1
|
Sepulveda-Montaño LX, Galindo JF, Kuroda DG. A new computational methodology for the characterization of complex molecular environments using IR spectroscopy: bridging the gap between experiments and computations. Chem Sci 2024:d4sc03219e. [PMID: 39156932 PMCID: PMC11328912 DOI: 10.1039/d4sc03219e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 08/08/2024] [Indexed: 08/20/2024] Open
Abstract
The molecular interactions and dynamics of complex liquid solutions are now routinely measured using IR and 2DIR spectroscopy. In particular, the use of the latter allows the determination of the frequency fluctuation correlation function (FFCF), while the former provides us with the average frequency. In turn, the FFCF can be used to quantify the vibrational dynamics of a molecule in a solution, and the center frequency provides details about the chemical environment, solvatochromism, of the vibrational mode. In simple solutions, the IR methodology can be used to unambiguously assign the interactions and dynamics observed by a molecule in solution. However, in complex environments with molecular heterogeneities, this assignment is not simple. Therefore, a method that allows for such an assignment is essential. Here, a parametrization free method, called Instantaneous Frequencies of Molecules or IFM, is presented. The IFM method, when coupled to classical molecular simulations, can predict the FFCF of a molecule in solutions. Here, N-methylacetamide (NMA) in seven different chemical environments, both simple and complex, is used to test this new method. The results show good agreement with experiments for the NMA solvatochromism and FFCF dynamics, including characteristic times and amplitudes of fluctuations. In addition, the new method shows equivalent or improved results when compared to conventional frequency maps. Overall, the use of the new method in conjunction with molecular dynamics simulations allows unlocking the full potential of IR spectroscopy to generate molecular maps from vibrational observables, capable of describing the interaction landscape of complex molecular systems.
Collapse
Affiliation(s)
| | - Johan F Galindo
- Department of Chemistry, Universidad Nacional de Colombia Sede Bogotá Bogotá 111321 Colombia
| | - Daniel G Kuroda
- Department of Chemistry, Louisiana State University Baton Rouge Louisiana 70803 USA
| |
Collapse
|
2
|
Yao B, Alvarez VM, Paluch M, Fedor G, McLaughlin S, McGrogan A, Swadźba-Kwaśny M, Wojnarowska Z. Crystallization Kinetics of Phosphonium Ionic Liquids: Effect of Cation Alkyl Chain Length and Thermal History. J Phys Chem B 2024; 128:6610-6621. [PMID: 38924509 PMCID: PMC11247483 DOI: 10.1021/acs.jpcb.4c01720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 06/13/2024] [Accepted: 06/14/2024] [Indexed: 06/28/2024]
Abstract
The effects of alkyl chain length on the crystallization kinetics and ion mobility of tetraalkylphosphonium, [P666,n][TFSI], (n = 2, 6, 8, and 12) ionic liquids were studied by differential scanning calorimetry (DSC) and broadband dielectric spectroscopy (BDS) over a wide temperature range. The liquid-glass transition temperature (Tg) and ion dynamics examined over a broad T range were almost insensitive to structural modifications of the phosphonium cation. In contrast, the crystallization kinetics were strongly affected by the length of the fourth alkyl chain. Furthermore, the thermal history of the sample (cold vs melt crystallization) significantly impacted the crystallization rate. It has been found that the nature of crystallization phenomena is the same across the homologous series, while the kinetic aspect differs. Finally, electric conductivity in supercooled liquid and crystalline solid phases was measured for all samples, revealing significant ionic conductivity, largely independent of the cation structure.
Collapse
Affiliation(s)
- B. Yao
- Institute
of Physics, The University of Silesia in
Katowice, 75 Pułku Piechoty 1A, Chorzów 41-500, Poland
| | - V. Morales Alvarez
- Institute
of Physics, The University of Silesia in
Katowice, 75 Pułku Piechoty 1A, Chorzów 41-500, Poland
| | - M. Paluch
- Institute
of Physics, The University of Silesia in
Katowice, 75 Pułku Piechoty 1A, Chorzów 41-500, Poland
| | - G. Fedor
- The
QUILL Research Centre, School of Chemistry and Chemical Engineering, The Queen’s University of Belfast, David Keir Building, Stranmillis
Rd, Belfast, NI BT9 5AG, U.K.
| | - S. McLaughlin
- The
QUILL Research Centre, School of Chemistry and Chemical Engineering, The Queen’s University of Belfast, David Keir Building, Stranmillis
Rd, Belfast, NI BT9 5AG, U.K.
| | - A. McGrogan
- The
QUILL Research Centre, School of Chemistry and Chemical Engineering, The Queen’s University of Belfast, David Keir Building, Stranmillis
Rd, Belfast, NI BT9 5AG, U.K.
| | - M. Swadźba-Kwaśny
- The
QUILL Research Centre, School of Chemistry and Chemical Engineering, The Queen’s University of Belfast, David Keir Building, Stranmillis
Rd, Belfast, NI BT9 5AG, U.K.
| | - Z. Wojnarowska
- Institute
of Physics, The University of Silesia in
Katowice, 75 Pułku Piechoty 1A, Chorzów 41-500, Poland
| |
Collapse
|
3
|
Pontoni D, DiMichiel M, Murphy BM, Honkimäki V, Deutsch M. Ordering of ionic liquids at a charged sapphire interface: Evolution with cationic chain length. J Colloid Interface Sci 2024; 661:33-45. [PMID: 38295701 DOI: 10.1016/j.jcis.2024.01.126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 01/09/2024] [Accepted: 01/18/2024] [Indexed: 02/27/2024]
Abstract
HYPOTHESIS Room Temperature Ionic Liquids (RTILs) bulk's molecular layering dominates their structure also at the RTIL/sapphire interface, increasing the layer spacing with the cationic alkyl chain length n. However, the negatively-charged sapphire surface compresses the layers, increases the layering range, and affects the intra-layer structure in yet unknown ways. EXPERIMENTS X-ray reflectivity (XR) off the RTIL/sapphire interface, for a broad homologous RTIL series 1-alkyl-3-methylimidazolium bis(trifluoromethansulfonyl)imide, hitherto unavailable for any RTIL. FINDINGS RTIL layers against the sapphire, exhibit two spacings: da and db. da is n-varying, follows the behavior of the bulk spacing but exhibits a downshift, thus showing significant layer compression, and over twofold polar slab thinning. The latter suggests exclusion of anions from the interfacial region due to the negative sapphire charging by x-ray-released electrons. The layering range is larger than the bulk's. db is short and near n-independent, suggesting polar moieties' layering, the coexistence mode of which with the da-spaced layering is unclear. Comparing the present layering with the bulk's and the RTIL/air interface's provides insight into the Coulomb and dispersion interaction balance dominating the RTIL's structure and the impact thereon of the presence of a charged solid interface.
Collapse
Affiliation(s)
- Diego Pontoni
- ESRF - The European Synchrotron, 71 Avenue des Martyrs, 38043 Grenoble, France
| | - Marco DiMichiel
- ESRF - The European Synchrotron, 71 Avenue des Martyrs, 38043 Grenoble, France
| | - Bridget M Murphy
- Institute of Experimental and Applied Physics, Kiel University, Kiel D-24098, Germany; Ruprecht-Haensel Laboratory, Kiel University, Kiel D-24118, Germany
| | - Veijo Honkimäki
- ESRF - The European Synchrotron, 71 Avenue des Martyrs, 38043 Grenoble, France
| | - Moshe Deutsch
- Physics Dept. & Institute of Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat Gan, Israel.
| |
Collapse
|
4
|
Wong LN, Brunner M, Imberti S, Warr GG, Atkin R. Bulk Nanostructure of Mixtures of Choline Arginate, Choline Lysinate, and Water. J Phys Chem B 2024. [PMID: 38691762 DOI: 10.1021/acs.jpcb.4c01482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2024]
Abstract
Neutron diffraction with empirical potential structure refinement was used to investigate the bulk liquid nanostructure of mixtures of choline arginate (Ch[Arg]), choline lysinate (Ch[Lys]), and water at mole ratios of 1Ch[Arg]:1Ch[Lys]:6H2O (balanced), 1Ch[Arg]:1Ch[Lys]:20H2O (balanced dilute), 3Ch[Arg]:1Ch[Lys]:12H2O (Arg- rich), and 1Ch[Arg]:3Ch[Lys]:12H2O (Lys- rich). The Arg- and Lys- anions tend not to associate due to electrostatic repulsion between charge groups and weak anion-anion attractions. This means that the local ion structures around the anions in these mixtures resemble the parent single-component systems. The bulk liquid nanostructure varies with the Arg-:Lys- ratio. In the Lys--rich mixture (1Ch[Arg]:3Ch[Lys]:12H2O), Lys- side chains cluster into a continuous apolar domain separated from a charged domain of polar groups. In the balanced mixture (1Ch[Arg]:1Ch[Lys]:6H2O), Lys- side chains form discrete apolar aggregates within a continuous polar domain of Arg-, Ch+, and water, and in the Arg--rich mixture (3Ch[Arg]:1Ch[Lys]:12H2O), the distribution of Lys- and Arg- is nearly homogeneous. Finally, in the balance dilute system (1Ch[Arg]:1Ch[Lys]:20H2O), a percolating water domain forms.
Collapse
Affiliation(s)
- Lucas N Wong
- School of Molecular Sciences, The University of Western Australia, Crawley, WA 6009, Australia
| | - Manuel Brunner
- School of Molecular Sciences, The University of Western Australia, Crawley, WA 6009, Australia
| | - Silvia Imberti
- UKRI, STFC, ISIS Neutron and Muon Source, Rutherford Appleton Laboratory, Didcot OX11 0QX, United Kingdom
| | - Gregory G Warr
- School of Chemistry and University of Sydney Nano Institute, The University of Sydney, Sydney, NSW 2006, Australia
| | - Rob Atkin
- School of Molecular Sciences, The University of Western Australia, Crawley, WA 6009, Australia
| |
Collapse
|
5
|
Shimizu K, de Freitas AA, Allred JT, Burba CM. A Computational and Spectroscopic Analysis of Solvate Ionic Liquids Containing Anions with Long and Short Perfluorinated Alkyl Chains. Molecules 2024; 29:2071. [PMID: 38731564 PMCID: PMC11085471 DOI: 10.3390/molecules29092071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 04/22/2024] [Accepted: 04/25/2024] [Indexed: 05/13/2024] Open
Abstract
Anion-driven, nanoscale polar-apolar structural organization is investigated in a solvate ionic liquid (SIL) setting by comparing sulfonate-based anions with long and short perfluorinated alkyl chains. Representative SILs are created from 1,2-bis(2-methoxyethoxy)ethane ("triglyme" or "G3"), lithium nonafluoro-1-butanesulfonate, and lithium trifluoromethanesulfonate. Molecular dynamics simulations, density functional theory computations, and vibrational spectroscopy provide insight into the overall liquid structure, cation-solvent interactions, and cation-anion association. Significant competition between G3 and anions for cation-binding sites characterizes the G3-LiC4F9SO3 mixtures. Only 50% of coordinating G3 molecules form tetradentate complexes with Li+ in [(G3)1Li][C4F9SO3]. Moreover, the SIL is characterized by extensive amounts of ion pairing. Based on these observations, [(G3)1Li][C4F9SO3] is classified as a "poor" SIL, similar to the analogous [(G3)1Li][CF3SO3] system. Even though the comparable basicity of the CF3SO3- and C4F9SO3- anions leads to similar SIL classifications, the hydrophobic fluorobutyl groups support extensive apolar domain formation. These apolar moieties permeate throughout [(G3)1Li][C4F9SO3] and persist even at relatively low dilution ratios of [(G3)10Li][C4F9SO3]. By way of comparison, the CF3 group is far too short to sustain polar-apolar segregation. This demonstrates how chemically modifying the anions to include hydrophobic groups can impart unique nanoscale organization to a SIL. Moreover, tuning these nano-segregated fluorinated domains could, in principle, control the presence of dimensionally ordered states in these mixtures without changing the coordination of the lithium ions.
