1
|
Ebrahimi A, Didarian R, Ghorbanpoor H, Dogan Guzel F, Hashempour H, Avci H. High-throughput microfluidic chip with silica gel-C18 channels for cyclotide separation. Anal Bioanal Chem 2023; 415:6873-6883. [PMID: 37792070 DOI: 10.1007/s00216-023-04966-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 09/13/2023] [Accepted: 09/18/2023] [Indexed: 10/05/2023]
Abstract
Over the past two decades, microfluidic-based separations have been used for the purification, isolation, and separation of biomolecules to overcome difficulties encountered by conventional chromatography-based methods including high cost, long processing times, sample volumes, and low separation efficiency. Cyclotides, or cyclic peptides used by some plant families as defense agents, have attracted the interest of scientists because of their biological activities varying from antimicrobial to anticancer properties. The separation process has a critical impact in terms of obtaining pure cyclotides for drug development strategies. Here, for the first time, a mimic of the high-performance liquid chromatography (HPLC) on microfluidic chip strategy was used to separate the cyclotides. In this regard, silica gel-C18 was synthesized and characterized by Fourier-transform infrared spectroscopy (FTIR) and proton nuclear magnetic resonance (1H-NMR) and then filled inside the microchannel to prepare an HPLC C18 column-like structure inside the microchannel. Cyclotide extract was obtained from Viola ignobilis by a low voltage electric field extraction method and characterized by HPLC and matrix-assisted laser desorption/ionization-time of flight (MALDI-TOF). The extract that contained vigno 1, 2, 3, 4, 5, and varv A cyclotides was added to the microchannel where distilled water was used as a mobile phase with 1 µL/min flow rate and then samples were collected in 2-min intervals until 10 min. Results show that cyclotides can be successfully separated from each other and collected from the microchannel at different periods of time. These findings demonstrate that the use of microfluidic channels has a high impact on the separation of cyclotides as a rapid, cost-effective, and simple method and the device can find widespread applications in drug discovery research.
Collapse
Affiliation(s)
- Aliakbar Ebrahimi
- Cellular Therapy and Stem Cell Production Application and Research Center (ESTEM), Eskişehir Osmangazi University, Eskişehir, Turkey
- Department of Biomedical Engineering, Ankara Yildirim Beyazit University, Ankara, Turkey
| | - Reza Didarian
- Department of Biomedical Engineering, Ankara Yildirim Beyazit University, Ankara, Turkey
- Department of Metallurgical and Materials Engineering, Eskişehir Osmangazi University, Eskişehir, Turkey
| | - Hamed Ghorbanpoor
- Cellular Therapy and Stem Cell Production Application and Research Center (ESTEM), Eskişehir Osmangazi University, Eskişehir, Turkey
- Department of Biomedical Engineering, Eskişehir Osmangazi University, Eskişehir, Turkey
| | - Fatma Dogan Guzel
- Department of Biomedical Engineering, Ankara Yildirim Beyazit University, Ankara, Turkey
| | - Hossein Hashempour
- Department of Chemistry, Faculty of Basic Sciences, Azarbaijan Shahid Madani University, Tabriz, Iran
| | - Huseyin Avci
- Cellular Therapy and Stem Cell Production Application and Research Center (ESTEM), Eskişehir Osmangazi University, Eskişehir, Turkey.
- Department of Metallurgical and Materials Engineering, Eskişehir Osmangazi University, Eskişehir, Turkey.
- Translational Medicine Research and Clinical Center (TATUM), Eskişehir Osmangazi University, Eskişehir, Turkey.
