1
|
Kang C, Huh S, Nam D, Kim H, Hong J, Hwang D, Lee SW. Novel Online Three-Dimensional Separation Expands the Detectable Functional Landscape of Cellular Phosphoproteome. Anal Chem 2022; 94:12185-12195. [PMID: 35994246 DOI: 10.1021/acs.analchem.2c02641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Protein phosphorylation is a prevalent post-translational modification that regulates essentially every aspect of cellular processes. Currently, liquid chromatography-tandem mass spectrometry (LC-MS/MS) with an extensive offline sample fractionation and a phosphopeptide enrichment method is a best practice for deep phosphoproteome profiling, but balancing throughput and profiling depth remains a practical challenge. We present an online three-dimensional separation method for ultradeep phosphoproteome profiling that combines an online two-dimensional liquid chromatography separation and an additional gas-phase separation. This method identified over 100,000 phosphopeptides (>60,000 phosphosites) in HeLa cells during 1.5 days of data acquisition, and the largest HeLa cell phosphoproteome significantly expanded the detectable functional landscape of cellular phosphoproteome.
Collapse
Affiliation(s)
- Chaewon Kang
- Department of Chemistry, Center for Proteogenome Research, Korea University, Seoul 02841, Republic of Korea
| | - Sunghyun Huh
- School of Biological Sciences, Seoul National University, Seoul 08826, Republic of Korea.,Bertis R&D Division, Bertis Inc., Seongnam-si, Gyeonggi-do 13605, Republic of Korea
| | - Dowoon Nam
- Department of Chemistry, Center for Proteogenome Research, Korea University, Seoul 02841, Republic of Korea
| | - Hokeun Kim
- Department of Chemistry, Center for Proteogenome Research, Korea University, Seoul 02841, Republic of Korea
| | - Jiwon Hong
- Department of Chemistry, Center for Proteogenome Research, Korea University, Seoul 02841, Republic of Korea
| | - Daehee Hwang
- School of Biological Sciences, Seoul National University, Seoul 08826, Republic of Korea.,Bioinformatics Institute, Seoul National University, Seoul 08826, Republic of Korea
| | - Sang-Won Lee
- Department of Chemistry, Center for Proteogenome Research, Korea University, Seoul 02841, Republic of Korea
| |
Collapse
|
2
|
Gautam S, Sharma D, Goel A, Patil SA, Bisht D. Insights into Mycobacterium leprae Proteomics and Biomarkers-An Overview. Proteomes 2021; 9:7. [PMID: 33573064 PMCID: PMC7931084 DOI: 10.3390/proteomes9010007] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 01/21/2021] [Accepted: 01/22/2021] [Indexed: 02/07/2023] Open
Abstract
Although leprosy is curable, the identification of biomarkers for the early diagnosis of leprosy would play a pivotal role in reducing transmission and the overall prevalence of the disease. Leprosy-specific biomarkers for diagnosis, particularly for the paucibacillary disease, are not well defined. Therefore, the identification of new biomarkers for leprosy is one of the prime themes of leprosy research. Studying Mycobacterium leprae, the causative agent of leprosy, at the proteomic level may facilitate the identification, quantification, and characterization of proteins that could be potential diagnostics or targets for drugs and can help in better understanding the pathogenesis. This review aims to shed light on the knowledge gained to understand leprosy or its pathogen employing proteomics and its role in diagnosis.
Collapse
Affiliation(s)
- Sakshi Gautam
- Department of Biochemistry, National JALMA Institute for Leprosy and Other Mycobacterial Diseases, Tajganj, Agra 282004, India; (S.G.); (D.S.); (S.A.P.)
- Department of Biotechnology, GLA University, NH-2, Mathura-Delhi Road, Mathura 281406, India;
| | - Devesh Sharma
- Department of Biochemistry, National JALMA Institute for Leprosy and Other Mycobacterial Diseases, Tajganj, Agra 282004, India; (S.G.); (D.S.); (S.A.P.)
| | - Anjana Goel
- Department of Biotechnology, GLA University, NH-2, Mathura-Delhi Road, Mathura 281406, India;
| | - Shripad A. Patil
- Department of Biochemistry, National JALMA Institute for Leprosy and Other Mycobacterial Diseases, Tajganj, Agra 282004, India; (S.G.); (D.S.); (S.A.P.)
| | - Deepa Bisht
- Department of Biochemistry, National JALMA Institute for Leprosy and Other Mycobacterial Diseases, Tajganj, Agra 282004, India; (S.G.); (D.S.); (S.A.P.)
