1
|
Sharma P, Ganguly M, Doi A. Analytical developments in the synergism of copper particles and cysteine: a review. NANOSCALE ADVANCES 2024; 6:3476-3493. [PMID: 38989510 PMCID: PMC11232554 DOI: 10.1039/d4na00321g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 05/15/2024] [Indexed: 07/12/2024]
Abstract
Cysteine, a sulfur-containing amino acid, is a vital candidate for physiology. Coinage metal particles (both clusters and nanoparticles) are highly interesting for their spectacular plasmonic properties. In this case, copper is the most important candidate for its cost-effectiveness and abundance. However, rapid oxidation destroys the stability of copper particles, warranting the necessity of suitable capping agents and experimental conditions. Cysteine can efficiently carry out such a role. On the contrary, cysteine sensing is a vital step for biomedical science. This review article is based on a comparative account of copper particles with cysteine passivation and copper particles for cysteine sensing. For the deep understanding of readers, we discuss nanoparticles and nanoclusters, properties of cysteine, and importance of capping agents, along with various synthetic protocols and applications (sensing and bioimaging) of cysteine-capped copper particles (cysteine-capped copper nanoparticles and cysteine-capped copper nanoclusters). We also include copper nanoparticles and copper nanoclusters for cysteine sensing. As copper is a plasmonic material, fluorometric and colorimetric methods are mostly used for sensing. Real sample analysis for both copper particles with cysteine and copper particles for cysteine sensing are also incorporated in this review to demonstrate their practical applications. Both cysteine-capped copper particles and copper particles for cysteine sensing are the main essence of this review. The aspect of the synergism of copper and cysteine (unlike other amino acids) is quite promising for future researchers.
Collapse
Affiliation(s)
- Priyanka Sharma
- Department of Chemistry, Manipal University Jaipur Dehmi Kalan Jaipur 303007 India
| | - Mainak Ganguly
- Department of Chemistry, Manipal University Jaipur Dehmi Kalan Jaipur 303007 India
| | - Ankita Doi
- Department of Biosciences, Manipal University Jaipur Dehmi Kalan Jaipur 303007 India
| |
Collapse
|
2
|
Lai J, Pan Q, Ma Q, Shan X, Chen L, Gao J. Synthesis of High-Fluorescent Diphenyl-anthracene Derivatives and Application in Detection of Nitroaromatic Explosives and Fingerprint Identification. Chem Asian J 2024; 19:e202300775. [PMID: 38059381 DOI: 10.1002/asia.202300775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 11/24/2023] [Accepted: 11/30/2023] [Indexed: 12/08/2023]
Abstract
The development of high-intensity fluorescent materials is always the focuses and forefront projects because of their important applications in displays, sensing and detection fields. In recent years, the detection of explosives has attracted increasing attention due to security and counterterrorism issues. Herein, two diphenyl-anthracene (DPA) derivatives were designed and synthesized by introducing strong electron withdrawing fluorine atoms and cyano-groups to DPA, which exhibited strong fluorescence both in the solution and solid phase with the absolute quantum yields up to 70.4 % and 45.9 % respectively. The detection behavior of nitroaromatic explosives such as picric acid (PA), 2,4,6-trinitrotoluene (TNT) and 3-Nitropropionic acid (3-NP) also shows good sensitivity with the quenching constant as high as 6.3×104 L mol-1 . Theoretical calculation demonstrates that the fluorescence quenching behavior of the two DPA derivatives is caused by the behavior of photoinduced electron transfer (PET) and the resonance energy transfer (RET) studies explained the higher sensitivity and selectivity of both compounds towards PA than other nitro-containing explosives. Furthermore, the strong solid-state fluorescence of the DPA derivatives also shows excellent advantages in enhancing latent fingerprint recognition.
Collapse
Affiliation(s)
- Jiagen Lai
- College of Material Chemistry and Chemical Engineering Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education Key Laboratory of Organosilicon Material Technology of Zhejiang Province, Hangzhou Normal University, Hangzhou, 311121, Zhejiang, P. R. China
| | - Qinghua Pan
- College of Material Chemistry and Chemical Engineering Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education Key Laboratory of Organosilicon Material Technology of Zhejiang Province, Hangzhou Normal University, Hangzhou, 311121, Zhejiang, P. R. China
| | - Qingfang Ma
- College of Material Chemistry and Chemical Engineering Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education Key Laboratory of Organosilicon Material Technology of Zhejiang Province, Hangzhou Normal University, Hangzhou, 311121, Zhejiang, P. R. China
| | - Xiaoyue Shan
- College of Material Chemistry and Chemical Engineering Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education Key Laboratory of Organosilicon Material Technology of Zhejiang Province, Hangzhou Normal University, Hangzhou, 311121, Zhejiang, P. R. China
| | - Lian Chen
- College of Material Chemistry and Chemical Engineering Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education Key Laboratory of Organosilicon Material Technology of Zhejiang Province, Hangzhou Normal University, Hangzhou, 311121, Zhejiang, P. R. China
| | - Jianhua Gao
- College of Material Chemistry and Chemical Engineering Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education Key Laboratory of Organosilicon Material Technology of Zhejiang Province, Hangzhou Normal University, Hangzhou, 311121, Zhejiang, P. R. China
| |
Collapse
|
3
|
Agarwal A, Bhatta RP, Kachwal V, Laskar IR. Controlling the sensitivity and selectivity for the detection of nitro-based explosives by modulating the electronic substituents on the ligand of AIPE-active cyclometalated iridium(III) complexes. Dalton Trans 2023; 52:14182-14193. [PMID: 37755119 DOI: 10.1039/d3dt02198j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/28/2023]
Abstract
Nitroaromatic compounds are extremely explosive materials that pose a national security risk and raise environmental concerns. The design and development of sensitive and selective compounds for explosive materials are highly desirable. 'Aggregation-Induced Emission' (AIE) active materials are best suited for sensing purposes because of their sensitivity, fast detection time, and easy operation. By rationally incorporating substituents on the cyclometalated (C^N) ligand, four different AIE active iridium(III) based monocyclometalated complexes with the general formula [Ir(PPh3)2(H)(Cl)(C^N)] were synthesized. The phenyl ring of the phenyl pyridine cyclometalated portion of an iridium(III) complex was substituted with the right substituents to adjust the FMO levels thus, leading to appropriate alignment of the energy levels. Each of the resulting complexes displayed a significant property known as 'Aggregation-Induced Phosphorescent Emission' (AIPE). The complexes were subjected to structural characterization, electrochemical analysis, and photophysical property studies. The synthesized complexes were employed for the detection of aromatic nitro explosive compounds such as trinitrophenol (TNP) and trinitrotoluene (TNT) in the aqueous phase with a high degree of sensitivity. The sensing capabilities of each complex were assessed for these nitro explosive compounds and compared to those of the unsubstituted iridium(III) complex (M). Notably, the best limits of detection for TNP and TNT have been achieved with iridium(III) complexes [M1 (489 pM) and M3 (3.6 nM)] within the literature reported until now. For detecting picric acid with M1, FRET was found to be the potential mechanism, and for TNT, PET was found to be the cause of emission quenching by M3. Furthermore, for low-cost detection, filter paper-based sensing was also found effective for each complex. Real-field sensing of PA in soil samples was also performed.
Collapse
Affiliation(s)
- Annu Agarwal
- Department of Chemistry, BITS Pilani, Pilani Campus, Rajasthan, 333031, India.
| | - Ram Prasad Bhatta
- Department of Chemistry, BITS Pilani, Pilani Campus, Rajasthan, 333031, India.
| | - Vishal Kachwal
- Department of Chemistry, BITS Pilani, Pilani Campus, Rajasthan, 333031, India.