| |
Collapse
|
2
|
Derksen J, Viefhues M. Parallelized continuous flow dielectrophoretic separation of DNA. Electrophoresis 2022. [DOI: 10.1002/elps.202200174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 09/16/2022] [Accepted: 09/28/2022] [Indexed: 11/05/2022]
Affiliation(s)
- Jakob Derksen
- Experimental Biophysics and Applied Nanoscience, Faculty of Physics Bielefeld University Bielefeld Germany
- Mechanobiology of Thrombosis and Hemostasis, Faculty of Lifesciences University of Siegen Siegen Germany
| | - Martina Viefhues
- Experimental Biophysics and Applied Nanoscience, Faculty of Physics Bielefeld University Bielefeld Germany
| |
Collapse
|
3
|
Wang J, Ma P, Kim DH, Liu BF, Demirci U. Towards Microfluidic-Based Exosome Isolation and Detection for Tumor Therapy. NANO TODAY 2021; 37:101066. [PMID: 33777166 PMCID: PMC7990116 DOI: 10.1016/j.nantod.2020.101066] [Citation(s) in RCA: 105] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Exosomes are a class of cell-secreted, nano-sized extracellular vesicles with a bilayer membrane structure of 30-150 nm in diameter. Their discovery and application have brought breakthroughs in numerous areas, such as liquid biopsies, cancer biology, drug delivery, immunotherapy, tissue repair, and cardiovascular diseases. Isolation of exosomes is the first step in exosome-related research and its applications. Standard benchtop exosome separation and sensing techniques are tedious and challenging, as they require large sample volumes, multi-step operations that are complex and time-consuming, requiring cumbersome and expensive instruments. In contrast, microfluidic platforms have the potential to overcome some of these limitations, owing to their high-precision processing, ability to handle liquids at a microscale, and integrability with various functional units, such as mixers, actuators, reactors, separators, and sensors. These platforms can optimize the detection process on a single device, representing a robust and versatile technique for exosome separation and sensing to attain high purity and high recovery rates with a short processing time. Herein, we overview microfluidic strategies for exosome isolation based on their hydrodynamic properties, size filtration, acoustic fields, immunoaffinity, and dielectrophoretic properties. We focus especially on advances in label-free isolation of exosomes with active biological properties and intact morphological structures. Further, we introduce microfluidic techniques for the detection of exosomal proteins and RNAs with high sensitivity, high specificity, and low detection limits. We summarize the biomedical applications of exosome-mediated therapeutic delivery targeting cancer cells. To highlight the advantages of microfluidic platforms, conventional techniques are included for comparison. Future challenges and prospects of microfluidics towards exosome isolation applications are also discussed. Although the use of exosomes in clinical applications still faces biological, technical, regulatory, and market challenges, in the foreseeable future, recent developments in microfluidic technologies are expected to pave the way for tailoring exosome-related applications in precision medicine.
Collapse
Affiliation(s)
- Jie Wang
- Canary Center at Stanford for Cancer Early Detection, Bio-Acoustic MEMS in Medicine (BAMM) Laboratory, Department of Radiology, School of Medicine Stanford University, Palo Alto, California 94304-5427, USA
- Canary Center at Stanford for Cancer Early Detection, Department of Radiology, Stanford University School of Medicine, Palo Alto, California 94305, USA
| | - Peng Ma
- Canary Center at Stanford for Cancer Early Detection, Bio-Acoustic MEMS in Medicine (BAMM) Laboratory, Department of Radiology, School of Medicine Stanford University, Palo Alto, California 94304-5427, USA
- Britton Chance Center for Biomedical Photonics at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
- Canary Center at Stanford for Cancer Early Detection, Department of Radiology, Stanford University School of Medicine, Palo Alto, California 94305, USA
| | - Daniel H Kim
- Department of Biomolecular Engineering, University of California Santa Cruz, Santa Cruz, California 95064, USA
- Canary Center at Stanford for Cancer Early Detection, Department of Radiology, Stanford University School of Medicine, Palo Alto, California 94305, USA
| | - Bi-Feng Liu
- Britton Chance Center for Biomedical Photonics at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Utkan Demirci
- Canary Center at Stanford for Cancer Early Detection, Bio-Acoustic MEMS in Medicine (BAMM) Laboratory, Department of Radiology, School of Medicine Stanford University, Palo Alto, California 94304-5427, USA
- Canary Center at Stanford for Cancer Early Detection, Department of Radiology, Stanford University School of Medicine, Palo Alto, California 94305, USA
| |
Collapse
|
4
|
Guo QR, Zhang LL, Liu JF, Li Z, Li JJ, Zhou WM, Wang H, Li JQ, Liu DY, Yu XY, Zhang JY. Multifunctional microfluidic chip for cancer diagnosis and treatment. Nanotheranostics 2021; 5:73-89. [PMID: 33391976 PMCID: PMC7738943 DOI: 10.7150/ntno.49614] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Accepted: 10/08/2020] [Indexed: 02/06/2023] Open
Abstract
Microfluidic chip is not a chip in the traditional sense. It is technologies that control fluids at the micro level. As a burgeoning biochip, microfluidic chips integrate multiple disciplines, including physiology, pathology, cell biology, biophysics, engineering mechanics, mechanical design, materials science, and so on. The application of microfluidic chip has shown tremendous promise in the field of cancer therapy in the past three decades. Various types of cell and tissue cultures, including 2D cell culture, 3D cell culture and tissue organoid culture could be performed on microfluidic chips. Patient-derived cancer cells and tissues can be cultured on microfluidic chips in a visible, controllable, and high-throughput manner, which greatly advances the process of personalized medicine. Moreover, the functionality of microfluidic chip is greatly expanding due to the customizable nature. In this review, we introduce its application in developing cancer preclinical models, detecting cancer biomarkers, screening anti-cancer drugs, exploring tumor heterogeneity and producing nano-drugs. We highlight the functions and recent development of microfluidic chip to provide references for advancing cancer diagnosis and treatment.
