1
|
Nag S, Bisker G. Dissipative Self-Assembly of Patchy Particles under Nonequilibrium Drive: A Computational Study. J Chem Theory Comput 2024; 20:8844-8861. [PMID: 39365844 PMCID: PMC11500309 DOI: 10.1021/acs.jctc.4c00856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 08/24/2024] [Accepted: 09/12/2024] [Indexed: 10/06/2024]
Abstract
Inspired by biology and implemented using nanotechnology, the self-assembly of patchy particles has emerged as a pivotal mechanism for constructing complex structures that mimic natural systems with diverse functionalities. Here, we explore the dissipative self-assembly of patchy particles under nonequilibrium conditions, with the aim of overcoming the constraints imposed by equilibrium assembly. Utilizing extensive Monte Carlo (MC) and Molecular Dynamics (MD) simulations, we provide insight into the effects of external forces that mirror natural and chemical processes on the assembly rates and the stability of the resulting assemblies comprising 8, 10, and 13 patchy particles. Implemented by a favorable bond-promoting drive in MC or a pulsed square wave potential in MD, our simulations reveal the role these external drives play in accelerating assembly kinetics and enhancing structural stability, evidenced by a decrease in the time to first assembly and an increase in the duration the system remains in an assembled state. Through the analysis of an order parameter, entropy production, bond dynamics, and interparticle forces, we unravel the underlying mechanisms driving these advancements. We also validated our key findings by simulating a larger system of 100 patchy particles. Our comprehensive results not only shed light on the impact of external stimuli on self-assembly processes but also open a promising pathway for expanding the application by leveraging patchy particles for novel nanostructures.
Collapse
Affiliation(s)
- Shubhadeep Nag
- Department
of Biomedical Engineering, Faculty of Engineering, Tel Aviv University, Tel Aviv 69978, Israel
| | - Gili Bisker
- Department
of Biomedical Engineering, Faculty of Engineering, Tel Aviv University, Tel Aviv 69978, Israel
- The
Center for Physics and Chemistry of Living Systems, Tel Aviv University, Tel Aviv 6997801, Israel
- The
Center for Nanoscience and Nanotechnology, Tel Aviv University, Tel Aviv 6997801, Israel
- The
Center for Light-Matter Interaction, Tel
Aviv University, Tel Aviv 6997801, Israel
- The
Center for Computational Molecular and Materials Science, Tel Aviv University, Tel Aviv 6997801, Israel
| |
Collapse
|
2
|
Ali M, Lin IN. Developing tiny-sized particles, different modification behaviors of gold atoms, and nucleating distorted particles. NANOSCALE ADVANCES 2023; 5:3871-3878. [PMID: 37496626 PMCID: PMC10367953 DOI: 10.1039/d3na00346a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Accepted: 06/30/2023] [Indexed: 07/28/2023]
Abstract
The study of tiny-sized particles is beneficial in many ways. This has been the subject of many studies. The development of a tiny-sized particle depends on the attained dynamics of the atoms. In the development process of a tiny-sized particle, gold atoms must deal with different modification behaviors. Photons traveling along the air-solution interface also alter the characteristics of a developing tiny-sized particle. The electronic structures, modification behaviors, and attained dynamics of the atoms mainly contribute toward the development of tiny-sized particles. Energy under the supplied source and the local resulting forces collectively bind gold atoms. Both internally and externally driven dynamics influence the development process of different tiny-sized particles. Atoms in such developed tiny-sized particles do not experience the collective oscillations upon photons traveling along the air-solution interface. In the study of binding atoms, it is essential to consider the roles of both energy and force. Here, the development of tiny particles having different sizes presents a convincing discussion. Nucleating a distorted particle from the non-uniform amalgamation of tiny-sized particles is also discussed.
Collapse
Affiliation(s)
- Mubarak Ali
- Department of Physics, COMSATS University Islamabad Islamabad Campus, Park Road 45550 Pakistan
| | - I-Nan Lin
- Department of Physics, Tamkang University Tamsui District New Taipei City 25137 Taiwan
| |
Collapse
|
3
|
Marro N, Suo R, Naden AB, Kay ER. Constitutionally Selective Dynamic Covalent Nanoparticle Assembly. J Am Chem Soc 2022; 144:14310-14321. [PMID: 35901233 PMCID: PMC9376925 DOI: 10.1021/jacs.2c05446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
![]()
The future of materials chemistry will be defined by
our ability
to precisely arrange components that have considerably larger dimensions
and more complex compositions than conventional molecular or macromolecular
building blocks. However, exerting structural and constitutional control
in the assembly of nanoscale entities presents a considerable challenge.
Dynamic covalent nanoparticles are emerging as an attractive category
of reaction-enabled solution-processable nanosized building block
through which the rational principles of molecular synthetic chemistry
can be extended into the nanoscale. From a mixture of two hydrazone-based
dynamic covalent nanoparticles with complementary reactivity, specific
molecular instructions trigger selective assembly of intimately mixed
heteromaterial (Au–Pd) aggregates or materials highly enriched
in either one of the two core materials. In much the same way as complementary
reactivity is exploited in synthetic molecular chemistry, chemospecific
nanoparticle-bound reactions dictate building block connectivity;
meanwhile, kinetic regioselectivity on the nanoscale regulates the
detailed composition of the materials produced. Selectivity, and hence
aggregate composition, is sensitive to several system parameters.