- Department of Engineering Science, University of Oxford, Oxford, UK
| | | |
Collapse
|
4
|
TÜMAY SO, YEŞİLOT S. Synthesis, characterization, and photophysical and fluorescence sensor behaviors of a new water-soluble double-bridged naphthalene diimide appended cyclotriphosphazene. Turk J Chem 2023; 47:1296-1306. [PMID: 38173741 PMCID: PMC10760813 DOI: 10.55730/1300-0527.3613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Revised: 10/31/2023] [Accepted: 07/27/2023] [Indexed: 01/05/2024] Open
Abstract
A new water-soluble template of double-bridged naphthalene diimide appended cyclotriphosphazene was prepared, and its photophysical and sensor behaviors were evaluated. The characterization of novel double-bridged naphthalene diimide appended cyclotriphosphazene (6) was carried out by NMR (1H, 13C, 31P) and mass spectroscopies. The photophysical behaviors of compound 6 were evaluated by UV-Vis absorption and fluorescence spectroscopies in various solvent systems and different concentrations. As an application for usability of the obtained water-soluble template in different applications, the fluorescence sensor property of compound 6 was investigated in the presence of many different competing species (organic acids, saccharides, nitroaromatic compounds, anions, and metal cations). The results obtained showed that compound 6 had selectivity against only the nitroaromatic species among the competing species tested.
Collapse
Affiliation(s)
- Süreyya Oğuz TÜMAY
- Department of Chemistry, Faculty of Science, Gebze Technical University, Kocaeli,
Turkiye
| | - Serkan YEŞİLOT
- Department of Chemistry, Faculty of Science, Gebze Technical University, Kocaeli,
Turkiye
| |
Collapse
|
5
|
Hanif S, Bhat ZUH, Abbasi A, Alam MJ, Ahmad M, Shakir M. Hydrolytically stabilized 5-hydroxyisophthalate appended Tb-MOF as a twofold chemosensor for discerning detection of 2,4,6-trinitrophenol and ferric ion: Structural, topological and mechanistic sensing exploration via experimental and computational studies. Inorganica Chim Acta 2023. [DOI: 10.1016/j.ica.2023.121488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/01/2023]
|
6
|
Sultana T, Mahato M, Tohora N, Das A, Datta P, Das SK. Phthalimide‐Based Off‐On‐Off Fluorosensor for Cascade Detection of Cyanide Ions and Picric Acid. ChemistrySelect 2023. [DOI: 10.1002/slct.202204388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2023]
Affiliation(s)
- Tuhina Sultana
- Department of Chemistry University of North Bengal, Raja Rammohunpur Darjeeling, West Bengal 734013 India
| | - Manas Mahato
- Department of Chemistry University of North Bengal, Raja Rammohunpur Darjeeling, West Bengal 734013 India
| | - Najmin Tohora
- Department of Chemistry University of North Bengal, Raja Rammohunpur Darjeeling, West Bengal 734013 India
| | - Ankita Das
- Centre for Healthcare Science and Technology Indian Institute of Engineering Science and Technology West Bengal 711103 India
| | - Pallab Datta
- Department of Pharmaceutics National Institute of Pharmaceutical Education and Research Kolkata West Bengal 700054 India
| | - Sudhir Kumar Das
- Department of Chemistry University of North Bengal, Raja Rammohunpur Darjeeling, West Bengal 734013 India
| |
Collapse
|
7
|
Bera A, Azad SA, Patra P, Sepay N, Jana R, Das T, Saha A, Samanta S. Synthesis of Multifused Pyrrolo[1,2- a]quinoline Systems by Tandem Aza-Michael-Aldol Reactions and Their Application to Molecular Sensing Studies. J Org Chem 2023; 88:5622-5638. [PMID: 36996425 DOI: 10.1021/acs.joc.3c00109] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/01/2023]
Abstract
Herein, we have presented a weak acid-promoted tandem aza-Michael-aldol strategy for the synthesis of diversely fused pyrrolo[1,2-a]quinoline (tricyclic to pentacyclic scaffolds) by the construction of both pyrrole and quinoline ring in one pot. The described protocol fabricated two C-N bonds and one C-C bond in the pyrrole-quinoline rings which have been sequentially formed under transition-metal-free conditions by the extrusion of eco-friendly water molecules. A ketorolac drug analogue has been synthesized following the current protocol, and one of the synthesized tricyclic pyrrolo[1,2-a]quinoline fluorophores has been used to detect highly toxic picric acid via the fluorescence quenching effect.
Collapse
Affiliation(s)
- Anirban Bera
- Department of Chemistry, Bidhannagar College, Kolkata 700064, India
- Department of Chemistry, Jadavpur University, Kolkata 700032, India
| | | | - Prasanta Patra
- Jhargram Raj College, Jhargram, West Bengal 721507, India
| | - Nayim Sepay
- Department of Chemistry, Lady Brabourne College, Kolkata 700 017, India
| | - Rathin Jana
- Department of Chemistry, Shahid Matangini Hazra Govt. General Degree College for Women, Kulberia, West Bengal 721649, India
| | - Tapas Das
- Department of Chemistry, National Institute of Technology, Jamshedpur 831014, India
| | - Amit Saha
- Department of Chemistry, Jadavpur University, Kolkata 700032, India
| | | |
Collapse
|
8
|
A Ratiometric, Turn-on Chromo-fluorogenic Sensor for Sequential Detection of Aluminium Ions and Picric acid. J Mol Struct 2023. [DOI: 10.1016/j.molstruc.2023.135357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023]
|
9
|
Pyrene, Anthracene, and Naphthalene-Based Azomethines for Fluorimetric Sensing of Nitroaromatic Compounds. J Fluoresc 2023:10.1007/s10895-023-03155-w. [PMID: 36752930 DOI: 10.1007/s10895-023-03155-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Accepted: 01/23/2023] [Indexed: 02/09/2023]
Abstract
Special attention is given to the development of rapid and sensitive detection of nitroaromatic explosives for homeland security and environmental concerns. As part of our contribution to the detection of nitroaromatic explosives, fluorescent materials (A), (B) and (C) were synthesized from the reaction of 1,2-diaminocyclohexane with pyrene-1-carbaldehyde, anthracene-9-carbaldehyde and 2-hydroxy-1-naphthaldehyde, respectively. The structures of the prepared fluorescent azomethine probes were confirmed using FTIR, 1H-NMR and 13C-NMR spectroscopies. The basis of the study is the use of the synthesized materials as fluorescent probes in the photophysical and fluorescence detection of some nitroaromatic explosives. Emission increases occurred due to aggregation caused by π-π stacking in synthesized azomethines. To measure the nitroaromatic detection capabilities of fluorescence probes, fluorescence titration experiments were performed using the photoluminescence spectroscopy. It was observed that compound A containing pyrene ring provided the best emission intensity-increasing effect due to aggregation with the lowest LOD value (14.96 μM) for the sensing of 4-nitrophenol. In compounds B and C, nitrobenzene with the lowest LOD (16.15 μM and 23.49 μM respectively) caused the most regular emission increase, followed by picric acid.