Collapse
Affiliation(s)
- Qiao-Ru Guo
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, P.R.China
| | - Ling-Ling Zhang
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, P.R.China
| | - Ji-Fang Liu
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, P.R.China
| | - Zhen Li
- Department of Gastroenterology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, P.R.China
| | - Jia-Jun Li
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, P.R.China
| | - Wen-Min Zhou
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, P.R.China
| | - Hui Wang
- Guangzhou Institute of Pediatrics/Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, P.R.China
| | - Jing-Quan Li
- The First Affiliated Hospital, Hainan Medical University, Haikou, P.R.China
| | - Da-Yu Liu
- Department of Laboratory Medicine, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, P.R.China
| | - Xi-Yong Yu
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, P.R.China
| | - Jian-Ye Zhang
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, P.R.China.,The First Affiliated Hospital, Hainan Medical University, Haikou, P.R.China
| |
Collapse
|
5
|
Xie Y, Rufo J, Zhong R, Rich J, Li P, Leong KW, Huang TJ. Microfluidic Isolation and Enrichment of Nanoparticles. ACS NANO 2020; 14:16220-16240. [PMID: 33252215 PMCID: PMC8164652 DOI: 10.1021/acsnano.0c06336] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Over the past decades, nanoparticles have increased in implementation to a variety of applications ranging from high-efficiency electronics to targeted drug delivery. Recently, microfluidic techniques have become an important tool to isolate and enrich populations of nanoparticles with uniform properties (e.g., size, shape, charge) due to their precision, versatility, and scalability. However, due to the large number of microfluidic techniques available, it can be challenging to identify the most suitable approach for isolating or enriching a nanoparticle of interest. In this review article, we survey microfluidic methods for nanoparticle isolation and enrichment based on their underlying mechanisms, including acoustofluidics, dielectrophoresis, filtration, deterministic lateral displacement, inertial microfluidics, optofluidics, electrophoresis, and affinity-based methods. We discuss the principles, applications, advantages, and limitations of each method. We also provide comparisons with bulk methods, perspectives for future developments and commercialization, and next-generation applications in chemistry, biology, and medicine.
Collapse
Affiliation(s)
- Yuliang Xie
- Roy J. Carver Department of Biomedical Engineering, University of Iowa, Iowa City, Iowa 52242, United States
| | - Joseph Rufo
- Department of Mechanical Engineering and Materials Science, Duke University, Durham, North Carolina 27708, United States
| | - Ruoyu Zhong
- Department of Mechanical Engineering and Materials Science, Duke University, Durham, North Carolina 27708, United States
| | - Joseph Rich
- Department of Biomedical Engineering, Duke University, Durham, North Carolina 27708, United States
| | - Peng Li
- C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, West Virginia 26506, United States
| | - Kam W Leong
- Department of Biomedical Engineering, Columbia University, New York, New York 10032, United States
| | - Tony Jun Huang
- Department of Mechanical Engineering and Materials Science, Duke University, Durham, North Carolina 27708, United States
| |
Collapse
|
6
|
Epping MS, Wedde S, Grundmann A, Radukic M, Gröger H, Hummel A, Viefhues M. Dielectrophoretic analysis of the impact of isopropyl alcohol on the electric polarisability of Escherichia coli whole-cells. Anal Bioanal Chem 2020; 412:3925-3933. [PMID: 32157360 PMCID: PMC7235074 DOI: 10.1007/s00216-020-02451-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 01/13/2020] [Accepted: 01/23/2020] [Indexed: 12/18/2022]
Abstract
Whole-cell biocatalysts are versatile tools in (industrial) production processes; though, the effects that impact the efficiency are not fully understood yet. One main factor that affects whole-cell biocatalysts is the surrounding medium, which often consists of organic solvents due to low solubility of substrates in aqueous solutions. It is expected that organic solvents change the biophysical and biochemical properties of the whole-cell biocatalysts, e.g. by permeabilising the cell membrane, and thus analysis of these effects is of high importance. In this work, we present an analysis method to study the impact of organic solvents on whole-cell biocatalysts by means of dielectrophoresis. For instance, we evaluate the changes of the characteristic dielectrophoretic trapping ratio induced by incubation of Escherichia coli, serving as a model system, in an aqueous medium containing isopropyl alcohol. Therefore, we could evaluate the impact on the electric polarisability of the cells. For this purpose, a special microchannel device was designed and Escherichia coli cells were genetically modified to reliably synthesise a green fluorescent protein. We could demonstrate that our method was capable of revealing different responses to small changes in isopropyl alcohol concentration and incubation duration. Complementary spectrophotometric UV-Vis (ultraviolet-visible light) absorbance analysis of released NAD(P)+/NAD(P)H cofactor and proteins confirmed our results. Based on our results, we discuss the biophysical effects taking place during incubation. Graphical abstract.
