJ, Ghiviriga I, Abboud KA, Veige AS. Single versus Double Cu(I) Catalyzed [3 + 2] Azide/Platinum Diacetylide Cycloaddition Reactions. Organometallics 2017. [DOI: 10.1021/acs.organomet.7b00067] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Affiliation(s)
- Xi Yang
- Center for Catalysis, University of Florida, P.O. Box 117200, Gainesville, Florida 32611, United States
| | - Sudarsan VenkatRamani
- Center for Catalysis, University of Florida, P.O. Box 117200, Gainesville, Florida 32611, United States
| | - Christopher C. Beto
- Center for Catalysis, University of Florida, P.O. Box 117200, Gainesville, Florida 32611, United States
| | - Trevor J. Del Castillo
- Center for Catalysis, University of Florida, P.O. Box 117200, Gainesville, Florida 32611, United States
| | - Ion Ghiviriga
- Center for Catalysis, University of Florida, P.O. Box 117200, Gainesville, Florida 32611, United States
| | - Khalil A. Abboud
- Center for Catalysis, University of Florida, P.O. Box 117200, Gainesville, Florida 32611, United States
| | - Adam S. Veige
- Center for Catalysis, University of Florida, P.O. Box 117200, Gainesville, Florida 32611, United States
| |
Collapse
|
44
|
Giner EA, Gómez-Gallego M, Casarrubios L, de la Torre MC, Ramírez de Arellano C, Sierra MA. Effect of a κ1-Bonded-M-1,2,3-triazole (M = Co, Ru) on the Structure and Reactivity of Group 6 Alkoxy (Fischer) Carbenes. Inorg Chem 2017; 56:2801-2811. [DOI: 10.1021/acs.inorgchem.6b02957] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Elena A. Giner
- Departamento de
Química Orgánica I, Facultad de Ciencias Químicas, Universidad Complutense and Centro
de Innovación en Química Avanzada (ORFEO−CINQA), 28040 Madrid, Spain
| | - Mar Gómez-Gallego
- Departamento de
Química Orgánica I, Facultad de Ciencias Químicas, Universidad Complutense and Centro
de Innovación en Química Avanzada (ORFEO−CINQA), 28040 Madrid, Spain
| | - Luis Casarrubios
- Departamento de
Química Orgánica I, Facultad de Ciencias Químicas, Universidad Complutense and Centro
de Innovación en Química Avanzada (ORFEO−CINQA), 28040 Madrid, Spain
| | - María C. de la Torre
- Instituto de Química Orgánica General, Consejo Superior
de Investigaciones Científicas (CSIC) and Centro de Innovación
en Química Avanzada (ORFEO−CINQA), Juan de la Cierva 3, 28006, Madrid, Spain
| | - Carmen Ramírez de Arellano
- Departamento de
Química Orgánica, Universidad de Valencia and Centro de Innovación en Química
Avanzada (ORFEO−CINQA), E-46100, Valencia, Spain
| | - Miguel A. Sierra
- Departamento de
Química Orgánica I, Facultad de Ciencias Químicas, Universidad Complutense and Centro
de Innovación en Química Avanzada (ORFEO−CINQA), 28040 Madrid, Spain
| |
Collapse
|
45
|
Wang C, Ikhlef D, Kahlal S, Saillard JY, Astruc D. Metal-catalyzed azide-alkyne “click” reactions: Mechanistic overview and recent trends. Coord Chem Rev 2016. [DOI: 10.1016/j.ccr.2016.02.010] [Citation(s) in RCA: 219] [Impact Index Per Article: 27.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
46
|
Zhu L, Brassard CJ, Zhang X, Guha PM, Clark RJ. On the Mechanism of Copper(I)-Catalyzed Azide-Alkyne Cycloaddition. CHEM REC 2016; 16:1501-17. [PMID: 27216993 DOI: 10.1002/tcr.201600002] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Indexed: 01/07/2023]
Abstract
The copper(I)-catalyzed azide-alkyne cycloaddition (CuAAC) reaction regiospecifically produces 1,4-disubstituted-1,2,3-triazole molecules. This heterocycle formation chemistry has high tolerance to reaction conditions and substrate structures. Therefore, it has been practiced not only within, but also far beyond the area of heterocyclic chemistry. Herein, the mechanistic understanding of CuAAC is summarized, with a particular emphasis on the significance of copper/azide interactions. Our analysis concludes that the formation of the azide/copper(I) acetylide complex in the early stage of the reaction dictates the reaction rate. The subsequent triazole ring-formation step is fast and consequently possibly kinetically invisible. Therefore, structures of substrates and copper catalysts, as well as other reaction variables that are conducive to the formation of the copper/alkyne/azide ternary complex predisposed for cycloaddition would result in highly efficient CuAAC reactions. Specifically, terminal alkynes with relatively low pKa values and an inclination to engage in π-backbonding with copper(I), azides with ancillary copper-binding ligands (aka chelating azides), and copper catalysts that resist aggregation, balance redox activity with Lewis acidity, and allow for dinuclear cooperative catalysis are favored in CuAAC reactions. Brief discussions on the mechanistic aspects of internal alkyne-involved CuAAC reactions are also included, based on the relatively limited data that are available at this point.
