1
|
Yang Y, Yang S, Xia X, Hui S, Wang B, Zou B, Zhang Y, Sun J, Xin JH. MXenes for Wearable Physical Sensors toward Smart Healthcare. ACS NANO 2024; 18:24705-24740. [PMID: 39186373 DOI: 10.1021/acsnano.4c08258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/28/2024]
Abstract
The gradual rise of personal healthcare awareness is accelerating the deployment of wearable sensors, whose ability of acquiring physiological vital signs depends on sensing materials. MXenes have distinct chemical and physical superiorities over other 2D nanomaterials for wearable sensors. This review presents a comprehensive summary of the latest advancements in MXenes-based materials for wearable physical sensors. It begins with an introduction to special structural features of MXenes for sensing performance, followed by an in-depth exploration of versatile functionalities. A detailed description of different sensing mechanisms is also included to illustrate the contribution of MXenes to the sensing performance and its improvement. In addition, the real-world applications of MXenes-based physical sensors for monitoring different physiological signs are included as well. The remaining challenges of MXenes-based materials for wearable physical sensors and their promising opportunities are finally narrated, in conjunction with a prospective for future development.
Collapse
Affiliation(s)
- Yixuan Yang
- State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, MOE Key Laboratory of New Processing Technology for Nonferrous Metals and Materials, and School of Resources, Environment and Materials, Guangxi University, Nanning 530004, P. R. China
| | - Shenglin Yang
- State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, MOE Key Laboratory of New Processing Technology for Nonferrous Metals and Materials, and School of Resources, Environment and Materials, Guangxi University, Nanning 530004, P. R. China
| | - Xiaohu Xia
- State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, MOE Key Laboratory of New Processing Technology for Nonferrous Metals and Materials, and School of Resources, Environment and Materials, Guangxi University, Nanning 530004, P. R. China
| | - Shigang Hui
- State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, MOE Key Laboratory of New Processing Technology for Nonferrous Metals and Materials, and School of Resources, Environment and Materials, Guangxi University, Nanning 530004, P. R. China
| | - Ben Wang
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518055, P. R. China
| | - Bingsuo Zou
- State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, MOE Key Laboratory of New Processing Technology for Nonferrous Metals and Materials, and School of Resources, Environment and Materials, Guangxi University, Nanning 530004, P. R. China
| | - Yabin Zhang
- State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, MOE Key Laboratory of New Processing Technology for Nonferrous Metals and Materials, and School of Resources, Environment and Materials, Guangxi University, Nanning 530004, P. R. China
| | - Jianping Sun
- School of Resources, Environment and Materials, Guangxi University, Nanning 530004, P. R. China
| | - John H Xin
- Research Institute for Intelligent Wearable Systems School of Fashion and Textiles, The Hong Kong Polytechnic University Hung Hom, Kowloon, Hong Kong, China
| |
Collapse
|
2
|
Choi W, Shin J, Kim YJ, Hur J, Jang BC, Yoo H. Versatile Papertronics: Photo-Induced Synapse and Security Applications on Papers. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2312831. [PMID: 38870479 DOI: 10.1002/adma.202312831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 05/29/2024] [Indexed: 06/15/2024]
Abstract
Paper is a readily available material in nature. Its recyclability, eco-friendliness, portability, flexibility, and affordability make it a favored substrate for researchers seeking cost-effective solutions. Electronic devices based on solution process are fabricated on paper and banknotes using PVK and SnO2 nanoparticles. The devices manufactured on paper substrates exhibit photosynaptic behavior under ultraviolet pulse illumination, stemming from numerous interactions on the surface of the SnO2 nanoparticles. A light-modulated artificial synapse device is realized on a paper at a low voltage bias of -0.01 V, with an average recognition rate of 91.7% based on the Yale Face Database. As a security device on a banknote, 400 devices in a 20 × 20 array configuration exhibited random electrical characteristics owing to the local morphology of the SnO2 nanoparticles and differences in the depletion layer width at the SnO2/PVK interface. The security Physically Unclonable Functions (PUF) key based on the current distribution extracted at -1 V show unpredictable reproducibility with 50% uniformity, 48.7% inter-Hamming distance, and 50.1% bit-aliasing rates. Moreover, the device maintained its properties for more than 210 days under a curvature radius of 8.75 mm and bias and UV irradiation stress conditions.
Collapse
Affiliation(s)
- Wangmyung Choi
- Department of Electronic Engineering, Gachon University, 1342 Seongnam-daero, Seongnam, 13120, Republic of Korea
| | - Jihyun Shin
- Department of Electronic Engineering, Gachon University, 1342 Seongnam-daero, Seongnam, 13120, Republic of Korea
| | - Yeong Jae Kim
- Ceramic Total Solution Center, Korea Institute of Ceramic Engineering and Technology, 3321 Gyeongchung-daero, Icheon, 17303, Republic of Korea
| | - Jaehyun Hur
- Department of Chemical and Biological Engineering, Gachon University, 1342 Seongnam-daero, Seongnam, 13120, Republic of Korea
| | - Byung Chul Jang
- School of Electronics and Electrical Engineering, Kyungpook National University, 80 Daehakro, Bukgu, Daegu, 41566, Republic of Korea
| | - Hocheon Yoo
- Department of Electronic Engineering, Gachon University, 1342 Seongnam-daero, Seongnam, 13120, Republic of Korea
| |
Collapse
|
3
|
Dutta T, Chaturvedi P, Llamas-Garro I, Velázquez-González JS, Dubey R, Mishra SK. Smart materials for flexible electronics and devices: hydrogel. RSC Adv 2024; 14:12984-13004. [PMID: 38655485 PMCID: PMC11033831 DOI: 10.1039/d4ra01168f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 04/05/2024] [Indexed: 04/26/2024] Open
Abstract
In recent years, flexible conductive materials have attracted considerable attention for their potential use in flexible energy storage devices, touch panels, sensors, memristors, and other applications. The outstanding flexibility, electricity, and tunable mechanical properties of hydrogels make them ideal conductive materials for flexible electronic devices. Various synthetic strategies have been developed to produce conductive and environmentally friendly hydrogels for high-performance flexible electronics. In this review, we discuss the state-of-the-art applications of hydrogels in flexible electronics, such as energy storage, touch panels, memristor devices, and sensors like temperature, gas, humidity, chemical, strain, and textile sensors, and the latest synthesis methods of hydrogels. Describe the process of fabricating sensors as well. Finally, we discussed the challenges and future research avenues for flexible and portable electronic devices based on hydrogels.
Collapse
Affiliation(s)
- Taposhree Dutta
- Department of Chemistry, Indian Institute of Engineering Science and Technology Shibpur Howrah W.B. - 711103 India
| | - Pavan Chaturvedi
- Department of Physics, Vanderbilt University 3414 Murphy Rd, Apt#4 Nashville TN-37203 USA +575-650-4595
| | - Ignacio Llamas-Garro
- Navigation and Positioning Research Unit, Centre Tecnològic de Telecomunicacions de Catalunya Castelldefels Spain
| | | | - Rakesh Dubey
- Instiute of Physics, University of Szczecin Poland
| | - Satyendra Kumar Mishra
- Space and Reslinent Research Unit, Centre Tecnològic de Telecomunicacions de Catalunya Castelldefels Spain
| |
Collapse
|
4
|
Park J, Lee Y, Cho S, Choe A, Yeom J, Ro YG, Kim J, Kang DH, Lee S, Ko H. Soft Sensors and Actuators for Wearable Human-Machine Interfaces. Chem Rev 2024; 124:1464-1534. [PMID: 38314694 DOI: 10.1021/acs.chemrev.3c00356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2024]
Abstract
Haptic human-machine interfaces (HHMIs) combine tactile sensation and haptic feedback to allow humans to interact closely with machines and robots, providing immersive experiences and convenient lifestyles. Significant progress has been made in developing wearable sensors that accurately detect physical and electrophysiological stimuli with improved softness, functionality, reliability, and selectivity. In addition, soft actuating systems have been developed to provide high-quality haptic feedback by precisely controlling force, displacement, frequency, and spatial resolution. In this Review, we discuss the latest technological advances of soft sensors and actuators for the demonstration of wearable HHMIs. We particularly focus on highlighting material and structural approaches that enable desired sensing and feedback properties necessary for effective wearable HHMIs. Furthermore, promising practical applications of current HHMI technology in various areas such as the metaverse, robotics, and user-interactive devices are discussed in detail. Finally, this Review further concludes by discussing the outlook for next-generation HHMI technology.
Collapse
Affiliation(s)
- Jonghwa Park
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan Metropolitan City 44919, Republic of Korea
| | - Youngoh Lee
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan Metropolitan City 44919, Republic of Korea
| | - Seungse Cho
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan Metropolitan City 44919, Republic of Korea
| | - Ayoung Choe
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan Metropolitan City 44919, Republic of Korea
| | - Jeonghee Yeom
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan Metropolitan City 44919, Republic of Korea
| | - Yun Goo Ro
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan Metropolitan City 44919, Republic of Korea
| | - Jinyoung Kim
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan Metropolitan City 44919, Republic of Korea
| | - Dong-Hee Kang
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan Metropolitan City 44919, Republic of Korea
| | - Seungjae Lee
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan Metropolitan City 44919, Republic of Korea
| | - Hyunhyub Ko
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan Metropolitan City 44919, Republic of Korea
| |
Collapse
|
5
|
Abdul-Hussain G, Holderbaum W, Theodoridis T, Wei G. Modified Nonlinear Hysteresis Approach for a Tactile Sensor. SENSORS (BASEL, SWITZERLAND) 2023; 23:7293. [PMID: 37631829 PMCID: PMC10458598 DOI: 10.3390/s23167293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 08/17/2023] [Accepted: 08/17/2023] [Indexed: 08/27/2023]
Abstract
Soft tactile sensors based on piezoresistive materials have large-area sensing applications. However, their accuracy is often affected by hysteresis which poses a significant challenge during operation. This paper introduces a novel approach that employs a backpropagation (BP) neural network to address the hysteresis nonlinearity in conductive fiber-based tactile sensors. To assess the effectiveness of the proposed method, four sensor units were designed. These sensor units underwent force sequences to collect corresponding output resistance. A backpropagation network was trained using these sequences, thereby correcting the resistance values. The training process exhibited excellent convergence, effectively adjusting the network's parameters to minimize the error between predicted and actual resistance values. As a result, the trained BP network accurately predicted the output resistances. Several validation experiments were conducted to highlight the primary contribution of this research. The proposed method reduced the maximum hysteresis error from 24.2% of the sensor's full-scale output to 13.5%. This improvement established the approach as a promising solution for enhancing the accuracy of soft tactile sensors based on piezoresistive materials. By effectively mitigating hysteresis nonlinearity, the capabilities of soft tactile sensors in various applications can be enhanced. These sensors become more reliable and more efficient tools for the measurement and control of force, particularly in the fields of soft robotics and wearable technology. Consequently, their widespread applications extend to robotics, medical devices, consumer electronics, and gaming. Though the complete elimination of hysteresis in tactile sensors may not be feasible, the proposed method effectively modifies the hysteresis nonlinearity, leading to improved sensor output accuracy.