Collapse
Affiliation(s)
- Miriam S Epping
- Experimental Biophysics and Applied Nanosciences, Department of Physics, Bielefeld University, 33615, Bielefeld, Germany
| | - Severin Wedde
- Industrial Organic Chemistry and Biotechnology, Department of Chemistry, Bielefeld University, 33615, Bielefeld, Germany
- Fermentation Engineering, Department of Technology, Bielefeld University, 33615, Bielefeld, Germany
| | - Armin Grundmann
- Experimental Biophysics and Applied Nanosciences, Department of Physics, Bielefeld University, 33615, Bielefeld, Germany
| | - Marco Radukic
- Experimental Biophysics and Applied Nanosciences, Department of Physics, Bielefeld University, 33615, Bielefeld, Germany
- Cellular and Molecular Biotechnology, Department of Technology, Bielefeld University, 33615, Bielefeld, Germany
| | - Harald Gröger
- Industrial Organic Chemistry and Biotechnology, Department of Chemistry, Bielefeld University, 33615, Bielefeld, Germany
| | - Anke Hummel
- Industrial Organic Chemistry and Biotechnology, Department of Chemistry, Bielefeld University, 33615, Bielefeld, Germany
| | - Martina Viefhues
- Experimental Biophysics and Applied Nanosciences, Department of Physics, Bielefeld University, 33615, Bielefeld, Germany.
| |
Collapse
|
7
|
Viefhues M. Analytics in Microfluidic Systems. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2020; 179:191-209. [DOI: 10.1007/10_2020_131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
8
|
Habibi R, Neild A. Sound wave activated nano-sieve (SWANS) for enrichment of nanoparticles. LAB ON A CHIP 2019; 19:3032-3044. [PMID: 31396609 DOI: 10.1039/c9lc00369j] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Acoustic actuation is widely used in microfluidic systems as a method of controlling the behaviour of suspended matter. When acoustic waves impinge on particles, a radiation force is exerted which can cause migration over multiple acoustic time periods; in addition the scattering of the wave by the particle will affect the behaviour of nearby particles. This interparticle effect, or Bjerknes force, tends to attract particles together. Here, instead of manipulating a dilute sample of particles, we examine the acoustic excitation of a packed bed. We fill a microfluidic channel with microparticles, such that they form a closely packed structure and then excite them at the particle's resonant frequency. In this scenario, each particle acts as a source of scattered waves and we show that these waves are highly effective at attracting nanoparticles onto the surface of the microparticles, and nanoparticle collection characterises the performance of this mechanically activated packed bed.
Collapse
Affiliation(s)
- Ruhollah Habibi
- Laboratory for Micro Systems, Department of Mechanical and Aerospace Engineering, Monash University, Clayton, Victoria 3800, Australia.
| | | |
Collapse
|
9
|
Xuan X. Recent advances in direct current electrokinetic manipulation of particles for microfluidic applications. Electrophoresis 2019; 40:2484-2513. [DOI: 10.1002/elps.201900048] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Revised: 02/22/2019] [Accepted: 02/24/2019] [Indexed: 12/19/2022]
Affiliation(s)
- Xiangchun Xuan
- Department of Mechanical Engineering; Clemson University; Clemson SC USA
| |
Collapse
|
10
|
Chen Q, Yuan YJ. A review of polystyrene bead manipulation by dielectrophoresis. RSC Adv 2019; 9:4963-4981. [PMID: 35514668 PMCID: PMC9060650 DOI: 10.1039/c8ra09017c] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Accepted: 01/14/2019] [Indexed: 01/18/2023] Open
Abstract
Exploitation of the intrinsic electrical properties of particles has recently emerged as an appealing approach for trapping and separating various scaled particles. Initiative particle manipulation by dielectrophoresis (DEP) showed remarkable advantages including high speed, ease of handling, high precision and being label-free. Herein, we provide a general overview of the manipulation of polystyrene (PS) beads and related particles via DEP; especially, the wide applications of these manipulated PS beads in the quantitative evaluation of device performance for model validation and standardization have been discussed. The motion and polarizability of the PS beads induced by DEP were analyzed and classified into two categories as positive and negative DEP within the time and space domains. The DEP techniques used for bioparticle manipulation were demonstrated, and their applications were conducted in four fields: trapping of single-sized PS beads, separation of multiple-sized PS beads by size, separation of PS beads and non-bioparticles, and separation of PS beads and bioparticles. Finally, future perspectives on DEP-on-a-chip have been proposed to discriminate bio-targets in the network of microfluidic channels.