Collapse
|
10
|
More KS, Mirgane HA, Gosavi NM, Puyad AL, Bhosale SV. Tetraphenylethylene Based Fluorescent Chemosensor for the Selective Detection of Explosive Nitroaromatic Compounds. ChemistrySelect 2023. [DOI: 10.1002/slct.202204354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- Kerba S. More
- School of Chemical Sciences Goa University Taleigao Plateau, Goa 403206 India
| | - Harshad A. Mirgane
- School of Chemical Sciences Goa University Taleigao Plateau, Goa 403206 India
| | - Nilesh M. Gosavi
- D. P. Bhosale College Koregaon Dist.– Satara Maharashtra 415501 India
| | - Avinash L. Puyad
- School of Chemical Sciences Swami Ramanand Teerth Marathwada University Nanded 431606, Maharashtra India
| | | |
Collapse
|
11
|
Dey B, Pahari P, Sahoo SK, Kumar Atta A. Triazole-based pyrene-sugar analogues for selective detection of picric acid in water medium and paper strips. J Photochem Photobiol A Chem 2023. [DOI: 10.1016/j.jphotochem.2023.114647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/03/2023]
|
12
|
A 4-Aminophthalimide Derive Smart Molecule for Sequential Detection of Aluminum Ions and Picric Acid. J Photochem Photobiol A Chem 2023. [DOI: 10.1016/j.jphotochem.2023.114593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
|
13
|
Photophysical and Fluorescence Nitroaromatic Sensing Properties of Methylated Derivative of a Pamoic Acid Ester. J Fluoresc 2023; 33:77-90. [PMID: 36251202 DOI: 10.1007/s10895-022-03038-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 09/30/2022] [Indexed: 02/03/2023]
Abstract
Rapid and selective detection of nitroaromatic explosives is very important for public safety, life, and environmental health. Current instrumental techniques suffer from high cost and poor site used. In order to investigate fluorescence sensing of nitroaromatics, we prepare a new small fluorescence probe derived from pamoic acid. This study covers the synthesis of Pamoic acid based [diisopropyl 4,4'-methylenebis(3-methoxy-2-naphthoate)] (2) material and characterization of its structure. The methylation of Pamoic acid ester, which we have successfully synthesized in our previous studies, was carried out in this study. Determination of the photophysical and fluorescent nitroaromatic detection properties of the compound forms the basis of the study. Structural characterization of the synthesized compound [diisopropyl 4,4'-methylenebis(3-methoxy-2-naphthoate)] (2) was characterized using spectroscopic methods. In addition, Molecular structure of the synthesized compound was determined by single crystal X-ray diffraction studies. In the final step, compounds [diisopropyl 4,4'-methylenebis(3-hydroxy-2-naphthoate)] (1) and [diisopropyl 4,4'-methylenebis(3-methoxy-2-naphthoate)] (2) were tested as fluorescent probes for the detection of some nitroaromatic explosives. It is seen that Nitrobenzene provides the best quenching effect on the compound [diisopropyl 4,4'-methylenebis(3-hydroxy-2-naphthoate)] (1) containing the -OH group, with lowest the limit of detection (LOD) value. It was observed that Picric acid provided the best quenching effect with lowest the limit of detection (LOD) value in the compound [diisopropyl 4,4'-methylenebis(3-methoxy-2-naphthoate)] (2) obtained by methylation of the -OH group in the compound [diisopropyl 4,4'-methylenebis(3-hydroxy-2-naphthoate)] (1).
Collapse
|
14
|
Mahato M, Sarkar P, Sultana T, Tohora N, Ghanta S, Das A, Dutta P, Kumar Das S. Target Analyte Interaction with a New Julolidine Coupled Benzoxazole‐based Dyad: A combined Photophysical, Theoretical (DFT), and Bioimaging Study. ChemistrySelect 2022. [DOI: 10.1002/slct.202204033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Affiliation(s)
- Manas Mahato
- Department of Chemistry University of North Bengal, Raja Rammohunpur, Darjeeling West Bengal 734013 India
| | - Pallobi Sarkar
- Department of Chemistry University of North Bengal, Raja Rammohunpur, Darjeeling West Bengal 734013 India
| | - Tuhina Sultana
- Department of Chemistry University of North Bengal, Raja Rammohunpur, Darjeeling West Bengal 734013 India
| | - Najmin Tohora
- Department of Chemistry University of North Bengal, Raja Rammohunpur, Darjeeling West Bengal 734013 India
| | - Susanta Ghanta
- Department of Chemistry National Institute of Technology, Agartala, Barjala Jirania Tripura 799046 India
| | - Ankita Das
- Centre for Healthcare Science and Technology Indian Institute of Engineering Science and Technology West Bengal 711103 India
| | - Pallab Dutta
- Department of Pharmaceutics National Institute of Pharmaceutical Education and Research, Kolkata West Bengal 700054 India
| | - Sudhir Kumar Das
- Department of Chemistry University of North Bengal, Raja Rammohunpur, Darjeeling West Bengal 734013 India
| |
Collapse
|
15
|
Fabrication and photophysical assessment of quinoxaline based chemosensor: Selective determination of picric acid in hydrogel and aqueous medium. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.119816] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
16
|
Bal M, Tümer M, Köse M. Investigation of Chemosensing and Color Properties of Schiff Base Compounds Containing a 1,2,3-triazole Group. J Fluoresc 2022; 32:2237-2256. [PMID: 36044163 DOI: 10.1007/s10895-022-03007-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 07/26/2022] [Indexed: 10/14/2022]
Abstract
A series of Schiff base compounds (ER1-ER5) containing a 1,2,3-triazole and carboxylic acid groups were synthesized and their chemosensory properties towards anions (I-, CO32-, SO42-, NO2-, NO3-, CH3COO-, ClO3-, CNO-, N3-) and cations (Al3+, Ag+, Co2+, Cr3+, Cu2+, Fe3+, Hg2+, Mn2+, Ni2+, Zn2+, Cd2+, Pb2+). The compounds were also used as fluorescence probs for the detection of nitroaromatic compounds. The structural characterization of the synthesized compounds was elucidated using methods such as FT-IR, UV, FL, LC-MS, MALDI-TOF MS, 1H(13C) NMR. The effect of substitute groups (-CH3, -OCH3, -OH, -Cl and -Br) on the synthesized Schiff bases (ER1-ER5) on the chemosensory properties were compared. As the groups changed, the sensor and quenching effects of the molecule against anions and cations changed. Compound ER3 having methoxy (OCH3) group exhibited selective sensor properties against Fe3+ ion while compound ER5 with a chloride substitute (Cl) group showed selectivity for Cr3+ ion under 254 nm UV-lamp. The substitute effect was also observed for the sensing of anions. Under 254 nm UV-lamp, ER2 having the -OH group has a selective sensing property for CNO- and ER4 with the bromide (Br) group exhibited selectivity for N3- ion. The synthesized Schiff base compounds were also tested as fluorescence probs for the sensing of some nitroaromatic explosives.
Collapse
Affiliation(s)
- Mustafa Bal
- Department of Materials Science and Engineering, Kahramanmaras Sutcu Imam University, Kahramanmaraş, 46100, Turkey.
| | - Mehmet Tümer
- Chemistry Department, Kahramanmaras Sutcu Imam University, Kahramanmaraş, 46100, Turkey
| | - Muhammet Köse
- Chemistry Department, Kahramanmaras Sutcu Imam University, Kahramanmaraş, 46100, Turkey
| |
Collapse
|
17
|
Christopher Leslee DB, Karuppannan S. Unique carbazole – N,N-dimethylanline linked chalcone a colorimetric and fluorescent probe for picric acid explosive and its test strip analysis. J Photochem Photobiol A Chem 2022. [DOI: 10.1016/j.jphotochem.2022.113937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
18
|
Mukherjee D, Das P, Kundu S, Mandal B. Engineering of graphene quantum dots by varying the properties of graphene oxide for fluorescence detection of picric acid. CHEMOSPHERE 2022; 300:134432. [PMID: 35398072 DOI: 10.1016/j.chemosphere.2022.134432] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 03/14/2022] [Accepted: 03/23/2022] [Indexed: 06/14/2023]
Abstract
The study examines the effect of different forms of graphene oxide (GO) on the synthesis of graphene quantum dots (GQD). GO synthesized at various temperatures i.e. 30, 50, 110 °C possessed different structural and functional properties and was used as a substrate for GQD preparation. Thorough characterization of the GQDs in terms of their structural, morphological, functional, and optical properties was performed. The GQDs exhibited variation in their size and fluorescence properties depending upon the type of GO used. Hydrothermal reduction of GO, prepared at an oxidation temperature of 50 °C (GO-50), minimized the particle size (3.6 nm) and maximized the photoluminescence (PL) intensity and quantum yield (64.8%) of the GQD (GQD-50). GQD-50 was found to detect picric acid (PA) in an aqueous solution via 'turn-off' fluorescence quenching, unlike the other GQDs where the initial precursor is synthesized at 30, 110 °C. Experimental studies summarize that interaction between the fluorophore-quencher resulted in static quenching. The limit of detection was estimated to be 1.2 μM with a detection range of 0-200 μM. The work concludes that optimization of the substrate i.e. GO can result in the development of a simple, non-toxic, cost-effective GQD based sensor for PA detection. The study eliminates the need for doping/functionalization of GQDs as reported previously, and hence finds a promising impact on the development of sensors.