Collapse
Affiliation(s)
- Gasak Abdul-Hussain
- School of Science, Engineering and Environment, University of Salford, Salford M5 4WT, UK; (W.H.); (T.T.); (G.W.)
| | | | | | | |
Collapse
|
6
|
Anshori I, Heriawan EV, Suhayat PY, Wicaksono DHB, Kusumocahyo SP, Satriawan A, Shalannanda W, Dwiyanti L, Setianingsih C, Handayani M. Fabric-Based Electrochemical Glucose Sensor with Integrated Millifluidic Path from a Hydrophobic Batik Wax. SENSORS (BASEL, SWITZERLAND) 2023; 23:5833. [PMID: 37447683 DOI: 10.3390/s23135833] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 06/16/2023] [Accepted: 06/20/2023] [Indexed: 07/15/2023]
Abstract
In recent years, measuring and monitoring analyte concentrations continuously, frequently, and periodically has been a vital necessity for certain individuals. We developed a cotton-based millifluidic fabric-based electrochemical device (mFED) to monitor glucose continuously and evaluate the effects of mechanical deformation on the device's electrochemical performance. The mFED was fabricated using stencil printing (thick film method) for patterning the electrodes and wax-patterning to make the reaction zone. The analytical performance of the device was carried out using the chronoamperometry method at a detection potential of -0.2 V. The mFED has a linear working range of 0-20 mM of glucose, with LOD and LOQ of 0.98 mM and 3.26 mM. The 3D mFED shows the potential to be integrated as a wearable sensor that can continuously measure glucose under mechanical deformation.
Collapse
Affiliation(s)
- Isa Anshori
- School of Electrical Engineering and Informatics, Bandung Institute of Technology, Bandung 40132, Indonesia
- Research Center for Nanosciences and Nanotechnology (RCNN), Bandung Institute of Technology, Bandung 40132, Indonesia
| | - Elfrida Vanesa Heriawan
- Department of Biomedical Engineering, Faculty of Life Sciences and Technology, Swiss German University, Tangerang 15143, Indonesia
| | - Putri Yulianti Suhayat
- School of Electrical Engineering and Informatics, Bandung Institute of Technology, Bandung 40132, Indonesia
| | - Dedy H B Wicaksono
- Department of Biomedical Engineering, Faculty of Life Sciences and Technology, Swiss German University, Tangerang 15143, Indonesia
| | - Samuel Priyantoro Kusumocahyo
- Department of Chemical Engineering, Faculty of Life Sciences and Technology, Swiss German University, Tangerang 15143, Indonesia
| | - Ardianto Satriawan
- School of Electrical Engineering and Informatics, Bandung Institute of Technology, Bandung 40132, Indonesia
| | - Wervyan Shalannanda
- School of Electrical Engineering and Informatics, Bandung Institute of Technology, Bandung 40132, Indonesia
| | - Latifa Dwiyanti
- School of Electrical Engineering and Informatics, Bandung Institute of Technology, Bandung 40132, Indonesia
| | - Casi Setianingsih
- Department of Computer Engineering, School of Electrical Engineering, Telkom University, Bandung 40257, Indonesia
| | - Murni Handayani
- Research Center for Advanced Materials-National Research and Innovation Agency (BRIN), Tangerang Selatan 15314, Indonesia
| |
Collapse
|
7
|
Nikitina NA, Ryabkin DI, Suchkova VV, Kuksin AV, Pyankov ES, Ichkitidze LP, Maksimkin AV, Kitsyuk EP, Gerasimenko EA, Telyshev DV, Bobrinetskiy I, Selishchev SV, Gerasimenko AY. Laser-Formed Sensors with Electrically Conductive MWCNT Networks for Gesture Recognition Applications. MICROMACHINES 2023; 14:1106. [PMID: 37374691 DOI: 10.3390/mi14061106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 05/21/2023] [Accepted: 05/22/2023] [Indexed: 06/29/2023]
Abstract
Currently, an urgent need in the field of wearable electronics is the development of flexible sensors that can be attached to the human body to monitor various physiological indicators and movements. In this work, we propose a method for forming an electrically conductive network of multi-walled carbon nanotubes (MWCNT) in a matrix of silicone elastomer to make stretchable sensors sensitive to mechanical strain. The electrical conductivity and sensitivity characteristics of the sensor were improved by using laser exposure, through the effect of forming strong carbon nanotube (CNT) networks. The initial electrical resistance of the sensors obtained using laser technology was ~3 kOhm (in the absence of deformation) at a low concentration of nanotubes of 3 wt% in composition. For comparison, in a similar manufacturing process, but without laser exposure, the active material had significantly higher values of electrical resistance, which was ~19 kOhm in this case. The laser-fabricated sensors have a high tensile sensitivity (gauge factor ~10), linearity of >0.97, a low hysteresis of 2.4%, tensile strength of 963 kPa, and a fast strain response of 1 ms. The low Young's modulus values of ~47 kPa and the high electrical and sensitivity characteristics of the sensors made it possible to fabricate a smart gesture recognition sensor system based on them, with a recognition accuracy of ~94%. Data reading and visualization were performed using the developed electronic unit based on the ATXMEGA8E5-AU microcontroller and software. The obtained results open great prospects for the application of flexible CNT sensors in intelligent wearable devices (IWDs) for medical and industrial applications.
Collapse
Affiliation(s)
- Natalia A Nikitina
- Institute of Biomedical Systems, National Research University of Electronic Technology, 124498 Moscow, Russia
| | - Dmitry I Ryabkin
- Institute of Biomedical Systems, National Research University of Electronic Technology, 124498 Moscow, Russia
- Institute for Bionic Technologies and Engineering, I.M. Sechenov First Moscow State Medical University, Bolshaya Pirogovskaya Street 2-4, 119991 Moscow, Russia
| | - Victoria V Suchkova
- Institute of Biomedical Systems, National Research University of Electronic Technology, 124498 Moscow, Russia
| | - Artem V Kuksin
- Institute of Biomedical Systems, National Research University of Electronic Technology, 124498 Moscow, Russia
| | - Evgeny S Pyankov
- Institute of Biomedical Systems, National Research University of Electronic Technology, 124498 Moscow, Russia
| | - Levan P Ichkitidze
- Institute of Biomedical Systems, National Research University of Electronic Technology, 124498 Moscow, Russia
- Institute for Bionic Technologies and Engineering, I.M. Sechenov First Moscow State Medical University, Bolshaya Pirogovskaya Street 2-4, 119991 Moscow, Russia
| | - Aleksey V Maksimkin
- Institute for Bionic Technologies and Engineering, I.M. Sechenov First Moscow State Medical University, Bolshaya Pirogovskaya Street 2-4, 119991 Moscow, Russia
| | - Evgeny P Kitsyuk
- Scientific-Manufacturing Complex "Technological Centre", Shokin Square 1, bld. 7 off. 7237, 124498 Moscow, Russia
| | - Ekaterina A Gerasimenko
- Institute of Biomedical Systems, National Research University of Electronic Technology, 124498 Moscow, Russia
| | - Dmitry V Telyshev
- Institute of Biomedical Systems, National Research University of Electronic Technology, 124498 Moscow, Russia
- Institute for Bionic Technologies and Engineering, I.M. Sechenov First Moscow State Medical University, Bolshaya Pirogovskaya Street 2-4, 119991 Moscow, Russia
| | - Ivan Bobrinetskiy
- Center for Probe Microscopy and Nanotechnology, National Research University of Electronic Technology, 124498 Moscow, Russia
| | - Sergey V Selishchev
- Institute of Biomedical Systems, National Research University of Electronic Technology, 124498 Moscow, Russia
| | - Alexander Yu Gerasimenko
- Institute of Biomedical Systems, National Research University of Electronic Technology, 124498 Moscow, Russia
- Institute for Bionic Technologies and Engineering, I.M. Sechenov First Moscow State Medical University, Bolshaya Pirogovskaya Street 2-4, 119991 Moscow, Russia
| |
Collapse
|
8
|
Korotcenkov G, Simonenko NP, Simonenko EP, Sysoev VV, Brinzari V. Paper-Based Humidity Sensors as Promising Flexible Devices, State of the Art, Part 2: Humidity-Sensor Performances. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:nano13081381. [PMID: 37110966 PMCID: PMC10144639 DOI: 10.3390/nano13081381] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 04/11/2023] [Accepted: 04/14/2023] [Indexed: 05/27/2023]
Abstract
This review article covers all types of paper-based humidity sensor, such as capacitive, resistive, impedance, fiber-optic, mass-sensitive, microwave, and RFID (radio-frequency identification) humidity sensors. The parameters of these sensors and the materials involved in their research and development, such as carbon nanotubes, graphene, semiconductors, and polymers, are comprehensively detailed, with a special focus on the advantages/disadvantages from an application perspective. Numerous technological/design approaches to the optimization of the performances of the sensors are considered, along with some non-conventional approaches. The review ends with a detailed analysis of the current problems encountered in the development of paper-based humidity sensors, supported by some solutions.
Collapse
Affiliation(s)
- Ghenadii Korotcenkov
- Department of Physics and Engineering, Moldova State University, MD-2009 Chisinau, Moldova;
| | - Nikolay P. Simonenko
- Kurnakov Institute of General and Inorganic Chemistry, The Russian Academy of Sciences, 31 Leninsky pr., 119991 Moscow, Russia; (N.P.S.); (E.P.S.)
| | - Elizaveta P. Simonenko
- Kurnakov Institute of General and Inorganic Chemistry, The Russian Academy of Sciences, 31 Leninsky pr., 119991 Moscow, Russia; (N.P.S.); (E.P.S.)
| | - Victor V. Sysoev
- Department of Physics, Yuri Gagarin State Technical University of Saratov, 77 Polytechnicheskaya str., 410054 Saratov, Russia;
| | - Vladimir Brinzari
- Department of Physics and Engineering, Moldova State University, MD-2009 Chisinau, Moldova;
| |
Collapse
|
9
|
Korotcenkov G. Paper-Based Humidity Sensors as Promising Flexible Devices: State of the Art: Part 1. General Consideration. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:nano13061110. [PMID: 36986004 PMCID: PMC10059663 DOI: 10.3390/nano13061110] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 03/11/2023] [Accepted: 03/17/2023] [Indexed: 05/14/2023]
Abstract
In the first part of the review article "General considerations" we give information about conventional flexible platforms and consider the advantages and disadvantages of paper when used in humidity sensors, both as a substrate and as a humidity-sensitive material. This consideration shows that paper, especially nanopaper, is a very promising material for the development of low-cost flexible humidity sensors suitable for a wide range of applications. Various humidity-sensitive materials suitable for use in paper-based sensors are analyzed and the humidity-sensitive characteristics of paper and other humidity-sensitive materials are compared. Various configurations of humidity sensors that can be developed on the basis of paper are considered, and a description of the mechanisms of their operation is given. Next, we discuss the manufacturing features of paper-based humidity sensors. The main attention is paid to the consideration of such problems as patterning and electrode formation. It is shown that printing technologies are the most suitable for mass production of paper-based flexible humidity sensors. At the same time, these technologies are effective both in the formation of a humidity-sensitive layer and in the manufacture of electrodes.
Collapse
Affiliation(s)
- Ghenadii Korotcenkov
- Department of Physics and Engineering, Moldova State University, MD-2009 Chisinau, Moldova
| |
Collapse
|
10
|
Holman JB, Shi Z, Fadahunsi AA, Li C, Ding W. Advances on microfluidic paper-based electroanalytical devices. Biotechnol Adv 2023; 63:108093. [PMID: 36603801 DOI: 10.1016/j.biotechadv.2022.108093] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 12/30/2022] [Accepted: 12/30/2022] [Indexed: 01/03/2023]
Abstract
Since the inception of the first electrochemical devices on paper substrates, many different reports of microfluidic paper-based electroanalytical devices (μPEDs), innovative hydrophobic barriers and electrode fabrication processes have allowed the incorporation of diverse materials, resulting in different applications and a boost in performance. These advancements have led to the creation of paper-based devices with comparable performance to many standard conventional devices, with the added benefits of pumpless fluidic transport, component separation and reagent storage that can be exploited to automate and handle sample preprocessing. Herein, we review μPEDs, summarize the characteristics and functionalities of μPEDs, such as separation, fluid flow control and storage, and outline the conventional and emerging fabrication and modification approaches for μPEDs. We also examine the recent application of μPEDs in biomedicine, the environment, and food and water safety, as well as some limitations and challenges that must be addressed.