Collapse
Affiliation(s)
- Karina Shimizu
- Centro de Química Estrutural, Institute of Molecular Sciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal;
| | - Adilson Alves de Freitas
- Centro de Química Estrutural, Institute of Molecular Sciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal;
| | - Jacob T. Allred
- Department of Natural Sciences, Northeastern State University, 611 N Grand Ave., Tahlequah, OK 74464, USA;
| | - Christopher M. Burba
- Department of Natural Sciences, Northeastern State University, 611 N Grand Ave., Tahlequah, OK 74464, USA;
| |
Collapse
|
6
|
Kahlon NK, Matthewman EL, El Mohamad M, Greaves TL, Weber CC. Small-Angle X-ray Scattering Study of the Amphiphilic Bulk Nanostructure of Tetraalkylammonium Deep Eutectic Solvents. J Phys Chem B 2024. [PMID: 38662201 DOI: 10.1021/acs.jpcb.4c00943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
Deep eutectic solvents (DESs) are low-melting mixtures, often prepared from a salt and a molecular hydrogen bond donor. Like ionic liquids, DESs that contain at least one sufficiently amphiphilic component can form bicontinuous nanostructures consisting of polar and nonpolar domains, although this has not been widely explored for many DES combinations. Here, the bulk nanostructures of DESs comprising tetraalkylammonium bromide salts (tetrabutylammonium bromide, tetraoctylammonium bromide, and methyltrioctylammonium bromide) with alkanols and alkanoic acids of systematically varied chain lengths (C2, C6, C8, and C10) as hydrogen bond donors have been studied. Small-angle X-ray scattering techniques were used to identify the relationship between the alkyl chain length and functionality of the hydrogen bond donor on the nature of the amphiphilic nanostructures formed. These findings demonstrated that the amphiphilic nanostructures of the DESs were not affected by the functional group on the hydrogen bond donor, with these nanostructures influenced primarily by both the absolute and relative alkyl chain lengths of the salt and hydrogen bond donor.
Collapse
Affiliation(s)
- Navjot K Kahlon
- School of Chemical Sciences, The University of Auckland, Auckland 1010, New Zealand
- MacDiarmid Institute for Advanced Materials and Nanotechnology, Wellington 6140, New Zealand
| | - Emma L Matthewman
- School of Chemical Sciences, The University of Auckland, Auckland 1010, New Zealand
- MacDiarmid Institute for Advanced Materials and Nanotechnology, Wellington 6140, New Zealand
| | | | | | - Cameron C Weber
- School of Chemical Sciences, The University of Auckland, Auckland 1010, New Zealand
- MacDiarmid Institute for Advanced Materials and Nanotechnology, Wellington 6140, New Zealand
| |
Collapse
|
7
|
McGrogan A, Lafferty J, O’Neill L, Brown L, Young JM, Goodrich P, Muldoon MJ, Moura L, Youngs S, Hughes TL, Gärtner S, Youngs TGA, Holbrey JD, Swadźba-Kwaśny M. Liquid Structure of Ionic Liquids with [NTf 2] - Anions, Derived from Neutron Scattering. J Phys Chem B 2024; 128:3220-3235. [PMID: 38520396 PMCID: PMC11000221 DOI: 10.1021/acs.jpcb.3c08069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 02/28/2024] [Accepted: 03/12/2024] [Indexed: 03/25/2024]
Abstract
The liquid structure of three common ionic liquids (ILs) was investigated by neutron scattering for the first time. The ILs were based on the bis(trifluoromethanesulfonyl)imide anion, abbreviated in the literature as [NTf2]- or [TFSI]-, and on the following cations: 1-ethyl-3-methylimidazolium, [C2mim]+; 1-decyl-3-methylimidazolium, [C10mim]+; and trihexyl(tetradecyl)phosphonium, [P666,14]+. Comparative analysis of the three ILs confirmed increased size of nonpolar nanodomains with increasing bulk of alkyl chains. It also sheds light on the cation-anion interactions, providing experimental insight into strength, directionality, and angle of hydrogen bonds between protons on the imidazolium ring, as well as H-C-P protons in [P666,14]+, to oxygen and nitrogen atoms in the [NTf2]-. The new Dissolve data analysis package enabled, for the first time, the analysis of neutron scattering data of ILs with long alkyl chains, in particular, of [P666,14][NTf2]. Results generated with Dissolve were validated by comparing outputs from three different models, starting from three different sets of cation charges, for each of the three ILs, which gave convergent outcomes. Finally, a modified method for the synthesis of perdeuterated [P666,14][NTf2] has been reported, with the aim of reporting a complete set of synthetic and data processing approaches, laying robust foundations that enable the study of the phosphonium ILs family by neutron scattering.
Collapse
Affiliation(s)
- Anne McGrogan
- QUILL
Research Centre, Queen’s University Belfast, School of Chemistry and Chemical Engineering, David Keir Building, 39-123 Stranmillis Road, Belfast BT9 5AG, Belfast, U.K.
| | - Jack Lafferty
- QUILL
Research Centre, Queen’s University Belfast, School of Chemistry and Chemical Engineering, David Keir Building, 39-123 Stranmillis Road, Belfast BT9 5AG, Belfast, U.K.
| | - Lauren O’Neill
- QUILL
Research Centre, Queen’s University Belfast, School of Chemistry and Chemical Engineering, David Keir Building, 39-123 Stranmillis Road, Belfast BT9 5AG, Belfast, U.K.
| | - Lucy Brown
- QUILL
Research Centre, Queen’s University Belfast, School of Chemistry and Chemical Engineering, David Keir Building, 39-123 Stranmillis Road, Belfast BT9 5AG, Belfast, U.K.
| | - J. Mark. Young
- QUILL
Research Centre, Queen’s University Belfast, School of Chemistry and Chemical Engineering, David Keir Building, 39-123 Stranmillis Road, Belfast BT9 5AG, Belfast, U.K.
| | - Peter Goodrich
- QUILL
Research Centre, Queen’s University Belfast, School of Chemistry and Chemical Engineering, David Keir Building, 39-123 Stranmillis Road, Belfast BT9 5AG, Belfast, U.K.
| | - Mark J. Muldoon
- QUILL
Research Centre, Queen’s University Belfast, School of Chemistry and Chemical Engineering, David Keir Building, 39-123 Stranmillis Road, Belfast BT9 5AG, Belfast, U.K.
| | - Leila Moura
- QUILL
Research Centre, Queen’s University Belfast, School of Chemistry and Chemical Engineering, David Keir Building, 39-123 Stranmillis Road, Belfast BT9 5AG, Belfast, U.K.
| | - Sarah Youngs
- Rutherford
Appleton Laboratory, Chilton, Didcot OX11 0QX, U.K.
| | | | - Sabrina Gärtner
- Rutherford
Appleton Laboratory, Chilton, Didcot OX11 0QX, U.K.
| | | | - John D. Holbrey
- QUILL
Research Centre, Queen’s University Belfast, School of Chemistry and Chemical Engineering, David Keir Building, 39-123 Stranmillis Road, Belfast BT9 5AG, Belfast, U.K.
| | - Małgorzata Swadźba-Kwaśny
- QUILL
Research Centre, Queen’s University Belfast, School of Chemistry and Chemical Engineering, David Keir Building, 39-123 Stranmillis Road, Belfast BT9 5AG, Belfast, U.K.
| |
Collapse
|
8
|
Goloviznina K, Bakis E, Philippi F, Scaglione N, Rekis T, Laimina L, Costa Gomes M, Padua A. Attraction between Like Charged Ions in Ionic Liquids: Unveiling the Enigma of Tetracyanoborate Anions. J Phys Chem Lett 2024; 15:248-253. [PMID: 38165169 DOI: 10.1021/acs.jpclett.3c02983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
Intermolecular interactions in ionic liquids are mainly governed by Coulombic forces. Attraction between cations has been previously observed and was attributed to dispersion interactions between nonpolar moieties, hydrogen bonding, or π stacking. In this study, we present the intriguing behavior of tetracyanoborate anions in ionic liquids that, unlike their dicyanamide and tricyanomethanide counterparts, form dimers in both solid and liquid phases. A joint simulation and experimental study uncovers the origin of such anion-anion attraction: stabilization by induction and dispersion forces between several cyano groups, which is strong enough to overcome electrostatic repulsion. These findings open up new opportunities in the rational design of ionic liquids, where interactions between ions of the same charge can be controlled and fine-tuned by the presence of cyano groups.
Collapse
Affiliation(s)
- Kateryna Goloviznina
- Physicochimie des Électrolytes et Nanosystèmes Interfaciaux (PHENIX), Sorbonne Université and CNRS, F-75005 Paris, France
| | - Eduards Bakis
- Faculty of Chemistry, University of Latvia, Jelgavas 1, Riga LV-1001, Latvia
| | - Frederik Philippi
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, White City Campus, London W12 0BZ, United Kingdom
| | - Nicolas Scaglione
- Laboratoire de Chimie, Ecole Normale Superieure de Lyon and CNRS, F-69364 Lyon, France
| | - Toms Rekis
- Faculty of Chemistry, University of Latvia, Jelgavas 1, Riga LV-1001, Latvia
| | - Laura Laimina
- Faculty of Chemistry, University of Latvia, Jelgavas 1, Riga LV-1001, Latvia
| | - Margarida Costa Gomes
- Laboratoire de Chimie, Ecole Normale Superieure de Lyon and CNRS, F-69364 Lyon, France
| | - Agilio Padua
- Laboratoire de Chimie, Ecole Normale Superieure de Lyon and CNRS, F-69364 Lyon, France
| |
Collapse
|
9
|
Borah B, Acharya GR, Grajeda D, Emerson MS, Harris MA, Milinda Abeykoon AM, Sangoro J, Baker GA, Nieuwkoop AJ, Margulis CJ. Do Ionic Liquids Slow Down in Stages? J Am Chem Soc 2023; 145:25518-25522. [PMID: 37963184 PMCID: PMC10691361 DOI: 10.1021/jacs.3c08639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 11/01/2023] [Accepted: 11/02/2023] [Indexed: 11/16/2023]
Abstract
High impact recent articles have reported on the existence of a liquid-liquid (L-L) phase transition as a function of both pressure and temperature in ionic liquids (ILs) containing the popular trihexyltetradecylphosphonium cation (P666,14+), sometimes referred to as the "universal liquifier". The work presented here reports on the structural-dynamic pathway from liquid to glass of the most well-studied IL comprising the P666,14+ cation. We present experimental and computational evidence that, on cooling, the path from the room-temperature liquid to the glass state is one of separate structural-dynamic changes. The first stage involves the slowdown of the charge network, while the apolar subcomponent is fully mobile. A second, separate stage entails the slowdown of the apolar domain. Whereas it is possible that these processes may be related to the liquid-liquid and glass transitions, more research is needed to establish this conclusively.