By characterizing the nanoparticle-bound reactions in isolation, kinetic
models of the multiscale assembly network can be constructed. Despite
ignoring heterogeneous physical processes such as aggregation and
precipitation, these simple kinetic models successfully link the underlying
molecular events with the nanoscale assembly outcome, guiding rational
optimization to maximize selectivity for each of the three assembly
pathways. With such predictive construction strategies, we can anticipate
that reaction-enabled nanoparticles can become fully incorporated
in the lexicon of synthetic chemistry, ultimately establishing a synthetic
science that manipulates molecular and nanoscale components with equal
proficiency.
Collapse
Affiliation(s)
- Nicolas Marro
- EaStCHEM School of Chemistry, University of St Andrews, North Haugh, St Andrews, KY16 9ST, U.K
| | - Rongtian Suo
- EaStCHEM School of Chemistry, University of St Andrews, North Haugh, St Andrews, KY16 9ST, U.K
| | - Aaron B Naden
- EaStCHEM School of Chemistry, University of St Andrews, North Haugh, St Andrews, KY16 9ST, U.K
| | - Euan R Kay
- EaStCHEM School of Chemistry, University of St Andrews, North Haugh, St Andrews, KY16 9ST, U.K
| |
Collapse
|
4
|
Mati IK, Edwards W, Marson D, Howe EJ, Stinson S, Posocco P, Kay ER. Probing Multiscale Factors Affecting the Reactivity of Nanoparticle-Bound Molecules. ACS NANO 2021; 15:8295-8305. [PMID: 33938222 DOI: 10.1021/acsnano.0c09190] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The structures and physicochemical properties of surface-stabilizing molecules play a critical role in defining the properties, interactions, and functionality of hybrid nanomaterials such as monolayer-stabilized nanoparticles. Concurrently, the distinct surface-bound interfacial environment imposes very specific conditions on molecular reactivity and behavior in this setting. Our ability to probe hybrid nanoscale systems experimentally remains limited, yet understanding the consequences of surface confinement on molecular reactivity is crucial for enabling predictive nanoparticle synthon approaches for postsynthesis engineering of nanoparticle surface chemistry and construction of devices and materials from nanoparticle components. Here, we have undertaken an integrated experimental and computational study of the reaction kinetics for nanoparticle-bound hydrazones, which provide a prototypical platform for understanding chemical reactivity in a nanoconfined setting. Systematic variation of just one molecular-scale structural parameter-the distance between reactive site and nanoparticle surface-showed that the surface-bound reactivity is influenced by multiscale effects. Nanoparticle-bound reactions were tracked in situ using 19F NMR spectroscopy, allowing direct comparison to the reactions of analogous substrates in bulk solution. The surface-confined reactions proceed more slowly than their solution-phase counterparts, and kinetic inhibition becomes more significant for reactive sites positioned closer to the nanoparticle surface. Molecular dynamics simulations allowed us to identify distinct supramolecular architectures and unexpected dynamic features of the surface-bound molecules that underpin the experimentally observed trends in reactivity. This study allows us to draw general conclusions regarding interlinked structural and dynamical features across several length scales that influence interfacial reactivity in monolayer-confined environments.
Collapse
Affiliation(s)
- Ioulia K Mati
- EaStCHEM School of Chemistry, University of St Andrews, North Haugh, St Andrews, KY16 9ST, U.K
| | - William Edwards
- EaStCHEM School of Chemistry, University of St Andrews, North Haugh, St Andrews, KY16 9ST, U.K
| | - Domenico Marson
- Department of Engineering and Architecture, University of Trieste, Piazzale Europa 1, 34127 Trieste, Italy
| | - Edward J Howe
- EaStCHEM School of Chemistry, University of St Andrews, North Haugh, St Andrews, KY16 9ST, U.K
| | - Scott Stinson
- EaStCHEM School of Chemistry, University of St Andrews, North Haugh, St Andrews, KY16 9ST, U.K
| | - Paola Posocco
- Department of Engineering and Architecture, University of Trieste, Piazzale Europa 1, 34127 Trieste, Italy
| | - Euan R Kay
- EaStCHEM School of Chemistry, University of St Andrews, North Haugh, St Andrews, KY16 9ST, U.K
| |
Collapse
|
5
|
Xing H, Fei X, Zheng B, Zheng X, Dang X, Zhang H, Tian F, Mei X, Hu X. Aptamer-Facilitated Design of Gold Nanoparticle-Based Logic Gates for Cyromazine and Melamine Detection in Milk. Aust J Chem 2021. [DOI: 10.1071/ch21011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
In this paper, we developed a simply designed detection method for logic gates by using aptamers, cetyltrimethyl ammonium bromide, together with melamine and cyromazine to control the aggregation and dispersion of gold nanoparticles (AuNPs). First, either melamine or cyromazine can induce the aggregation of AuNPs, supporting an OR gate to detect whether they were present or not. Second, based on the fact that aptamer T31 can specifically bind with melamine, preventing the aggregation of AuNPs, an improved INHIBIT gate was also fabricated to find whether there was melamine. It has a detection limit of 0.12ppm by the naked eye for the detection of melamine, and the limit of detection (LOD) by spectrophotometer is 2.2ppb. Third, with the adsorption of aptamer Tcy1 on AuNPs and the strong coordination of Tcy1 with cyromazine, the addition of cyromazine and CTAB immediately resulted in the aggregation of AuNPs, giving rise to an AND gate. This gate has a detection limit of 0.17ppm by the naked eye and the limit of detection (LOD) is 9.0ppb by spectrophotometer. The system provided a good platform for the development of functional logic systems.