Collapse
Affiliation(s)
- Joseph Benjamin Holman
- School of Information Science and Technology, University of Science and Technology of China, Hefei, Anhui 230027, China
| | - Zhengdi Shi
- School of Information Science and Technology, University of Science and Technology of China, Hefei, Anhui 230027, China
| | - Adeola A Fadahunsi
- School of Information Science and Technology, University of Science and Technology of China, Hefei, Anhui 230027, China
| | - Chengpan Li
- School of Information Science and Technology, University of Science and Technology of China, Hefei, Anhui 230027, China.
| | - Weiping Ding
- Department of Oncology, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230001, China.
| |
Collapse
|
11
|
Sels A, Subramanian V. Printed Platinum Nanoparticle Thin-Film Structures for Use in Biology and Catalysis: Synthesis, Printing, and Application Demonstration. ACS OMEGA 2023; 8:1929-1936. [PMID: 36687057 PMCID: PMC9850773 DOI: 10.1021/acsomega.2c04687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 11/08/2022] [Indexed: 06/17/2023]
Abstract
This work describes the formulation of a stable platinum nanoparticle-based ink for drop-on-demand inkjet printing and fabrication of metallic platinum thin films. A highly conductive functional nanoink was formulated based on dodecanethiol platinum nanoparticles (3-5 nm) dispersed in a toluene-terpineol mixture with a loading of 15 wt %, compatible with inkjet printing. The reduced sintering temperatures (200 °C) make them interesting for integration in devices using flexible substrates and substrates that cannot tolerate high-temperature exposures. A resistive platinum heater was successfully printed as a demonstrator for integration of the platinum ink. The platinum nanoink developed herein will be, therefore, attractive for a range of applications in biology, chemistry, and printed electronics.
Collapse
|
12
|
Bayer IS. MEMS-Based Tactile Sensors: Materials, Processes and Applications in Robotics. MICROMACHINES 2022; 13:2051. [PMID: 36557349 PMCID: PMC9782357 DOI: 10.3390/mi13122051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 11/14/2022] [Accepted: 11/17/2022] [Indexed: 06/17/2023]
Abstract
Commonly encountered problems in the manipulation of objects with robotic hands are the contact force control and the setting of approaching motion. Microelectromechanical systems (MEMS) sensors on robots offer several solutions to these problems along with new capabilities. In this review, we analyze tactile, force and/or pressure sensors produced by MEMS technologies including off-the-shelf products such as MEMS barometric sensors. Alone or in conjunction with other sensors, MEMS platforms are considered very promising for robots to detect the contact forces, slippage and the distance to the objects for effective dexterous manipulation. We briefly reviewed several sensing mechanisms and principles, such as capacitive, resistive, piezoresistive and triboelectric, combined with new flexible materials technologies including polymers processing and MEMS-embedded textiles for flexible and snake robots. We demonstrated that without taking up extra space and at the same time remaining lightweight, several MEMS sensors can be integrated into robotic hands to simulate human fingers, gripping, hardness and stiffness sensations. MEMS have high potential of enabling new generation microactuators, microsensors, micro miniature motion-systems (e.g., microrobots) that will be indispensable for health, security, safety and environmental protection.
Collapse
Affiliation(s)
- Ilker S Bayer
- Smart Materials, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy
| |
Collapse
|
13
|
Tavakoli H, Hirth E, Luo M, Sharma Timilsina S, Dou M, Dominguez DC, Li X. A microfluidic fully paper-based analytical device integrated with loop-mediated isothermal amplification and nano-biosensors for rapid, sensitive, and specific quantitative detection of infectious diseases. LAB ON A CHIP 2022; 22:4693-4704. [PMID: 36349548 PMCID: PMC9701502 DOI: 10.1039/d2lc00834c] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Bacterial meningitis, an infection of the membranes (meninges) and cerebrospinal fluid (CSF) surrounding the brain and spinal cord, is one of the major causes of death and disability worldwide. Higher case-fatality rates and short survival times have been reported in developing countries. Hence, a quick, straightforward, and low-cost approach is in great demand for the diagnosis of meningitis. In this research, a microfluidic fully paper-based analytical device (μFPAD) integrated with loop-mediated isothermal amplification (LAMP) and ssDNA-functionalized graphene oxide (GO) nano-biosensors was developed for the first time for a simple, rapid, low-cost, and quantitative detection of the main meningitis-causing bacteria, Neisseria meningitidis (N. meningitidis). The results can be successfully read within 1 hour with the limit of detection (LOD) of 6 DNA copies per detection zone. This paper device also offers versatile functions by providing a qualitative diagnostic analysis (i.e., a yes or no answer), confirmatory testing, and quantitative analysis. These features make the presented μFPAD capable of a simple, highly sensitive, and specific diagnosis of N. meningitis. Furthermore, this microfluidic approach has great potential in the rapid detection of a wide variety of different other pathogens in low-resource settings.
Collapse
Affiliation(s)
- Hamed Tavakoli
- Department of Chemistry and Biochemistry, University of Texas at El Paso, El Paso, Texas, 79968, USA.
| | - Elisabeth Hirth
- Department of Chemistry and Biochemistry, University of Texas at El Paso, El Paso, Texas, 79968, USA.
- Department of Chemistry, University of Aalen, Beethovenstraße 1, 73430 Aalen, Germany
| | - Man Luo
- Department of Chemistry and Biochemistry, University of Texas at El Paso, El Paso, Texas, 79968, USA.
| | - Sanjay Sharma Timilsina
- Department of Chemistry and Biochemistry, University of Texas at El Paso, El Paso, Texas, 79968, USA.
| | - Maowei Dou
- Department of Chemistry and Biochemistry, University of Texas at El Paso, El Paso, Texas, 79968, USA.
| | - Delfina C Dominguez
- College of Health Sciences, University of Texas at El Paso, El Paso, TX, USA
| | - XiuJun Li
- Department of Chemistry and Biochemistry, University of Texas at El Paso, El Paso, Texas, 79968, USA.
- Border Biomedical Research Center, Biomedical Engineering, University of Texas at El Paso, El Paso, 79968, USA
- Environmental Science and Engineering, University of Texas at El Paso, El Paso, 79968, USA
| |
Collapse
|
14
|
Sarkar S, Gogoi M, Mahato M, Joshi AB, Baruah AJ, Kodgire P, Boruah P. Biosensors for detection of prostate cancer: a review. Biomed Microdevices 2022; 24:32. [PMID: 36169742 DOI: 10.1007/s10544-022-00631-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/19/2022] [Indexed: 11/26/2022]
Abstract
Diagnosis of prostate cancer (PC) has posed a challenge worldwide due to the sophisticated and costly diagnostics tools, which include DRE, TRUS, GSU, PET/CT scan, MRI, and biopsy. These diagnostic techniques are very helpful in the detection of PCs; however, all the techniques have their serious limitations. Biosensors are easier to fabricate and do not require any cutting-edge technology as required for other imaging techniques. In this regard, point-of-care (POC) biosensors are important due to their portability, convenience, low cost, and fast procedure. This review explains the various existing diagnostic tools for the detection of PCs and the limitation of these methods. It also focuses on the recent studies on biosensors technologies as an alternative to the conventional diagnostic techniques for the detection of PCs.
Collapse
Affiliation(s)
- Sourav Sarkar
- Department of Biomedical Engineering, North-Eastern Hill University, Shillong, 793022, Meghalaya, India
| | - Manashjit Gogoi
- Department of Biomedical Engineering, North-Eastern Hill University, Shillong, 793022, Meghalaya, India.
| | - Mrityunjoy Mahato
- Physics Division, Department of Basic Sciences and Social Sciences, North-Eastern Hill University, Shillong, 793022, Meghalaya, India
| | - Abhijeet Balwantrao Joshi
- Biosciences and Biomedical Engineering, Indian Institute of Technology, Indore-453552, Madhya Pradesh, India
| | - Arup Jyoti Baruah
- Department of General Surgery, North Eastern Indira Gandhi Regional Institute of Health and Medical Sciences, Shillong, Meghalaya, India
| | - Prashant Kodgire
- Biosciences and Biomedical Engineering, Indian Institute of Technology, Indore-453552, Madhya Pradesh, India
| | - Polina Boruah
- Department of Biochemistry, North Eastern Indira Gandhi Regional Institute of Health and Medical Sciences, Shillong-793018, Meghalaya, India
| |
Collapse
|
15
|
Role of Paper-Based Sensors in Fight against Cancer for the Developing World. BIOSENSORS 2022; 12:bios12090737. [PMID: 36140122 PMCID: PMC9496559 DOI: 10.3390/bios12090737] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 08/25/2022] [Accepted: 08/31/2022] [Indexed: 11/17/2022]
Abstract
Cancer is one of the major killers across the globe. According to the WHO, more than 10 million people succumbed to cancer in the year 2020 alone. The early detection of cancer is key to reducing the mortality rate. In low- and medium-income countries, the screening facilities are limited due to a scarcity of resources and equipment. Paper-based microfluidics provide a platform for a low-cost, biodegradable micro-total analysis system (µTAS) that can be used for the detection of critical biomarkers for cancer screening. This work aims to review and provide a perspective on various available paper-based methods for cancer screening. The work includes an overview of paper-based sensors, the analytes that can be detected and the detection, and readout methods used.
Collapse
|
16
|
A MEMS-Based High-Fineness Fiber-Optic Fabry–Perot Pressure Sensor for High-Temperature Application. MICROMACHINES 2022; 13:mi13050763. [PMID: 35630230 PMCID: PMC9145377 DOI: 10.3390/mi13050763] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Revised: 05/05/2022] [Accepted: 05/09/2022] [Indexed: 11/30/2022]
Abstract
In this paper, a high-fineness fiber-optic Fabry–Perot high-temperature pressure sensor, based on MEMS technology, is proposed and experimentally verified. The Faber–Perot cavity of the pressure sensor is formed by the anodic bonding of a sensitive silicon diaphragm and a Pyrex glass; a high-fineness interference signal is obtained by coating the interface surface with a high-reflection film, so as to simplify the signal demodulation system. The experimental results show that the pressure sensitivity of this sensor is 55.468 nm/MPa, and the temperature coefficient is 0.01859 nm/°C at 25~300 °C. The fiber-optic pressure sensor has the following advantages: high fineness, high temperature tolerance, high consistency and simple demodulation, resulting in a wide application prospect in the field of high-temperature pressure testing.