Collapse
Affiliation(s)
- Bichitra Borah
- Department
of Chemistry, The University of Iowa, Iowa City, Iowa 52242, United States
| | - Gobin Raj Acharya
- Department
of Chemistry and Chemical Biology, Rutgers
University, Piscataway, New Jersey 08854, United States
| | - Diana Grajeda
- Department
of Chemistry and Chemical Biology, Rutgers
University, Piscataway, New Jersey 08854, United States
| | - Matthew S. Emerson
- Department
of Chemistry, The University of Iowa, Iowa City, Iowa 52242, United States
| | - Matthew A. Harris
- Department
of Chemical and Biomolecular Engineering, University of Tennessee, Knoxville, Tennessee 37996, United States
| | - AM Milinda Abeykoon
- National
Synchrotron Light Source II, Brookhaven
National Laboratory, Upton, New York 11973, United States
| | - Joshua Sangoro
- Department
of Chemical and Biomolecular Engineering, University of Tennessee, Knoxville, Tennessee 37996, United States
- Department
of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, Ohio 43210, United States
| | - Gary A. Baker
- Department
of Chemistry, University of Missouri, Columbia, Missouri 65211, United States
| | - Andrew J. Nieuwkoop
- Department
of Chemistry and Chemical Biology, Rutgers
University, Piscataway, New Jersey 08854, United States
| | - Claudio J. Margulis
- Department
of Chemistry, The University of Iowa, Iowa City, Iowa 52242, United States
| |
Collapse
|
10
|
Manasi I, Schweins R, Ma K, Edler KJ. Nanostructure in Amphiphile-Based Deep Eutectic Solvents. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:16776-16784. [PMID: 37965899 PMCID: PMC10688184 DOI: 10.1021/acs.langmuir.3c02105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 11/01/2023] [Accepted: 11/02/2023] [Indexed: 11/16/2023]
Abstract
Deep eutectic solvents (DESs) are an emerging class of modern, often "green" solvents with unique properties. Recently, a deep eutectic system based on amphiphilic surfactant N-alkyl-N,N-dimethyl-3-ammonio-1-propanesulfonate (C12 & C14 sulfobetaine) and (1S)-(+)-10-camphor-sulfonic acid in the molar ratio 1:1.5 has been reported. Nanostructuring can be expected in this DES due to the nature of the components. In this work, we have investigated the native nanostructure in the DES comprising C12-C18 alkyl chain sulfobetaines with camphor sulfonic acid and how it interacts with polar and nonpolar species, water and dodecane, respectively, using small angle neutron scattering. By using contrast variation to highlight the relative position of the solvent components and additives, we can resolve the structure of the solvent and how it changes upon interaction with water and dodecane. Scattering from the neat DES shows structures corresponding to the self-assembly of sulfobetaines; the size of the structure increases as the alkyl chain length of the sulfobetaines increases. Water and dodecane interact, respectively, with the hydrophilic and hydrophobic moieties in the DES structure, primarily the sulfobetaine, thereby swelling and solvating the entire structure. The extent of the shift of the peak position, and the swelling, depend on concentration of the additive. The solution phase organization and the interaction of polar and nonpolar species as observed here, have the potential to affect the ordering of inorganic or polymeric materials grown in such solvents, paving new avenues for templating applications.
Collapse
Affiliation(s)
- Iva Manasi
- Department
of Chemistry, University of Bath, Claverton Down, Bath BA2 7AX, U.K.
| | - Ralf Schweins
- Institut
Laue-Langevin, CS 20156, Grenoble Cedex 9 38042, France
| | - Kun Ma
- ISIS
Neutron and Muon Source, STFC, Rutherford
Appleton Laboratory, Didcot OX11 0QX, U.K.
| | - Karen J. Edler
- Department
of Chemistry, University of Bath, Claverton Down, Bath BA2 7AX, U.K.
- Department
of Chemistry, Centre for Analysis and Synthesis (CAS), Lund University, Lund 221 00, Sweden
| |
Collapse
|
11
|
Hammond OS, Bousrez G, Mehler F, Li S, Shimpi MR, Doutch J, Cavalcanti L, Glavatskih S, Antzutkin ON, Rutland MW, Mudring A. Molecular Architecture Effects on Bulk Nanostructure in Bis(Orthoborate) Ionic Liquids. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2300912. [PMID: 37395635 PMCID: PMC11497287 DOI: 10.1002/smll.202300912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 04/11/2023] [Indexed: 07/04/2023]
Abstract
A series of 19 ionic liquids (ILs) based on phosphonium and imidazolium cations of varying alkyl-chain lengths with the orthoborate anions bis(oxalato)borate [BOB]- , bis(mandelato)borate, [BMB]- and bis(salicylato)borate, [BScB]- , are synthesized and studied using small-angle neutron scattering (SANS). All measured systems display nanostructuring, with 1-methyl-3-n-alkyl imidazolium-orthoborates forming clearly bicontinuous L3 spongelike phases when the alkyl chains are longer than C6 (hexyl). L3 phases are fitted using the Teubner and Strey model, and diffusely-nanostructured systems are primarily fitted using the Ornstein-Zernicke correlation length model. Strongly-nanostructured systems have a strong dependence on the cation, with molecular architecture variation explored to determine the driving forces for self-assembly. The ability to form well-defined complex phases is effectively extinguished in several ways: methylation of the most acidic imidazolium ring proton, replacing the imidazolium 3-methyl group with a longer hydrocarbon chain, substitution of [BOB]- by [BMB]- , or exchanging the imidazolium for phosphonium systems, irrespective of phosphonium architecture. The results suggest there is only a small window of opportunity, in terms of molecular amphiphilicity and cation:anion volume matching, for the formation of stable extensive bicontinuous domains in pure bulk orthoborate-based ILs. Particularly important for self-assembly processes appear to be the ability to form H-bonding networks, which offer additional versatility in imidazolium systems.
Collapse
Affiliation(s)
- Oliver S. Hammond
- Department of Materials and Environmental ChemistryStockholm UniversityStockholmSE‐114 18Sweden
- Department of Biological and Chemical Engineering and iNANOAarhus UniversityAarhus C8000Denmark
| | - Guillaume Bousrez
- Department of Materials and Environmental ChemistryStockholm UniversityStockholmSE‐114 18Sweden
- Department of Biological and Chemical Engineering and iNANOAarhus UniversityAarhus C8000Denmark
| | - Filip Mehler
- Division of Surface and Corrosion ScienceSchool of Engineering Sciences in Chemistry, Biotechnology and HealthKTH Royal Institute of TechnologyStockholmSE-100 40Sweden
| | - Sichao Li
- Division of Surface and Corrosion ScienceSchool of Engineering Sciences in Chemistry, Biotechnology and HealthKTH Royal Institute of TechnologyStockholmSE-100 40Sweden
| | - Manishkumar R. Shimpi
- Department of Materials and Environmental ChemistryStockholm UniversityStockholmSE‐114 18Sweden
- Chemistry of InterfacesLuleå University of TechnologyLuleåSE‐971 87Sweden
| | - James Doutch
- ISIS Neutron & Muon Source, Science and Technology Facilities CouncilRutherford Appleton LaboratoryHarwell‐OxfordOX11 0QXUK
| | - Leide Cavalcanti
- ISIS Neutron & Muon Source, Science and Technology Facilities CouncilRutherford Appleton LaboratoryHarwell‐OxfordOX11 0QXUK
| | - Sergei Glavatskih
- Department of Engineering DesignKTH Royal Institute of TechnologyStockholmSE‐10044Sweden
- School of ChemistryUniversity of New South WalesSydney2052Australia
- Department of Electromechanical, Systems and Metal EngineeringGhent UniversityGhentB‐9052Belgium
| | - Oleg N. Antzutkin
- Chemistry of InterfacesLuleå University of TechnologyLuleåSE‐971 87Sweden
| | - Mark W. Rutland
- Division of Surface and Corrosion ScienceSchool of Engineering Sciences in Chemistry, Biotechnology and HealthKTH Royal Institute of TechnologyStockholmSE-100 40Sweden
- School of ChemistryUniversity of New South WalesSydney2052Australia
- Bioeconomy and Health Department Materials and Surface DesignRISE Research Institutes of SwedenStockholmSE-114 86Sweden
- Laboratoire de Tribologie et Dynamique des SystèmesÉcole Centrale de LyonLyon69130France
| | - Anja‐Verena Mudring
- Department of Materials and Environmental ChemistryStockholm UniversityStockholmSE‐114 18Sweden
- Department of Biological and Chemical Engineering and iNANOAarhus UniversityAarhus C8000Denmark
| |
Collapse
|
12
|
Yao B, Paluch M, Paturej J, McLaughlin S, McGrogan A, Swadzba-Kwasny M, Shen J, Ruta B, Rosenthal M, Liu J, Kruk D, Wojnarowska Z. Self-Assembled Nanostructures in Aprotic Ionic Liquids Facilitate Charge Transport at Elevated Pressure. ACS APPLIED MATERIALS & INTERFACES 2023; 15:39417-39425. [PMID: 37555825 PMCID: PMC10450691 DOI: 10.1021/acsami.3c08606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 08/01/2023] [Indexed: 08/10/2023]
Abstract
Ionic liquids (ILs), revealing a tendency to form self-assembled nanostructures, have emerged as promising materials in various applications, especially in energy storage and conversion. Despite multiple reports discussing the effect of structural factors and external thermodynamic variables on ion organization in a liquid state, little is known about the charge-transport mechanism through the self-assembled nanostructures and how it changes at elevated pressure. To address these issues, we chose three amphiphilic ionic liquids containing the same tetra(alkyl)phosphonium cation and anions differing in size and shape, i.e., thiocyanate [SCN]-, dicyanamide [DCA]-, and tricyanomethanide [TCM]-. From ambient pressure dielectric and mechanical experiments, we found that charge transport of all three examined ILs is viscosity-controlled at high temperatures. On the other hand, ion diffusion is much faster than structural dynamics in a nanostructured supercooled liquid (at T < 210 ± 3 K), which constitutes the first example of conductivity independent from viscosity in neat aprotic ILs. High-pressure measurements and MD simulations reveal that the created nanostructures depend on the anion size and can be modified by compression. For small anions, increasing pressure shapes immobile alkyl chains into lamellar-type phases, leading to increased anisotropic diffusivity of anions through channels. Bulky anions drive the formation of interconnected phases with continuous 3D curvature, which render ion transport independent of pressure. This work offers insight into the design of high-density electrolytes with percolating conductive phases providing efficient ion flow.