Collapse
Affiliation(s)
- Qiaoying Chen
- Laboratory of Biosensing and MicroMechatronics, School of Materials Science and Engineering, Southwest Jiaotong University Chengdu Sichuan 610031 China
| | - Yong J Yuan
- Laboratory of Biosensing and MicroMechatronics, School of Materials Science and Engineering, Southwest Jiaotong University Chengdu Sichuan 610031 China
| |
Collapse
|
11
|
Zhang P, Liu Y. DC biased low-frequency insulating constriction dielectrophoresis for protein biomolecules concentration. Biofabrication 2017; 9:045003. [DOI: 10.1088/1758-5090/aa82d6] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
12
|
Viefhues M, Eichhorn R. DNA dielectrophoresis: Theory and applications a review. Electrophoresis 2017; 38:1483-1506. [PMID: 28306161 DOI: 10.1002/elps.201600482] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Revised: 03/07/2017] [Accepted: 03/08/2017] [Indexed: 01/24/2023]
Abstract
Dielectrophoresis is the migration of an electrically polarizable particle in an inhomogeneous electric field. This migration can be exploited for several applications with (bio)molecules or cells. Dielectrophoresis is a noninvasive technique; therefore, it is very convenient for (selective) manipulation of (bio)molecules or cells. In this review, we will focus on DNA dielectrophoresis as this technique offers several advantages in trapping and immobilization, separation and purification, and analysis of DNA molecules. We present and discuss the underlying theory of the most important forces that have to be considered for applications with dielectrophoresis. Moreover, a review of DNA dielectrophoresis applications is provided to present the state-of-the-art and to offer the reader a perspective of the advances and current limitations of DNA dielectrophoresis.
Collapse
Affiliation(s)
- Martina Viefhues
- Experimental Biophysics and Applied Nanoscience, Faculty of Physics, Bielefeld University, Bielefeld, Germany
| | - Ralf Eichhorn
- Nordita, Royal Institute of Technology and Stockholm University, Stockholm, Sweden
| |
Collapse
|
13
|
Yesiloz G, Boybay MS, Ren CL. Effective Thermo-Capillary Mixing in Droplet Microfluidics Integrated with a Microwave Heater. Anal Chem 2017; 89:1978-1984. [DOI: 10.1021/acs.analchem.6b04520] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Gurkan Yesiloz
- Department
of Mechanical and Mechatronics Engineering, University of Waterloo, 200 University Avenue West, Waterloo, Ontario N2L 3G1, Canada
| | - Muhammed S. Boybay
- Department
of Mechanical and Mechatronics Engineering, University of Waterloo, 200 University Avenue West, Waterloo, Ontario N2L 3G1, Canada
- Department
of Computer Engineering, Antalya International University, Universite Caddesi No:2, 07190 Antalya, Turkey
| | - Carolyn L. Ren
- Department
of Mechanical and Mechatronics Engineering, University of Waterloo, 200 University Avenue West, Waterloo, Ontario N2L 3G1, Canada
| |
Collapse
|
14
|
Täuber S, Kunze L, Grauberger O, Grundmann A, Viefhues M. Reaching for the limits in continuous-flow dielectrophoretic DNA analysis. Analyst 2017; 142:4670-4677. [DOI: 10.1039/c7an00977a] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
We investigated the limits of continuous-flow dielectrophoretic analysis of DNA with regards on the topological conformation and size resolution.