Collapse
|
17
|
Chen J, Liu P, Hu J, Yang J, Chen C. Design of an array of piezoresistive airflow sensors based on pressure loading mode for simultaneous detection of airflow velocity and direction. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2022; 93:025001. [PMID: 35232161 DOI: 10.1063/5.0073669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Accepted: 01/16/2022] [Indexed: 06/14/2023]
Abstract
As an irreplaceable element for obtaining airflow information in many engineering scenarios, airflow sensors have gained increasing attention across the fields of aerospace engineering, environmental engineering, sustainable energy exploitation, meteorology research, and so on. As one of the mainstream airflow sensing principles, piezoresistive airflow velocity sensors have experienced rapid growth over the years, while effective vector airflow sensors with the ability of detecting both airflow velocity and direction based on the piezoresistive principle are scarce. Here, on the basis of our developed piezoresistive airflow velocity sensors based on pressure loading mode, we design an array of these sensors and propose a corresponding explicit algorithm for simultaneous detection of airflow velocity and direction. This sensor array configuration enables an automatic recognition function of the quadrant of incoming airflow, which can significantly simplify the reverse calculation of airflow information compared with conventional vector airflow sensors. The experimental results demonstrate the decent performance of this sensor array for identifying both airflow velocity and direction. This study not only fills the gap between our developed airflow velocity sensor and the ability of detecting airflow direction but also presents a simple and universal array-based strategy for vector airflow sensing, which could be widely applied in airflow sensors based on other principles.
Collapse
Affiliation(s)
- Jinyan Chen
- State Key Laboratory of Mechanics and Control of Mechanical Structures, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, People's Republic of China
| | - Pengzhan Liu
- State Key Laboratory of Mechanics and Control of Mechanical Structures, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, People's Republic of China
| | - Jie Hu
- College of Engineering, Jiangxi Agricultural University, Nanchang 330045, People's Republic of China
| | - Jianlin Yang
- State Key Laboratory of Mechanics and Control of Mechanical Structures, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, People's Republic of China
| | - Chao Chen
- State Key Laboratory of Mechanics and Control of Mechanical Structures, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, People's Republic of China
| |
Collapse
|
18
|
Abels K, Salvo-Halloran EM, White D, Ali M, Agarwal NR, Leung V, Ali M, Sidawi M, Capretta A, Brennan JD, Nease J, Filipe CDM. Quantitative Point-of-Care Colorimetric Assay Modeling Using a Handheld Colorimeter. ACS OMEGA 2021; 6:22439-22446. [PMID: 34497933 PMCID: PMC8412955 DOI: 10.1021/acsomega.1c03460] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 08/05/2021] [Indexed: 06/13/2023]
Abstract
Colorimetric assays typically offer a rapid and convenient method to assess analytes that span healthcare monitoring to water quality testing. However, such tests can only provide qualitative results when employed in resource-limited settings or require bulky and expensive equipment such as lab spectrophotometers to allow quantitative measurements. In this paper, we report on the use of a handheld colorimeter to quantitatively determine the concentration of analytes in a manner that is independent of ambient lighting or initial sample color. The method combines the response of the sensor with first-principles modeling that better describes the nature of the assay compared to linear-in-parameters regression modeling that is typically performed in other studies. This method was successfully demonstrated using a number of colorimetric assays: (1) determination of solution pH using a universal indicator, (2) quantification of the DNase presence using a DNA-gold nanoparticle assay, and (3) quantification of the concentration of the antibiotic tetracycline using a cell-based assay.
Collapse
Affiliation(s)
- Kristen Abels
- Department
of Chemical Engineering, McMaster University, 1280 Main St. West, Hamilton, Ontario L8S 4M1, Canada
| | | | - Dawn White
- Biointerfaces
Institute, McMaster University, 1280 Main St. West, Hamilton, Ontario L8S 4M1, Canada
| | - Monsur Ali
- Biointerfaces
Institute, McMaster University, 1280 Main St. West, Hamilton, Ontario L8S 4M1, Canada
| | - Nisha R. Agarwal
- Biointerfaces
Institute, McMaster University, 1280 Main St. West, Hamilton, Ontario L8S 4M1, Canada
- Nano-Imaging
and Spectroscopy Laboratory, Faculty of Science, University of Ontario Institute of Technology, 2000 Simcoe Street North, Oshawa, Ontario L1G 0C5, Canada
| | - Vincent Leung
- Department
of Chemical Engineering, McMaster University, 1280 Main St. West, Hamilton, Ontario L8S 4M1, Canada
| | - Muntakim Ali
- Department
of Chemical Engineering, McMaster University, 1280 Main St. West, Hamilton, Ontario L8S 4M1, Canada
| | - Mariam Sidawi
- Department
of Chemical Engineering, McMaster University, 1280 Main St. West, Hamilton, Ontario L8S 4M1, Canada
| | - Alfredo Capretta
- Biointerfaces
Institute, McMaster University, 1280 Main St. West, Hamilton, Ontario L8S 4M1, Canada
| | - John D. Brennan
- Biointerfaces
Institute, McMaster University, 1280 Main St. West, Hamilton, Ontario L8S 4M1, Canada
| | - Jake Nease
- Department
of Chemical Engineering, McMaster University, 1280 Main St. West, Hamilton, Ontario L8S 4M1, Canada
| | - Carlos D. M. Filipe
- Department
of Chemical Engineering, McMaster University, 1280 Main St. West, Hamilton, Ontario L8S 4M1, Canada
| |
Collapse
|
19
|
Zou X, Liang T, Yang M, LoPresti C, Shukla S, Akin M, Weil BT, Hoque S, Gruber E, Mazzeo AD. Paper-Based Robotics with Stackable Pneumatic Actuators. Soft Robot 2021; 9:542-551. [PMID: 34388034 DOI: 10.1089/soro.2021.0002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
This work presents a unique approach to the design, fabrication, and characterization of paper-based origami robotic systems consisting of stackable pneumatic actuators. These paper-based actuators (PBAs) use materials with high elastic modulus-to-mass ratios, accordion-like structures, and direct coupling with pneumatic pressure for extension and bending. The study contributes to the scientific and engineering understanding of foldable components under applied pneumatic pressure by constructing stretchable and flexible structures with intrinsically nonstretchable materials. Experiments showed that a PBA possesses a power-to-mass ratio greater than 80 W/kg, which is more than four times that of human muscle. This work also illustrates the stackability and functionality of PBAs by two prototypes: a parallel manipulator and a legged locomotor. The manipulator consisting of an array of PBAs can bend in a specific direction with the corresponding actuator inflated. In addition, the stacked actuators in the manipulator can rotate in opposite directions to compensate for relative rotation at the ends of each actuator to work in parallel and manipulate the platform. The locomotor rotates the PBAs to apply and release contact between the feet and the ground. Furthermore, a numerical model developed in this work predicts the mechanical performance of these inflatable actuators as a function of dimensional specifications and folding patterns. Overall, we use stacked origami actuators to implement functionalities of manipulation, gripping, and locomotion as conventional robotic systems. Future origami robots made of paper-like materials may be suitable for single use in contaminated or unstructured environments or low-cost educational materials.
Collapse
Affiliation(s)
- Xiyue Zou
- Department of Mechanical and Aerospace Engineering, Rutgers University, Piscataway, New Jersey, USA
| | - Tongfen Liang
- Department of Mechanical and Aerospace Engineering, Rutgers University, Piscataway, New Jersey, USA
| | - Michael Yang
- Department of Mechanical and Aerospace Engineering, Rutgers University, Piscataway, New Jersey, USA
| | - Cora LoPresti
- Department of Mechanical and Aerospace Engineering, Rutgers University, Piscataway, New Jersey, USA
| | - Smit Shukla
- Department of Mechanical and Aerospace Engineering, Rutgers University, Piscataway, New Jersey, USA
| | - Meriem Akin
- Institute of Microtechnology, Braunschweiger University of Technology, Alte Salzdahlumer, Germany
| | - Brian T Weil
- Department of Mechanical and Aerospace Engineering, Rutgers University, Piscataway, New Jersey, USA
| | - Salman Hoque
- Department of Mechanical and Aerospace Engineering, Rutgers University, Piscataway, New Jersey, USA
| | - Emily Gruber
- Department of Mechanical and Aerospace Engineering, Rutgers University, Piscataway, New Jersey, USA
| | - Aaron D Mazzeo
- Department of Mechanical and Aerospace Engineering, Rutgers University, Piscataway, New Jersey, USA
| |
Collapse
|
20
|
Haroun A, Le X, Gao S, Dong B, He T, Zhang Z, Wen F, Xu S, Lee C. Progress in micro/nano sensors and nanoenergy for future AIoT-based smart home applications. NANO EXPRESS 2021. [DOI: 10.1088/2632-959x/abf3d4] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Abstract
Self-sustainable sensing systems composed of micro/nano sensors and nano-energy harvesters contribute significantly to developing the internet of things (IoT) systems. As one of the most promising IoT applications, smart home relies on implementing wireless sensor networks with miniaturized and multi-functional sensors, and distributed, reliable, and sustainable power sources, namely energy harvesters with a variety of conversion mechanisms. To extend the capabilities of IoT in the smart home, a technology fusion of IoT and artificial intelligence (AI), called the artificial intelligence of things (AIoT), enables the detection, analysis, and decision-making functions with the aids of machine learning assisted algorithms to form a smart home based intelligent system. In this review, we introduce the conventional rigid microelectromechanical system (MEMS) based micro/nano sensors and energy harvesters, followed by presenting the advances in the wearable counterparts for better human interactions. We then discuss the viable integration approaches for micro/nano sensors and energy harvesters to form self-sustainable IoT systems. Whereafter, we emphasize the recent development of AIoT based systems and the corresponding applications enabled by the machine learning algorithms. Smart home based healthcare technology enabled by the integrated multi-functional sensing platform and bioelectronic medicine is also presented as an important future direction, as well as wearable photonics sensing system as a complement to the wearable electronics sensing system.
Collapse
|
21
|
Lv M, Zhou W, Tavakoli H, Bautista C, Xia J, Wang Z, Li X. Aptamer-functionalized metal-organic frameworks (MOFs) for biosensing. Biosens Bioelectron 2021; 176:112947. [PMID: 33412430 PMCID: PMC7855766 DOI: 10.1016/j.bios.2020.112947] [Citation(s) in RCA: 116] [Impact Index Per Article: 38.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 12/22/2020] [Accepted: 12/26/2020] [Indexed: 02/07/2023]
Abstract
As a class of crystalline porous materials, metal-organic frameworks (MOFs) have attracted increasing attention. Due to the nanoscale framework structure, adjustable pore size, large specific surface area, and good chemical stability, MOFs have been applied widely in many fields such as biosensors, biomedicine, electrocatalysis, energy storage and conversions. Especially when they are combined with aptamer functionalization, MOFs can be utilized to construct high-performance biosensors for numerous applications ranging from medical diagnostics and food safety inspection, to environmental surveillance. Herein, this article reviews recent innovations of aptamer-functionalized MOFs-based biosensors and their bio-applications. We first briefly introduce different functionalization methods of MOFs with aptamers, which provide a foundation for the construction of MOFs-based aptasensors. Then, we comprehensively summarize different types of MOFs-based aptasensors and their applications, in which MOFs serve as either signal probes or signal probe carriers for optical, electrochemical, and photoelectrochemical detection, with an emphasis on the former. Given recent substantial research interests in stimuli-responsive materials and the microfluidic lab-on-a-chip technology, we also present the stimuli-responsive aptamer-functionalized MOFs for sensing, followed by a brief overview on the integration of MOFs on microfluidic devices. Current limitations and prospective trends of MOFs-based biosensors are discussed at the end.