Collapse
Affiliation(s)
- Beibei Yao
- Faculty
of Science and Technology, Institute of Physics, University of Silesia in Katowice, 75 Pułku Piechoty 1A, 41-500 Chorzów, Poland
| | - Marian Paluch
- Faculty
of Science and Technology, Institute of Physics, University of Silesia in Katowice, 75 Pułku Piechoty 1A, 41-500 Chorzów, Poland
| | - Jaroslaw Paturej
- Faculty
of Science and Technology, Institute of Physics, University of Silesia in Katowice, 75 Pułku Piechoty 1A, 41-500 Chorzów, Poland
| | - Shannon McLaughlin
- The
QUILL Research Centre, School of Chemistry and Chemical Engineering, The Queen’s University of Belfast, David Keir Building, Stranmillis
Road, BT9 5AG Belfast, NI, U.K.
| | - Anne McGrogan
- The
QUILL Research Centre, School of Chemistry and Chemical Engineering, The Queen’s University of Belfast, David Keir Building, Stranmillis
Road, BT9 5AG Belfast, NI, U.K.
| | - Malgorzata Swadzba-Kwasny
- The
QUILL Research Centre, School of Chemistry and Chemical Engineering, The Queen’s University of Belfast, David Keir Building, Stranmillis
Road, BT9 5AG Belfast, NI, U.K.
| | - Jie Shen
- Institut
Neel, 38000 Grenoble, France
- ESRF—The
European Synchrotron, CS 40220, 38043 Grenoble, France
| | - Beatrice Ruta
- Institut
Neel, 38000 Grenoble, France
- ESRF—The
European Synchrotron, CS 40220, 38043 Grenoble, France
| | - Martin Rosenthal
- Department
of Chemistry, KU Leuven, Celestijnenlaan 200F, Box 2404, B-3001 Leuven, Belgium
- Dual
Belgian
Beamline (DUBBLE), European Synchrotron
Radiation Facility, 71 Avenue des Martyrs, CS 40220, 38043 Grenoble Cedex 9, France
| | - Jiliang Liu
- ESRF—The
European Synchrotron, CS 40220, 38043 Grenoble, France
| | - Danuta Kruk
- Faculty
of Mathematics and Computer Science, University
of Warmia and Mazury in Olsztyn, Sloneczna 54, Olsztyn PL-10710, Poland
| | - Zaneta Wojnarowska
- Faculty
of Science and Technology, Institute of Physics, University of Silesia in Katowice, 75 Pułku Piechoty 1A, 41-500 Chorzów, Poland
| |
Collapse
|
13
|
Lovrinčević B, Požar M, Jukić I, Perera A. Role of Charge Ordering in the Dynamics of Cluster Formation in Associated Liquids. J Phys Chem B 2023. [PMID: 37336720 DOI: 10.1021/acs.jpcb.3c01077] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/21/2023]
Abstract
Liquids are archetypes of disordered systems, yet liquids of polar molecules are locally more ordered than nonpolar molecules, due to the Coulomb interaction based charge ordering phenomenon. Hydrogen bonded liquids, such as water or alcohols, for example, represent a special type of polar liquids, in that they form labile clustered local structures. For water, in particular, hydrogen bonding and the related local tetrahedrality, play an important role in the various attempts to understand this liquid. However, labile structures imply dynamics, and it is not clear how it affects the understanding of this type of liquids from purely static point of view. Herein, we propose to reconsider hydrogen bonding as a charge ordering process. This concept allows us to demonstrate the insufficiency of the analysis of the microscopic structure based solely on static pair correlation functions, and the need for dynamical correlation functions, both in real and reciprocal space. The subsequent analysis allows to recover several aspects of our understanding of hydrogen bonded liquids, but from the charge order perspective. For water, it confirms the jump rotation picture found recently, and it allows to rationalize the contradicting pictures that arise when following the interpretations based on hydrogen bonding. For alcohols, it allows to understand the dynamical origin of the scattering prepeak, which does not exist for water, despite the fact that both these liquids have very similar hydroxyl group chain clusters. The concept of charge ordering complemented by the analysis of dynamical correlation functions appear as a promising way to understand microheterogeneity in complex liquids and mixtures from kinetics point of view.
Collapse
Affiliation(s)
- Bernarda Lovrinčević
- Faculty of Science, University of Split, Rudjera Boškovića 33, 21000 Split, Croatia
| | - Martina Požar
- Faculty of Science, University of Split, Rudjera Boškovića 33, 21000 Split, Croatia
| | - Ivo Jukić
- Faculty of Science, University of Split, Rudjera Boškovića 33, 21000 Split, Croatia
- Laboratoire de Physique Théorique de la Matiére Condensée (UMR CNRS 7600), Sorbonne Université, 4 Place Jussieu, Paris CEDEX 05 F75252, France
| | - Aurélien Perera
- Laboratoire de Physique Théorique de la Matiére Condensée (UMR CNRS 7600), Sorbonne Université, 4 Place Jussieu, Paris CEDEX 05 F75252, France
| |
Collapse
|
14
|
Hossain MI, Adhikari L, Baker GA, Blanchard GJ. Relating the Induced Free Charge Density Gradient in a Room-Temperature Ionic Liquid to Molecular-Scale Organization. J Phys Chem B 2023; 127:1780-1788. [PMID: 36790441 DOI: 10.1021/acs.jpcb.2c07745] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Abstract
We report on dilution-dependent changes in the local environments of chromophores incorporated into room-temperature ionic liquid (RTIL)-molecular solvent binary systems where the ionic liquid cation and molecular solvent possess the same alkyl chain length. We have used the RTIL 1-decyl-1-methylpyrrolidinium bis(trifluoromethanesulfonyl)imide (DMPyrr+TFSI-) and the molecular solvent 1-decanol. Perylene was used as a non-polar probe, and cresyl violet (CV+) was used as a polar probe chromophore. We observe that in both regions there is a change in the chromophore local environments with increasing 1-decanol content. The changes in the nonpolar regions of the binary RTIL-molecular solvent system occur at a lower 1-decanol concentration than changes in the polar regions. Both chromophores reorient as oblate rotors in this binary system, allowing detailed information on the relative values of the Cartesian components of the rotational diffusion constants to be extracted from the experimental data. The induced free charge density gradient, ρf, known to exist in RTILs, persists to high 1-decanol content (1-decanol mole fraction of 0.75), with the structural details of the gradient being reflected in depth-dependent changes in the Cartesian components of the rotational diffusion constants of CV+. This is the first time that changes in molecular organization have been correlated with ρf.
Collapse
Affiliation(s)
- Md Iqbal Hossain
- Department of Chemistry, Michigan State University, East Lansing, Michigan 48824, United States
| | - Laxmi Adhikari
- Department of Chemistry, University of Missouri, Columbia, Missouri 65211, United States
| | - Gary A Baker
- Department of Chemistry, University of Missouri, Columbia, Missouri 65211, United States
| | - G J Blanchard
- Department of Chemistry, Michigan State University, East Lansing, Michigan 48824, United States
| |
Collapse
|
15
|
The Nanostructure of Alkyl-Sulfonate Ionic Liquids: Two 1-Alkyl-3-methylimidazolium Alkyl-Sulfonate Homologous Series. Molecules 2023; 28:molecules28052094. [PMID: 36903339 PMCID: PMC10004415 DOI: 10.3390/molecules28052094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 02/16/2023] [Accepted: 02/17/2023] [Indexed: 02/26/2023] Open
Abstract
The functionalization of polymers with sulfonate groups has many important uses, ranging from biomedical applications to detergency properties used in oil-recovery processes. In this work, several ionic liquids (ILs) combining 1-alkyl-3-methylimidazolium cations [CnC1im]+ (4 ≤ n ≤ 8) with alkyl-sulfonate anions [CmSO3]- (4 ≤ m ≤ 8) have been studied using molecular dynamics simulations, totalizing nine ionic liquids belonging to two homologous series. The radial distribution functions, structure factors, aggregation analyses, and spatial distribution functions reveal that the increase in aliphatic chain length induces no significant change in the structure of the polar network of the ILs. However, for imidazolium cations and sulfonate anions with shorter alkyl chains, the nonpolar organization is conditioned by the forces acting on the polar domains, namely, electrostatic interactions and hydrogen bonding.