Collapse
|
6
|
Bansal SA, Kumar V, Karimi J, Singh AP, Kumar S. Role of gold nanoparticles in advanced biomedical applications. NANOSCALE ADVANCES 2020; 2:3764-3787. [PMID: 36132791 PMCID: PMC9419294 DOI: 10.1039/d0na00472c] [Citation(s) in RCA: 136] [Impact Index Per Article: 27.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 07/14/2020] [Indexed: 05/20/2023]
Abstract
Gold nanoparticles (GNPs) have generated keen interest among researchers in recent years due to their excellent physicochemical properties. In general, GNPs are biocompatible, amenable to desired functionalization, non-corroding, and exhibit size and shape dependent optical and electronic properties. These excellent properties of GNPs exhibit their tremendous potential for use in diverse biomedical applications. Herein, we have evaluated the recent advancements of GNPs to highlight their exceptional potential in the biomedical field. Special focus has been given to emerging biomedical applications including bio-imaging, site specific drug/gene delivery, nano-sensing, diagnostics, photon induced therapeutics, and theranostics. We have also elaborated on the basics, presented a historical preview, and discussed the synthesis strategies, functionalization methods, stabilization techniques, and key properties of GNPs. Lastly, we have concluded this article with key findings and unaddressed challenges. Overall, this review is a complete package to understand the importance and achievements of GNPs in the biomedical field.
Collapse
Affiliation(s)
- Suneev Anil Bansal
- Department of Mechanical Engineering, University Institute of Engineering and Technology (UIET), Panjab University Chandigarh India 160014
- Department of Mechanical Engineering, MAIT, Maharaja Agrasen University HP India 174103
| | - Vanish Kumar
- National Agri-Food Biotechnology Institute (NABI) S. A. S. Nagar Punjab 140306 India
| | - Javad Karimi
- Department of Biology, Faculty of Sciences, Shiraz University Shiraz 71454 Iran
| | - Amrinder Pal Singh
- Department of Mechanical Engineering, University Institute of Engineering and Technology (UIET), Panjab University Chandigarh India 160014
| | - Suresh Kumar
- Department of Applied Science, University Institute of Engineering and Technology (UIET), Panjab University Chandigarh India 160014
| |
Collapse
|
7
|
Buchmann B, Hecht FM, Pernpeintner C, Lohmueller T, Bausch AR. Controlling Non-Equilibrium Structure Formation on the Nanoscale. Chemphyschem 2017; 18:3437-3442. [DOI: 10.1002/cphc.201700844] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Revised: 10/05/2017] [Indexed: 11/12/2022]
Affiliation(s)
- Benedikt Buchmann
- Lehrstuhl für Zellbiophysik E27; Technische Universität München; James-Franck-Straße 1 85748 Garching Germany
| | - Fabian Manfred Hecht
- Lehrstuhl für Zellbiophysik E27; Technische Universität München; James-Franck-Straße 1 85748 Garching Germany
| | - Carla Pernpeintner
- Chair for Photonics and Optoelectronics; Ludwig-Maximilians-Universität München; Amalienstr. 54 80799 München Germany
| | - Theobald Lohmueller
- Chair for Photonics and Optoelectronics; Ludwig-Maximilians-Universität München; Amalienstr. 54 80799 München Germany
| | - Andreas R. Bausch
- Lehrstuhl für Zellbiophysik E27; Technische Universität München; James-Franck-Straße 1 85748 Garching Germany
| |
Collapse
|
8
|
Edwards W, Marro N, Turner G, Kay ER. Continuum tuning of nanoparticle interfacial properties by dynamic covalent exchange. Chem Sci 2017; 9:125-133. [PMID: 29629080 PMCID: PMC5869618 DOI: 10.1039/c7sc03666c] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Accepted: 11/09/2017] [Indexed: 12/28/2022] Open
Abstract
Dynamic covalent modification of the surface-stabilizing monolayer accesses a continuum of nanoparticle properties from a single starting point.