Collapse
Affiliation(s)
- Debarati Mukherjee
- Separation Science Laboratory, Department of Chemical Engineering, India Institute of Technology Guwahati, Guwahati, 781039, Assam, India.
| | - Pradip Das
- Separation Science Laboratory, Department of Chemical Engineering, India Institute of Technology Guwahati, Guwahati, 781039, Assam, India.
| | - Sukanya Kundu
- Separation Science Laboratory, Department of Chemical Engineering, India Institute of Technology Guwahati, Guwahati, 781039, Assam, India.
| | - Bishnupada Mandal
- Separation Science Laboratory, Department of Chemical Engineering, India Institute of Technology Guwahati, Guwahati, 781039, Assam, India.
| |
Collapse
|
19
|
Zhang C, Wang Y, Jiang Y, Zhang Y, Xie Y, Gong R, Hao Q. Substituent Effect: Synthesis of Three TNP‐Detecting Fluorescent Probes Based on Triazolothiadiazole‐Quinazolinone**. ChemistrySelect 2022. [DOI: 10.1002/slct.202200198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Chenglu Zhang
- School of Chemistry and Chemical Engineering Liaoning Normal University Dalian 116029 P. R. China
| | - Yiming Wang
- School of Chemistry and Chemical Engineering Liaoning Normal University Dalian 116029 P. R. China
| | - Yanhua Jiang
- School of Chemistry and Chemical Engineering Liaoning Normal University Dalian 116029 P. R. China
| | - Yining Zhang
- School of Chemistry and Chemical Engineering Liaoning Normal University Dalian 116029 P. R. China
| | - Yanxuan Xie
- School of Chemistry and Chemical Engineering Liaoning Normal University Dalian 116029 P. R. China
| | - Rongqing Gong
- School of Chemistry and Chemical Engineering Liaoning Normal University Dalian 116029 P. R. China
| | - Qiang Hao
- School of Chemistry and Chemical Engineering Liaoning Normal University Dalian 116029 P. R. China
| |
Collapse
|
20
|
Mahato M, Mardanya S, Rahman Z, Tohora N, Pramanik P, Ghanta S, Chowdhury AA, Kumar Shaw T, Kumar Das S. A Coumarin Coupled Electron Donor-Acceptor Dyad for Cascade Detection of Aluminium Ions and Explosive Nitroaromatic Compounds. J Photochem Photobiol A Chem 2022. [DOI: 10.1016/j.jphotochem.2022.114168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
21
|
S A, B S S, Reddy MLP. Phosphorescent Iridium Molecular Materials as Chemosensors for Nitroaromatic Explosives: Recent Advances. COMMENT INORG CHEM 2022. [DOI: 10.1080/02603594.2022.2090347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Affiliation(s)
- Anjali S
- Chemical Sciences and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology, Thiruvananthapuram-695 019, India
| | - Sasidhar B S
- Chemical Sciences and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology, Thiruvananthapuram-695 019, India
| | - M L P Reddy
- Chemical Sciences and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology, Thiruvananthapuram-695 019, India
| |
Collapse
|
22
|
Kumar A, Kumar V, Nath P, Satapathi S. 3,
6‐Diaminocarbazole
doped fluorescent electrospun nanofibers for highly sensitive detection of nitroaromatics. J Appl Polym Sci 2022. [DOI: 10.1002/app.52518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Anshu Kumar
- Department of Physics Indian Institute of Technology Roorkee Roorkee Uttarakhand India
| | - Vishal Kumar
- Department of Physics Indian Institute of Technology Roorkee Roorkee Uttarakhand India
| | - Prathul Nath
- Department of Physics Indian Institute of Technology Roorkee Roorkee Uttarakhand India
| | - Soumitra Satapathi
- Department of Physics Indian Institute of Technology Roorkee Roorkee Uttarakhand India
| |
Collapse
|
23
|
Ilyas Q, Waseem MT, Junaid HM, Ali Khan Z, Munir F, Shaikh AJ, Shahzad SA. Fluorescein based fluorescent and colorimetric sensors for sensitive detection of TNP explosive in aqueous medium: Application of logic gate. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 272:120994. [PMID: 35176646 DOI: 10.1016/j.saa.2022.120994] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Revised: 01/19/2022] [Accepted: 02/01/2022] [Indexed: 05/14/2023]
Abstract
Rapid detection of 2,4,6-trinitrophenol (TNP) in real samples has recently attained considerable attention from the perspective of national security, human health, and environmental safety. In this context, cost-effective and convenient detection of TNP explosive was accomplished through two new fluorescein based sensors F2 and F3. Sensors displayed effective fluorescence quenching response towards TNP in the aqueous medium. Highly sensitive fluorescence detection of TNP explosive (detection limit, 0.73 (F2) and 1.7 nM (F3)) was governed by ground-state charge transfer complex formation, facilitated by favorable H-bonding between sensor and TNP explosive. Fluorescence quenching mechanism for the detection of TNP explosive was investigated through UV-Visible absorption, dynamic light scattering (DLS), density functional theory (DFT) calculations, the Benesi-Hildebrand, and Job's plots. Advantageously, sensors displayed selective and immediate colorimetric recognition of TNP explosive. Importantly, sensors exhibited quick response time towards TNP even in the presence of potential interferences that make them highly suitable for practical applications. Sensors were successfully applied for fluorescent and colorimetric detection of TNP explosive in industrial water samples and fabrication of logic gates. Further, convenient contact mode and instant surface sensing of TNP explosive were achieved through the fabrication of fluorescent strips and explosive responsive test kits.
Collapse
Affiliation(s)
- Qanita Ilyas
- Department of Chemistry, COMSATS University Islamabad, Abbottabad Campus, Abbottabad 22060, Pakistan
| | - Muhammad Tahir Waseem
- Department of Chemistry, COMSATS University Islamabad, Abbottabad Campus, Abbottabad 22060, Pakistan
| | - Hafiz Muhammad Junaid
- Department of Chemistry, COMSATS University Islamabad, Abbottabad Campus, Abbottabad 22060, Pakistan
| | - Zulfiqar Ali Khan
- Department of Chemistry, Government College University, Faisalabad 38000, Pakistan
| | - Farhan Munir
- Department of Chemistry, COMSATS University Islamabad, Abbottabad Campus, Abbottabad 22060, Pakistan
| | - Ahson Jabbar Shaikh
- Department of Chemistry, COMSATS University Islamabad, Abbottabad Campus, Abbottabad 22060, Pakistan
| | - Sohail Anjum Shahzad
- Department of Chemistry, COMSATS University Islamabad, Abbottabad Campus, Abbottabad 22060, Pakistan.
| |
Collapse
|
24
|
Electrochemical Detection of Dinitrobenzene on Silicon Electrodes: Toward Explosives Sensors. SURFACES 2022. [DOI: 10.3390/surfaces5010015] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Detection of explosives is vital for protection and criminal investigations, and developing novel explosives’ sensors stands at the forefront of the analytical and forensic chemistry endeavors. Due to the presence of terminal nitro groups that can be electrochemically reduced, nitroaromatic compounds (NACs) have been an analytical target for explosives’ electrochemical sensors. Various electrode materials have been used to detect NACs in solution, including glassy carbon electrodes (GCE), platinum (Pt), and gold (Au) electrodes, by tracking the reversible oxidation/reduction properties of the NACs on these electrodes. Here, we show that the reduction of dinitrobenzene (DNB) on oxide-free silicon (Si–H) electrodes is irreversible with two reduction peaks that disappear within the successive voltammetric scanning. AFM imaging showed the formation of a polymeric film whose thickness scales up with the DNB concentration. This suggest that Si–H surfaces can serve as DNB sensors and possibly other explosive substances. Cyclic voltammetry (CV) measurements showed that the limit of detection (LoD) on Si–H is one order of magnitude lower than that obtained on GCE. In addition, EIS measurements showed that the LoD of DNB on Si–H is two orders of magnitude lower than the CV method. The fact that a Si–H surface can be used to track the presence of DNB makes it a suitable surface to be implemented as a sensing platform. To translate this concept into a sensor, however, it would require engineering and fabrication prospect to be compatible with the current semiconductor technologies.
