1
|
Sirinara P, Patarapongsant Y, Nilyai S, Sooklert K, Dissayabutra T, Rojanathanes R, Sereemaspun A. "Assessing exposure of printing factory workers in thailand to selected heavy metals using urine and hair as non-invasive matrices". BMC Public Health 2023; 23:31. [PMID: 36604667 PMCID: PMC9817298 DOI: 10.1186/s12889-022-14807-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 12/05/2022] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND There are few thorough studies on the extent and inter-element relationships of heavy metal contamination in printing factory workers, especially in developing countries. The objective of this study was to determine the levels of eight heavy metals, including arsenic (As), cadmium (Cd), chromium (Cr), nickel (Ni), cobalt (Co), lead (Pb), mercury (Hg), and manganese (Mn), in urine and scalp hair of printing industry workers, and assess inter-element correlations. METHODS We examined a total of 85 urine samples and 85 scalp hair samples (3 cm hair segments taken from near the scalp) in 85 printing workers from a printing house in Bangkok, Thailand. We used an interviewer-administered questionnaire about participants' printing techniques, work characteristics, and work environment. Urine and scalp hair samples were analyzed for levels of each element using the inductively coupled plasma optical emission spectrometry (ICP-OES) technique. RESULTS As, Cd, Cr, Ni, Pb were detected in urine with the geometric mean concentration range of 0.0028-0.0209 mg/L, and Hg, Pb, Ni, Cd, Co, Mn, Cr were detected in hair samples (0.4453-7.165 mg/kg dry weight) of printing workers. The geometric mean Ni level was significantly higher in the urine of production line workers than back-office personnel (0.0218 mg/L vs. 0.0132 mg/L; p = 0.0124). The other elements did not differ significantly between production line and back-office workers in either urine or hair. There was also a strong, statistically significant positive correlation between Ni and Co levels in hair samples of workers (r = 0.944, p < 0.0001). CONCLUSIONS Average concentrations of most of the metals in urine and hair of printing workers were found to be above the upper reference values. The significantly higher concentrations of Ni in production line workers might be due to more exposure to printed materials. A strong inter-element correlation between Ni and Co in hair samples can increase stronger health effects and should be further investigated. This study reveals possible dependencies and impact interactions of heavy metal exposure in printing factory workers.
Collapse
Affiliation(s)
- Patthrarawalai Sirinara
- grid.411628.80000 0000 9758 8584Department of Preventive and Social Medicine, King Chulalongkorn Memorial Hospital, Bangkok, Thailand ,grid.7922.e0000 0001 0244 7875Department of Preventive and Social Medicine, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Yupin Patarapongsant
- grid.7922.e0000 0001 0244 7875Behavioral Research and Informatics in Social Sciences Research Unit (RU-BRI), SASIN School of Management, Chulalongkorn University, Bangkok, Thailand
| | - Siwaporn Nilyai
- grid.7922.e0000 0001 0244 7875Center of Excellence in Nanomedicine, Department of Anatomy, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Kanidta Sooklert
- grid.7922.e0000 0001 0244 7875Center of Excellence in Nanomedicine, Department of Anatomy, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Thasinas Dissayabutra
- grid.7922.e0000 0001 0244 7875Department of Biochemistry Metabolic Disease in Gastrointestinal and Urinary System Research Unit, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Rojrit Rojanathanes
- grid.7922.e0000 0001 0244 7875Center of Excellence in Nanomedicine, Department of Anatomy, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand ,grid.7922.e0000 0001 0244 7875Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
| | - Amornpun Sereemaspun
- grid.7922.e0000 0001 0244 7875Center of Excellence in Nanomedicine, Department of Anatomy, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| |
Collapse
|
2
|
Leso V, Sottani C, Santocono C, Russo F, Grignani E, Iavicoli I. Exposure to Antineoplastic Drugs in Occupational Settings: A Systematic Review of Biological Monitoring Data. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:3737. [PMID: 35329423 PMCID: PMC8952240 DOI: 10.3390/ijerph19063737] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 03/17/2022] [Accepted: 03/17/2022] [Indexed: 01/10/2023]
Abstract
The high toxicity of antineoplastic drugs (ADs) makes them dangerous not only for patients, but also for exposed workers. Therefore, the aim of this review was to provide an updated overview of the biological monitoring of occupational AD exposure in order to extrapolate information useful to improve risk assessment and management strategies in workplaces. Several studies demonstrated that remarkable portions of healthcare workers may have traces of these substances or their metabolites in biological fluids, although with some conflicting results. Nurses, directly engaged in AD handling, were the occupational category at higher risk of contamination, although, in some cases, personnel not involved in AD-related tasks also showed quantifiable internal doses. Overall, further research carried out on greater sample sizes appears necessary to gain deeper insight into the variability retrieved in the reported results. This may be important to understand the impact of the extent of ADs use, different handling, procedures, and cleaning practices, spill occurrence, training of the workforce, as well as the adoption of adequate collective and personal protective equipment in affecting the occupational exposure levels. This may support the achievement of the greatest clinical efficiency of such therapies while assuring the health and safety of involved workers.