Surface chemical composition is fundamental to determining properties on the nanoscale, making precise control over surface chemistry critical to being able to optimise nanomaterials for virtually any application. Surface-engineering independent of the preparation of the underlying nanomaterial is particularly attractive for efficient, divergent synthetic strategies, and for the potential to create reactive, responsive and smart nanodevices. For monolayer-stabilised nanoparticles, established methods include ligand exchange to replace the ligand shell in its entirety, encapsulation with amphiphilic (macro)molecules, noncovalent interactions with surface-bound biomolecules, or a relatively limited number of covalent bond forming reactions. Yet, each of these approaches has considerable drawbacks. Here we show that dynamic covalent exchange at the periphery of the nanoparticle-stabilizing monolayer allows surface-bound ligand molecular structure to be substantially modified in mild and reversible processes that are independent of the nanoparticle–molecule interface. Simple stoichiometric variation allows the extent of exchange to be controlled, generating a range of kinetically stable mixed-monolayer compositions across an otherwise identical, self-consistent series of nanoparticles. This approach can be used to modulate nanoparticle properties that are defined by the monolayer composition. We demonstrate switching of nanoparticle solvent compatibility between widely differing solvents – spanning hexane to water – and the ability to tune solubility across the entire continuum between these extremes, all from a single nanoparticle starting point. We also demonstrate that fine control over mixed-monolayer composition influences the assembly of discrete, colloidally stable nanoparticle clusters. By carefully assessing monolayer composition in each state, using both in situ and ex situ methods, we are able to correlate the molecular-level details of the nanoparticle-bound monolayer with system-level properties and behaviour. These empirically determined relationships contribute fundamental insights on nanoscale structure–function relationships, which are currently beyond the capabilities of ab initio prediction.
Collapse
Affiliation(s)
- William Edwards
- EaStCHEM School of Chemistry , University of St Andrews , North Haugh, St Andrews , KY16 9ST , UK .
| | - Nicolas Marro
- EaStCHEM School of Chemistry , University of St Andrews , North Haugh, St Andrews , KY16 9ST , UK .
| | - Grace Turner
- EaStCHEM School of Chemistry , University of St Andrews , North Haugh, St Andrews , KY16 9ST , UK .
| | - Euan R Kay
- EaStCHEM School of Chemistry , University of St Andrews , North Haugh, St Andrews , KY16 9ST , UK .
| |
Collapse
|
9
|
Riccardi L, Gabrielli L, Sun X, De Biasi F, Rastrelli F, Mancin F, De Vivo M. Nanoparticle-Based Receptors Mimic Protein-Ligand Recognition. Chem 2017; 3:92-109. [PMID: 28770257 PMCID: PMC5521955 DOI: 10.1016/j.chempr.2017.05.016] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Revised: 03/20/2017] [Accepted: 05/24/2017] [Indexed: 11/25/2022]
Abstract
The self-assembly of a monolayer of ligands on the surface of noble-metal nanoparticles dictates the fundamental nanoparticle's behavior and its functionality. In this combined computational-experimental study, we analyze the structure, organization, and dynamics of functionalized coating thiols in monolayer-protected gold nanoparticles (AuNPs). We explain how functionalized coating thiols self-organize through a delicate and somehow counterintuitive balance of interactions within the monolayer itself and with the solvent. We further describe how the nature and plasticity of these interactions modulate nanoparticle-based chemosensing. Importantly, we found that self-organization of coating thiols can induce the formation of binding pockets in AuNPs. These transient cavities can accommodate small molecules, mimicking protein-ligand recognition, which could explain the selectivity and sensitivity observed for different organic analytes in NMR chemosensing experiments. Thus, our findings advocate for the rational design of tailored coating groups to form specific recognition binding sites on monolayer-protected AuNPs. Synthesis and molecular simulations of AuNPs for chemosensing A rationale for the molecular recognition ability of functionalized AuNPs Functionalized coating ligands form transient protein-like binding pockets Toward the computational nanodesign of intelligent nanoreceptors for chemosensing
The functionalization of monolayer-protected nanoparticles is at the frontier of nanotechnology, such that innovative applications are emerging in fields such as nanomedicine, chemosensing, and even catalysis. Importantly, the nanoparticle's functionality is mainly defined by the nature of the ligands forming the coating monolayer. Here, we show how the self-organization of functionalized coating ligands in monolayer-protected gold nanoparticles (AuNPs) affects their solubility and molecular recognition abilities. We found that coating ligands form transient, protein-like binding pockets in functionalized AuNPs. Thus, we reveal that nanoparticle-based chemosensing operates through a recognition process that is similar to that for protein-ligand complex formation. These findings could now herald the arrival of the computational nanodesign of intelligent nanodevices with recognition abilities toward small molecules such as drugs, metabolites, illegal drugs, and small molecular markers for cancer.