Collapse
Affiliation(s)
- Sarah Täuber
- Experimental Biophysics and Applied Nanoscience
- Faculty of Physics
- Bielefeld University
- 33615 Bielefeld
- Germany
| | - Lena Kunze
- Experimental Biophysics and Applied Nanoscience
- Faculty of Physics
- Bielefeld University
- 33615 Bielefeld
- Germany
| | - Oleg Grauberger
- Experimental Biophysics and Applied Nanoscience
- Faculty of Physics
- Bielefeld University
- 33615 Bielefeld
- Germany
| | - Armin Grundmann
- Experimental Biophysics and Applied Nanoscience
- Faculty of Physics
- Bielefeld University
- 33615 Bielefeld
- Germany
| | - Martina Viefhues
- Experimental Biophysics and Applied Nanoscience
- Faculty of Physics
- Bielefeld University
- 33615 Bielefeld
- Germany
| |
Collapse
|
15
|
|
16
|
Salafi T, Zeming KK, Zhang Y. Advancements in microfluidics for nanoparticle separation. LAB ON A CHIP 2016; 17:11-33. [PMID: 27830852 DOI: 10.1039/c6lc01045h] [Citation(s) in RCA: 128] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Nanoparticles have been widely implemented for healthcare and nanoscience industrial applications. Thus, efficient and effective nanoparticle separation methods are essential for advancement in these fields. However, current technologies for separation, such as ultracentrifugation, electrophoresis, filtration, chromatography, and selective precipitation, are not continuous and require multiple preparation steps and a minimum sample volume. Microfluidics has offered a relatively simple, low-cost, and continuous particle separation approach, and has been well-established for micron-sized particle sorting. Here, we review the recent advances in nanoparticle separation using microfluidic devices, focusing on its techniques, its advantages over conventional methods, and its potential applications, as well as foreseeable challenges in the separation of synthetic nanoparticles and biological molecules, especially DNA, proteins, viruses, and exosomes.
Collapse
Affiliation(s)
- Thoriq Salafi
- NUS Graduate School for Integrative Sciences and Engineering, Centre for Life Sciences (CeLS), National University of Singapore, 05-01 28 Medical Drive, 117456 Singapore. and Department of Biomedical Engineering, National University of Singapore, 9 Engineering Drive 1, Block EA #03-12, 117576 Singapore
| | - Kerwin Kwek Zeming
- Department of Biomedical Engineering, National University of Singapore, 9 Engineering Drive 1, Block EA #03-12, 117576 Singapore
| | - Yong Zhang
- NUS Graduate School for Integrative Sciences and Engineering, Centre for Life Sciences (CeLS), National University of Singapore, 05-01 28 Medical Drive, 117456 Singapore. and Department of Biomedical Engineering, National University of Singapore, 9 Engineering Drive 1, Block EA #03-12, 117576 Singapore
| |
Collapse
|
17
|
Varma VB, Ray A, Wang ZM, Wang ZP, Ramanujan RV. Droplet Merging on a Lab-on-a-Chip Platform by Uniform Magnetic Fields. Sci Rep 2016; 6:37671. [PMID: 27892475 PMCID: PMC5124862 DOI: 10.1038/srep37671] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Accepted: 11/01/2016] [Indexed: 02/07/2023] Open
Abstract
Droplet microfluidics offers a range of Lab-on-a-chip (LoC) applications. However, wireless and programmable manipulation of such droplets is a challenge. We address this challenge by experimental and modelling studies of uniform magnetic field induced merging of ferrofluid based droplets. Control of droplet velocity and merging was achieved through uniform magnetic field and flow rate ratio. Conditions for droplet merging with respect to droplet velocity were studied. Merging and mixing of colour dye + magnetite composite droplets was demonstrated. Our experimental and numerical results are in good agreement. These studies are useful for wireless and programmable droplet merging as well as mixing relevant to biosensing, bioassay, microfluidic-based synthesis, reaction kinetics, and magnetochemistry.
Collapse
Affiliation(s)
- V B Varma
- School of Materials Science and Engineering, Nanyang Technological University, 639798, Singapore
| | - A Ray
- School of Materials Science and Engineering, Nanyang Technological University, 639798, Singapore
| | - Z M Wang
- School of Materials Science and Engineering, Nanyang Technological University, 639798, Singapore
| | - Z P Wang
- Singapore Institute of Manufacturing Technology, 71 Nanyang Dr, 638075, Singapore
| | - R V Ramanujan
- School of Materials Science and Engineering, Nanyang Technological University, 639798, Singapore
| |
Collapse
|
18
|
CFD design of a microfluidic device for continuous dielectrophoretic separation of charged gold nanoparticles. J Taiwan Inst Chem Eng 2016. [DOI: 10.1016/j.jtice.2015.05.034] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
19
|
Fast and continuous-flow detection and separation of DNA complexes and DNA in nanofluidic chip format. Methods Mol Biol 2015. [PMID: 25673486 DOI: 10.1007/978-1-4939-2353-3_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
Fast separation of DNA and detection of protein/DNA complexes are important in many state-of-the-art molecular medicine technologies, like the production of gene vaccines or medical diagnostics. Here, we describe a nanofluidic chip-based technique for fast, efficient, and virtually label-free detection and separation of protein/DNA and drug/DNA complexes and topological DNA variants. The mechanism is based on a continuous-flow dielectrophoresis at a nanoslit and allows efficient separation of small DNA fragments (<7,000 base pairs) and fast detection of DNA complexes within 1 min.