Collapse
Affiliation(s)
- Lei Zhu
- Department of Chemistry and Biochemistry, Florida State University, 95 Chieftan Way, Tallahassee, FL 32306-4390 (USA)
| | - Christopher J Brassard
- Department of Chemistry and Biochemistry, Florida State University, 95 Chieftan Way, Tallahassee, FL 32306-4390 (USA)
| | - Xiaoguang Zhang
- Department of Chemistry and Biochemistry, Florida State University, 95 Chieftan Way, Tallahassee, FL 32306-4390 (USA)
| | - P M Guha
- Department of Chemistry and Biochemistry, Florida State University, 95 Chieftan Way, Tallahassee, FL 32306-4390 (USA)
| | - Ronald J Clark
- Department of Chemistry and Biochemistry, Florida State University, 95 Chieftan Way, Tallahassee, FL 32306-4390 (USA)
| |
Collapse
|
47
|
Beto CC, Yang X, Powers AR, Ghiviriga I, Abboud KA, Veige AS. Expanding iClick to group 9 metals. Polyhedron 2016. [DOI: 10.1016/j.poly.2015.08.032] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
48
|
Abstract
In this study, the mechanism of AgAAC reaction has been studied by quantum mechanical calculations to gain insights into this promising reaction and the first successful application of a Ag catalyst alone in AAC.
Collapse
Affiliation(s)
- Esra Boz
- Department of Chemistry
- Istanbul Technical University
- Istanbul
- Turkey
| | - Nurcan Ş. Tüzün
- Department of Chemistry
- Istanbul Technical University
- Istanbul
- Turkey
| |
Collapse
|
49
|
Simpson PV, Skelton BW, Raiteri P, Massi M. Photophysical and photochemical studies of tricarbonyl rhenium(i) N-heterocyclic carbene complexes containing azide and triazolate ligands. NEW J CHEM 2016. [DOI: 10.1039/c5nj03301b] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Rhenium NHC complexes bound to azide anions readily react with alkynes to form the corresponding triazolate complexes, a new class of photochemically active species.
Collapse
Affiliation(s)
- Peter V. Simpson
- Nanochemistry Research Institute – Department of Chemistry
- Curtin University
- Bentley 6102 WA
- Australia
| | - Brian W. Skelton
- Centre for Microscopy
- Characterisation and Analysis
- University of Western Australia
- Crawley 6009 WA
- Australia
| | - Paolo Raiteri
- Nanochemistry Research Institute – Department of Chemistry
- Curtin University
- Bentley 6102 WA
- Australia
| | - Massimiliano Massi
- Nanochemistry Research Institute – Department of Chemistry
- Curtin University
- Bentley 6102 WA
- Australia
| |
Collapse
|
50
|
Bruce MI, Burgun A, George J, Nicholson BK, Parker CR, Skelton BW, Scoleri N, Sumby CJ, Zaitseva NN. Some reactions of azides with diynyl-bis(phosphine)ruthenium-cyclopentadienyl complexes. J Organomet Chem 2015. [DOI: 10.1016/j.jorganchem.2015.08.019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|