Collapse
|
25
|
Tahir Waseem M, Muhammad Junaid H, Gul H, Ali Khan Z, Yu C, Anjum Shahzad S. Fluorene based fluorescent and colorimetric sensors for ultrasensitive detection of nitroaromatics in aqueous medium. J Photochem Photobiol A Chem 2022. [DOI: 10.1016/j.jphotochem.2021.113660] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
26
|
Influence of Air Flow on Luminescence Quenching in Polymer Films towards Explosives Detection Using Drones. Polymers (Basel) 2022; 14:polym14030483. [PMID: 35160472 PMCID: PMC8839006 DOI: 10.3390/polym14030483] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 01/21/2022] [Accepted: 01/24/2022] [Indexed: 11/16/2022] Open
Abstract
Explosive detection has become an increased priority in recent years for homeland security and counter-terrorism applications. Although drones may not be able to pinpoint the exact location of the landmines and explosives, the identification of the explosive vapor present in the surrounding air provides significant information and comfort to the personnel and explosives removal equipment operators. Several optical methods, such as the luminescence quenching of fluorescent polymers, have been used for explosive detection. In order to utilize sensing technique via unmanned vehicles or drones, it is very important to study how the air flow affects the luminescence quenching. We investigated the effects of air flow on the quenching efficiency of Poly(2,5-di(2′-ethylhexyl)-1,4-ethynylene) (PEE) by TNT molecules. We treated the TNT molecules incorporated into the polymer film as non-radiative recombination centers, and found that the time derivative of the non-radiative recombination rates was greater with faster air flows. Our investigations show that relatively high air flow into an optical sensing part is crucial to achieving fast PL quenching. We also found that a “continuous light excitation” condition during the exposure of TNT vapor greatly influences the PL quenching.
Collapse
|
27
|
Batool R, Riaz N, Junaid HM, Waseem MT, Khan ZA, Nawazish S, Farooq U, Yu C, Shahzad SA. Fluorene-Based Fluorometric and Colorimetric Conjugated Polymers for Sensitive Detection of 2,4,6-Trinitrophenol Explosive in Aqueous Medium. ACS OMEGA 2022; 7:1057-1070. [PMID: 35036769 PMCID: PMC8757457 DOI: 10.1021/acsomega.1c05644] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Accepted: 12/20/2021] [Indexed: 05/19/2023]
Abstract
Nitroaromatic explosives are a class of compounds that are responsible for various health hazards and terrorist outrages. Among these, sensitive detection of 2,4,6-trinitrophenol (TNP) explosive has always been highly desirable considering public health and national security. In this regard, three fluorene-based conjugated polymers (CP 1, CP 2, and CP 3) were synthesized through the Suzuki-Miyaura coupling reaction and were found to be highly sensitive for fluorescence detection of TNP with detection limits of 3.2, 5.7, and 6.1 pM, respectively. Excellent selectivity of CPs toward TNP was attributed to their unique π-π interactions based on fluorescence studies and density functional theory (DFT) calculations. The high sensitivity of CPs to TNP was attributed to the static quenching mechanism based on the photoinduced electron transfer process and was evaluated by fluorescence, UV-visible absorption, dynamic light scattering, Job's plots, the Benesi-Hildebrand plots, and DFT calculations. CPs were also used for colorimetric and real-water sample analysis for the detection of TNP explosive. Meanwhile, sensor-coated test strips were fabricated for on-site detection of TNP, which makes them convenient solid-supported sensors.
Collapse
Affiliation(s)
- Razia Batool
- Department
of Chemistry, COMSATS University Islamabad, Abbottabad Campus, Abbottabad 22060, Pakistan
| | - Noreen Riaz
- Department
of Chemistry, COMSATS University Islamabad, Abbottabad Campus, Abbottabad 22060, Pakistan
| | - Hafiz Muhammad Junaid
- Department
of Chemistry, COMSATS University Islamabad, Abbottabad Campus, Abbottabad 22060, Pakistan
| | - Muhammad Tahir Waseem
- Department
of Chemistry, COMSATS University Islamabad, Abbottabad Campus, Abbottabad 22060, Pakistan
| | - Zulfiqar Ali Khan
- Department
of Chemistry, Government College University, Faisalabad 38000, Pakistan
| | - Shamyla Nawazish
- Department
of Environmental Sciences, COMSATS University
Islamabad, Abbottabad Campus, Abbottabad 22060, Pakistan
| | - Umar Farooq
- Department
of Chemistry, COMSATS University Islamabad, Abbottabad Campus, Abbottabad 22060, Pakistan
| | - Cong Yu
- State
Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P.R. China
- University
of Science and Technology of China, Hefei 230026, P.R. China
| | - Sohail Anjum Shahzad
- Department
of Chemistry, COMSATS University Islamabad, Abbottabad Campus, Abbottabad 22060, Pakistan
| |
Collapse
|
28
|
Pramanik A, Majumder S, Sparkes HA, Mohanta S. A metal complex based fluorescent chemodosimeter for selective detection of 2,4-dinitrophenol and picric acid in aqueous medium. Dalton Trans 2022; 51:14700-14711. [DOI: 10.1039/d2dt01808j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The work in this report describes the syntheses, characterization, crystal structures, absorption and emission spectra and DFT calculations of three dizinc(II) compounds of composition [ZnII2L(μ1,1-N3)(N3)2] (1), [Zn2L'(2,4-dinitrophenolate)2] (2) and [Zn2L'(picrate)2]...
Collapse
|
29
|
Wang B, Jiang F, Ma X, Ma J. Investigation on sensing properties and mechanism of a simple fluorescent probe with 2,4,6-trinitrophenol in aqueous solution. PHOSPHORUS SULFUR 2021. [DOI: 10.1080/10426507.2021.1986500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Bin Wang
- Institute of Chemical Engineering, Anhui University of Science and Technology, Huainan, PR China
- Institute of Environment-friendly Materials and Occupational Health of Anhui University of Science and Technology (Wuhu), Wuhu, PR China
- Disaster Prevention and Control in Deep Coal Mines, Anhui University of Science and Technology, Huainan, PR China
| | - Fan Jiang
- Institute of Chemical Engineering, Anhui University of Science and Technology, Huainan, PR China
| | - Xiangmei Ma
- Institute of Chemical Engineering, Anhui University of Science and Technology, Huainan, PR China
- Institute of Environment-friendly Materials and Occupational Health of Anhui University of Science and Technology (Wuhu), Wuhu, PR China
| | - Jing Ma
- Institute of Chemical Engineering, Anhui University of Science and Technology, Huainan, PR China
| |
Collapse
|
30
|
Sharma V, Mehata MS. Rapid optical sensor for recognition of explosive 2,4,6-TNP traces in water through fluorescent ZnSe quantum dots. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 260:119937. [PMID: 34034075 DOI: 10.1016/j.saa.2021.119937] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 04/25/2021] [Accepted: 05/07/2021] [Indexed: 06/12/2023]
Abstract
In this report, blue fluorescent zinc selenide quantum dots (ZnSe QDs) were synthesized using 3-mercaptopropionic acid through a direct aqueous route at a lower temperature of 70 °C. The photoluminescence (PL) characteristics of ZnSe QDs have been employed to recognize nitroaromatic compounds, i.e., traces of 2,4,6-TNP (picric acid) in water. The sensing of nitroaromatic compounds was performed via fluorescence techniques. The PL band of ZnSe QDs observed at 490 nm is selectively quenched with an increasing concentration of picric acid in DI water and river water. For the proposed sensing probe, the Stern-Volmer (S-V) plot shows linearity over the range of 2.0 µM-0.25 mM with the detection limit of 12.4 × 10-6 M without any interference effect of other nitroaromatic compounds. The plausible mechanism of PL quenching is considered as the inner filter effect, based on absorption, PL and PL lifetimes.