Collapse
|
16
|
Zhang Y, Marlow JB, Millar W, Silvester DS, Warr GG, Li H, Atkin R. Effect of ion structure on the nanostructure and electrochemistry of surface active ionic liquids. J Colloid Interface Sci 2023; 630:931-939. [DOI: 10.1016/j.jcis.2022.10.074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 09/29/2022] [Accepted: 10/16/2022] [Indexed: 11/05/2022]
|
17
|
Silva GM, Beira MJ, Morgado P, Branco LC, Sebastião PJ, Canongia Lopes JN, Filipe EJ. Ionic liquids with hydrogenated and perfluorinated chains: Structural study of the [P6,6,6,14][FnCOO] n = 7, 9, 11. Checking the existence of polar – hydrogenated – perfluorinated triphilic continuity. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.120506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
18
|
Emerson MS, Sharma S, Roy S, Bryantsev VS, Ivanov AS, Gakhar R, Woods ME, Gallington LC, Dai S, Maltsev DS, Margulis CJ. Complete Description of the LaCl 3–NaCl Melt Structure and the Concept of a Spacer Salt That Causes Structural Heterogeneity. J Am Chem Soc 2022; 144:21751-21762. [DOI: 10.1021/jacs.2c09987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Matthew S. Emerson
- Department of Chemistry, The University of Iowa, Iowa City, Iowa 52242, United States
| | - Shobha Sharma
- Department of Chemistry, The University of Iowa, Iowa City, Iowa 52242, United States
| | - Santanu Roy
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Vyacheslav S. Bryantsev
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Alexander S. Ivanov
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Ruchi Gakhar
- Pyrochemistry and Molten Salt Systems Department, Idaho National Laboratory, Idaho Falls, Idaho 83415, United States
| | - Michael E. Woods
- Pyrochemistry and Molten Salt Systems Department, Idaho National Laboratory, Idaho Falls, Idaho 83415, United States
| | - Leighanne C. Gallington
- X-ray Science Division, Advanced Photon Source, Argonne National Laboratory, Argonne, Lemont, Illinois 60439, United States
| | - Sheng Dai
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
- Department of Chemistry, University of Tennessee, Knoxville, Tennessee 37996, United States
| | - Dmitry S. Maltsev
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Claudio J. Margulis
- Department of Chemistry, The University of Iowa, Iowa City, Iowa 52242, United States
| |
Collapse
|
19
|
Mazzilli V, Wang Y, Saielli G. The structuring effect of the alkyl domains on the polar network of ionic liquid mixtures: a molecular dynamics study. Phys Chem Chem Phys 2022; 24:18783-18792. [PMID: 35904021 DOI: 10.1039/d2cp02786k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
By using molecular dynamics simulations, we investigate the structural and dynamic properties of mixtures of 1,3-dimethylimidazolium bis(trifluoromethanesulfonyl)imide, [C1C1im][Tf2N] and 1-dodecyl-3-methylimidazolium bis(trifluoromethanesulfonyl)imide, [C12C1im][Tf2N] (also C1 and C12 in short). Such mixtures feature an imidazolium bistriflimide salt with a very short alkyl chain, not giving rise to any nano-segregation as a pure component, with another one with a longer alkyl chain that exhibits a substantial nano-segregation as a pure liquid. As the mole fraction of the long-chain component C12 is increased, the so-called pre-peak of the structure factor S(q), occurring in the region 1-3 nm-1, shows a shift to higher values of the wavevector q, mirroring a decrease of the corresponding correlation length. Moreover, the intensity of the pre-peak strongly increases with the C12 concentration. These results are in very good agreement with experimental X-ray scattering data in the literature. On the other hand, the diffusion of the ions is found to exhibit a simple behaviour consistent with the increased viscosity of the mixture, and these results are also in good agreement with NMR experimental data from the literature. The simulation results are rationalized as caused by a structuring effect, similar to the hydrophobic effect, of the alkyl domains of the C12 component dissolved in the "solvent" represented by the C1 cation, the Tf2N- anion and the C12 cation head. In short, the exclusion of the alkyl chains from the polar network, a process mostly governed by electrostatic interactions, favours the formation of hydrophobic domains, which in turn exert a structuring effect on the ions of the polar domains, favouring a stronger ionic interaction. This is finally reflected in a shorter correlation length and a higher intensity of the pre-peak of the structure factor S(q) as the C12 mole fraction is increased. At variance with the microscopic structure, the diffusion of all three types of ions is not strongly influenced by the nano-segregation and is essentially dependent on the viscosity of the mixture.
Collapse
Affiliation(s)
- Valerio Mazzilli
- CNR Institute on Membrane Technology, Unit of Padova, Via Marzolo, 1 - 35131 Padova, Italy. .,Department of Chemical Sciences, University of Padova, Via Marzolo, 1 - 35131 Padova, Italy
| | - Yanting Wang
- CAS Key Laboratory of Theoretical Physics, Institute of Theoretical Physics, Chinese Academy of Sciences, 55 East Zhongguancun Road, P. O. Box 2735, Beijing 100190, China.,School of Physical Sciences, University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China
| | - Giacomo Saielli
- CNR Institute on Membrane Technology, Unit of Padova, Via Marzolo, 1 - 35131 Padova, Italy. .,Department of Chemical Sciences, University of Padova, Via Marzolo, 1 - 35131 Padova, Italy
| |
Collapse
|
20
|
Malik A, Dhattarwal HS, Kashyap HK. An Overview of Structure and Dynamics Associated with Hydrophobic Deep Eutectic Solvents and Their Applications in Extraction Processes. Chemphyschem 2022; 23:e202200239. [PMID: 35702808 DOI: 10.1002/cphc.202200239] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Revised: 06/10/2022] [Indexed: 11/10/2022]
Abstract
Recent development of novel water-immiscible green solvents known as hydrophobic deep eutectic solvents (HDESs) has opened the gates for applications requiring media where presence of water is undesirable. Ever since they were prepared, researchers have used HDESs in diverse fields such as extraction processes, CO 2 sequestration, membrane formation, and catalysis. The microstructure and dynamics associated with the species comprising HDESs guide their suitability for specific applications. For example, varying the alkyl tail length of HDES components significantly affects the dynamics of the components and thus helps in tuning the efficiency of extraction processes. The development of HDESs is still in infancy and very few theoretical studies are available in the literature that help in understanding the structure and dynamics of HDESs. This review highlights the recent work focused on the microscopic structure and dynamics of HDESs and their potential applications, particularly in extraction processes. We have also provided a glimpse of how the integration of experiments and computational techniques can help understand the mechanism of extraction processes.
Collapse
Affiliation(s)
- Akshay Malik
- Indian Institute of Technology Delhi, Chemistry, Hauz Khas, 110016, New Delhi, INDIA
| | - Harender S Dhattarwal
- IIT Delhi: Indian Institute of Technology Delhi, Chemistry, Hauz Khas, 110016, New Delhi, INDIA
| | - Hemant Kumar Kashyap
- Indian Institute of Technology Delhi, Department of Chemistry, Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, 110016, New Delhi, INDIA
| |
Collapse
|
21
|
Le Crom S, Dourdain S, Pellet-Rostaing S, Duvail M. Long-Range Organization Study of Piperidinium-Based Ionic Liquids by Polarizable Molecular Dynamics Simulations. J Phys Chem B 2022; 126:3355-3365. [PMID: 35471118 DOI: 10.1021/acs.jpcb.2c01123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The nanoscale organization of some classes of ionic liquids is responsible for their singular properties. In this paper, we use polarizable molecular dynamics simulations and small-angle X-ray scattering to probe the structure of two piperidinium- and (trifluoromethylsulfonyl)imide-based ionic liquids ([EBPip+][NTf2-] and [EOPip+][NTf2-]) that differ in the alkyl chain length of their cation. The X-ray scattering intensities calculated numerically, from the radial distribution functions, are in excellent agreement with the experimental data. The analysis of the different contributions of the X-ray scattering data allowed us to highlight the correlations responsible for the low q peak observed for the long-chain alkyl cations. New angular analyses showed that anions were more likely to align with alkyl chains as their size increased, inducing angular correlation between anions at larger distances. They also showed that the long alkyl chains of the cations aligned more with each other than the short ones. These more aligned alkyl chains induce a smaller volume of the apolar microdomains compared to the well-studied imidazolium-based ionic liquids, leading to the smaller correlation distance for piperidinium-based ionic liquids.
Collapse
Affiliation(s)
| | | | | | - Magali Duvail
- ICSM, Univ Montpellier, CEA, CNRS, ENSCM, Bagnols-sur-Cèze, France
| |
Collapse
|
22
|
Wong LN, Jones SD, Wood K, de Campo L, Darwish T, Moir M, Li H, Segalman RA, Warr GG, Atkin R. Polycation radius of gyration in a polymeric ionic liquid (PIL): the PIL melt is not a theta solvent. Phys Chem Chem Phys 2022; 24:4526-4532. [PMID: 35119064 DOI: 10.1039/d1cp05354j] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The conformation of the polycation in the prototypical polymeric ionic liquid (PIL) poly(3-methyl-1-aminopropylimidazolylacrylamide) bis(trifluoromethylsulfonyl)imide (poly(3MAPIm)TFSI) was probed using small-angle neutron scattering (SANS) and ultra-small-angle neutron scattering (USANS) at 25 °C and 80 °C. Poly(3MAPIm)TFSI contains microvoids which lead to intense low q scattering that can be mitigated using mixtures of hydrogen- and deuterium-rich materials, allowing determination of the polycation conformation and radius of gyration (Rg). In the pure PIL, the polycation adopts a random coil conformation with Rg = 52 ± 0.5 Å. In contrast to conventional polymer melts, the pure PIL is not a theta solvent for the polycation. The TFSI- anions, which comprise 48% v/v of the PIL, are strongly attracted to the polycation and act like small solvent molecules which leads to chain swelling analogous to an entangled, semi-dilute, or concentrated polymer solution in a good solvent.
Collapse
Affiliation(s)
- Lucas N Wong
- School of Molecular Sciences, The University of Western Australia, Crawley, Perth 6009, Australia.
| | - Seamus D Jones
- Chemical Engineering Department and Materials Department, University of California, Santa Barbara, California 93106, USA
| | - Kathleen Wood
- Australian Centre for Neutron Scattering, Australian Nuclear Science and Technology Organisation, New Illawarra Road, Lucas Heights, NSW 2234, Australia
| | - Liliana de Campo
- Australian Centre for Neutron Scattering, Australian Nuclear Science and Technology Organisation, New Illawarra Road, Lucas Heights, NSW 2234, Australia
| | - Tamim Darwish
- National Deuteration Facility (NDF), ANSTO, Lucas Heights, NSW 2234, Australia
| | - Michael Moir
- National Deuteration Facility (NDF), ANSTO, Lucas Heights, NSW 2234, Australia
| | - Hua Li
- School of Molecular Sciences, The University of Western Australia, Crawley, Perth 6009, Australia.
| | - Rachel A Segalman
- Chemical Engineering Department and Materials Department, University of California, Santa Barbara, California 93106, USA
| | - Gregory G Warr
- School of Chemistry and University of Sydney Nano Institute, The University of Sydney, Sydney, NSW 2006, Australia
| | - Rob Atkin
- School of Molecular Sciences, The University of Western Australia, Crawley, Perth 6009, Australia.
| |
Collapse
|
23
|
Zhang Y, Marlow JB, Millar W, Aman ZM, Silvester DS, Warr GG, Atkin R, Li H. Nanostructure, electrochemistry and potential-dependent lubricity of the catanionic surface-active ionic liquid [P 6,6,6,14] [AOT]. J Colloid Interface Sci 2022; 608:2120-2130. [PMID: 34752982 DOI: 10.1016/j.jcis.2021.10.120] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Revised: 10/14/2021] [Accepted: 10/20/2021] [Indexed: 10/20/2022]
Abstract
HYPOTHESIS A catanionic surface-active ionic liquid (SAIL) trihexyltetradecylphosphonium 1,4-bis(2-ethylhexoxy)-1,4-dioxobutane-2-sulfonate ([P6,6,6,14] [AOT]) is nanostructured in the bulk and at the interface. The interfacial nanostructure and lubricity may be changed by applying a potential. EXPERIMENTS The bulk structure and viscosity have been investigated using small angle X-ray scattering (SAXS) and rheometry. The interfacial structure and lubricity as a function of potential have been investigated using atomic force microscopy (AFM). The electrochemistry has been investigated using cyclic voltammetry. FINDINGS [P6,6,6,14] [AOT] shows sponge-like bulk nanostructure with distinct interdigitation of cation-anion alkyl chains. Shear-thinning occurs at 293 K and below, but becomes less obvious on heating up to 313 K. Voltammetric analysis reveals that the electrochemical window of [P6,6,6,14] [AOT] on a gold micro disk electrode exceeds the potential range of the AFM experiments and that negligible redox activity occurs in this range. The interfacial layered structure of [P6,6,6,14] [AOT] is weaker than conventional ILs and SAILs, whereas lubricity is better, confirming the inverse correlation between the near-surface structure and lubricity. The adhesive forces of [P6,6,6,14] [AOT] are lower at -1.0 V than at open circuit potential and +1.0 V, likely due to reduced electrostatic interactions caused by shielding of charge centres via long alkyl chains.