Collapse
|
20
|
Kole TP, Liao KT, Schiffels D, Ilic BR, Strychalski EA, Kralj JG, Liddle JA, Dritschilo A, Stavis SM. Rapid Prototyping of Nanofluidic Slits in a Silicone Bilayer. JOURNAL OF RESEARCH OF THE NATIONAL INSTITUTE OF STANDARDS AND TECHNOLOGY 2015; 120:252-69. [PMID: 26958449 PMCID: PMC4730671 DOI: 10.6028/jres.120.015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 11/04/2015] [Indexed: 05/15/2023]
Abstract
This article reports a process for rapidly prototyping nanofluidic devices, particularly those comprising slits with microscale widths and nanoscale depths, in silicone. This process consists of designing a nanofluidic device, fabricating a photomask, fabricating a device mold in epoxy photoresist, molding a device in silicone, cutting and punching a molded silicone device, bonding a silicone device to a glass substrate, and filling the device with aqueous solution. By using a bilayer of hard and soft silicone, we have formed and filled nanofluidic slits with depths of less than 400 nm and aspect ratios of width to depth exceeding 250 without collapse of the slits. An important attribute of this article is that the description of this rapid prototyping process is very comprehensive, presenting context and details which are highly relevant to the rational implementation and reliable repetition of the process. Moreover, this process makes use of equipment commonly found in nanofabrication facilities and research laboratories, facilitating the broad adaptation and application of the process. Therefore, while this article specifically informs users of the Center for Nanoscale Science and Technology (CNST) at the National Institute of Standards and Technology (NIST), we anticipate that this information will be generally useful for the nanofabrication and nanofluidics research communities at large, and particularly useful for neophyte nanofabricators and nanofluidicists.
Collapse
Affiliation(s)
- Thomas P. Kole
- National Institute of Standards and Technology, Gaithersburg, MD 20899
- MedStar Georgetown University Hospital, Department of Radiation Medicine, Washington, DC 20007
| | - Kuo-Tang Liao
- National Institute of Standards and Technology, Gaithersburg, MD 20899
- University of Maryland, Maryland Nanocenter, College Park, MD 20740
| | - Daniel Schiffels
- National Institute of Standards and Technology, Gaithersburg, MD 20899
- University of Maryland, Maryland Nanocenter, College Park, MD 20740
| | - B. Robert Ilic
- National Institute of Standards and Technology, Gaithersburg, MD 20899
| | | | - Jason G. Kralj
- National Institute of Standards and Technology, Gaithersburg, MD 20899
| | | | - Anatoly Dritschilo
- MedStar Georgetown University Hospital, Department of Radiation Medicine, Washington, DC 20007
| | - Samuel M. Stavis
- National Institute of Standards and Technology, Gaithersburg, MD 20899
| |
Collapse
|
21
|
Dielectrophoresis for bioparticle manipulation. Int J Mol Sci 2014; 15:18281-309. [PMID: 25310652 PMCID: PMC4227216 DOI: 10.3390/ijms151018281] [Citation(s) in RCA: 93] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2014] [Revised: 09/18/2014] [Accepted: 09/24/2014] [Indexed: 12/31/2022] Open
Abstract
As an ideal method to manipulate biological particles, the dielectrophoresis (DEP) technique has been widely used in clinical diagnosis, disease treatment, drug development, immunoassays, cell sorting, etc. This review summarizes the research in the field of bioparticle manipulation based on DEP techniques. Firstly, the basic principle of DEP and its classical theories are introduced in brief; Secondly, a detailed introduction on the DEP technique used for bioparticle manipulation is presented, in which the applications are classified into five fields: capturing bioparticles to specific regions, focusing bioparticles in the sample, characterizing biomolecular interaction and detecting microorganism, pairing cells for electrofusion and separating different kinds of bioparticles; Thirdly, the effect of DEP on bioparticle viability is analyzed; Finally, the DEP techniques are summarized and future trends in bioparticle manipulation are suggested.