Collapse
Affiliation(s)
- Vineet Sharma
- Laser-Spectroscopy Laboratory, Department of Applied Physics, Delhi Technological University, Bawana Road, Delhi 110042, India
| | - Mohan Singh Mehata
- Laser-Spectroscopy Laboratory, Department of Applied Physics, Delhi Technological University, Bawana Road, Delhi 110042, India.
| |
Collapse
|
31
|
Y-shaped AIEE active quinoxaline-benzothiazole conjugate for fluorimetric sensing of nitroaromatics in aqueous media. J Photochem Photobiol A Chem 2021. [DOI: 10.1016/j.jphotochem.2021.113444] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
32
|
Kalita B, Dutta P, Sen Sarma N. Riboflavin based conjugated biomolecule for ultrasensitive detection of nitrophenols. RSC Adv 2021; 11:28313-28319. [PMID: 35480746 PMCID: PMC9038046 DOI: 10.1039/d1ra04403f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 08/17/2021] [Indexed: 01/02/2023] Open
Abstract
Real time detection of explosive compounds in today's time is of utmost necessity due to security and severe environmental safety issues. Herein, we have synthesized a biobased conjugated molecular system from riboflavin and l-cystine utilized it for detecting picric acid in trace amount using optical sensing technique. The bioconjugate probe showed high quenching efficiency towards picric acid, which is 92.2%. In depth mechanistic study showed that ground state electrostatic interaction and inner filter effect are the factors leading to the diminishing of the probe's fluorescence intensity on addition of trace amount of the nitrophenol, picric acid. The detection limit of the conjugate is 0.37 nM which is extremely low and highly desirable for clinical applications of this system.
Collapse
Affiliation(s)
- Bandita Kalita
- Advanced Materials Laboratory, Physical Sciences Division, Institute of Advanced Study in Science and Technology Guwahati 781035 Assam India
| | - Priyanka Dutta
- Advanced Materials Laboratory, Physical Sciences Division, Institute of Advanced Study in Science and Technology Guwahati 781035 Assam India
| | - Neelotpal Sen Sarma
- Advanced Materials Laboratory, Physical Sciences Division, Institute of Advanced Study in Science and Technology Guwahati 781035 Assam India
| |
Collapse
|
33
|
Islam K, Narjinari H, Kumar A. Polycyclic Aromatic Hydrocarbons Bearing Polyethynyl Bridges: Synthesis, Photophysical Properties, and their Applications. ASIAN J ORG CHEM 2021. [DOI: 10.1002/ajoc.202100134] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Khadimul Islam
- Department of Chemistry Indian Institute of Technology Guwahati 781039 Guwahati Assam India
| | - Himani Narjinari
- Department of Chemistry Indian Institute of Technology Guwahati 781039 Guwahati Assam India
| | - Akshai Kumar
- Department of Chemistry Indian Institute of Technology Guwahati 781039 Guwahati Assam India
- Center for Nanotechnology Indian Institute of Technology Guwahati 781039 Guwahati Assam India
| |
Collapse
|
34
|
Zhou JJ, Xu W, Xiao JY, Hu XG, Xiao HP, Liu BL. A stable 3-D Cd(II) metal–organic framework formed by aromatic carboxylate and flexible imidazole ligand for sensing of nitroaromatic explosives. J COORD CHEM 2021. [DOI: 10.1080/00958972.2021.1935903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Jing Jing Zhou
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, China
| | - Wei Xu
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, China
| | - Jia Yu Xiao
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, China
| | - Xin Gen Hu
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, China
| | - Hong Ping Xiao
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, China
| | - Bao Lin Liu
- College of Chemistry and Chemical Engineering, Henan University, Kaifeng, China
| |
Collapse
|
35
|
Muniyasamy H, Chinnadurai C, Nelson M, Veeramanoharan A, Sepperumal M, Ayyanar S. Synthesis of C 3-Symmetric Triazine-Based Derivatives: Study of their AIEE, Mechanochromic Behaviors, and Detection of Picric Acid and Uric Acid in Aqueous Medium. Ind Eng Chem Res 2021. [DOI: 10.1021/acs.iecr.1c00827] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- Harikrishnan Muniyasamy
- Supramolecular and Organometallic Chemistry Laboratory, Department of Inorganic Chemistry, School of Chemistry, Madurai Kamaraj University, Madurai, Tamilnadu 625 021, India
| | - Chithiraikumar Chinnadurai
- Supramolecular and Organometallic Chemistry Laboratory, Department of Inorganic Chemistry, School of Chemistry, Madurai Kamaraj University, Madurai, Tamilnadu 625 021, India
| | - Malini Nelson
- Supramolecular and Organometallic Chemistry Laboratory, Department of Inorganic Chemistry, School of Chemistry, Madurai Kamaraj University, Madurai, Tamilnadu 625 021, India
| | - Ashokkumar Veeramanoharan
- Supramolecular and Organometallic Chemistry Laboratory, Department of Inorganic Chemistry, School of Chemistry, Madurai Kamaraj University, Madurai, Tamilnadu 625 021, India
| | - Murugesan Sepperumal
- Supramolecular and Organometallic Chemistry Laboratory, Department of Inorganic Chemistry, School of Chemistry, Madurai Kamaraj University, Madurai, Tamilnadu 625 021, India
| | - Siva Ayyanar
- Supramolecular and Organometallic Chemistry Laboratory, Department of Inorganic Chemistry, School of Chemistry, Madurai Kamaraj University, Madurai, Tamilnadu 625 021, India
| |
Collapse
|
36
|
Apak R, Çekiç SD, Üzer A, Çapanoğlu E, Çelik SE, Bener M, Can Z, Durmazel S. Colorimetric sensors and nanoprobes for characterizing antioxidant and energetic substances. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2020; 12:5266-5321. [PMID: 33170182 DOI: 10.1039/d0ay01521k] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The development of analytical techniques for antioxidant compounds is important, because antioxidants that can inactivate reactive species and radicals are health-beneficial compounds, also used in the preservation of food and protection of almost every kind of organic substance from oxidation. Energetic substances include explosives, pyrotechnics, propellants and fuels, and their determination at bulk/trace levels is important for the safety and well-being of modern societies exposed to various security threats. Most of the time, in field/on site detection of these important analytes necessitates the use of colorimetric sensors and probes enabling naked-eye detection, or low-cost and easy-to-use fluorometric sensors. The use of nanosensors brings important advantages to this field of analytical chemistry due to their various physico-chemical advantages of increased surface area, surface plasmon resonance absorption of noble metal nanoparticles, and superior enzyme-mimic catalytic properties. Thus, this critical review focuses on the design strategies for colorimetric sensors and nanoprobes in characterizing antioxidant and energetic substances. In this regard, the main themes and properties in optical sensor design are defined and classified. Nanomaterial-based optical sensors/probes are discussed with respect to their mechanisms of operation, namely formation and growth of noble metal nanoparticles, their aggregation and disaggregation, displacement of active constituents by complexation or electrostatic interaction, miscellaneous mechanisms, and the choice of metallic oxide nanoparticles taking part in such formulations.