Collapse
Affiliation(s)
- Laura Riccardi
- Laboratory of Molecular Modeling & Drug Discovery, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy
| | - Luca Gabrielli
- Dipartimento di Scienze Chimiche, Università di Padova, Via Marzolo 1, 35131 Padova, Italy
| | - Xiaohuan Sun
- Dipartimento di Scienze Chimiche, Università di Padova, Via Marzolo 1, 35131 Padova, Italy
| | - Federico De Biasi
- Dipartimento di Scienze Chimiche, Università di Padova, Via Marzolo 1, 35131 Padova, Italy
| | - Federico Rastrelli
- Dipartimento di Scienze Chimiche, Università di Padova, Via Marzolo 1, 35131 Padova, Italy
| | - Fabrizio Mancin
- Dipartimento di Scienze Chimiche, Università di Padova, Via Marzolo 1, 35131 Padova, Italy
| | - Marco De Vivo
- Laboratory of Molecular Modeling & Drug Discovery, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy.,IAS-5/INM-9 Computational Biomedicine Forschungszentrum Jülich, Wilhelm-Johnen-Straße, 52428 Jülich, Germany
| |
Collapse
|
10
|
Colangelo E, Chen Q, Davidson AM, Paramelle D, Sullivan MB, Volk M, Lévy R. Computational and Experimental Investigation of the Structure of Peptide Monolayers on Gold Nanoparticles. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2017; 33:438-449. [PMID: 27982599 DOI: 10.1021/acs.langmuir.6b04383] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
The self-assembly and self-organization of small molecules on the surface of nanoparticles constitute a potential route toward the preparation of advanced proteinlike nanosystems. However, their structural characterization, critical to the design of bionanomaterials with well-defined biophysical and biochemical properties, remains highly challenging. Here, a computational model for peptide-capped gold nanoparticles (GNPs) is developed using experimentally characterized Cys-Ala-Leu-Asn-Asn (CALNN)- and Cys-Phe-Gly-Ala-Ile-Leu-Ser-Ser (CFGAILSS)-capped GNPs as a benchmark. The structure of CALNN and CFGAILSS monolayers is investigated using both structural biology techniques and molecular dynamics simulations. The calculations reproduce the experimentally observed dependence of the monolayer secondary structure on the peptide capping density and on the nanoparticle size, thus giving us confidence in the model. Furthermore, the computational results reveal a number of new features of peptide-capped monolayers, including the importance of sulfur movement for the formation of secondary structure motifs, the presence of water close to the gold surface even in tightly packed peptide monolayers, and the existence of extended 2D parallel β-sheet domains in CFGAILSS monolayers. The model developed here provides a predictive tool that may assist in the design of further bionanomaterials.
Collapse
Affiliation(s)
- Elena Colangelo
- Institute of Integrative Biology, University of Liverpool , Crown Street, L69 7ZB Liverpool, U.K
- Institute of Materials Research and Engineering, A*STAR (Agency for Science, Technology and Research) , 2 Fusionopolis Way, #08-03 Innovis, Singapore 138634
- Institute of High Performance Computing, A*STAR (Agency for Science, Technology and Research) , 1 Fusionopolis Way, #16-16 Connexis North, Singapore 138632
| | - Qiubo Chen
- Institute of High Performance Computing, A*STAR (Agency for Science, Technology and Research) , 1 Fusionopolis Way, #16-16 Connexis North, Singapore 138632
| | - Adam M Davidson
- Department of Chemistry, University of Liverpool , Liverpool L69 7ZD, U.K
| | - David Paramelle
- Institute of Materials Research and Engineering, A*STAR (Agency for Science, Technology and Research) , 2 Fusionopolis Way, #08-03 Innovis, Singapore 138634
| | - Michael B Sullivan
- Institute of High Performance Computing, A*STAR (Agency for Science, Technology and Research) , 1 Fusionopolis Way, #16-16 Connexis North, Singapore 138632
| | - Martin Volk
- Department of Chemistry, University of Liverpool , Liverpool L69 7ZD, U.K
- Department of Chemistry, Surface Science Research Centre, University of Liverpool , Abercromby Square, Liverpool L69 3BX, U.K
| | - Raphaël Lévy
- Institute of Integrative Biology, University of Liverpool , Crown Street, L69 7ZB Liverpool, U.K
| |
Collapse
|
11
|
Gravelsins S, Dhirani AA. A rapid, high yield size-selective precipitation method for generating Au nanoparticles in organic solvents with tunably monodisperse size distributions and replaceable ligands. RSC Adv 2017. [DOI: 10.1039/c7ra11177k] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A fast and robust size-selective precipitation procedure by non-solvent addition has been developed to fractionalize hydrophobic-ligated Au nanoparticles with tunable sizes and monodispersities.
Collapse
|
12
|
Colangelo E, Comenge J, Paramelle D, Volk M, Chen Q, Lévy R. Characterizing Self-Assembled Monolayers on Gold Nanoparticles. Bioconjug Chem 2016; 28:11-22. [DOI: 10.1021/acs.bioconjchem.6b00587] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Elena Colangelo
- Institute
of Integrative Biology, University of Liverpool, Crown Street, L69 7ZB Liverpool, United Kingdom
| | - Joan Comenge
- Institute
of Integrative Biology, University of Liverpool, Crown Street, L69 7ZB Liverpool, United Kingdom
| | - David Paramelle
- Institute
of Materials Research and Engineering, A*STAR (Agency for Science, Technology and Research), 2 Fusionopolis Way, #08-03 Innovis, Singapore 138634
| | - Martin Volk
- Department
of Chemistry, University of Liverpool, Liverpool L69 7ZD, United Kingdom
- Surface
Science Research Centre, Department of Chemistry, Abercromby Square, University of Liverpool, Liverpool L69 3BX, United Kingdom
| | - Qiubo Chen
- Institute
of High Performance Computing, A*STAR (Agency for Science, Technology and Research), 1 Fusionopolis Way, #16-16 Connexis North, Singapore 138632
| | - Raphaël Lévy
- Institute
of Integrative Biology, University of Liverpool, Crown Street, L69 7ZB Liverpool, United Kingdom
| |
Collapse
|
13
|
Di Paola C, D'Agosta R, Baletto F. Geometrical Effects on the Magnetic Properties of Nanoparticles. NANO LETTERS 2016; 16:2885-2889. [PMID: 27007172 DOI: 10.1021/acs.nanolett.6b00916] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Elucidating the connection between shape and properties is a challenging but essential task for a rational design of nanoparticles at the atomic level. As a paradigmatic example we investigate how geometry can influence the magnetic properties of nanoparticles, focusing in particular on platinum clusters of 1-2 nm in size. Through first-principle calculations, we have found that the total magnetization depends strongly on the local atomic arrangements. This is due to a contraction of the nearest neighbor distance together with an elongation of the second nearest neighbor distance, resulting in an interatomic partial charge transfer from the atoms lying on the subsurface layer (donors) toward the vertexes (acceptors).