Collapse
Affiliation(s)
- Veruscka Leso
- Department of Public Health, Section of Occupational Medicine, University of Naples Federico II, Via S. Pansini 5, 80131 Naples, Italy; (V.L.); (C.S.); (F.R.)
| | - Cristina Sottani
- Environmental Research Center, Istituti Clinici Scientifici Maugeri IRCCS, Via Salvatore Maugeri, 10, 27100 Pavia, Italy; (C.S.); (E.G.)
| | - Carolina Santocono
- Department of Public Health, Section of Occupational Medicine, University of Naples Federico II, Via S. Pansini 5, 80131 Naples, Italy; (V.L.); (C.S.); (F.R.)
| | - Francesco Russo
- Department of Public Health, Section of Occupational Medicine, University of Naples Federico II, Via S. Pansini 5, 80131 Naples, Italy; (V.L.); (C.S.); (F.R.)
| | - Elena Grignani
- Environmental Research Center, Istituti Clinici Scientifici Maugeri IRCCS, Via Salvatore Maugeri, 10, 27100 Pavia, Italy; (C.S.); (E.G.)
| | - Ivo Iavicoli
- Department of Public Health, Section of Occupational Medicine, University of Naples Federico II, Via S. Pansini 5, 80131 Naples, Italy; (V.L.); (C.S.); (F.R.)
| |
Collapse
|
3
|
Shan X, Zhang L, Ye H, Shao J, Shi Y, Tan S, Zhang L, Su K. Analytical techniques for monitoring of toluene and xylene exposure biomarkers hippuric acid and methylhippuric acid in human urine samples. Bioanalysis 2021; 13:1569-1584. [PMID: 34696600 DOI: 10.4155/bio-2021-0180] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Accepted: 10/06/2021] [Indexed: 01/09/2023] Open
Abstract
Quantification of hippuric acid and methylhippuric acid in human urine matrices provides information on the toluene and xylene exposure conditions. High performance liquid chromatography coupled with UV detection is the preferable technique for hippuric acid and methylhippuric acid detection in human urine. This study was conducted to present analytical techniques developed for monitoring of hippuric acid and methylhippuric acid in human urine matrices during 2016-2021.
Collapse
Affiliation(s)
- Xiaoyue Shan
- Hangzhou Occupational Disease Prevention & Control Hospital, Hangzhou 310014, China
| | - Lei Zhang
- Hangzhou Occupational Disease Prevention & Control Hospital, Hangzhou 310014, China
| | - Haipeng Ye
- Hangzhou Occupational Disease Prevention & Control Hospital, Hangzhou 310014, China
| | - Ji Shao
- Hangzhou Occupational Disease Prevention & Control Hospital, Hangzhou 310014, China
| | - Yanpeng Shi
- Hangzhou Occupational Disease Prevention & Control Hospital, Hangzhou 310014, China
| | - Siwei Tan
- Hangzhou Occupational Disease Prevention & Control Hospital, Hangzhou 310014, China
| | - Ling Zhang
- Hangzhou Occupational Disease Prevention & Control Hospital, Hangzhou 310014, China
| | - Kewen Su
- Hangzhou Occupational Disease Prevention & Control Hospital, Hangzhou 310014, China
| |
Collapse
|
4
|
Peruzzi CP, Brucker N, Bubols G, Cestonaro L, Moreira R, Domingues D, Arbo M, Olivo Neto P, Knorst MM, Garcia SC. Occupational exposure to crystalline silica and peripheral biomarkers: An update. J Appl Toxicol 2021; 42:87-102. [PMID: 34128557 DOI: 10.1002/jat.4212] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 04/24/2021] [Accepted: 04/25/2021] [Indexed: 12/20/2022]
Abstract
Peripheral biomarkers are important tools for detecting occupational exposures to prevent the onset and/or progression of diseases. Studies that reveal early peripheral biomarkers are highly important to preserve the health of workers and can potentially contribute to diagnosing and/or prognosing occupational pathologies. Exposure to crystalline silica is a problem in several workplaces because it increases the risk of chronic obstructive pulmonary disease (COPD), tuberculosis, cancer, and pulmonary fibrosis, clinically defined as silicosis. Silicosis is diagnosed by chest radiography and/or lung tomography in advanced stages when there is a severe loss of lung function. Peripheral biomarkers can help in diagnosing early changes prior to silicosis and represent a highly important technical-scientific advance that is minimally invasive. This review aimed to investigate the biomarkers studied for evaluating occupational exposure to crystalline silica and to understand the recent advances in this area. Potential oxidative, inflammatory, and immunological biomarkers were reviewed, as well as routine biomarkers such as biochemical parameters. It was found that biomarkers of effect such as serum CC16 and l-selectin levels could represent promising alternatives. Additionally, studies have shown that neopterin levels in urine and serum can be used to monitor worker exposure. However, further studies are needed that include a greater number of participants, different times of exposure to crystalline silica, and a combination of silicosis patients and healthy volunteers. Evaluating the concentration of crystalline silica in occupational environments, its impact on biomarkers of effect, and alterations in lung function could contribute to revealing early health alterations in workers in a more robust manner.