Collapse
Affiliation(s)
- Reşat Apak
- Analytical Chemistry Division, Department of Chemistry, Faculty of Engineering, Istanbul University-Cerrahpaşa, Avcilar 34320, Istanbul, Turkey.
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Delente JM, Umadevi D, Byrne K, Schmitt W, Watson GW, Gunnlaugsson T, Shanmugaraju S. Hyper-crosslinked 4-amino-1,8-naphthalimide Tröger’s base containing pyridinium covalent organic polymer (COP) for discriminative fluorescent sensing of chemical explosives. Supramol Chem 2020. [DOI: 10.1080/10610278.2020.1825715] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- Jason M. Delente
- School of Chemistry and Trinity Biomedical Sciences Institute, Trinity College Dublin, The University of Dublin, Ireland
- AMBER (Advanced Materials and Bioengineering Research) Centre, Trinity College Dublin, The University of Dublin, Ireland
| | - Deivasigamani Umadevi
- School of Chemistry and Centre for Research on Adaptive Nanostructures and Nanodevices (CRANN), Trinity College Dublin, The University of Dublin, Ireland
| | - Kevin Byrne
- School of Chemistry and Centre for Research on Adaptive Nanostructures and Nanodevices (CRANN), Trinity College Dublin, The University of Dublin, Ireland
| | - Wolfgang Schmitt
- AMBER (Advanced Materials and Bioengineering Research) Centre, Trinity College Dublin, The University of Dublin, Ireland
- School of Chemistry and Centre for Research on Adaptive Nanostructures and Nanodevices (CRANN), Trinity College Dublin, The University of Dublin, Ireland
| | - Graeme W. Watson
- School of Chemistry and Centre for Research on Adaptive Nanostructures and Nanodevices (CRANN), Trinity College Dublin, The University of Dublin, Ireland
| | - Thorfinnur Gunnlaugsson
- School of Chemistry and Trinity Biomedical Sciences Institute, Trinity College Dublin, The University of Dublin, Ireland
- AMBER (Advanced Materials and Bioengineering Research) Centre, Trinity College Dublin, The University of Dublin, Ireland
| | | |
Collapse
|
38
|
Gong W, Li H, Gong X, Zhang Z, Lu Z. Fabrication of amine functionalized CdSe@SiO 2 nanoparticles as fluorescence nanosensor for highly selective and sensitive detection of picric acid. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2020; 233:118221. [PMID: 32151984 DOI: 10.1016/j.saa.2020.118221] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2019] [Revised: 03/02/2020] [Accepted: 03/02/2020] [Indexed: 06/10/2023]
Abstract
In this work, amino functionalized CdSe-silica core-shell nanoparticles (NH2-CdSe@SiO2 NPs) were constructed as probe to detect picric acid (PA). The CdSe QDs were embedded in SiO2 nanoparticles and modified with amino groups on the surface. The nitro explosives are electron deficient in nature, which will have stronger affinity for amines and resulted in fluorescence quenching of quantum dots. It was proved that this strategy is selective, easy and sensitive enough for sensing PA with a detection limit of 0.5 × 10-7 M.
Collapse
Affiliation(s)
- Wen Gong
- Department of Cardiology, The Third People's Hospital of Hubei Province Wuhan, 430030, China
| | - Hang Li
- Department of Radiology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, Hubei Province, People's Republic of China
| | - Xiaoming Gong
- Department of Radiology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, Hubei Province, People's Republic of China
| | - Zaipeng Zhang
- Department of Radiology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, Hubei Province, People's Republic of China.
| | - Zhiyan Lu
- Department of Radiology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, Hubei Province, People's Republic of China.
| |
Collapse
|
39
|
Venkatappa L, Ture SA, Yelamaggad CV, Narayanan Naranammalpuram Sundaram V, Martínez‐Máñez R, Abbaraju V. Mechanistic Insight into the Turn‐Off Sensing of Nitroaromatic Compounds Employing Functionalized Polyaniline. ChemistrySelect 2020. [DOI: 10.1002/slct.202001170] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Lakshmidevi Venkatappa
- Materials Chemistry LaboratoryDepartment of Materials Science, Gulbarga University Kalaburagi 585106 India
| | | | | | | | - Ramón Martínez‐Máñez
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y DesarrolloTecnológico (IDM). Universitat Politècnica de ValènciaUniversitat de València, Camino de Vera s/n 46022 Valencia Spain
- CIBER de Bioingeniería, Biomateriales yNanomedicina (CIBER-BBN) Spain
| | - Venkataraman Abbaraju
- Materials Chemistry LaboratoryDepartment of Materials Science, Gulbarga University Kalaburagi 585106 India
- Department of ChemistryGulbarga University Kalaburagi 585106 India
| |
Collapse
|
40
|
Fusco S, Parisi E, Volino S, Manfredi C, Centore R. Redox and Emission Properties of Triazolo-Triazole Derivatives and Copper(II) Complexes. J SOLUTION CHEM 2020. [DOI: 10.1007/s10953-020-00975-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
41
|
Jadoon T, Mahmood T, Ayub K. Silver-graphene quantum dots based electrochemical sensor for trinitrotoluene and p-nitrophenol. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2020.112878] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
42
|
Kadian S, Manik G. A highly sensitive and selective detection of picric acid using fluorescent sulfur-doped graphene quantum dots. LUMINESCENCE 2020; 35:763-772. [PMID: 31984670 DOI: 10.1002/bio.3782] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 12/18/2019] [Accepted: 01/12/2020] [Indexed: 02/06/2023]
Abstract
The development of an analytical probe to monitor highly mutagenic picric acid (PA) carries enormous significance for the environment and for health. A novel, simple and rapid fluorescence analytical assay using sulfur-doped graphene quantum dots (SGQDs) was designed for the highly sensitive and selective detection of PA. SGQDs were synthesized via simple pyrolysis of 3-mercaptopropionic acid and citric acid and characterized using advanced analytical techniques. Fluorescence intensity (FI) of SGQDs was markedly quenched by addition of PA, attributed to the inner filter effect and dominating static quenching mechanism between the two, in addition to a significant colour change. The calibration curve of the proposed assay exhibited a favourable linearity between quenched FI and PA concentration over the 0.1-100 μΜ range with a lowest detection limit of 0.093 μΜ and a correlation coefficient of 0.9967. The analytical assay was investigated for detection of trace amounts of PA in pond and rain water samples and showed great potential for practical applications with both acceptable recovery (98.0-100.8%) and relative standard deviation (1.24-4.67%). Analytical performance of the assay in terms of its detection limit, linearity range, and recovery exhibited reasonable superiority over previously reported methods, thereby holding enormous promise as a simple, sensitive, and selective method for detection of PA.
Collapse
Affiliation(s)
- Sachin Kadian
- Department of Polymer and Process Engineering, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, India
| | - Gaurav Manik
- Department of Polymer and Process Engineering, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, India
| |
Collapse
|
43
|
Li X, Wang C, Song W, Meng C, Zuo C, Xue Y, Lai WY, Huang W. Electron-Rich π-Extended Diindolotriazatruxene-Based Chemosensors with Highly Selective and Rapid Responses to Nitroaromatic Explosives. Chempluschem 2020; 84:1623-1629. [PMID: 31943936 DOI: 10.1002/cplu.201900347] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 08/30/2019] [Indexed: 11/07/2022]
Abstract
A series of electron-rich π-extended diindolotriazatruxene-based compounds DIT, 4Py-DIT (bearing pyrene units) and 4PyF-DIT (bearing fluorene units) have been explored and investigated as fluorescence chemosensors. Quantitative analysis through fluorescence titrations showed that the resulting DIT molecules exhibited highly selective response to electron-deficient nitroaromatic explosives. The calculated Stern-Volmer quenching constants (>4.0×103 M-1 ) revealed that these sensors were much more sensitive in solution compared to most of the existing small-molecule fluorescence chemosensors based on pyrene, triphenylene, triphenylamine, and triazatruxene skeletons. Fluorescence quenching showed that the sensors adsorbed on paper were sensitive to explosives in the solid, solution, and vapor phases, with fast response times of about 10 s. Moreover, these chemosensors are reusable for the detection of nitroaromatic compounds as they recover their fluorescence intensity after quenching.