Collapse
Affiliation(s)
- Cono Di Paola
- Department of Physics, King's College London , WC2R 2LS, London, United Kingdom
- Department of Earth Sciences, University College London , WC1E 6BT, London, United Kingdom
| | - Roberto D'Agosta
- Department of Physics, King's College London , WC2R 2LS, London, United Kingdom
- Nano-bio Spectroscopy Group and ETSF, Universidad del País Vasco , CFM CSIC-UPV/EHU, E-20018 San Sebastián, Spain
- Ikerbasque, Basque Foundation for Science, E-48013, Bilbao, Spain
| | - Francesca Baletto
- Department of Physics, King's College London , WC2R 2LS, London, United Kingdom
| |
Collapse
|
14
|
Gurunatha KL, Fournier AC, Urvoas A, Valerio-Lepiniec M, Marchi V, Minard P, Dujardin E. Nanoparticles Self-Assembly Driven by High Affinity Repeat Protein Pairing. ACS NANO 2016; 10:3176-3185. [PMID: 26863288 DOI: 10.1021/acsnano.5b04531] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Proteins are the most specific yet versatile biological self-assembling agents with a rich chemistry. Nevertheless, the design of new proteins with recognition capacities is still in its infancy and has seldom been exploited for the self-assembly of functional inorganic nanoparticles. Here, we report on the protein-directed assembly of gold nanoparticles using purpose-designed artificial repeat proteins having a rigid but modular 3D architecture. αRep protein pairs are selected for their high mutual affinity from a library of 10(9) variants. Their conjugation onto gold nanoparticles drives the massive colloidal assembly of free-standing, one-particle thick films. When the average number of proteins per nanoparticle is lowered, the extent of self-assembly is limited to oligomeric particle clusters. Finally, we demonstrate that the aggregates are reversibly disassembled by an excess of one free protein. Our approach could be optimized for applications in biosensing, cell targeting, or functional nanomaterials engineering.
Collapse
Affiliation(s)
- Kargal L Gurunatha
- Groupe NanoSciences-CEMES, CNRS UPR 8011 , 29 rue J. Marvig, B.P. 94347, F-31055 Toulouse, France
| | - Agathe C Fournier
- Groupe NanoSciences-CEMES, CNRS UPR 8011 , 29 rue J. Marvig, B.P. 94347, F-31055 Toulouse, France
| | - Agathe Urvoas
- I2BC, Univ Paris Sud, CNRS, CEA UMR 9198 , Bât. 430, F-91405 Orsay, France
| | | | - Valérie Marchi
- University Rennes 1, Institut of Chemical Sciences, UMR 6226 CNRS , Campus Beaulieu, F- 35042 Rennes, France
| | - Philippe Minard
- I2BC, Univ Paris Sud, CNRS, CEA UMR 9198 , Bât. 430, F-91405 Orsay, France
| | - Erik Dujardin
- Groupe NanoSciences-CEMES, CNRS UPR 8011 , 29 rue J. Marvig, B.P. 94347, F-31055 Toulouse, France
| |
Collapse
|
15
|
Abstract
The behaviour of complex molecules, such as nanoparticles, polymers, and proteins, at liquid interfaces is of increasing importance in a number of areas of science and technology. It has long been recognised that solid particles adhere to liquid interfaces, which provides a convenient method for the preparation of nanoparticle structures or to modify interfacial properties. The adhesion of proteins at liquid interfaces is important in many biological processes and in a number of materials applications of biomolecules. While the reduced dimensions of these particles make experimental investigation challenging, molecular simulations provide a natural means for the study of these systems. In this paper I will give an overview of some recent work using molecular simulation to investigate the behaviour of complex molecules at liquid interfaces, focusing on the relationship between interfacial adsorption and molecular structure, and outline some avenues for future research.