Collapse
Affiliation(s)
- Caroline Portela Peruzzi
- Laboratory of Toxicology (LATOX), Department of Analysis, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.,Graduate Program in Pharmaceutical Sciences, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Natália Brucker
- Graduate Program in Pharmacology, Universidade Federal de Santa Maria, Santa Maria, Brazil
| | - Guilherme Bubols
- Laboratory of Toxicology (LATOX), Department of Analysis, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.,Graduate Program in Pharmaceutical Sciences, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Larissa Cestonaro
- Laboratory of Toxicology (LATOX), Department of Analysis, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.,Graduate Program in Pharmaceutical Sciences, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Rafael Moreira
- Laboratory of Toxicology (LATOX), Department of Analysis, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.,Graduate Program in Pharmaceutical Sciences, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Daiane Domingues
- Laboratory of Toxicology (LATOX), Department of Analysis, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.,Graduate Program in Pharmaceutical Sciences, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Marcelo Arbo
- Laboratory of Toxicology (LATOX), Department of Analysis, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.,Graduate Program in Pharmaceutical Sciences, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Pedro Olivo Neto
- Graduate Program in Pneumological Sciences, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Marli Maria Knorst
- Graduate Program in Pneumological Sciences, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.,Division of Pulmonology, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
| | - Solange Cristina Garcia
- Laboratory of Toxicology (LATOX), Department of Analysis, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.,Graduate Program in Pharmaceutical Sciences, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| |
Collapse
|
5
|
Bahrami M, Pirmohammadi Z, Bahrami A. A review of new adsorbents for separation of BTEX biomarkers. Biomed Chromatogr 2021; 35:e5131. [PMID: 33788293 DOI: 10.1002/bmc.5131] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 03/17/2021] [Accepted: 03/26/2021] [Indexed: 01/09/2023]
Abstract
The biomarker analysis of benzene, toluene, ethylbenzene and xylene (BTEXs) in biological samples is the primary technique for evaluating these compounds in occupational and environmental exposures. The BTEX biomarkers are widely used to study the BTEX distribution in the environment and workplaces. Liquid-liquid extraction and solid-phase liquid extraction are among the most commonly used conventional methods to analyze biological indices of BTEXs. New methods have been proposed to analyze BTEX biomarkers using novel adsorbents such as sol-gel composite nanotubes, molecularly imprinted polymers and metal-organic frameworks, which are based on the application of needle trap devices, microextraction by packed sorbent, and solid-phase microextraction techniques. This paper provides an overview of new methods since 2015 regarding applying microextraction methods based on new adsorbents and analyzing BTEX biomarker compounds for occupational and environmental exposures. The results were compared with the liquid-phase microextraction methods recommended for urinary BTEX biomarkers.
Collapse
Affiliation(s)
- Mohammadreza Bahrami
- Department of Health, Safety and Environment, School of Environment, College of Engineering, University of Tehran, Kish, Iran
| | - Zahra Pirmohammadi
- Center of Excellence for Occupational Health, Occupational Health and Safety Research Center, School of Public Health, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Abdulrahman Bahrami
- Center of Excellence for Occupational Health, Occupational Health and Safety Research Center, School of Public Health, Hamadan University of Medical Sciences, Hamadan, Iran
| |
Collapse
|
6
|
Charlier B, Coglianese A, De Rosa F, De Caro F, Piazza O, Motta O, Borrelli A, Capunzo M, Filippelli A, Izzo V. Chemical risk in hospital settings: Overview on monitoring strategies and international regulatory aspects. J Public Health Res 2021; 10. [PMID: 33849259 PMCID: PMC8018262 DOI: 10.4081/jphr.2021.1993] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 02/17/2021] [Indexed: 01/21/2023] Open
Abstract
Chemical risk in hospital settings is a growing concern that health professionals and supervisory authorities must deal with daily. Exposure to chemical risk is quite different depending on the hospital department involved and might origin from multiple sources, such as the use of sterilizing agents, disinfectants, detergents, solvents, heavy metals, dangerous drugs, and anesthetic gases. Improving prevention procedures and constantly monitoring the presence and level of potentially toxic substances, both in workers (biological monitoring) and in working environments (environmental monitoring), might significantly reduce the risk of exposure and contaminations. The purpose of this article is to present an overview on this subject, which includes the current international regulations, the chemical pollutants to which medical and paramedical personnel are mainly exposed, and the strategies developed to improve safety conditions for all healthcare workers.