Collapse
Affiliation(s)
- Mengzhen Lv
- College of Chemistry and Chemical Engineering, Shandong Sino-Japanese Center for Collaborative Research of Carbon Nanomaterials, Qingdao University, Qingdao, 266071, PR China; Department of Chemistry and Biochemistry, University of Texas at El Paso, El Paso, 79968, USA
| | - Wan Zhou
- Department of Chemistry and Biochemistry, University of Texas at El Paso, El Paso, 79968, USA
| | - Hamed Tavakoli
- Department of Chemistry and Biochemistry, University of Texas at El Paso, El Paso, 79968, USA
| | - Cynthia Bautista
- Department of Chemistry and Biochemistry, University of Texas at El Paso, El Paso, 79968, USA
| | - Jianfei Xia
- College of Chemistry and Chemical Engineering, Shandong Sino-Japanese Center for Collaborative Research of Carbon Nanomaterials, Qingdao University, Qingdao, 266071, PR China; Department of Chemistry and Biochemistry, University of Texas at El Paso, El Paso, 79968, USA.
| | - Zonghua Wang
- College of Chemistry and Chemical Engineering, Shandong Sino-Japanese Center for Collaborative Research of Carbon Nanomaterials, Qingdao University, Qingdao, 266071, PR China
| | - XiuJun Li
- Department of Chemistry and Biochemistry, University of Texas at El Paso, El Paso, 79968, USA; Biomedical Engineering, Border Biomedical Research Center, University of Texas at El Paso, El Paso, 79968, USA; Environmental Science and Engineering, University of Texas at El Paso, El Paso, 79968, USA.
| |
Collapse
|
22
|
Perfluorooctanesulfonic Acid Detection Using Molecularly Imprinted Polyaniline on a Paper Substrate. SENSORS 2020; 20:s20247301. [PMID: 33352634 PMCID: PMC7765859 DOI: 10.3390/s20247301] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 12/16/2020] [Accepted: 12/17/2020] [Indexed: 11/16/2022]
Abstract
Perfluorinated compounds like perfluorooctanesulfonic acid (PFOS) are synthetic water pollutants and have accumulated in environments for decades, causing a serious global health issue. Conventional assays rely on liquid chromatography and mass spectroscopy that are very expensive and complicated and thus limit the large-scale monitoring of PFOS in wastewater. To achieve low-cost and accurate detection of PFOS, we designed a paper-based sensor with molecularly imprinted polyaniline electrodes that have recognition sites specific to PFOS. The calibration curve of resistivity ratios as a function of PFOS concentrations has a linear range from 1 to 100 ppt with a coefficient of determination of 0.995. The estimated limit of detection is 1.02 ppt. We also investigated attenuated total reflectance Fourier-transform infrared spectroscopy (ATR-FTIR) and X-ray photoelectron spectroscopy (XPS) spectra of the surface of the polyaniline (PANI) electrodes to propose the potential recognition sites in polyaniline matrix and the detection mechanism. This electrical paper sensor with low cost and excellent sensitivity and selectivity provides the potential for large-scale monitoring of wastewater.
Collapse
|
23
|
Low-Cost PVD Shadow Masks with Submillimeter Resolution from Laser-Cut Paper. MICROMACHINES 2020; 11:mi11070676. [PMID: 32664500 PMCID: PMC7407583 DOI: 10.3390/mi11070676] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 07/08/2020] [Accepted: 07/09/2020] [Indexed: 12/29/2022]
Abstract
We characterize an affordable method of producing stencils for submillimeter physical vapor deposition (PVD) by using paper and a benchtop laser cutter. Patterning electrodes or similar features on top of organic or biological substrates is generally not possible using standard photolithography. Shadow masks, traditionally made of silicon-based membranes, circumvent the need for aggressive solvents but suffer from high costs. Here, we evaluate shadow masks fabricated by CO2 laser processing from quantitative filter papers. Such papers are stiff and dimensionally stable, resilient in handling, and cut without melting or redeposition. Using two exemplary interdigitated electrode designs, we quantify the line resolution achievable with both high-quality and standard lenses, as well as the positional accuracy across multiple length scales. Additionally, we assess the gap between such laser-cut paper masks and a substrate, and quantify feature reproduction onto polycarbonate membranes. We find that ~100 µm line widths are achievable independent of lens type and that average positional accuracy is better than ±100 µm at 4”-wafer scale. Although this falls well short of the micron-size features achievable with typical shadow masks, resolution in the tenths to tens of millimeters is entirely sufficient for applications from contact pads to electrochemical cells, allowing new functionalities on fragile materials.
Collapse
|
24
|
Sathyanath R, Aarthi A, Kalpathy SK. Liquid film entrainment during dip coating on a saturated porous substrate. Chem Eng Sci 2020. [DOI: 10.1016/j.ces.2020.115552] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
25
|
Rahneshin V, Farzad M, Azizi S, Panchapakesan B. Versatile high-performance inkjet-printed paper photo-actuators based on 2D materials. NANOTECHNOLOGY 2020; 31:025708. [PMID: 31609687 DOI: 10.1088/1361-6528/ab4776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
In this paper, we present high-performance and versatile inkjet-printed paper photo-actuators based on two-dimensional (2D) nanomaterials. As a rapid fabrication method, inkjet printing of 2D materials is used to promptly fabricate photo-actuators in a bi-layer paper/polymer structure. Water-based and biocompatible inks based on graphene and molybdenum disulfide are developed based on liquid phase exfoliation and differential centrifugation technique. It is shown that incorporation of 2D materials with inkjet printing techniques and liquid phase exfoliation can lead to rapid fabrication of photo-actuators with huge opto-mechanical energy release and versatility with a broad range of applications due to specific design and methods presented in this paper.
Collapse
Affiliation(s)
- Vahid Rahneshin
- Department of Mechanical Engineering, Worcester Polytechnic Institute, Worcester, MA 01609, United States of America
| | | | | | | |
Collapse
|
26
|
Xie L, Chen P, Chen S, Yu K, Sun H. Low-Cost and Highly Sensitive Wearable Sensor Based on Napkin for Health Monitoring. SENSORS 2019; 19:s19153427. [PMID: 31387246 PMCID: PMC6695873 DOI: 10.3390/s19153427] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/16/2019] [Revised: 07/21/2019] [Accepted: 08/03/2019] [Indexed: 01/15/2023]
Abstract
The development of sensors with high sensitivity, good flexibility, low cost, and capability of detecting multiple inputs is of great significance for wearable electronics. Herein, we report a napkin-based wearable capacitive sensor fabricated by a novel, low-cost, and facile strategy. The capacitive sensor is composed of two pieces of electrode plates manufactured by spontaneous assembly of silver nanowires (NWs) on a polydimethylsiloxane (PDMS)-patterned napkin. The sensor possesses high sensitivity (>7.492 kPa−1), low cost, and capability for simultaneous detection of multiple signals. We demonstrate that the capacitive sensor can be applied to identify a variety of human physiological signals, including finger motions, eye blinking, and minute wrist pulse. More interestingly, the capacitive sensor comfortably attached to the temple can simultaneously monitor eye blinking and blood pulse. The demonstrated sensor shows great prospects in the applications of human–machine interface, prosthetics, home-based healthcare, and flexible touch panels.
Collapse
Affiliation(s)
- Liping Xie
- College of Medicine and Biological Information Engineering, Engineering Research Center of Medical Imaging and Intelligent Analysis, Ministry of Education, Northeastern University, Shenyang 110169, China.
| | - Peng Chen
- School of Chemical and Biomedical Engineering, Innovative Centre for Flexible Devices, Nanyang Technological University, Singapore 637459, Singapore
| | - Shuo Chen
- College of Medicine and Biological Information Engineering, Engineering Research Center of Medical Imaging and Intelligent Analysis, Ministry of Education, Northeastern University, Shenyang 110169, China
| | - Kun Yu
- College of Medicine and Biological Information Engineering, Engineering Research Center of Medical Imaging and Intelligent Analysis, Ministry of Education, Northeastern University, Shenyang 110169, China
| | - Hongbin Sun
- Department of Chemistry, Northeastern University, Shenyang 110819, China
| |
Collapse
|
27
|
Fabrication Processes for Sensors for Automotive Applications: A Review. ENERGY, ENVIRONMENT, AND SUSTAINABILITY 2019. [DOI: 10.1007/978-981-13-3290-6_8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
28
|
Zhang Y, Sezen S, Ahmadi M, Cheng X, Rajamani R. Paper-Based Supercapacitive Mechanical Sensors. Sci Rep 2018; 8:16284. [PMID: 30389983 PMCID: PMC6214964 DOI: 10.1038/s41598-018-34606-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Accepted: 10/19/2018] [Indexed: 12/18/2022] Open
Abstract
Paper has been pursued as an interesting substrate material for sensors in applications such as microfluidics, bio-sensing of analytes and printed microelectronics. It offers advantages of being inexpensive, lightweight, environmentally friendly and easy to use. However, currently available paper-based mechanical sensors suffer from inadequate range and accuracy. Here, using the principle of supercapacitive sensing, we fabricate force sensors from paper with ultra-high sensitivity and unprecedented configurability. The high sensitivity comes from the sensitive dependence of a supercapacitor's response on the contact area between a deformable electrolyte and a pair of electrodes. As a key component, we develop highly deformable electrolytes by coating ionic gel on paper substrates which can be cut and shaped into complex three-dimensional geometries. Paper dissolves in the ionic gel after determining the shape of the electrolytes, leaving behind transparent electrolytes with micro-structured fissures responsible for their high deformability. Exploiting this simple paper-based fabrication process, we construct diverse sensors of different configurations that can measure not just force but also its normal and shear components. The new sensors have range and sensitivity several orders of magnitude higher than traditional MEMS capacitive sensors, in spite of their being easily fabricated from paper with no cleanroom facilities.
Collapse
Affiliation(s)
- Ye Zhang
- Department of Mechanical Engineering, University of Minnesota, 111 Church St. SE, Minneapolis, MN, 55455, USA
| | - Serdar Sezen
- Department of Mechanical and Manufacturing Engineering, St. Cloud State University, 720 Fourth Avenue South, Saint Cloud, MN, 56301, USA
| | - Mahdi Ahmadi
- Department of Mechanical Engineering, University of Minnesota, 111 Church St. SE, Minneapolis, MN, 55455, USA
| | - Xiang Cheng
- Department of Chemical Engineering and Materials Science, University of Minnesota, 421 Washington Ave. SE, Minneapolis, MN, 55455, USA
| | - Rajesh Rajamani
- Department of Mechanical Engineering, University of Minnesota, 111 Church St. SE, Minneapolis, MN, 55455, USA.
| |
Collapse
|
29
|
|
30
|
An automated microfluidic chemiluminescence immunoassay platform for quantitative detection of biomarkers. Biomed Microdevices 2018; 20:91. [DOI: 10.1007/s10544-018-0331-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
31
|
Rahimi R, Ochoa M, Ziaie B. Comparison of Direct and Indirect Laser Ablation of Metallized Paper for Inexpensive Paper-Based Sensors. ACS APPLIED MATERIALS & INTERFACES 2018; 10:36332-36341. [PMID: 30222316 DOI: 10.1021/acsami.8b09598] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
In this work, we present a systematic study of laser processing of metallized papers (MPs) as a simple and scalable alternative to conventional photolithography-based processes and printing technologies. Two laser-processing methods are examined in terms of selectivity for the removal of the conductive aluminum film (25 nm) of an MP substrate; these processes, namely direct and indirect laser ablation (DLA and ILA), operate at wavelengths of 1.06 μm (neodymium-doped yttrium aluminum garnet) and 10.6 μm (CO2), respectively. The required threshold energy for each laser processing method was systematically measured using electrical, optical, and mechanical characterization techniques. The results of these investigations show that the removal of the metal coating using ILA is only achieved through partial etching of the paper substrate. The ILA process shows a narrow effective set of laser settings capable of removing the metal film while not completely burning through the paper substrate. By contrast, DLA shows a more defined and selective removal of the aluminum layer without damaging the mechanical and natural fibular structure of the paper substrate. Finally, as a proof of concept, interdigitated capacitive moisture sensors were fabricated by means of DLA and ILA onto the MP substrate, and their performance was assessed in the humidity range of 2-85%. The humidity sensitivity results show that the DLA sensors have a superior humidity sensing performance compared to the ILA sensors. The observed behavior is attributed to the higher water molecule absorption and induced capillary condensation within the intact cellulose network resulting from the DLA process (compared to the damaged one from the ILA process). The DLA process of MP should enable scalable production of low-cost, paper-based physical and chemical sensing systems for potential use in point-of-care diagnostics and food packaging.