Collapse
Affiliation(s)
- Yunxiao Zhang
- School of Molecular Sciences, The University of Western Australia, Perth, Western Australia, Australia
| | - Joshua B Marlow
- School of Chemistry and Sydney Nano Institute, The University of Sydney, Sydney, NSW 2006, Australia
| | - Wade Millar
- School of Molecular and Life Sciences, Curtin University, GPO Box U1987, Perth 6845, Western Australia, Australia
| | - Zachary M Aman
- Fluid Science and Resources Division, School of Engineering, The University of Western Australia, Perth, Western Australia, Australia
| | - Debbie S Silvester
- School of Molecular and Life Sciences, Curtin University, GPO Box U1987, Perth 6845, Western Australia, Australia
| | - Gregory G Warr
- School of Chemistry and Sydney Nano Institute, The University of Sydney, Sydney, NSW 2006, Australia
| | - Rob Atkin
- School of Molecular Sciences, The University of Western Australia, Perth, Western Australia, Australia.
| | - Hua Li
- School of Molecular Sciences, The University of Western Australia, Perth, Western Australia, Australia; Centre for Microscopy, Characterisation and Analysis, The University of Western Australia, Perth, Western Australia, Australia.
| |
Collapse
|
24
|
Mudring AV, Hammond O. Ionic Liquids and Deep Eutectics as a Transformative Platform for the Synthesis of Nanomaterials. Chem Commun (Camb) 2022; 58:3865-3892. [DOI: 10.1039/d1cc06543b] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Ionic liquids (ILs) are becoming a revolutionary synthesis medium for inorganic nanomaterials, permitting more efficient, safer and environmentally benign preparation of high quality products. A smart combination of ILs and...
Collapse
|
25
|
Tran L, Rush K, Marzette J, Edmonds-Andrews G, Bennett T, Abdulahad A, Riley KE, Dutta S. Striking temperature-dependent molecular reorganization at the C-2 position of [EMIM][BF4]. Chem Phys Lett 2021. [DOI: 10.1016/j.cplett.2021.138956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
26
|
Lundin F, Aguilera L, Hansen HW, Lages S, Labrador A, Niss K, Frick B, Matic A. Structure and dynamics of highly concentrated LiTFSI/acetonitrile electrolytes. Phys Chem Chem Phys 2021; 23:13819-13826. [PMID: 34195732 DOI: 10.1039/d1cp02006d] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
High salt concentration has been shown to induce increased electrochemical stability in organic solvent-based electrolytes. Accompanying the change in bulk properties is a structural ordering on mesoscopic length scales and changes in the ion transport mechanism have also been suggested. Here we investigate the local structure and dynamics in highly concentrated acetonitrile electrolytes as a function of salt concentration. Already at low concentrations ordering on microscopic length scales in the electrolytes is revealed by small angle X-ray scattering, as a result of correlations of Li+ coordinating clusters. For higher salt concentrations a charge alternation-like ordering is found as anions start to take part in the solvation. Results from quasi-elastic neutron spectroscopy reveal a jump diffusion dynamical process with jump lengths virtually independent of both temperature and Li-salt concentration. The jump can be envisaged as dissociation of a solvent molecule or anion from a particular Li+ solvation structure. The residence time, 50-800 ps, between the jumps is found to be highly temperature and Li-salt concentration dependent, with shorter residence times for higher temperature and lower concentrations. The increased residence time at high Li-salt concentration can be attributed to changes in the interaction of the solvation shell as a larger fraction of TFSI anions take part in the solvation, forming more stable solvation shells.
Collapse
Affiliation(s)
- Filippa Lundin
- Department of Physics, Materials Physics, Chalmers University of Technology, SE-41296 Göteborg, Sweden.
| | - Luis Aguilera
- Department of Physics, Materials Physics, Chalmers University of Technology, SE-41296 Göteborg, Sweden. and Energy and Installation, Volvo Cars Corporation, Göteborg, Sweden
| | - Henriette Wase Hansen
- Department of Physics, Materials Physics, Chalmers University of Technology, SE-41296 Göteborg, Sweden. and Glass and Time, IMUFA, Department of Science and Environment, Roskilde University, Postbox 260, DK-4000 Roskilde, Denmark and Institut Laue-Langevin, 71 avenue des Martyrs, CS 20156, 38042 Grenoble Cedex 9, France
| | - Sebastian Lages
- Department of Physics, Materials Physics, Chalmers University of Technology, SE-41296 Göteborg, Sweden. and MaxIV Laboratory, Fotongatan 2, SE 224 84 Lund, Sweden
| | - Ana Labrador
- MaxIV Laboratory, Fotongatan 2, SE 224 84 Lund, Sweden
| | - Kristine Niss
- Glass and Time, IMUFA, Department of Science and Environment, Roskilde University, Postbox 260, DK-4000 Roskilde, Denmark
| | - Bernhard Frick
- Institut Laue-Langevin, 71 avenue des Martyrs, CS 20156, 38042 Grenoble Cedex 9, France
| | - Aleksandar Matic
- Department of Physics, Materials Physics, Chalmers University of Technology, SE-41296 Göteborg, Sweden.
| |
Collapse
|
27
|
Sharma S, Ivanov AS, Margulis CJ. A Brief Guide to the Structure of High-Temperature Molten Salts and Key Aspects Making Them Different from Their Low-Temperature Relatives, the Ionic Liquids. J Phys Chem B 2021; 125:6359-6372. [PMID: 34048657 PMCID: PMC8279547 DOI: 10.1021/acs.jpcb.1c01065] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 04/08/2021] [Indexed: 11/23/2022]
Abstract
High-temperature molten salt research is undergoing somewhat of a renaissance these days due to the apparent advantage of these systems in areas related to clean and sustainable energy harvesting and transfer. In many ways, this is a mature field with decades if not already a century of outstanding work devoted to it. Yet, much of this work was done with pioneering experimental and computational setups that lack the current day capabilities of synchrotrons and high-performance-computing systems resulting in deeply entrenched results in the literature that when carefully inspected may require revision. Yet, in other cases, access to isotopically substituted ions make those pioneering studies very unique and prohibitively expensive to carry out nowadays. There are many review articles on molten salts, some of them cited in this perspective, that are simply outstanding and we dare not try to outdo those. Instead, having worked for almost a couple of decades already on their low-temperature relatives, the ionic liquids, this is the perspective article that some of the authors would have wanted to read when embarking on their research journey on high-temperature molten salts. We hope that this will serve as a simple guide to those expanding from research on ionic liquids to molten salts and vice versa, particularly, when looking into their bulk structural features. The article does not aim at being comprehensive but instead focuses on selected topics such as short- and intermediate-range order, the constraints on force field requirements, and other details that make the high- and low-temperature ionic melts in some ways similar but in others diametrically opposite.
Collapse
Affiliation(s)
- Shobha Sharma
- Department
of Chemistry, The University of Iowa, Iowa City, Iowa 52242, United States
| | - Alexander S. Ivanov
- Chemical
Sciences Division, Oak Ridge National Laboratory, 1 Bethel Valley Road, Oak Ridge, Tennessee 37830, United States
| | - Claudio J. Margulis
- Department
of Chemistry, The University of Iowa, Iowa City, Iowa 52242, United States
| |
Collapse
|
28
|
Amith WD, Araque JC, Margulis CJ. Relationship between the Relaxation of Ionic Liquid Structural Motifs and That of the Shear Viscosity. J Phys Chem B 2021; 125:6264-6271. [PMID: 34097825 PMCID: PMC8279556 DOI: 10.1021/acs.jpcb.1c03105] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
![]()
In a set of recent
articles, we have highlighted that friction
is highly inhomogeneous in a typical ionic liquid (IL) with charge
networks that are stiff and charge-depleted regions that are soft.
This has consequences not only for the dynamics of ILs but also for the transport properties of solutes
dissolved in them. In this article, we explore whether the family
of alkylimidazolium ILs coupled with bis(trifluoromethylsulfonyl)imide
(with similar Coulombic interactions but different alkyl tails), when
dynamically “equalized” by having a similar shear viscosity,
display q-dependent structural relaxation time scales
that are the same across the family. Our results show that this is
not the case, and in fact, the relaxation of in-network charge alternation
appears to be significantly affected by the presence of separate polar
and apolar domains. However, we also find that if one was to assign
weight factors to the relaxation of the structural motifs, charge
alternation always contributes about the same amount (between 62.1
and 66.3%) across systems to the running integral of the stress tensor
correlation function from which the shear viscosity is derived. Adjacency
correlations between positive and negative moieties also contribute
an identical amount if a prepeak is not present (about 38%) and a
slightly smaller amount (about 28%) when intermediate range order
exists. The prepeak only contributes about 6% to viscoelastic relaxation,
highlighting that the dynamics of the smaller scale motifs is the
most important.
Collapse
Affiliation(s)
| | - Juan C Araque
- School of Engineering, Benedictine College, Atchison, Kansas 66002, United States
| | - Claudio J Margulis
- Department of Chemistry, University of Iowa, Iowa City, Iowa 52242, United States
| |
Collapse
|
29
|
Dhattarwal HS, Kashyap HK. Unique and generic structural features of cholinium amino acid-based biocompatible ionic liquids. Phys Chem Chem Phys 2021; 23:10662-10669. [PMID: 33908525 DOI: 10.1039/d1cp00937k] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Cholinium amino acid-based (Ch-AA) biocompatible ionic liquids (bio-ILs) are synthesized from renewable components and are efficiently used for biomass processing. However, their microscopic structural features that lead to their application as biomass solvents remain undetermined. Herein, we use atomistic simulations to investigate the structures of six different Ch-AA bio-ILs up to the nanometer length scale and demonstrate that, depending on the anion side chain structure, the respective IL exhibits structural ordering at different length scales. All the six Ch-AA bio-ILs investigated here show a generic feature of having a strong hydrogen bonding network between the hydroxyl group of the cholinium cation and the carboxyl group of the amino acid anions. We illustrate that each of these bio-ILs also displays a unique feature. Distinctive intermediate range structural ordering leads to heterogeneity in methioninate- and phenylalaninate-based ILs caused by the anion side chain segregation. Intermediate range ordering is not observed in glutaminate- and glutamate-based ILs because significant anion side chain and backbone interactions hinder the formation of side chain clusters. Interestingly, for the cysteinate-based IL, the side chains do not interact with the backbones and the intermediate range ordering is not observed because of a shorter anionic side chain.