Collapse
Affiliation(s)
- Bruno Charlier
- Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", University of Salerno, Baronissi (SA).
| | - Albino Coglianese
- Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", University of Salerno, Baronissi (SA).
| | - Federica De Rosa
- University Hospital "San Giovanni di Dio e Ruggi D'Aragona", Salerno.
| | - Francesco De Caro
- Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", University of Salerno, Baronissi (SA).
| | - Ornella Piazza
- Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", University of Salerno, Baronissi (SA).
| | - Oriana Motta
- Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", University of Salerno, Baronissi .
| | - Anna Borrelli
- University Hospital "San Giovanni di Dio e Ruggi d'Aragona", Salerno.
| | - Mario Capunzo
- Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", University of Salerno, Baronissi (SA).
| | - Amelia Filippelli
- Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", University of Salerno, Baronissi (SA).
| | - Viviana Izzo
- Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", University of Salerno, Baronissi (SA).
| |
Collapse
|
7
|
Hall AL, MacLean MB, VanTil L, McBride DI, Glass DC. Considering Exposure Assessment in Epidemiological Studies of Chronic Health in Military Populations. Front Public Health 2020; 8:577601. [PMID: 33123510 PMCID: PMC7573167 DOI: 10.3389/fpubh.2020.577601] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 08/26/2020] [Indexed: 12/18/2022] Open
Abstract
Exposure assessment is an important factor in all epidemiological research seeking to identify, evaluate, and control health risks. In the military and veteran context, population health research to explore exposure-response links is complicated by the wide variety of environments and hazards encountered during active service, long latency periods, and a lack of information on exposures in potentially vulnerable subgroups. This paper summarizes some key considerations for exposure assessment in long-term health studies of military populations, including the identification of hazards related to military service, characterization of potentially exposed groups, exposure data collection, and assignment of exposures to estimate health risks. Opportunities and future directions for exposure assessment in this field are also discussed.
Collapse
Affiliation(s)
- Amy L Hall
- Research Directorate, Veterans Affairs Canada, Charlottetown, PE, Canada
| | - Mary Beth MacLean
- Research Directorate, Veterans Affairs Canada, Charlottetown, PE, Canada.,School of Rehabilitation Therapy, Queen's University, Kingston, ON, Canada
| | - Linda VanTil
- Research Directorate, Veterans Affairs Canada, Charlottetown, PE, Canada
| | - David Iain McBride
- Department of Preventive & Social Medicine, University of Otago, Dunedin, New Zealand
| | - Deborah C Glass
- Public Health and Preventive Medicine, Monash University, Melbourne, VIC, Australia
| |
Collapse
|
8
|
Jalili V, Barkhordari A, Ghiasvand A. Bioanalytical Applications of Microextraction Techniques: A Review of Reviews. Chromatographia 2020. [DOI: 10.1007/s10337-020-03884-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
9
|
|
10
|
Jansen-Winkeln B, Thieme R, Haase L, Niebisch S, Pommer C, Lyros O, Zimmer J, Lordick F, Remane Y, Frontini R, Gockel I. [Perioperative safety of intraperitoneal aerosol chemotherapy : Analysis of our first 111 pressurized intraperitoneal aerosol chemotherapy (PIPAC) procedures]. Chirurg 2019; 90:137-145. [PMID: 29947920 DOI: 10.1007/s00104-018-0667-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
BACKGROUND Pressurized intraperitoneal aerosol chemotherapy (PIPAC) is a new tool in the treatment of patients with peritoneal carcinomatosis. The aerosol containing chemotherapeutic drugs is administered laparoscopically into the abdominal cavity to achieve a local treatment effect. This can be carried out in combination with systemic chemotherapy. MATERIAL AND METHODS Within the framework of a register study, we prospectively documented and evaluated the data of our first 111 PIPAC procedures. The analysis focused on perioperative patient safety and safety at the workplace. Perioperative clinical patient data were analyzed and the platinum concentration in the operating room was checked by wipe samples. RESULTS A total of 62 patients were scheduled for PIPAC and 121 operations were carried out. In 9 procedures a secure access to the abdomen could not be found and 54 patients received 111 PIPAC treatments. One patient died as a result of intestinal perforation, six bowel lesions were treated immediately and healed without further complications. A further patient developed a postoperative renal failure. Otherwise, there was no major complications and no cases of toxicity. CONCLUSION The PIPAC procedure can be used as a supplement to systemic drug treatment for peritoneal carcinomatosis. An exact selection of suitable patients is important. The PIPAC is a low-risk procedure when performed under strict inclusion criteria and under standardized conditions, for the patients and also the surgical staff.