Collapse
|
16
|
Pu F, Ren J, Qu X. Nucleic acids and smart materials: advanced building blocks for logic systems. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2014; 26:5742-57. [PMID: 25042025 DOI: 10.1002/adma.201401617] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2014] [Indexed: 05/11/2023]
Abstract
Logic gates can convert input signals into a defined output signal, which is the fundamental basis of computing. Inspired by molecular switching from one state to another under an external stimulus, molecular logic gates are explored extensively and recognized as an alternative to traditional silicon-based computing. Among various building blocks of molecular logic gates, nucleic acid attracts special attention owing to its specific recognition abilities and structural features. Functional materials with unique physical and chemical properties offer significant advantages and are used in many fields. The integration of nucleic acids and functional materials is expected to bring about several new phenomena. In this Progress Report, recent progress in the construction of logic gates by combining the properties of a range of smart materials with nucleic acids is introduced. According to the structural characteristics and composition, functional materials are categorized into three classes: polymers, noble-metal nanomaterials, and inorganic nanomaterials. Furthermore, the unsolved problems and future challenges in the construction of logic gates are discussed. It is hoped that broader interests in introducing new smart materials into the field are inspired and tangible applications for these constructs are found.
Collapse
Affiliation(s)
- Fang Pu
- State Key Laboratory of Rare Earth Resource Utilization and Laboratory of Chemical Biology, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, China
| | | | | |
Collapse
|
17
|
Huang Z, Wang H, Yang W. Glutathione-facilitated design and fabrication of gold nanoparticle-based logic gates and keypad lock. NANOSCALE 2014; 6:8300-8305. [PMID: 24933044 DOI: 10.1039/c4nr01615g] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
In this paper, we describe how we developed a simple design and fabrication method for logic gates and a device by using a commercially available tripeptide, namely glutathione (GSH), together with metal ions and disodium ethylenediaminetetraacetate (EDTA) to control the dispersion and aggregation of gold nanoparticles (NPs). With the fast adsorption of GSH on gold NPs and the strong coordination of GSH with metal ions, the addition of GSH and Pb(2+) ions immediately resulted in the aggregation of gold NPs, giving rise to an AND function. Either Pb(2+) or Ba(2+) ions induced the aggregation of gold NPs in the presence of GSH, supporting an OR gate. Based on the fact that EDTA has a strong capacity to bind metal ions, thus preventing the aggregation of gold NPs, an INHIBIT gate was also fabricated. More interestingly, we found that the addition sequence of GSH and Hg(2+) ions influenced the aggregation of gold NPs in a controlled manner, which was used to design a sequential logic gate and a three-input keypad lock for potential use in information security. The GSH strategy addresses concerns of low cost, simple fabrication, versatile design and easy operation, and offers a promising platform for the development of functional logic systems.
Collapse
Affiliation(s)
- Zhenzhen Huang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, P.R. China.
| | | | | |
Collapse
|
18
|
Regular assembly of filamentous viruses and gold nanoparticles by specific interactions and subsequent chemical crosslinking. Polym J 2014. [DOI: 10.1038/pj.2014.38] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
19
|
Sawada T, Kang S, Watanabe J, Mihara H, Serizawa T. Hybrid Hydrogels Composed of Regularly Assembled Filamentous Viruses and Gold Nanoparticles. ACS Macro Lett 2014; 3:341-345. [PMID: 35590744 DOI: 10.1021/mz500073t] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Novel hybrid hydrogels composed of tag-peptides (antigens) displaying filamentous viruses and antibody-immobilized gold nanoparticles (GNPs) through specific interactions between the two components were constructed. The strength of the antigen-antibody interactions greatly affected the macroscopic mechanical properties. The phages and the GNPs in the hydrogels formed lyotropic liquid crystals and well-ordered network structures, respectively. It was suggested that the structurally much different components were cooperatively assembled into the highly regular structures through time-dependent cross-linking processes. This hybrid hydrogel of visible and huge components will open attractive opportunities for the science and technology of next-generation soft materials.