| |
Collapse
|
3
|
Proteomic Changes during MCMV Infection Revealed by iTRAQ Quantitative Proteomic Analysis in Maize. Int J Mol Sci 2019; 21:ijms21010035. [PMID: 31861651 PMCID: PMC6981863 DOI: 10.3390/ijms21010035] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 12/04/2019] [Accepted: 12/17/2019] [Indexed: 12/21/2022] Open
Abstract
Maize chlorotic mottle virus (MCMV) has been occurring frequently worldwide and causes severe yield losses in maize (Zea mays). To better investigate the destructive effects of MCMV infection on maize plants, isobaric tagging for relative and absolute quantitation (iTRAQ)-based comparative proteomic analysis was performed on MCMV infected maize cv. B73. A total of 972 differentially abundant proteins (DAPs), including 661 proteins with increased abundance and 311 proteins with reduced abundance, were identified in response to MCMV infection. Functional annotations of DAPs and measurement of photosynthetic activity revealed that photosynthesis was decreased, while the abundance of ribosomal proteins, proteins related to stress responses, oxidation-reduction and redox homeostasis was altered significantly during MCMV infection. Two DAPs, disulfide isomerases like protein ZmPDIL-1 and peroxiredoxin family protein ZmPrx5, were further analyzed for their roles during MCMV infection through cucumber mosaic virus-based virus-induced gene silencing (CMV-VIGS). The accumulation of MCMV was suppressed in ZmPDIL-1-silenced or ZmPrx5-silenced B73 maize, suggesting ZmPDIL-1 and ZmPrx5 might enhance host susceptibility to MCMV infection.
Collapse
|
4
|
Simplifying the Proteome: Analytical Strategies for Improving Peak Capacity. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1140:501-513. [PMID: 31347067 DOI: 10.1007/978-3-030-15950-4_29] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
The diversity of biological samples and dynamic range of analytes being analyzed can prove to be an analytical challenge and is particularly prevalent to proteomic studies. Maximizing the peak capacity of the workflow employed can extend the dynamic range and increase identification rates. The focus of this chapter is to present means of achieving this for various analytical techniques such as liquid chromatography, mass spectrometry and ion mobility. A combination of these methods can be used as part of a data independent acquisition strategy, thereby limiting issues such as chimericy when analyzing regions of extreme analyte density.
Collapse
|
5
|
Wu Q, Chu H, Padmanabhan A, Shah NP. Functional Genomic Analyses of Exopolysaccharide-Producing Streptococcus thermophilus ASCC 1275 in Response to Milk Fermentation Conditions. Front Microbiol 2019; 10:1975. [PMID: 31507577 PMCID: PMC6716118 DOI: 10.3389/fmicb.2019.01975] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Accepted: 08/12/2019] [Indexed: 01/13/2023] Open
Abstract
Exopolysaccharide (EPS) produced from dairy bacteria improves texture and functionalities of fermented dairy foods. Our previous study showed improved EPS production from Streptococcus thermophilus ASCC1275 (ST1275) by simple alteration of fermentation conditions such as pH decrease (pH 6.5 → pH 5.5), temperature increase (37°C → 40°C) and/or whey protein isolate (WPI) supplementation. The iTRAQ-based proteomics in combination with transcriptomics were applied to understand cellular protein expression in ST1275 in response to above shifts during milk fermentation. The pH decrease induced the most differentially expressed proteins (DEPs) that are involved in cellular metabolic responses including glutamate catabolism, arginine biosynthesis, cysteine catabolism, purine metabolism, lactose uptake, and fatty acid biosynthesis. Temperature increase and WPI supplementation did not induce much changes in global protein express profiles of ST1275 between comparisons of pH 5.5 conditions. Comparative proteomic analyses from pairwise comparisons demonstrated enhanced glutamate catabolism and purine metabolism under pH 5.5 conditions (Cd2, Cd3, and Cd4) compared to that of pH 6.5 condition (Cd1). Concordance analysis for differential expressed genes (DEGs) and DEPs highlighted down-regulated glutamate catabolism and up-regulated arginine biosynthesis in pH 5.5 conditions. Down regulation of glutamate catabolism was also confirmed by pathway enrichment analysis. Down-regulation of EpsB involved in EPS assembly was observed at both mRNA and protein level in pH 5.5 conditions compared to that in pH 6.5 condition. Medium pH decreased to mild acidic level induced cellular changes associated with glutamate catabolism, arginine biosynthesis and regulation of EPS assembly in ST1275.