Collapse
Affiliation(s)
- B Jansen-Winkeln
- Klinik und Poliklinik für Viszeral‑, Transplantations‑, Thorax- und Gefäßchirurgie, Universitätsklinikum Leipzig, AöR, Liebigstr. 20, 04103, Leipzig, Deutschland.
| | - R Thieme
- Klinik und Poliklinik für Viszeral‑, Transplantations‑, Thorax- und Gefäßchirurgie, Universitätsklinikum Leipzig, AöR, Liebigstr. 20, 04103, Leipzig, Deutschland
| | - L Haase
- Klinik und Poliklinik für Viszeral‑, Transplantations‑, Thorax- und Gefäßchirurgie, Universitätsklinikum Leipzig, AöR, Liebigstr. 20, 04103, Leipzig, Deutschland
| | - S Niebisch
- Klinik und Poliklinik für Viszeral‑, Transplantations‑, Thorax- und Gefäßchirurgie, Universitätsklinikum Leipzig, AöR, Liebigstr. 20, 04103, Leipzig, Deutschland
| | - C Pommer
- Klinik und Poliklinik für Viszeral‑, Transplantations‑, Thorax- und Gefäßchirurgie, Universitätsklinikum Leipzig, AöR, Liebigstr. 20, 04103, Leipzig, Deutschland
| | - O Lyros
- Klinik und Poliklinik für Viszeral‑, Transplantations‑, Thorax- und Gefäßchirurgie, Universitätsklinikum Leipzig, AöR, Liebigstr. 20, 04103, Leipzig, Deutschland
| | - J Zimmer
- Apotheke, Universitätsklinikum Leipzig, AöR, Liebigstr. 20, 04103, Leipzig, Deutschland
| | - F Lordick
- Universitäres Krebszentrum Leipzig (UCCL), Universitätsklinikum Leipzig, AöR, Liebigstr. 20, 04103, Leipzig, Deutschland
| | - Y Remane
- Apotheke, Universitätsklinikum Leipzig, AöR, Liebigstr. 20, 04103, Leipzig, Deutschland
| | - R Frontini
- Apotheke, Universitätsklinikum Leipzig, AöR, Liebigstr. 20, 04103, Leipzig, Deutschland
| | - I Gockel
- Klinik und Poliklinik für Viszeral‑, Transplantations‑, Thorax- und Gefäßchirurgie, Universitätsklinikum Leipzig, AöR, Liebigstr. 20, 04103, Leipzig, Deutschland
| |
Collapse
|
11
|
Application of Needle Trap Device Based on the Carbon Aerogel for Trace Analysis of n-Hexane in Air Samples. Chromatographia 2019. [DOI: 10.1007/s10337-019-03779-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
12
|
Frigerio G, Mercadante R, Polledri E, Missineo P, Campo L, Fustinoni S. An LC-MS/MS method to profile urinary mercapturic acids, metabolites of electrophilic intermediates of occupational and environmental toxicants. J Chromatogr B Analyt Technol Biomed Life Sci 2019; 1117:66-76. [DOI: 10.1016/j.jchromb.2019.04.015] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Revised: 03/08/2019] [Accepted: 04/04/2019] [Indexed: 11/24/2022]
|
13
|
Biological Monitoring of the Oncology Healthcare Staff Exposed to Cyclophosphamide in Two Hospitals in Tehran. INTERNATIONAL JOURNAL OF CANCER MANAGEMENT 2019. [DOI: 10.5812/ijcm.86537] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
14
|
Feasibility of Biological Monitoring of Anatomy Laboratory Staff Exposed to Formaldehyde. HEALTH SCOPE 2018. [DOI: 10.5812/jhealthscope.62470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
15
|
KOH DH, LEE MY, CHUNG EK, JANG JK, PARK DU. Comparison of personal air benzene and urine t,t-muconic acid as a benzene exposure surrogate during turnaround maintenance in petrochemical plants. INDUSTRIAL HEALTH 2018; 56:346-355. [PMID: 29643270 PMCID: PMC6066433 DOI: 10.2486/indhealth.2017-0225] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2017] [Accepted: 04/09/2018] [Indexed: 05/26/2023]
Abstract
Previous studies have shown that biomarkers of chemicals with long half-lives may be better surrogates of exposure for epidemiological analyses, leading to less attenuation of the exposure-disease association, than personal air samples. However, chemicals with short half-lives have shown inconsistent results. In the present study, we compared pairs of personal air benzene and its short-half-life urinary metabolite trans,trans-muconic acid (t,t-MA), and predicted attenuation bias of theoretical exposure-disease association. Total 669 pairs of personal air benzene and urine t,t-MA samples