Collapse
Affiliation(s)
- Harender S Dhattarwal
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India.
| | - Hemant K Kashyap
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India.
| |
Collapse
|
30
|
Torkzadeh M, Moosavi M. Heterogeneity in microstructures and dynamics of dicationic ionic liquids with symmetric and asymmetric cations. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.115632] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
31
|
Evidence of a liquid-liquid transition in a glass-forming ionic liquid. Proc Natl Acad Sci U S A 2021; 118:2020878118. [PMID: 33688049 DOI: 10.1073/pnas.2020878118] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A liquid-liquid transition (LLT) is a transformation from one liquid to another through a first-order transition. The LLT is fundamental to the understanding of the liquid state and has been reported in a few materials such as silicon, phosphorus, triphenyl phosphite, and water. Furthermore, it has been suggested that the unique properties of materials such as water, which is critical for life on the planet, are linked to the existence of the LLT. However, the experimental evidence for the existence of an LLT in many molecular liquids remains controversial, due to the prevalence and high propensity of the materials to crystallize. Here, we show evidence of an LLT in a glass-forming trihexyltetradecylphosphonium borohydride ionic liquid that shows no tendency to crystallize under normal laboratory conditions. We observe a step-like increase in the static dielectric permittivity at the transition. Furthermore, the sizes of nonpolar local domains and ion-coordination numbers deduced from wide-angle X-ray scattering also change abruptly at the LLT. We independently corroborate these changes in local organization using Raman spectroscopy. The experimental access to the evolution of local order and structural dynamics across a liquid-liquid transition opens up unprecedented possibilities to understand the nature of the liquid state.
Collapse
|
32
|
Nanoscale heterogeneity, hydrogen bonding and their temperature dependence in cholinium phenylalaninate bio-ionic liquid. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.115329] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
33
|
Judeinstein P, Zeghal M, Constantin D, Iojoiu C, Coasne B. Interplay of Structure and Dynamics in Lithium/Ionic Liquid Electrolytes: Experiment and Molecular Simulation. J Phys Chem B 2021; 125:1618-1631. [PMID: 33535754 DOI: 10.1021/acs.jpcb.0c09597] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Despite their promising use in electrochemical and electrokinetic devices, ionic-liquid-based electrolytes often exhibit complex behavior arising from a subtle interplay of their structure and dynamics. Here, we report a joint experimental and molecular simulation study of such electrolytes obtained by mixing 1-butyl 3-methylimidazolium tetrafluoroborate with lithium tetrafluoroborate. More in detail, experiments consisting of X-ray scattering, pulsed field gradient NMR, and complex impedance spectroscopy are analyzed in the light of molecular dynamics simulations to probe the structural, dynamical, and electrochemical properties of this ionic-liquid-based electrolyte. Lithium addition promotes the nanostructuration of the liquid as evidenced from the appearance of a scattering prepeak that becomes more pronounced. Microscopically, using the partial structure factors determined from molecular dynamics, this prepeak is shown to correspond to the formation of well-ordered positive/negative charge series and also large aggregates (Lin(BF4)4-m)(4-m+n)-, which develop upon lithium addition. Such nanoscale ordering entails a drastic decrease in both the molecular mobility and ionic conductivity. In particular, the marked association of Li+ cations with four BF4- anions and long ion pairing times, which are promoted upon lithium addition, are found to severely hinder the Li+ transport properties.
Collapse
Affiliation(s)
- Patrick Judeinstein
- Université Paris-Saclay, CEA, CNRS, LLB, 91191 Gif-sur-Yvette, France.,Université Paris-Saclay, CNRS, Laboratoire de Physique des Solides, 91405 Orsay, France
| | - Mehdi Zeghal
- Université Paris-Saclay, CNRS, Laboratoire de Physique des Solides, 91405 Orsay, France
| | - Doru Constantin
- Université Paris-Saclay, CNRS, Laboratoire de Physique des Solides, 91405 Orsay, France
| | - Cristina Iojoiu
- Univ. Grenoble Alpes, Univ. Savoie Mont Blanc, CNRS, Grenoble INP, LEPMI, 38000 Grenoble, France
| | - Benoit Coasne
- Univ. Grenoble Alpes, CNRS, LIPhy, 38000 Grenoble, France
| |
Collapse
|
34
|
Sarkar S, Maity A, Chakrabarti R. Microscopic structural features of water in aqueous-reline mixtures of varying compositions. Phys Chem Chem Phys 2021; 23:3779-3793. [PMID: 33532810 DOI: 10.1039/d0cp05341d] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Reline, a mixture of urea and choline chloride in a 2 : 1 molar ratio, is one of the most frequently used deep eutectic solvents. Pure reline and its aqueous solution have large scale industrial use. Owing to the presence of active hydrogen bond formation sites, urea and choline cations can disrupt the hydrogen-bonded network in water. However, a quantitative understanding of the microscopic structural features of water in the presence of reline is still lacking. We carry out extensive all-atom molecular dynamics simulations to elucidate the effect of the gradual addition of co-solvents on the microscopic arrangements of water molecules. We consider four aqueous solutions of reline, between 26.3 and 91.4 wt%. A disruption of the local hydrogen-bonded structure in water is observed upon inclusion of urea and choline chloride. The extent of deviation of the water structure from tetrahedrality is quantified using the tetrahedral order parameter (qtet). Our analyses show a monotonic increase in the structural disorder as the co-solvents are added. Increase in the qtet values are observed when highly electro-negative hetero-atoms like nitrogen, oxygen of urea and choline cations are counted as partners of the central water molecules. Further insights are drawn from the characterization of the hydrogen-bonded network in water and we observe the gradual rupturing of water-water hydrogen bonds and their subsequent replacement by the water-urea hydrogen bonds. A negligible contribution from the hydrogen bonds between water and bulky choline cations has also been found. Considering all the constituents as the hydrogen bond partners we calculate the possibility of a successful hydrogen bond formation with a central water molecule. This gives a clear picture of the underlying mechanism of water replacement by urea.
Collapse
Affiliation(s)
- Soham Sarkar
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India.
| | | | | |
Collapse
|
35
|
Tu W, Jurkiewicz K, Adrjanowicz K. Confinement of pyrrolidinium-based ionic liquids [CnMPyrr]+[Tf2N]− with long cationic alkyl side chains (n = 10 and 16) to nanoscale pores: Dielectric and calorimetric studies. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2020.115115] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
36
|
Pardon A, Bonhomme O, Gaillard C, Brevet PF, Benichou E. Nonlinear optical signature of nanostructural transition in ionic liquids. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2020.114976] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
37
|
Malik A, Kashyap HK. Heterogeneity in hydrophobic deep eutectic solvents: SAXS prepeak and local environments. Phys Chem Chem Phys 2021; 23:3915-3924. [DOI: 10.1039/d0cp05407k] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The observation of the prepeak in the simulated total X-ray scattering structure function (S(q)) reveals the presence of intermediate-range structural heterogeneity in hydrophobic deep eutectic solvents.
Collapse
Affiliation(s)
- Akshay Malik
- Department of Chemistry
- Indian Institute of Technology Delhi
- Hauz Khas
- India
| | - Hemant K. Kashyap
- Department of Chemistry
- Indian Institute of Technology Delhi
- Hauz Khas
- India
| |
Collapse
|
38
|
Torkzadeh M, Moosavi M. Probing the Effect of Side Alkyl Chain Length on the Structural and Dynamical Micro-heterogeneities in Dicationic Ionic Liquids. J Phys Chem B 2020; 124:11446-11462. [PMID: 33283503 DOI: 10.1021/acs.jpcb.0c07034] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The molecular dynamics simulations and Voronoi tessellation analysis of two dicationic ionic liquids (DILs) including [C5(mim)2][NTf2]2 and [C5(mim)2C4][NTf2]2 have been carried out to investigate the effects of side alkyl chain length on the structural and dynamical micro-heterogeneity of these DILs. Radial distribution functions (RDFs), spatial distribution functions (SDFs), and also neighborhood analysis of ions have been calculated to determine the arrangement of the nearest neighboring ions. To better understand the hydrogen-bonding network, microstructures, inter- and intramolecular orientations of ions in the studied DILs, different kinds of combined distribution functions (CDFs) were computed and analyzed. Also, qualitative and quantitative analyses of the structural heterogeneity were explored through total/partial structure factors, heterogeneity order parameters (HOPs), and domain analysis from Voronoi tessellation. The results showed that the side alkyl chains in DILs have significant effects on their micro-organizations in such a way that [C5(mim)2C4][NTf2]2 with longer side chains has more microstructural heterogeneity than [C5(mim)2][NTf2]2 where the linkage alkyl chain is the same in both of them. Furthermore, to shed light on the dynamical heterogeneity, ion pair, ion cage, and hydrogen-bond stabilities and also the reorientation dynamics of ions have been investigated. Results demonstrated that local dynamics differences originate from local structural heterogeneity.
Collapse
Affiliation(s)
| | - Majid Moosavi
- Department of Chemistry, University of Isfahan, Isfahan 81746-73441, Iran
| |
Collapse
|
39
|
Zhao M, Wu B, Castner EW. Mixtures of octanol and an ionic liquid: Structure and transport. J Chem Phys 2020; 153:214501. [DOI: 10.1063/5.0031989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Man Zhao
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, Piscataway, New Jersey 08854, USA
| | - Boning Wu
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, Piscataway, New Jersey 08854, USA
| | - Edward W. Castner
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, Piscataway, New Jersey 08854, USA
| |
Collapse
|
40
|
Kaur S, Kumari M, Kashyap HK. Microstructure of Deep Eutectic Solvents: Current Understanding and Challenges. J Phys Chem B 2020; 124:10601-10616. [DOI: 10.1021/acs.jpcb.0c07934] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Supreet Kaur
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Monika Kumari
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Hemant K. Kashyap
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| |
Collapse
|
41
|
Pontoni D, DiMichiel M, Deutsch M. Nanoscale Structure in Short‐Chain Ionic Liquids. Chemphyschem 2020; 21:1887-1897. [DOI: 10.1002/cphc.202000548] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Indexed: 02/03/2023]
Affiliation(s)
- Diego Pontoni
- Partnership for Soft Condensed Matter (PSCM) ESRF – The European Synchrotron 71 Avenue des Martyrs 38043 Grenoble France
| | - Marco DiMichiel
- ESRF – The European Synchrotron 71 Avenue des Martyrs 38043 Grenoble France
| | - Moshe Deutsch
- Physics Dept. & Institute of Nanotechnology and Advanced Materials Bar-Ilan University Ramat Gan Israel
| |
Collapse
|
42
|
Wang YL, Li B, Laaksonen A, Yuan J. The Effect of Phenyl Substitutions on Microstructures and Dynamics of Tetraalkylphosphonium Bis(trifluoro- methylsulfonyl)imide Ionic Liquids. Chemphyschem 2020; 21:1202-1214. [PMID: 32181955 DOI: 10.1002/cphc.201901206] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2019] [Revised: 02/24/2020] [Indexed: 01/15/2023]
Abstract
Extensive atomistic simulations demonstrated that a gradual substitution of hexyl chains with phenyl groups in tetraalkylphosphonium cations results in remarkable changes in hydrogen bonding interactions, liquid structures and scattering structural functions, and rotational dynamics of hexyl chains and phenyl groups in tetraalkylphosphonium bis(trifluoromethylsulfonyl)imide ionic liquids. Hydrogen donor sites in hexyl chains present competitive characteristics with those in phenyl groups in coordinating anions, as well as their continuous and intermittent hydrogen bonding dynamics. Cation-cation and anion-anion spatial correlations show concomitant shift to short distances with decreased peak intensities with variations of cation structures, whereas cation-anion correlations have a distinct shift to large radial distances due to decreased associations of anions with neighboring cations. These microstructural changes are qualitatively manifested in shifts of prominent peaks for prevalent charge alternations and adjacency correlations between ion species in scattering structural functions. Meanwhile, rotational dynamics of hexyl chains speed up, which, in turn, slow down rotations of phenyl groups, whereas anions exhibit imperceptible changes in their rotational dynamics. These computational results are intrinsically correlated with conformational flexibilities, molecular sizes, and steric hindrance effects of phenyl groups in comparison with hexyl chains, and constrained distributions of anions around cations in heterogeneous ionic environments.