Collapse
Affiliation(s)
- Xiangchun Li
- Key Laboratory for Organic Electronics and Information Displays (KLOEID) Institute of Advanced Materials (IAM) Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing, 210023, P. R. China
| | - Chunyu Wang
- Key Laboratory for Organic Electronics and Information Displays (KLOEID) Institute of Advanced Materials (IAM) Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing, 210023, P. R. China
| | - Wan Song
- Key Laboratory for Organic Electronics and Information Displays (KLOEID) Institute of Advanced Materials (IAM) Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing, 210023, P. R. China
| | - Cheng Meng
- Key Laboratory for Organic Electronics and Information Displays (KLOEID) Institute of Advanced Materials (IAM) Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing, 210023, P. R. China
| | - Chao Zuo
- Key Laboratory for Organic Electronics and Information Displays (KLOEID) Institute of Advanced Materials (IAM) Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing, 210023, P. R. China
| | - Yibo Xue
- Key Laboratory for Organic Electronics and Information Displays (KLOEID) Institute of Advanced Materials (IAM) Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing, 210023, P. R. China
| | - Wen-Yong Lai
- Key Laboratory for Organic Electronics and Information Displays (KLOEID) Institute of Advanced Materials (IAM) Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing, 210023, P. R. China.,Shaanxi Institute of Flexible Electronics (SIFE), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, 710072, Shaanxi, P. R. China
| | - Wei Huang
- Key Laboratory for Organic Electronics and Information Displays (KLOEID) Institute of Advanced Materials (IAM) Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing, 210023, P. R. China.,Shaanxi Institute of Flexible Electronics (SIFE), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, 710072, Shaanxi, P. R. China
| |
Collapse
|
44
|
Delente JM, Umadevi D, Shanmugaraju S, Kotova O, Watson GW, Gunnlaugsson T. Aggregation induced emission (AIE) active 4-amino-1,8-naphthalimide-Tröger's base for the selective sensing of chemical explosives in competitive aqueous media. Chem Commun (Camb) 2020; 56:2562-2565. [DOI: 10.1039/c9cc08457f] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The 4-amino-1,8-naphthalimide Tröger's base based AIE-active supramolecular scaffold was synthesized and employed as a highly selective and sensitive fluorescent sensor for nitroaromatic explosives sensing in competitive aqueous media.
Collapse
Affiliation(s)
- Jason M. Delente
- School of Chemistry and Trinity Biomedical Sciences Institute
- Trinity College Dublin
- The University of Dublin
- Dublin 2
- Ireland
| | - Deivasigamani Umadevi
- School of Chemistry and Centre for Research on Adaptive Nanostructures and Nanodevices (CRANN)
- Trinity College Dublin
- The University of Dublin
- Dublin-2
- Ireland
| | | | - Oxana Kotova
- School of Chemistry and Trinity Biomedical Sciences Institute
- Trinity College Dublin
- The University of Dublin
- Dublin 2
- Ireland
| | - Graeme W. Watson
- School of Chemistry and Centre for Research on Adaptive Nanostructures and Nanodevices (CRANN)
- Trinity College Dublin
- The University of Dublin
- Dublin-2
- Ireland
| | - Thorfinnur Gunnlaugsson
- School of Chemistry and Trinity Biomedical Sciences Institute
- Trinity College Dublin
- The University of Dublin
- Dublin 2
- Ireland
| |
Collapse
|
45
|
Benzo[ghi]perylene and coronene as ratiometric fluorescence probes for the selective sensing of nitroaromatic explosives. Talanta 2020; 207:120316. [DOI: 10.1016/j.talanta.2019.120316] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 08/30/2019] [Accepted: 09/03/2019] [Indexed: 11/20/2022]
|
46
|
Wu P, Xia L, Huangfu M, Fu F, Wang M, Wen B, Yang Z, Wang J. Lanthanide-Based Metal–Organic Frameworks Containing “V-Shaped” Tetracarboxylate Ligands: Synthesis, Crystal Structures, “Naked-Eye” Luminescent Detection, and Catalytic Properties. Inorg Chem 2019; 59:264-273. [DOI: 10.1021/acs.inorgchem.9b02177] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Pengyan Wu
- School of Chemistry and Materials Science and Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, Jiangsu Normal University, Xuzhou, Jiangsu 221116, People’s Republic of China
| | - Lingling Xia
- School of Chemistry and Materials Science and Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, Jiangsu Normal University, Xuzhou, Jiangsu 221116, People’s Republic of China
| | - Mengjie Huangfu
- School of Chemistry and Materials Science and Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, Jiangsu Normal University, Xuzhou, Jiangsu 221116, People’s Republic of China
| | - Fubin Fu
- School of Chemistry and Materials Science and Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, Jiangsu Normal University, Xuzhou, Jiangsu 221116, People’s Republic of China
| | - Mengqiu Wang
- School of Chemistry and Materials Science and Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, Jiangsu Normal University, Xuzhou, Jiangsu 221116, People’s Republic of China
| | - Bingxin Wen
- School of Chemistry and Materials Science and Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, Jiangsu Normal University, Xuzhou, Jiangsu 221116, People’s Republic of China
| | - Ziyun Yang
- School of Chemistry and Materials Science and Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, Jiangsu Normal University, Xuzhou, Jiangsu 221116, People’s Republic of China
| | - Jian Wang
- School of Chemistry and Materials Science and Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, Jiangsu Normal University, Xuzhou, Jiangsu 221116, People’s Republic of China
| |
Collapse
|
47
|
Luminescent sensors for nitroaromatic compound detection: Investigation of mechanism and evaluation of suitability of using in screening test in forensics. Microchem J 2019. [DOI: 10.1016/j.microc.2019.104037] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
48
|
Kou M, Zhai X, Duan WL, Zhang P, Martí-Rujas J, Guo F. Exploring the sensing behavior in the detection of nitroaromatics using coordination complexes based on 4,4′-(1,3-phenylenedioxy)-dianiline ligand. Inorganica Chim Acta 2019. [DOI: 10.1016/j.ica.2019.05.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
49
|
Li Y, Wang X, Xing C, Zhang X, Liang Z, Wang X, Zhang K, Wang Y, Liu D, Fan W, Dai F. Two alkynyl functionalized Co(II)-MOFs as fluorescent sensors exhibiting selectivity and sensitivity for Fe3+ and nitroaromatic compounds. CHINESE CHEM LETT 2019. [DOI: 10.1016/j.cclet.2019.03.014] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
50
|
Xu W, Chen H, Xia Z, Ren C, Han J, Sun W, Wei Q, Xie G, Chen S. A Robust TbIII-MOF for Ultrasensitive Detection of Trinitrophenol: Matched Channel Dimensions and Strong Host–Guest Interactions. Inorg Chem 2019; 58:8198-8207. [DOI: 10.1021/acs.inorgchem.9b01008] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Wenfeng Xu
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi’an 710127, China
| | - Hanhua Chen
- College of Chemistry & Chemical Engineering, Xi’an Shiyou University, Xi’an 710065, China
| | - Zhengqiang Xia
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi’an 710127, China
| | - Chongting Ren
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi’an 710127, China
| | - Jing Han
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi’an 710127, China
| | - Wujuan Sun
- College of Chemistry & Chemical Engineering, Xi’an Shiyou University, Xi’an 710065, China
| | - Qing Wei
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi’an 710127, China
| | - Gang Xie
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi’an 710127, China
| | - Sanping Chen
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi’an 710127, China
| |
Collapse
|