were taken from 474 male workers during turnaround maintenance operations held in seven petrochemical plants. Maintenance jobs were classified into 13 groups. Variance components were calculated for personal air benzene and urine t,t-MA separately to estimate the attenuation of the theoretical exposure-disease association. Personal air benzene and urine t,t-MA showed similar attenuation of the theoretical exposure-disease association. Analyses for repeated measurements showed similar results, while in analyses for values above the limits of detection (LODs), urine t,t-MA showed less attenuation of the theoretical exposure-disease association than personal air benzene. Our findings suggest that there may be no significant difference in attenuation bias when personal air benzene or urine t,t-MA is used as a surrogate for benzene exposure.
Collapse
Affiliation(s)
- Dong-Hee KOH
- Department of Occupational and Environmental Medicine,
International St. Mary’s Hospital, Catholic Kwandong University, Korea
| | - Mi-Young LEE
- Occupational Safety and Health Research Institute, Korea
Occupational Safety and Health Agency, Korea
| | - Eun-Kyo CHUNG
- Occupational Safety and Health Research Institute, Korea
Occupational Safety and Health Agency, Korea
| | - Jae-Kil JANG
- Occupational Safety and Health Research Institute, Korea
Occupational Safety and Health Agency, Korea
| | - Dong-Uk PARK
- Department of Environmental Health, Korea National Open
University, Korea
| |
Collapse
|
16
|
Smolensky MH, Reinberg AE, Sackett-Lundeen L. Perspectives on the relevance of the circadian time structure to workplace threshold limit values and employee biological monitoring. Chronobiol Int 2017; 34:1439-1464. [PMID: 29215915 DOI: 10.1080/07420528.2017.1384740] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The circadian time structure (CTS) and its disruption by rotating and nightshift schedules relative to work performance, accident risk, and health/wellbeing have long been areas of occupational medicine research. Yet, there has been little exploration of the relevance of the CTS to setting short-term, time-weighted, and ceiling threshold limit values (TLVs); conducting employee biological monitoring (BM); and establishing normative reference biological exposure indices (BEIs). Numerous publications during the past six decades document the CTS substantially affects the disposition - absorption, distribution, metabolism, and elimination - and effects of medications. Additionally, laboratory animal and human studies verify the tolerance to chemical, biological (contagious), and physical agents can differ extensively according to the circadian time of exposure. Because of slow and usually incomplete CTS adjustment by rotating and permanent nightshift workers, occupational chemical and other contaminant encounters occur during a different circadian stage than for dayshift workers. Thus, the intended protection of some TLVs when working the nightshift compared to dayshift might be insufficient, especially in high-risk settings. The CTS is germane to employee BM in that large-amplitude predictable-in-time 24h variation can occur in the concentration of urine, blood, and saliva of monitored chemical contaminants and their metabolites plus biomarkers indicative of adverse xenobiotic exposure. The concept of biological time-qualified (for rhythms) reference values, currently of interest to clinical laboratory pathology practice, is seemingly applicable to industrial medicine as circadian time and workshift-specific BEIs to improve surveillance of night workers, in particular. Furthermore, BM as serial assessments performed frequently both during and off work, exemplified by employee self-measurement of lung function using a small portable peak expiratory flow meter, can easily identify intolerance before induction of pathology.