Collapse
Affiliation(s)
- Toshiki Sawada
- Department of Organic and Polymeric Materials, Graduate School of Science and Engineering, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8550, Japan
| | - Sungmin Kang
- Department of Organic and Polymeric Materials, Graduate School of Science and Engineering, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8550, Japan
| | - Junji Watanabe
- Department of Organic and Polymeric Materials, Graduate School of Science and Engineering, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8550, Japan
| | - Hisakazu Mihara
- Department of Bioengineering, Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, 4259-B40 Nagatsuta-cho, Midori-ku, Yokohama 226-8501, Japan
| | - Takeshi Serizawa
- Department of Organic and Polymeric Materials, Graduate School of Science and Engineering, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8550, Japan
| |
Collapse
|
20
|
Wang L, Mei S, Jin Z. The Influences of Cooperative Swelling and Coordination on Patterned Decoration of Gold on Block Copolymer Nanospheres. MACROMOL CHEM PHYS 2013. [DOI: 10.1002/macp.201300481] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Lu Wang
- Department of Chemistry; Renmin University of China; Beijing 100872 P. R. China
| | - Shilin Mei
- Department of Chemistry; Renmin University of China; Beijing 100872 P. R. China
| | - Zhaoxia Jin
- Department of Chemistry; Renmin University of China; Beijing 100872 P. R. China
| |
Collapse
|
21
|
Zhou C, Li Y. Self-assembly of low dimensional nanostructures and materials via supramolecular interactions at interfaces. J Colloid Interface Sci 2013; 397:45-64. [DOI: 10.1016/j.jcis.2013.01.054] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2012] [Revised: 01/22/2013] [Accepted: 01/28/2013] [Indexed: 12/14/2022]
|
22
|
Dash SS, Majumdar R, Sikder AK, Bag BG, Patra BK. Saraca indica bark extract mediated green synthesis of polyshaped gold nanoparticles and its application in catalytic reduction. APPLIED NANOSCIENCE 2013. [DOI: 10.1007/s13204-013-0223-z] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
23
|
An X, Zhan F, Zhu Y. Smart photothermal-triggered bilayer phase transition in AuNPs-liposomes to release drug. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2013; 29:1061-1068. [PMID: 23286691 DOI: 10.1021/la304692h] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Novel thermosensitive liposomes with embedded Au nanoparticles (AuNPs) in the liposome bilayer were prepared by a combination method of film build and supercritical CO(2) incubation. These AuNPs-liposomes possess AuNPs that are embedded in the bilayer and a drug that is encapsulated in the central aqueous compartment. The AuNPs in the liposomes can strongly absorb light energy and efficiently convert the absorbed energy to heat. The localized heat induces a phase transition in the liposome bilayer and releases the drug. The drug release from the AuNPs-liposomes can be controlled by the irradiation time and AuNPs concentration in the AuNPs-liposomes at room temperature, where the AuNPs function as a nanoswitch for triggering drug release both spatially and temporally. The results suggest that drug release from the AuNPs-liposomes is due to a photothermic effect that induces phase transition of the liposomes rather than destruction of the liposome bilayer.
Collapse
Affiliation(s)
- Xueqin An
- School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, China.
| | | | | |
Collapse
|
24
|
Guarino G, Rastrelli F, Scrimin P, Mancin F. Lanthanide-based NMR: a tool to investigate component distribution in mixed-monolayer-protected nanoparticles. J Am Chem Soc 2012; 134:7200-3. [PMID: 22458407 DOI: 10.1021/ja211030y] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Gd(3+) ions, once bound to the monolayer of organic molecules coating the surface of gold nanoparticles, produce a paramagnetic relaxation enhancement (PRE) that broadens and eventually cancels the signals of the nuclear spins located nearby (within 1.6 nm distance). In the case of nanoparticles coated with mixed monolayers, the signals arising from the different coating molecules experience different PRE, depending on their distance from the binding site. As a consequence, observation of the signal broadening patterns provides direct information on the monolayer organization.
Collapse
Affiliation(s)
- Gaetano Guarino
- Dipartimento di Scienze Chimiche, Università di Padova, via Marzolo 1, 35131 Padova, Italy
| | | | | | | |
Collapse
|
25
|
Gillespie D. High energy conversion efficiency in nanofluidic channels. NANO LETTERS 2012; 12:1410-1416. [PMID: 22300476 DOI: 10.1021/nl204087f] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
It is proposed that the layering of large ions at the wall/liquid interface of nanofluidic channels can be used to achieve high efficiency (possibly >50%) in the conversion of hydrostatic energy into electrical power. Large ions tend to produce peaks and troughs in their concentration profiles at charged walls, producing high concentrations far from the walls where the ions' pressure-driven velocity is high. This increases the streaming conductance and the energy conversion efficiency.
Collapse
Affiliation(s)
- Dirk Gillespie
- Department of Molecular Biophysics and Physiology, Rush University Medical Center, Chicago, IL, USA.
| |
Collapse
|
26
|
Chen X, Qoutah WW, Free P, Hobley J, Fernig DG, Paramelle D. Features of Thiolated Ligands Promoting Resistance to Ligand Exchange in Self-Assembled Monolayers on Gold Nanoparticles. Aust J Chem 2012. [DOI: 10.1071/ch11432] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
An important feature necessary for biological stability of gold nanoparticles is resistance to ligand exchange. Here, we design and synthesize self-assembled monolayers of mixtures of small ligands on gold nanoparticles promoting high resistance to ligand exchange. We use as ligands short thiolated peptidols, e.g. H-CVVVT-ol, and ethylene glycol terminated alkane thiols (HS-C11-EG4). We present a straightforward method to evaluate the relative stability of each ligand shell against ligand exchange with small thiolated molecules. The results show that a ligand with a ‘thin’ stem, such as HS-C11-EG4, is an important feature to build a highly packed self-assembled monolayer and provide high resistance to ligand exchange. The greatest resistance to ligand exchange was found for the mixed ligand shells of the pentapeptidols H-CAVLT-ol or H-CAVYT-ol and the ligand HS-C11-EG4 at 30:70 (mole/mole). Mixtures of ligands of very different diameters, such as the peptidol H-CFFFY-ol and the ligand HS-C11-EG4, provide only a slightly lower stability against ligand exchange. These ligand shells are thus likely to be suitable for long-term use in biological environments. The method developed here provides a rapid screening tool to identify nanoparticles likely to be suitable for use in biological and biomedical applications.
Collapse
|
27
|
|