Collapse
|
32
|
Gregory PR, Martin A, Chang BS, Oyola-Reynoso S, Bloch JF, Thuo MM. Inverting Thermal Degradation ( iTD) of Paper Using Chemi- and Physi-Sorbed Modifiers for Templated Material Synthesis. Front Chem 2018; 6:338. [PMID: 30246006 PMCID: PMC6137831 DOI: 10.3389/fchem.2018.00338] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2018] [Accepted: 07/19/2018] [Indexed: 11/13/2022] Open
Abstract
Fibrous cellulosic materials have been used as templates for material synthesis or organization via thermal degradation of the cellulose. Most of these methods, however, fail to exploit fiber organization, in part due to loss of structure with processing. Herein, we demonstrate that chemi- and physi-sorbed modifiers of cellulose alters the thermal degradation mechanism allowing for controlled deposition of oxide and carbon (incomplete combustion) along the original paper fiber network. We demonstrate that the degradation of the cellulose fibers depends on the amount of physisorbed material due, in part, to effect on the propagation of the ignition event. From the distribution of the residual elements and shape of the deposits, we can infer that the thermal degradation process depends on the nature, and concentration, of filler(s) or occluded.
Collapse
Affiliation(s)
- Paul R. Gregory
- Department of Materials Science and Engineering, Iowa State University, Ames, IA, United States
| | - Andrew Martin
- Department of Materials Science and Engineering, Iowa State University, Ames, IA, United States
| | - Boyce S. Chang
- Department of Materials Science and Engineering, Iowa State University, Ames, IA, United States
| | - Stephanie Oyola-Reynoso
- Department of Materials Science and Engineering, Iowa State University, Ames, IA, United States
| | - Jean-Francis Bloch
- CNRS, Grenoble INP, Institute of Engineering, 3SR, Université Grenoble Alpes, Grenoble, France
| | - Martin M. Thuo
- Department of Materials Science and Engineering, Iowa State University, Ames, IA, United States
| |
Collapse
|
33
|
Rapid Fabrication of Epidermal Paper-Based Electronic Devices Using Razor Printing. MICROMACHINES 2018; 9:mi9090420. [PMID: 30424353 PMCID: PMC6187327 DOI: 10.3390/mi9090420] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/12/2018] [Revised: 06/06/2018] [Accepted: 06/07/2018] [Indexed: 12/21/2022]
Abstract
This work describes the use of a benchtop razor printer to fabricate epidermal paper-based electronic devices (EPEDs). This fabrication technique is simple, low-cost, and compatible with scalable manufacturing processes. EPEDs are fabricated using paper substrates rendered omniphobic by their cost-effective silanization with fluoroalkyl trichlorosilanes, making them inexpensive, water-resistant, and mechanically compliant with human skin. The highly conductive inks or thin films attached to one of the sides of the omniphobic paper makes EPEDs compatible with wearable applications involving wireless power transfer. The omniphobic cellulose fibers of the EPED provide a moisture-independent mechanical reinforcement to the conductive layer. EPEDs accurately monitor physiological signals such as ECG (electrocardiogram), EMG (electromyogram), and EOG (electro-oculogram) even in high moisture environments. Additionally, EPEDs can be used for the fast mapping of temperature over the skin and to apply localized thermotherapy. Our results demonstrate the merits of EPEDs as a low-cost platform for personalized medicine applications.
Collapse
|
34
|
Wang H, Shi L, Zhou T, Xu C, Deng Y. A novel passive micromixer with modified asymmetric lateral wall structures. ASIA-PAC J CHEM ENG 2018. [DOI: 10.1002/apj.2202] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Hanlin Wang
- Mechanical and Electrical Engineering College; Hainan University; Haikou 570228 Hainan China
| | - Liuyong Shi
- Mechanical and Electrical Engineering College; Hainan University; Haikou 570228 Hainan China
| | - Teng Zhou
- Mechanical and Electrical Engineering College; Hainan University; Haikou 570228 Hainan China
| | - Chao Xu
- State Key Laboratory of Industrial Control Technology and Institute of Cyber-Systems and Control; Zhejiang University; Hangzhou 310027 Zhejiang China
| | - Yongbo Deng
- State Key Laboratory of Applied Optics, Changchun Institute of Optics, Fine Mechanics and Physics (CIOMP); Chinese Academy of Science; Changchun 130033 Jilin China
| |
Collapse
|
35
|
Wang YH, Song P, Li X, Ru C, Ferrari G, Balasubramanian P, Amabili M, Sun Y, Liu X. A Paper-Based Piezoelectric Accelerometer. MICROMACHINES 2018; 9:E19. [PMID: 30393296 PMCID: PMC6187314 DOI: 10.3390/mi9010019] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2017] [Revised: 12/26/2017] [Accepted: 12/30/2017] [Indexed: 11/16/2022]
Abstract
This paper presents the design and testing of a one-axis piezoelectric accelerometer made from cellulose paper and piezoelectric zinc oxide nanowires (ZnO NWs) hydrothermally grown on paper. The accelerometer adopts a cantilever-based configuration with two parallel cantilever beams attached with a paper proof mass. A piece of U-shaped, ZnO-NW-coated paper is attached on top of the parallel beams, serving as the strain sensing element for acceleration measurement. The electric charges produced from the ZnO-NW-coated paper are converted into a voltage output using a custom-made charge amplifier circuit. The device fabrication only involves cutting of paper and hydrothermal growth of ZnO NWs, and does not require the access to expensive and sophisticated equipment. The performance of the devices with different weight growth percentages of the ZnO NWs was characterized.
Collapse
Affiliation(s)
- Yu-Hsuan Wang
- Department of Mechanical Engineering, McGill University, Montreal, QC H3A 0G4, Canada.
| | - Pengfei Song
- Department of Mechanical Engineering, McGill University, Montreal, QC H3A 0G4, Canada.
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, ON M5S 3G8, Canada.
| | - Xiao Li
- Department of Mechanical Engineering, McGill University, Montreal, QC H3A 0G4, Canada.
- Current address: Department of Chemistry, Stanford University, Stanford, CA 94305, USA.
| | - Changhai Ru
- Research Center of Robotics and Micro System & Collaborative Innovation Center of Suzhou NanoScience and Technology, Soochow University, Suzhou 215021, China.
| | - Giovanni Ferrari
- Department of Mechanical Engineering, McGill University, Montreal, QC H3A 0G4, Canada.
| | | | - Marco Amabili
- Department of Mechanical Engineering, McGill University, Montreal, QC H3A 0G4, Canada.
| | - Yu Sun
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, ON M5S 3G8, Canada.
| | - Xinyu Liu
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, ON M5S 3G8, Canada.
| |
Collapse
|
36
|
Münch AS, Wölk M, Malanin M, Eichhorn KJ, Simon F, Uhlmann P. Smart functional polymer coatings for paper with anti-fouling properties. J Mater Chem B 2018; 6:830-843. [DOI: 10.1039/c7tb02886e] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Preparation of functionalized cellulose films on SiO2 to introduce protein repellent properties evaluated by spectroscopic in situ ellipsometry.
Collapse
Affiliation(s)
| | - Michele Wölk
- Leibniz-Institut für Polymerforschung Dresden e.V
- D-01069 Dresden
- Germany
| | - Mikhail Malanin
- Leibniz-Institut für Polymerforschung Dresden e.V
- D-01069 Dresden
- Germany
| | | | - Frank Simon
- Leibniz-Institut für Polymerforschung Dresden e.V
- D-01069 Dresden
- Germany
| | - Petra Uhlmann
- Leibniz-Institut für Polymerforschung Dresden e.V
- D-01069 Dresden
- Germany
- Department of Chemistry
- Hamilton Hall
| |
Collapse
|
37
|
Lee K, Lee J, Kim G, Kim Y, Kang S, Cho S, Kim S, Kim JK, Lee W, Kim DE, Kang S, Kim D, Lee T, Shim W. Rough-Surface-Enabled Capacitive Pressure Sensors with 3D Touch Capability. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2017; 13:1700368. [PMID: 28524361 DOI: 10.1002/smll.201700368] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Revised: 03/31/2017] [Indexed: 05/27/2023]
Abstract
Fabrication strategies that pursue "simplicity" for the production process and "functionality" for a device, in general, are mutually exclusive. Therefore, strategies that are less expensive, less equipment-intensive, and consequently, more accessible to researchers for the realization of omnipresent electronics are required. Here, this study presents a conceptually different approach that utilizes the inartificial design of the surface roughness of paper to realize a capacitive pressure sensor with high performance compared with sensors produced using costly microfabrication processes. This study utilizes a writing activity with a pencil and paper, which enables the construction of a fundamental capacitor that can be used as a flexible capacitive pressure sensor with high pressure sensitivity and short response time and that it can be inexpensively fabricated over large areas. Furthermore, the paper-based pressure sensors are integrated into a fully functional 3D touch-pad device, which is a step toward the realization of omnipresent electronics.
Collapse
Affiliation(s)
- Kilsoo Lee
- Department of Materials Science and Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-Gu, Seoul, 03722, Republic of Korea
| | - Jaehong Lee
- School of Electrical and Electronic Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-Gu, Seoul, 03722, Republic of Korea
| | - Gwangmook Kim
- Department of Materials Science and Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-Gu, Seoul, 03722, Republic of Korea
| | - Youngjae Kim
- Department of Materials Science and Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-Gu, Seoul, 03722, Republic of Korea
| | - Subin Kang
- School of Electrical and Electronic Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-Gu, Seoul, 03722, Republic of Korea
| | - Sungjun Cho
- Department of Materials Science and Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-Gu, Seoul, 03722, Republic of Korea
| | - SeulGee Kim
- School of Electrical and Electronic Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-Gu, Seoul, 03722, Republic of Korea
| | - Jae-Kang Kim
- School of Mechanical Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-Gu, Seoul, 03722, Republic of Korea
| | - Wooyoung Lee
- Department of Materials Science and Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-Gu, Seoul, 03722, Republic of Korea
| | - Dae-Eun Kim
- School of Mechanical Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-Gu, Seoul, 03722, Republic of Korea
| | - Shinill Kang
- School of Mechanical Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-Gu, Seoul, 03722, Republic of Korea
| | - DaeEun Kim
- School of Electrical and Electronic Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-Gu, Seoul, 03722, Republic of Korea
| | - Taeyoon Lee
- School of Electrical and Electronic Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-Gu, Seoul, 03722, Republic of Korea
| | - Wooyoung Shim
- Department of Materials Science and Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-Gu, Seoul, 03722, Republic of Korea
| |
Collapse
|
38
|
Perez-Cruz A, Stiharu I, Dominguez-Gonzalez A. A Novel Physical Sensing Principle for Liquid Characterization Using Paper-Based Hygro-Mechanical Systems (PB-HMS). SENSORS 2017; 17:s17071667. [PMID: 28726728 PMCID: PMC5539724 DOI: 10.3390/s17071667] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Revised: 07/11/2017] [Accepted: 07/12/2017] [Indexed: 02/07/2023]
Abstract
In recent years paper-based microfluidic systems have emerged as versatile tools for developing sensors in different areas. In this work; we report a novel physical sensing principle for the characterization of liquids using a paper-based hygro-mechanical system (PB-HMS). The PB-HMS is formed by the interaction of liquid droplets and paper-based mini-structures such as cantilever beams. The proposed principle takes advantage of the hygroscopic properties of paper to produce hygro-mechanical motion. The dynamic response of the PB-HMS reveals information about the tested liquid that can be applied to characterize certain properties of liquids. A suggested method to characterize liquids by means of the proposed principle is introduced. The experimental results show the feasibility of such a method. It is expected that the proposed principle may be applied to sense properties of liquids in different applications where both disposability and portability are of extreme importance.