Collapse
Affiliation(s)
- Michael H Smolensky
- a Department of Biomedical Engineering , Cockrell School of Engineering, The University of Texas at Austin , Austin , TX , USA
| | - Alain E Reinberg
- b Unité de Chronobiologie , Fondation A. de Rothschild , Paris , France
| | - Linda Sackett-Lundeen
- c American Association for Medical Chronobiology and Chronotherapeutics , Roseville , MN , USA
| |
Collapse
|
17
|
Barkhordari A, Azari MR, Zendehdel R, Heidari M. Analysis of formaldehyde and acrolein in the aqueous samples using a novel needle trap device containing nanoporous silica aerogel sorbent. ENVIRONMENTAL MONITORING AND ASSESSMENT 2017; 189:171. [PMID: 28321678 DOI: 10.1007/s10661-017-5885-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2016] [Accepted: 03/07/2017] [Indexed: 06/06/2023]
Abstract
In this research, a needle trap device (NTD) packed with nanoporous silica aerogel as a sorbent was used as a new technique for sampling and analysis of formaldehyde and acrolein compounds in aqueous and urine samples. The obtained results were compared with those of the commercial sorbent Carboxen1000. Active sampling was used and a 21-G needle was applied for extraction of gas in the sample headspace. The optimization of experimental parameters like salt addition, temperature and desorption time was done and the performance of the NTD for the extraction of the compounds was evaluated. The optimum temperature and time of desorption were 280 °C and 2 min, respectively. The ranges of limit of detection, limit of quantification and relative standard deviation (RSD) were 0.01-0.03 μg L-1, 0.03-0.1 μg L-1 and 2.8-7.3%, respectively. It was found that the NTD containing nanoporous silica aerogel had a better performance. Thus, this technique can be applied as an effective and reliable method for sampling and analysis of aldehyde compounds from different biological matrices like urine, exhalation and so on.
Collapse
Affiliation(s)
- Abdullah Barkhordari
- Department of Occupational Health, School of Public Health, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mansour R Azari
- Safety Promotion and Injury Prevention Research Center and Department of Occupational Health, School of Public Health, Shahid Beheshti University of Medical Science, Tehran, Iran.
| | - Rezvan Zendehdel
- Department of Occupational Health, School of Public Health, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mahmoud Heidari
- Department of Occupational Health, School of Public Health, Guilan University of Medical Sciences, Rasht, Iran
| |
Collapse
|
18
|
Miller-Schulze JP, Paulsen M, Kameda T, Toriba A, Hayakawa K, Cassidy B, Naeher L, Villalobos MA, Simpson CD. Nitro-PAH exposures of occupationally-exposed traffic workers and associated urinary 1-nitropyrene metabolite concentrations. J Environ Sci (China) 2016; 49:213-221. [PMID: 28007177 DOI: 10.1016/j.jes.2016.06.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Revised: 05/10/2016] [Accepted: 06/01/2016] [Indexed: 06/06/2023]
Abstract
The assessment of occupational exposure to diesel exhaust (DE) is important from an epidemiological perspective. Urinary biomarkers of exposure have been proposed as a novel approach for measuring exposure to DE. In this study, we measured the concentrations of two urinary metabolites of 1-nitropyrene (1NP), a nitrated polycyclic aromatic hydrocarbon that has been suggested as a molecular marker of diesel particulate matter. These two metabolites, 6-hydroxy-1-nitropyrene and 8-hydroxy-1-nitropyrene, were determined in urine samples (10mL) from a small group of workers who were occupationally-exposed to vehicle exhaust in Trujillo, Peru, before and after their workshifts. Workshift exposures to 1NP, as well as PM2.5, 2-nitropyrene and 2-nitrofluoranthene, were also measured. Exposures to 1NP were similar in all studied workers, averaging 105±57.9pg/m3 (±standard deviation). Median urinary concentrations of the average of the pre- and post-exposure samples for 6-hydroxy-1-nitropyrene and 8-hydroxy-1-nitropyrene, were found to be 3.9 and 2.3pgmetabolite/mg creatinine, respectively in the group of occupationally-exposed subjects (n=17) studied. A direct relationship between workshift exposure to 1NP and urinary 1NP metabolites concentrations was not observed. However, the 1NP exposures and the creatinine-corrected urinary concentrations of the hydroxynitropyrene metabolites in these Peruvian traffic workers were similar to occupationally-exposed taxi drivers in Shenyang, China, and were higher than biomarker levels in office workers from Trujillo without occupational exposure to vehicle exhaust. This study provides further evidence that urinary metabolites of 1NP are associated with exposure to DE and may serve as a useful exposure biomarker.