Collapse
Affiliation(s)
- Yong-Lei Wang
- Department of Materials and Environmental Chemistry, Arrhenius Laboratory, Stockholm University, SE-106 91, Stockholm, Sweden
| | - Bin Li
- School of Chemical Engineering and Technology, Sun Yat-sen University, Zhuhai, 519082, P. R. China
| | - Aatto Laaksonen
- Department of Materials and Environmental Chemistry, Arrhenius Laboratory, Stockholm University, SE-106 91, Stockholm, Sweden.,Centre of Advanced Research in Bionanoconjugates and Biopolymers, Petru Poni Institute of Macromolecular Chemistry Aleea Grigore Ghica-Voda, 41A, 700487, Iasi, Romania
| | - Jiayin Yuan
- Department of Materials and Environmental Chemistry, Arrhenius Laboratory, Stockholm University, SE-106 91, Stockholm, Sweden
| |
Collapse
|
43
|
Kumar R, Mahalik JP, Silmore KS, Wojnarowska Z, Erwin A, Ankner JF, Sokolov AP, Sumpter BG, Bocharova V. Capacitance of thin films containing polymerized ionic liquids. SCIENCE ADVANCES 2020; 6:eaba7952. [PMID: 32637617 PMCID: PMC7319767 DOI: 10.1126/sciadv.aba7952] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Accepted: 05/15/2020] [Indexed: 06/11/2023]
Abstract
Electrode-polymer interfaces dictate many of the properties of thin films such as capacitance, the electric field experienced by polymers, and charge transport. However, structure and dynamics of charged polymers near electrodes remain poorly understood, especially in the high concentration limit representative of the melts. To develop an understanding of electric field-induced transformations of electrode-polymer interfaces, we have studied electrified interfaces of an imidazolium-based polymerized ionic liquid (PolyIL) using combinations of broadband dielectric spectroscopy, specular neutron reflectivity, and simulations based on the Rayleigh's dissipation function formalism. Overall, we obtained the camel-shaped dependence of the capacitance on applied voltage, which originated from the responses of an adsorbed polymer layer to applied voltages. This work provides additional insights related to the effects of molecular weight in affecting structure and properties of electrode-polymer interfaces, which are essential for designing next-generation energy storage and harvesting devices.
Collapse
Affiliation(s)
- Rajeev Kumar
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
- Computational Sciences and Engineering Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
- Department of Mathematics, University of Tennessee, Knoxville, TN 37996, USA
| | - Jyoti P. Mahalik
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
- Department of Mathematics, University of Tennessee, Knoxville, TN 37996, USA
| | - Kevin S. Silmore
- Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Zaneta Wojnarowska
- Institute of Physics,University of Silesia,SMCEBI, 75 Pulku Piechoty 1A, 41-500 Chorzow, Poland
| | - Andrew Erwin
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
- School of Materials Science and Engineering, Georgia Tech, Atlanta, GA 30332, USA
| | - John F. Ankner
- Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Alexei P. Sokolov
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
- Department of Physics and Astronomy, University of Tennessee, Knoxville, TN 37996, USA
- Department of Chemistry, University of Tennessee, Knoxville, TN 37996, USA
| | - Bobby G. Sumpter
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
- Computational Sciences and Engineering Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Vera Bocharova
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| |
Collapse
|
44
|
Amith WD, Araque JC, Margulis CJ. A Pictorial View of Viscosity in Ionic Liquids and the Link to Nanostructural Heterogeneity. J Phys Chem Lett 2020; 11:2062-2066. [PMID: 32079397 DOI: 10.1021/acs.jpclett.0c00170] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Prototypical ionic liquids (ILs) are characterized by three structural motifs associated with (1) vicinal interactions, (2) the formation of positive-negative charge-alternating chains or networks, and (3) the alternation of these networks with apolar domains. In recent articles, we highlighted that the friction and mobility in these systems are nowhere close to being spatially homogeneous. This results in what one could call mechanical heterogeneity, where charge networks are intrinsically stiff and charge-depleted regions are softer, flexible, and mobile. This Letter attempts to provide a clear and visual connection between friction-associated with the dynamics of the structural motifs (in particular, the charge network)-and recent theoretical work by Yamaguchi linking the time-dependent viscosity of ILs to the decay of the charge alternation peak in the dynamic structure function. We propose that charge blurring associated with the loss of memory of where positive and negative charges are within networks is the key mechanism associated with viscosity in ILs. An IL will have low viscosity if a characteristic charge-blurring decorrelation time is low. With this in mind, engineering new low-viscosity ILs is reduced to understanding how to minimize this quantity.
Collapse
Affiliation(s)
| | - Juan C Araque
- School of Engineering, Benedictine College, Atchison, Kansas 66002, United States
| | - Claudio J Margulis
- Department of Chemistry, University of Iowa, Iowa City, Iowa 52242, United States
| |
Collapse
|
45
|
Wu F, Sharma S, Roy S, Halstenberg P, Gallington LC, Mahurin SM, Dai S, Bryantsev VS, Ivanov AS, Margulis CJ. Temperature Dependence of Short and Intermediate Range Order in Molten MgCl2 and Its Mixture with KCl. J Phys Chem B 2020; 124:2892-2899. [DOI: 10.1021/acs.jpcb.0c00745] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Fei Wu
- Department of Chemistry, University of Iowa, Iowa City, Iowa 52242, United States
| | - Shobha Sharma
- Department of Chemistry, University of Iowa, Iowa City, Iowa 52242, United States
| | - Santanu Roy
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Phillip Halstenberg
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Leighanne C. Gallington
- X-ray Science Division, Advanced Photon Source, Argonne National Laboratory, Argonne, Illinois 60439, United States
| | - Shannon M. Mahurin
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Sheng Dai
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Vyacheslav S. Bryantsev
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Alexander S. Ivanov
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Claudio J. Margulis
- Department of Chemistry, University of Iowa, Iowa City, Iowa 52242, United States
| |
Collapse
|
46
|
Kaur S, Gupta A, Kashyap HK. How Hydration Affects the Microscopic Structural Morphology in a Deep Eutectic Solvent. J Phys Chem B 2020; 124:2230-2237. [DOI: 10.1021/acs.jpcb.9b11753] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Supreet Kaur
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Aditya Gupta
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Hemant K. Kashyap
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| |
Collapse
|
47
|
Pontoni D, DiMichiel M, Deutsch M. Temperature evolution of the bulk nano-structure in a homologous series of room temperature ionic liquids. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2019.112280] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
48
|
Kaur S, Malik A, Kashyap HK. Anatomy of Microscopic Structure of Ethaline Deep Eutectic Solvent Decoded through Molecular Dynamics Simulations. J Phys Chem B 2019; 123:8291-8299. [DOI: 10.1021/acs.jpcb.9b06624] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- Supreet Kaur
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Akshay Malik
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Hemant K. Kashyap
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| |
Collapse
|
49
|
Zhao M, Wu B, Lall-Ramnarine SI, Ramdihal JD, Papacostas KA, Fernandez ED, Sumner RA, Margulis CJ, Wishart JF, Castner EW. Structural analysis of ionic liquids with symmetric and asymmetric fluorinated anions. J Chem Phys 2019; 151:074504. [PMID: 31438705 DOI: 10.1063/1.5111643] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Ionic liquids (ILs) with relatively low viscosities and broad windows of electrochemical stability are often constructed by pairing asymmetric cations with bisfluorosulfonylimide (FSI-) or bistriflimide (NTf2 -) anions. In this work, we systematically studied the structures of ILs with these anions and related perfluorobis-sulfonylimide anions with asymmetry and/or longer chains: (fluorosulfonyl)(trifluoromethylsulfonyl)imide (BSI0,1 -), bis(pentafluoroethylsulfonyl)imide (BETI-), and (trifluoromethylsulfonyl) (nonafluorobutylsulfonyl)imide (BSI1,4 -) using high energy X-ray scattering and molecular dynamics simulation methods. 1-alkyl-3-methylimidazolium cations with shorter (ethyl, Im2,1 +) and longer (octyl, Im1,8 +) hydrocarbon chains were selected to examine how the sizes of nonpolar hydrocarbon and fluorous chains affect IL structures and properties. In comparison with these, we also computationally explored the structure of ionic liquids with anions having longer fluorinated tails.
Collapse
Affiliation(s)
- Man Zhao
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, Piscataway, New Jersey 08854, USA
| | - Boning Wu
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, Piscataway, New Jersey 08854, USA
| | - Sharon I Lall-Ramnarine
- Chemistry Department, Queensborough Community College of the City University of New York, Bayside, New York 11364, USA
| | - Jasodra D Ramdihal
- Chemistry Department, Queensborough Community College of the City University of New York, Bayside, New York 11364, USA
| | - Kristina A Papacostas
- Chemistry Department, Queensborough Community College of the City University of New York, Bayside, New York 11364, USA
| | - Eddie D Fernandez
- Chemistry Department, Queensborough Community College of the City University of New York, Bayside, New York 11364, USA
| | - Rawlric A Sumner
- Chemistry Department, Queensborough Community College of the City University of New York, Bayside, New York 11364, USA
| | - Claudio J Margulis
- Department of Chemistry, The University of Iowa, Iowa City, Iowa 52242, USA
| | - James F Wishart
- Chemistry Division, Brookhaven National Laboratory, Upton, New York 11973, USA
| | - Edward W Castner
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, Piscataway, New Jersey 08854, USA
| |
Collapse
|
50
|
Kaur S, Shobhna, Kashyap HK. Insights Gained from Refined Force-Field for Pure and Aqueous Ethylene Glycol through Molecular Dynamics Simulations. J Phys Chem B 2019; 123:6543-6553. [DOI: 10.1021/acs.jpcb.9b03950] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Supreet Kaur
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Shobhna
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Hemant K. Kashyap
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| |
Collapse
|