Collapse
Affiliation(s)
- Angel Perez-Cruz
- Department of Mechanical and Industrial Engineering, Concordia University, 1455 De Maisonneuve Blvd, W. Montreal, QC H3G 1M8, Canada.
- Facultad de Ingeniería, Universidad Autónoma de Querétaro, Cerro de las Campanas s/n Querétaro, Querétaro 76000, Mexico.
| | - Ion Stiharu
- Department of Mechanical and Industrial Engineering, Concordia University, 1455 De Maisonneuve Blvd, W. Montreal, QC H3G 1M8, Canada.
| | - Aurelio Dominguez-Gonzalez
- Facultad de Ingeniería, Universidad Autónoma de Querétaro, Cerro de las Campanas s/n Querétaro, Querétaro 76000, Mexico.
| |
Collapse
|
39
|
Hu B, Li J, Mou L, Liu Y, Deng J, Qian W, Sun J, Cha R, Jiang X. An automated and portable microfluidic chemiluminescence immunoassay for quantitative detection of biomarkers. LAB ON A CHIP 2017; 17:2225-2234. [PMID: 28573279 DOI: 10.1039/c7lc00249a] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Microfluidic platforms capable of automated, rapid, sensitive, and quantitative detection of biomarkers from patient samples could make a major impact on clinical or point-of-care (POC) diagnosis. In this work, we realize an automated diagnostic platform composed of two main components: (1) a disposable, self-contained, and integrated microfluidic chip and (2) a portable instrument that carries out completely automated operations. To demonstrate its potential for real-world application, we use injection molding for mass fabrication of the main components of disposable microfluidic chips. The assembled three-layered chip with on-chip mechanical valves for fluid control consists of (1) a top silicone fluidic layer with embedded zigzag microchannels, reagent reservoirs and a negative pressure port, (2) a middle tinfoil layer with patterned antibody/antigen stripes, and (3) a bottom silicone substrate layer with waste reservoirs. The versatility of the microfluidics-based system is demonstrated by implementation of a chemiluminescence immunoassay for quantitative detection of C-reactive protein (CRP) and testosterone in real clinical samples. This lab-on-a-chip platform with features of quantitation, portability and automation provides a promising strategy for POC diagnosis.
Collapse
Affiliation(s)
- Binfeng Hu
- CAS Key Laboratory for Biological Effects of Nanomaterials and Nanosafety, CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, P. R. China.
| | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Paper based diagnostics for personalized health care: Emerging technologies and commercial aspects. Biosens Bioelectron 2017; 96:246-259. [PMID: 28501745 DOI: 10.1016/j.bios.2017.05.001] [Citation(s) in RCA: 146] [Impact Index Per Article: 20.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Revised: 04/19/2017] [Accepted: 05/01/2017] [Indexed: 12/17/2022]
Abstract
Personalized health care (PHC) is being appreciated globally to combat clinical complexities underlying various metabolic or infectious disorders including diabetes, cardiovascular, communicable diseases etc. Effective diagnoses majorly depend on initial identification of the causes which are nowadays being practiced in disease-oriented approach, where personal health profile is often overlooked. The adoption of PHC has shown significantly improved diagnoses in various conditions including emergency, ambulatory, and remote area. PHC includes personalized health monitoring (PHM), which is its integral part and may provide valuable information's on various clinical conditions. In PHC, bio-fluids are analyzed using various diagnostic devices including lab based equipment and biosensors. Among all types of biosensing systems, paper based biosensors are commercially attracted due to its portability, easy availability, cheaper manufacturing cost, and transportability. Not only these, various intrinsic properties of paper has facilitated the development of paper based miniaturized sensors, which has recently gained ASSURED (Affordable, Sensitive, Specific, User-friendly, Rapid and Robust, Equipment free, Deliverable to all end-users) status for point of care diagnosis in miniaturized settings. In this review, importance of paper based biosensors and their compatibility for affordable and low cost diagnostics has been elaborated with various examples. Limitations and strategies to overcome the challenges of paper biosensor have also been discussed. We have provided elaborated tables which describe the types, model specifications, sensing mechanisms, target biomarkers, and analytical performance of the paper biosensors with their respective applications in real sample matrices. Different commercial aspects of paper biosensor have also been explained using SWOT (Strength, Weakness, Opportunities, Threats) analysis.
Collapse
|
41
|
Fernandes SC, Walz JA, Wilson DJ, Brooks JC, Mace CR. Beyond Wicking: Expanding the Role of Patterned Paper as the Foundation for an Analytical Platform. Anal Chem 2017; 89:5654-5664. [PMID: 28406607 DOI: 10.1021/acs.analchem.6b03860] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
While a number of assays for soluble analytes have been developed using paper-based microfluidic devices, the detection and analysis of blood cells has remained an outstanding challenge. In this Feature, we discuss how the properties of paper determine the performance of paper-based microfluidic devices and permit the design of cellular assays, which can ultimately impact disparities in healthcare that exist in limited-resource settings.
Collapse
Affiliation(s)
- Syrena C Fernandes
- Department of Chemistry, Tufts University , 62 Talbot Avenue, Medford, Massachusetts 02155, United States
| | - Jenna A Walz
- Department of Chemistry, Tufts University , 62 Talbot Avenue, Medford, Massachusetts 02155, United States
| | - Daniel J Wilson
- Department of Chemistry, Tufts University , 62 Talbot Avenue, Medford, Massachusetts 02155, United States
| | - Jessica C Brooks
- Department of Chemistry, Tufts University , 62 Talbot Avenue, Medford, Massachusetts 02155, United States
| | - Charles R Mace
- Department of Chemistry, Tufts University , 62 Talbot Avenue, Medford, Massachusetts 02155, United States
| |
Collapse
|
42
|
Tiwari S, Vinchurkar M, Rao VR, Garnier G. Zinc oxide nanorods functionalized paper for protein preconcentration in biodiagnostics. Sci Rep 2017; 7:43905. [PMID: 28252113 PMCID: PMC5333162 DOI: 10.1038/srep43905] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Accepted: 01/31/2017] [Indexed: 11/27/2022] Open
Abstract
Distinguishing a specific biomarker from a biofluid sample containing a large variety of proteins often requires the selective preconcentration of that particular biomarker to a detectable level for analysis. Low-cost, paper-based device is an emerging opportunity in diagnostics. In the present study, we report a novel Zinc oxide nanorods functionalized paper platform for the preconcentration of Myoglobin, a cardiac biomarker. Zinc oxide nanorods were grown on a Whatman filter paper no. 1 via the standard hydrothermal route. The growth of Zinc oxide nanorods on paper was confirmed by a combination of techniques consisting of X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS,) scanning electron microscopy (SEM), and energy dispersive spectroscopy (EDX) analysis. The Zinc oxide nanorods modified Whatman filter paper (ZnO-NRs/WFP) was further tested for use as a protein preconcentrator. Paper-based ELISA was performed for determination of pre-concentration of cardiac marker protein Myoglobin using the new ZnO-NRs/WFP platform. The ZnO-NRs/WFP could efficiently capture the biomarker even from a very dilute solution (Myoglobin < 50 nM). Our ELISA results show a threefold enhancement in protein capture with ZnO-NRs/WFP compared to unmodified Whatman filter paper, allowing accurate protein analysis and showing the diagnostic concept.
Collapse
Affiliation(s)
- Sadhana Tiwari
- Department of Electrical Engineering, Indian Institute of Technology Bombay, Mumbai, 400076, India.,BioPRIA, Chemical Engineering department, Monash University, Clayton VIC 3800, Australia
| | - Madhuri Vinchurkar
- Department of Electrical Engineering, Indian Institute of Technology Bombay, Mumbai, 400076, India
| | - V Ramgopal Rao
- Department of Electrical Engineering, Indian Institute of Technology Bombay, Mumbai, 400076, India
| | - Gil Garnier
- BioPRIA, Chemical Engineering department, Monash University, Clayton VIC 3800, Australia
| |
Collapse
|
43
|
Li H, Han D, Hegener MA, Pauletti GM, Steckl AJ. Flow reproducibility of whole blood and other bodily fluids in simplified no reaction lateral flow assay devices. BIOMICROFLUIDICS 2017; 11:024116. [PMID: 28798852 PMCID: PMC5533494 DOI: 10.1063/1.4979815] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Accepted: 03/24/2017] [Indexed: 05/21/2023]
Abstract
The "no reaction" lateral flow assay (nrLFA) uses a simplified LFA structure with no conjugate pad and no stored reagents. In the nrLFA, the capillary-based transport time or distance is the key indicator, rather than the outcome of a biochemical reaction. Hence, the calibration and reproducibility of the nrLFA device are critical. The capillary flow properties of several membrane types (nitrocellulose, nylon, cellulose acetate, polyethersulfone, and polyvinylidene difluoride) are evaluated. Flow rate evaluations of MilliporeSigma Hi-Flow™ Plus (HF075, HF135 and HF180) nitrocellulose membranes on nrLFA are performed using bodily fluids (whole blood, blood plasma, and artificial sweat). The results demonstrate that fluids with lower viscosity travel faster, and membranes with slower flow rate exhibit higher capability to distinguish fluids with different viscosities. Reproducibility tests of nrLFA are performed on HF075, demonstrating excellent reproducibility. The coefficient of variation for blood coagulation tests performed with the nrLFA using induced coagulation was 5% for the plasma front and 2% for the RBC front. The effects of variation in blood hematocrit and sample volume are also reported. The overall results indicate that the nrLFA approach has a high potential to be commercially developed as a blood monitoring point-of-care device with simple calibration capability and excellent reproducibility.
Collapse
Affiliation(s)
- H Li
- Nanoelectronics Laboratory, Department of Electrical Engineering and Computing Systems, University of Cincinnati, Cincinnati, Ohio 45221, USA
| | - D Han
- Nanoelectronics Laboratory, Department of Electrical Engineering and Computing Systems, University of Cincinnati, Cincinnati, Ohio 45221, USA
| | - M A Hegener
- Winkle College of Pharmacy, University of Cincinnati, Cincinnati, Ohio 45267, USA
| | - G M Pauletti
- Winkle College of Pharmacy, University of Cincinnati, Cincinnati, Ohio 45267, USA
| | - A J Steckl
- Nanoelectronics Laboratory, Department of Electrical Engineering and Computing Systems, University of Cincinnati, Cincinnati, Ohio 45221, USA
| |
Collapse
|
44
|
Marin BC, Liu J, Aklile E, Urbina AD, Chiang ASC, Lawrence N, Chen S, Lipomi DJ. SERS-enhanced piezoplasmonic graphene composite for biological and structural strain mapping. NANOSCALE 2017; 9:1292-1298. [PMID: 28055038 PMCID: PMC5266539 DOI: 10.1039/c6nr09005b] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Thin-film optical strain sensors have the ability to map small deformations with spatial and temporal resolution and do not require electrical interrogation. This paper describes the use of graphene decorated with metallic nanoislands for sensing of tensile deformations of less than 0.04% with a resolution of less than 0.002%. The nanoisland-graphene composite films contain gaps between the nanoislands, which when functionalized with benzenethiolate behave as hot spots for surface-enhanced Raman scattering (SERS). Mechanical strain increases the sizes of the gaps; this increase attenuates the electric field, and thus attenuates the SERS signal. This compounded, SERS-enhanced "piezoplasmonic" effect can be quantified using a plasmonic gauge factor, and is among the most sensitive mechanical sensors of any type. Since the graphene-nanoisland films are both conductive and optically active, they permit simultaneous electrical stimulation of myoblast cells and optical detection of the strains produced by the cellular contractions.