Collapse
|
22
|
Pethig R. Dielectrophoresis: an assessment of its potential to aid the research and practice of drug discovery and delivery. Adv Drug Deliv Rev 2013; 65:1589-99. [PMID: 24056182 DOI: 10.1016/j.addr.2013.09.003] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2013] [Revised: 08/08/2013] [Accepted: 09/11/2013] [Indexed: 02/06/2023]
Abstract
Dielectrophoresis (DEP) is an electrokinetic technique with proven ability to discriminate and selectively manipulate cells based on their phenotype and physiological state, without the need for biological tags and markers. The DEP response of a cell is predominantly determined by the physico-chemical properties of the plasma membrane, subtle changes of which can be detected from two so-called 'cross-over' frequencies, f(xo1) and f(xo2). Membrane capacitance and structural changes can be monitored by measurement of f(xo1) at sub-megahertz frequencies, and current indications suggest that f(xo2), located above 100 MHz, is sensitive to changes of trans-membrane ion fluxes. DEP lends itself to integration in microfluidic devices and can also operate at the nanoscale to manipulate nanoparticles. Apart from measurements of f(xo1) and f(xo2), other examples where DEP could contribute to drug discovery and delivery include its ability to: enrich stem cells according to their differentiation potential, and to engineer artificial cell structures and nano-structures.
Collapse
Affiliation(s)
- Ronald Pethig
- Institute for Integrated Micro and Nano Systems, School of Engineering, The University of Edinburgh, Edinburgh EH9 3JF, UK
| |
Collapse
|
23
|
Viefhues M, Wegener S, Rischmüller A, Schleef M, Anselmetti D. Dielectrophoresis based continuous-flow nano sorter: fast quality control of gene vaccines. LAB ON A CHIP 2013; 13:3111-3118. [PMID: 23760065 DOI: 10.1039/c3lc50475a] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
We present a prototype nanofluidic device, developed for the continuous-flow dielectrophoretic (DEP) fractionation, purification, and quality control of sample suspensions for gene vaccine production. The device consists of a cross injector, two operation regions, and separate outlets where the analytes are collected. In each DEP operation region, an inhomogeneous electric field is generated at a channel spanning insulating ridge. The samples are driven by ac and dc voltages that generate a dielectrophoretic potential at the ridge as well as (linear) electrokinetics. Since the DEP potential differs at the two ridges, probes of three and more species can be iteratively fully fractionated. We demonstrate the fast and efficient separation of parental plasmid, miniplasmid, and minicircle DNA, where the latter is applicable as a gene vaccine. Since the present technique is virtually label-free, it offers a fast purification and in-process quality control with low consumption, in parallel, for the production of gene vaccines.
Collapse
Affiliation(s)
- Martina Viefhues
- Experimental Biophysics and Applied Nanoscience, Faculty of Physics, Bielefeld University, 33615 Bielefeld, Germany.
| | | | | | | | | |
Collapse
|
24
|
Hagiwara M, Kawahara T, Iijima T, Arai F. High-Speed Magnetic Microrobot Actuation in a Microfluidic Chip by a Fine V-Groove Surface. IEEE T ROBOT 2013. [DOI: 10.1109/tro.2012.2228310] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
25
|
Viefhues M, Regtmeier J, Anselmetti D. Fast and continuous-flow separation of DNA-complexes and topological DNA variants in microfluidic chip format. Analyst 2013; 138:186-96. [DOI: 10.1039/c2an36056j] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
26
|
Kim JY, Ahn SW, Lee SS, Kim JM. Lateral migration and focusing of colloidal particles and DNA molecules under viscoelastic flow. LAB ON A CHIP 2012; 12:2807-14. [PMID: 22776909 DOI: 10.1039/c2lc40147a] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Much difficulty has been encountered in manipulating small-scale materials, such as submicron colloidal particles and macromolecules (e.g., DNA and proteins), in microfluidic devices since diffusion processes due to thermal (Brownian) motion become more pronounced with decreasing particle size. Here, we present a novel approach for the continuous focusing of such small-scale materials. First, we successfully focused fluorescent submicron polystyrene (PS) beads along equilibrium positions in microchannels through the addition of a small amount water-soluble polymer [500 ppm poly(ethylene oxide) (PEO)]. Lateral migration velocity significantly depends upon the viscoelastic effect (Weissenberg number: Wi) and the aspect ratio of particle size to channel height (a/h). Interestingly, focusing using viscoelastic flows was also observed for flexible DNA molecules (λ-DNA and T4-DNA), which have radii of gyration (R(g)) of approximately 0.69 μm and 1.5 μm, respectively. This small-scale material manipulation using medium viscoelasticity will contribute to the design of nanoparticle separation and genomic mapping devices.
Collapse
Affiliation(s)
- Jae Young Kim
- Department of Chemical Engineering, Ajou University, Suwon 443-749, Republic of Korea
| | | | | | | |
Collapse
|