Collapse
Affiliation(s)
| | - Michael Paulsen
- Department of Environmental and Occupational Health Sciences, University of Washington, WA 98195, Seattle, USA
| | - Takayuki Kameda
- Laboratory of Hygienic Chemistry, Institute of Medical, Pharmaceutical and Health Sciences, Faculty of Pharmacy, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa 920-1192, Japan
| | - Akira Toriba
- Laboratory of Hygienic Chemistry, Institute of Medical, Pharmaceutical and Health Sciences, Faculty of Pharmacy, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa 920-1192, Japan
| | - Kazuichi Hayakawa
- Graduate School of Natural Science and Technology, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa 920-1192, Japan
| | - Brandon Cassidy
- Department of Environmental Health Sciences, University of Georgia, Athens, GA 30602-2102, USA
| | - Luke Naeher
- Department of Environmental Health Sciences, University of Georgia, Athens, GA 30602-2102, USA
| | | | - Christopher D Simpson
- Graduate School of Natural Science and Technology, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa 920-1192, Japan; Department of Environmental and Occupational Health Sciences, University of Washington, WA 98195, Seattle, USA.
| |
Collapse
|
19
|
Mari M, Nadal M, Schuhmacher M, Barbería E, García F, Domingo JL. Human exposure to metals: levels in autopsy tissues of individuals living near a hazardous waste incinerator. Biol Trace Elem Res 2014; 159:15-21. [PMID: 24728924 DOI: 10.1007/s12011-014-9957-z] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2014] [Accepted: 03/25/2014] [Indexed: 10/25/2022]
Abstract
The concentrations of a number of metals were determined in the brain, bone, kidney, liver, and lung of 20 autopsied subjects who had lived, at least 10 years, in the neighborhood of a hazardous waste incinerator (HWI) in Tarragona (Catalonia, Spain). Results were compared with those obtained in 1998 (baseline survey) and previous surveys (2003 and 2007). Arsenic, Be, Ni, Tl, and V showed concentrations below the corresponding detection limits in all tissues. Cadmium showed the highest levels in the kidney, with a mean value of 21.15 μg/g. However, Cd was found below the detection limit in the brain and bone. Chromium showed similar concentrations in the kidney, brain, and lung (range of mean values, 0.57-0.66 μg/g) and higher in the bone (1.38 μg/g). In turn, Hg was below the detection limit in all tissues with the exception of the kidney, where the mean concentration was 0.15 μg/g (range, <0.05-0.58 μg/g). On the other hand, Mn could be detected in all tissues showing the highest levels in the liver and kidney (1.45 and 1.09 μg/g, respectively). Moreover, Pb showed the highest concentrations in bone (mean, 1.39 μg/g; range, <0.025-4.88 μg/g). Finally, Sn could be detected only in some tissue samples, reaching the highest values in the bone (0.17 μg/g). The current metal levels in human tissues from individuals living near the HWI of Tarragona are comparable and of a similar magnitude to previously reported results corresponding to general populations, as well as those of our previous surveys.
Collapse
Affiliation(s)
- Montse Mari
- Laboratory of Toxicology and Environmental Health, School of Medicine, IISPV, Universitat Rovira i Virgili, Sant Llorenç 21, 43201, Reus, Spain
| | | | | | | | | | | |
Collapse
|
20
|
Solass W, Giger-Pabst U, Zieren J, Reymond MA. Pressurized intraperitoneal aerosol chemotherapy (PIPAC): occupational health and safety aspects. Ann Surg Oncol 2013; 20:3504-11. [PMID: 23765417 PMCID: PMC3764316 DOI: 10.1245/s10434-013-3039-x] [Citation(s) in RCA: 111] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2013] [Indexed: 12/29/2022]
Abstract
Background Pressurized intraperitoneal aerosol chemotherapy (PIPAC) is a novel approach for treating peritoneal carcinomatosis. First encouraging results have been obtained in human patients. However, delivering chemotherapy as an aerosol might result in an increased risk of exposure to health care workers, as compared with other administration routes. Methods PIPAC was applied in two human patients using chemotherapeutic drugs (doxorubicin and cisplatin), and air contamination levels were measured under real clinical conditions. Air was collected on a cellulose nitrate filter with a flow of 22.5 m3/h. To exclude any risk for health care workers, both procedures were remote controlled. Toxicological research of cisplatin was performed according to NIOSH 7300 protocol. Sampling and analysis were performed by an independent certification organization. Results The following safety measures were implemented: closed abdomen, laminar airflow, controlled aerosol waste, and protection curtain. No cisplatin was detected in the air (detection limit < 0.000009 mg/m3) at the working positions of the surgeon and the anesthesiologist under real PIPAC conditions. Conclusions For the drugs tested, PIPAC is in compliance with European Community working safety law and regulations. Workplace contamination remains below the tolerance margin. The safety measures and conditions as defined above are sufficient. Further protecting devices, such as particulate (air purifying) masks, are not necessary. PIPAC can be used safely in the clinical setting if the conditions specified above are met. However, a toxicological workplace analysis must be performed to confirm that the procedure as implemented complies with local regulations.
Collapse
Affiliation(s)
- Wiebke Solass
- Department of Pathology, Ruhr University Bochum, Bochum, Germany
| | | | | | | |
Collapse
|