Collapse
Affiliation(s)
- Brandon C Marin
- Department of NanoEngineering, University of California, San Diego, 9500 Gilman Drive, Mail Code 0448, La Jolla, CA 92093-0448, USA.
| | - Justin Liu
- Department of NanoEngineering, University of California, San Diego, 9500 Gilman Drive, Mail Code 0448, La Jolla, CA 92093-0448, USA.
| | - Eden Aklile
- Department of NanoEngineering, University of California, San Diego, 9500 Gilman Drive, Mail Code 0448, La Jolla, CA 92093-0448, USA.
| | - Armando D Urbina
- Department of NanoEngineering, University of California, San Diego, 9500 Gilman Drive, Mail Code 0448, La Jolla, CA 92093-0448, USA.
| | - Andrew S-C Chiang
- Department of NanoEngineering, University of California, San Diego, 9500 Gilman Drive, Mail Code 0448, La Jolla, CA 92093-0448, USA.
| | - Natalie Lawrence
- Department of NanoEngineering, University of California, San Diego, 9500 Gilman Drive, Mail Code 0448, La Jolla, CA 92093-0448, USA.
| | - Shaochen Chen
- Department of NanoEngineering, University of California, San Diego, 9500 Gilman Drive, Mail Code 0448, La Jolla, CA 92093-0448, USA.
| | - Darren J Lipomi
- Department of NanoEngineering, University of California, San Diego, 9500 Gilman Drive, Mail Code 0448, La Jolla, CA 92093-0448, USA.
| |
Collapse
|
45
|
DeGregory PR, Tsai YJ, Scida K, Richards I, Crooks RM. Quantitative electrochemical metalloimmunoassay for TFF3 in urine using a paper analytical device. Analyst 2017; 141:1734-44. [PMID: 26824090 DOI: 10.1039/c5an02386f] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
We report a paper-based assay platform for the detection of the kidney disease marker Trefoil Factor 3 (TFF3) in human urine. The sensor is based on a quantitative metalloimmunoassay that can determine TFF3 concentrations via electrochemical detection of environmentally stable silver nanoparticle (AgNP) labels attached to magnetic microbeads via a TFF3 immunosandwich. The paper electroanalytical device incorporates two preconcentration steps that make it possible to detect concentrations of TFF3 in human urine at the low end of the target TFF3 concentration range (0.03-7.0 μg mL(-1)). Importantly, the paper device provides a level of accuracy for TFF3 determination in human urine equivalent to that of a commercial kit. The paper sensor has a dynamic range of ∼2.5 orders of magnitude, only requires a simple, one-step incubation protocol, and is fast, requiring only 10 min to complete. The cost of the materials at the prototypic laboratory scale, excluding reagents, is just US$0.42.
Collapse
Affiliation(s)
- Paul R DeGregory
- Department of Chemistry and the Center for Nano- and Molecular Science and Technology, The University of Texas at Austin, 105 E. 24th St., Stop A5300, Austin, TX 78712-1224, USA.
| | - Yi-Ju Tsai
- Department of Chemistry and the Center for Nano- and Molecular Science and Technology, The University of Texas at Austin, 105 E. 24th St., Stop A5300, Austin, TX 78712-1224, USA.
| | - Karen Scida
- Department of Chemistry and the Center for Nano- and Molecular Science and Technology, The University of Texas at Austin, 105 E. 24th St., Stop A5300, Austin, TX 78712-1224, USA.
| | - Ian Richards
- Interactives Executive Excellence LLC, 201 N. Weston Lane, Austin, Texas 78733, USA
| | - Richard M Crooks
- Department of Chemistry and the Center for Nano- and Molecular Science and Technology, The University of Texas at Austin, 105 E. 24th St., Stop A5300, Austin, TX 78712-1224, USA.
| |
Collapse
|
46
|
Hughes J, Culha U, Giardina F, Guenther F, Rosendo A, Iida F. Soft Manipulators and Grippers: A Review. Front Robot AI 2016. [DOI: 10.3389/frobt.2016.00069] [Citation(s) in RCA: 273] [Impact Index Per Article: 34.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
47
|
López-Marzo AM, Merkoçi A. Paper-based sensors and assays: a success of the engineering design and the convergence of knowledge areas. LAB ON A CHIP 2016; 16:3150-76. [PMID: 27412239 DOI: 10.1039/c6lc00737f] [Citation(s) in RCA: 124] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
This review shows the recent advances and state of the art in paper-based analytical devices (PADs) through the analysis of their integration with microfluidics and LOC micro- and nanotechnologies, electrochemical/optical detection and electronic devices as the convergence of various knowledge areas. The important role of the paper design/architecture in the improvement of the performance of sensor devices is discussed. The discussion is fundamentally based on μPADs as the new generation of paper-based (bio)sensors. Data about the scientific publication ranking of PADs, illustrating their increase as an experimental research topic in the past years, are supplied. In addition, an analysis of the simultaneous evolution of PADs in academic lab research and industrial commercialization highlighting the parallelism of the technological transfer from academia to industry is displayed. A general overview of the market behaviour, the leading industries in the sector and their commercialized devices is given. Finally, personal opinions of the authors about future perspectives and tendencies in the design and fabrication technology of PADs are disclosed.
Collapse
Affiliation(s)
- Adaris M López-Marzo
- Nanobioelectronics & Biosensors Group, Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and The Barcelona Institute of Science and Technology, Campus UAB, Bellaterra, Barcelona 08193, Spain.
| | - Arben Merkoçi
- Nanobioelectronics & Biosensors Group, Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and The Barcelona Institute of Science and Technology, Campus UAB, Bellaterra, Barcelona 08193, Spain. and Institucio Catalana de Recerca i Estudis Avançats (ICREA), Pg. Lluís Companys 23, 08010 Barcelona, Spain
| |
Collapse
|
48
|
Jung S, Chun SJ, Shon CH. Rapid Cellulose-Mediated Microwave Sintering for High-Conductivity Ag Patterns on Paper. ACS APPLIED MATERIALS & INTERFACES 2016; 8:20301-20308. [PMID: 27441952 DOI: 10.1021/acsami.6b06535] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Cellulose-based paper is essential in everyday life, but it also has further potentials for use in low-cost, printable, disposable, and eco-friendly electronics. Here, a method is developed for the cellulose-mediated microwave sintering of Ag patterns on conventional paper, in which the paper plays a significant role both as a flexible insulating substrate for the conductive Ag pattern and as a lossy dielectric media for rapid microwave heating. The anisotropic dielectric properties of the cellulose fibers mean that a microwave electric field applied parallel to the paper substrate provides sufficient heating to produce Ag patterns with a conductivity 29-38% that of bulk Ag in a short period of time (∼1 s) at 250-300 °C. Significantly, there is little thermal degradation of the substrate during this process. The microwave-sintered Ag patterns exhibit good mechanical stability against 10 000 bending cycles and can be easily soldered with lead-free solder. Therefore, cellulose-mediated microwave sintering presents a promising means of achieving short processing times and high electrical performance in flexible paper electronics.
Collapse
Affiliation(s)
- Sunshin Jung
- Nano Hybrid Technology Research Center, Korea Electrotechnology Research Institute (KERI) , 12, Bulmosan-ro 10Beon-gil, Changwon 51543, Republic of Korea
- Department of Energy and Power Conversion Engineering, University of Science and Technology (UST) , Daejeon 34113, Republic of Korea
| | - Su Jin Chun
- Nano Hybrid Technology Research Center, Korea Electrotechnology Research Institute (KERI) , 12, Bulmosan-ro 10Beon-gil, Changwon 51543, Republic of Korea
| | - Chae-Hwa Shon
- Power Apparatus Research Center, Korea Electrotechnology Research Institute (KERI) , 12, Bulmosan-ro 10Beon-gil, Changwon 51543, Republic of Korea
| |
Collapse
|
49
|
Cunningham JC, DeGregory PR, Crooks RM. New Functionalities for Paper-Based Sensors Lead to Simplified User Operation, Lower Limits of Detection, and New Applications. ANNUAL REVIEW OF ANALYTICAL CHEMISTRY (PALO ALTO, CALIF.) 2016; 9:183-202. [PMID: 27049635 DOI: 10.1146/annurev-anchem-071015-041605] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
In the last decade, paper analytical devices (PADs) have evolved into sophisticated yet simple sensors with biological and environmental applications in the developed and developing world. The focus of this review is the technological improvements that have over the past five years increased the applicability of PADs to real-world problems. Specifically, this review reports on advances in sample processing, fluid flow control, signal amplification, and component integration. Throughout, we have sought to emphasize advances that retain the main virtues of PADs: low cost, portability, and simplicity.
Collapse
Affiliation(s)
| | - Paul R DeGregory
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712-1224;
| | - Richard M Crooks
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712-1224;
| |
Collapse
|
50
|
Fraiwan A, Lee H, Choi S. A paper-based cantilever array sensor: Monitoring volatile organic compounds with naked eye. Talanta 2016; 158:57-62. [PMID: 27343578 DOI: 10.1016/j.talanta.2016.05.048] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2016] [Revised: 05/14/2016] [Accepted: 05/16/2016] [Indexed: 11/18/2022]
Abstract
Volatile organic compound (VOC) detection is critical for controlling industrial and commercial emissions, environmental monitoring, and public health. Simple, portable, rapid and low-cost VOC sensing platforms offer the benefits of on-site and real-time monitoring anytime and anywhere. The best and most practically useful approaches to monitoring would include equipment-free and power-free detection by the naked eye. In this work, we created a novel, paper-based cantilever sensor array that allows simple and rapid naked-eye VOC detection without the need for power, electronics or readout interface/equipment. This simple VOC detection method was achieved using (i) low-cost paper materials as a substrate and (ii) swellable thin polymers adhered to the paper. Upon exposure to VOCs, the polymer swelling adhered to the paper-based cantilever, inducing mechanical deflection that generated a distinctive composite pattern of the deflection angles for a specific VOC. The angle is directly measured by the naked eye on a 3-D protractor printed on a paper facing the cantilevers. The generated angle patterns are subjected to statistical algorithms (linear discriminant analysis (LDA)) to classify each VOC sample and selectively detect a VOC. We classified four VOC samples with 100% accuracy using LDA.
Collapse
Affiliation(s)
- Arwa Fraiwan
- Bioelectronics & Microsystems Laboratory, Department of Electrical & Computer Engineering, State University of New York-Binghamton, Binghamton, NY 13902, USA
| | - Hankeun Lee
- Bioelectronics & Microsystems Laboratory, Department of Electrical & Computer Engineering, State University of New York-Binghamton, Binghamton, NY 13902, USA
| | - Seokheun Choi
- Bioelectronics & Microsystems Laboratory, Department of Electrical & Computer Engineering, State University of New York-Binghamton, Binghamton, NY 13902, USA.
| |
Collapse
|