Collapse
Affiliation(s)
- Qinglong Wu
- School of Biological Sciences, The University of Hong Kong, Pokfulam, Hong Kong.,Texas Children's Microbiome Center, Department of Pathology, Texas Children's Hospital, Houston, TX, United States.,Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX, United States
| | - Hung Chu
- School of Biological Sciences, The University of Hong Kong, Pokfulam, Hong Kong
| | - Aparna Padmanabhan
- School of Biological Sciences, The University of Hong Kong, Pokfulam, Hong Kong
| | - Nagendra P Shah
- School of Biological Sciences, The University of Hong Kong, Pokfulam, Hong Kong
| |
Collapse
|
6
|
Zhang D, Huo J, Li R, Zhang Y, Wang Z, Li X. Altered levels of focal adhesion and extracellular matrix-receptor interacting proteins were identified in Hailey-Hailey disease by quantitative iTRAQ proteome analysis. J Cell Biochem 2018; 120:3801-3812. [PMID: 30506709 DOI: 10.1002/jcb.27662] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Accepted: 08/20/2018] [Indexed: 12/31/2022]
Abstract
Benign chronic familial pemphigus or Hailey-Hailey disease (HHD, OMIM 169600) is a rare, autosomal dominant blistering skin disorder characterized by suprabasal cell separation (acantholysis) of the epidermis. To date, the proteomic changes in skin lesions from HHD patients has not been reported yet. In this study, a sample of skin lesions from HHD patients was collected for isobaric tags for relative and absolute quantitation to analyze proteome changes compared with unaffected individuals. The 134 differentially expressed proteins were assigned to at least one Gene Ontology term, and 123 annotated proteins with significant matches were assigned to 187 known metabolic or signaling pathways listed in the Kyoto Encyclopedia of Genes and Genomes. Most of the altered proteins in skin lesions of HHD patients were enriched in pathways involved in the PI3K-Akt signaling, focal adhesion, extracellular matrix (ECM)-receptor interaction, and protein digestion and absorption, such as collagen family members, microfibril-associated glycoprotein 4 and plakophilin. The changes of proteins related to cell adhesion, ECM-receptor interaction, and protein folding and glycosylation suggested that strategy targeted to alter cell junction and extracellular microenvironment might provide a potential treatment for HHD.
Collapse
Affiliation(s)
- Dingwei Zhang
- Department of Dermatology, The Second Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Jia Huo
- Department of Dermatology, The Second Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Ruilian Li
- Department of Dermatology, The Second Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Yanfei Zhang
- Department of Dermatology, The Second Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Zhenghui Wang
- Department of Otolaryngology-Head and Neck Surgery, The Second Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Xiaoli Li
- Department of Dermatology, The Second Hospital of Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
7
|
Lam MPY, Lau E, Ng DCM, Wang D, Ping P. Cardiovascular proteomics in the era of big data: experimental and computational advances. Clin Proteomics 2016; 13:23. [PMID: 27980500 PMCID: PMC5137214 DOI: 10.1186/s12014-016-9124-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2016] [Accepted: 08/24/2016] [Indexed: 01/14/2023] Open
Abstract
Proteomics plays an increasingly important role in our quest to understand cardiovascular biology. Fueled by analytical and computational advances in the past decade, proteomics applications can now go beyond merely inventorying protein species, and address sophisticated questions on cardiac physiology. The advent of massive mass spectrometry datasets has in turn led to increasing intersection between proteomics and big data science. Here we review new frontiers in technological developments and their applications to cardiovascular medicine. The impact of big data science on cardiovascular proteomics investigations and translation to medicine is highlighted.
Collapse
Affiliation(s)
- Maggie P Y Lam
- NIH BD2K Center of Excellence at UCLA; Department of Physiology, University of California at Los Angeles, 675 Charles E. Young Drive, Los Angeles, CA 90095 USA
| | - Edward Lau
- NIH BD2K Center of Excellence at UCLA; Department of Physiology, University of California at Los Angeles, 675 Charles E. Young Drive, Los Angeles, CA 90095 USA
| | - Dominic C M Ng
- NIH BD2K Center of Excellence at UCLA; Department of Physiology, University of California at Los Angeles, 675 Charles E. Young Drive, Los Angeles, CA 90095 USA
| | - Ding Wang
- NIH BD2K Center of Excellence at UCLA; Department of Physiology, University of California at Los Angeles, 675 Charles E. Young Drive, Los Angeles, CA 90095 USA
| | - Peipei Ping
- NIH BD2K Center of Excellence at UCLA; Department of Physiology, University of California at Los Angeles, 675 Charles E. Young Drive, Los Angeles, CA 90095 USA ; Department of Medicine, University of California at Los Angeles, 675 Charles E. Young Drive, Los Angeles, CA 90095 USA ; Department of Bioinformatics, University of California at Los Angeles, 675 Charles E. Young Drive, Los Angeles, CA 90095 USA
| |
Collapse
|
8
|
Su H, Kong C, Zhu L, Huang Q, Luo L, Wang H, Xu Y. PPE26 induces TLR2-dependent activation of macrophages and drives Th1-type T-cell immunity by triggering the cross-talk of multiple pathways involved in the host response. Oncotarget 2016; 6:38517-37. [PMID: 26439698 PMCID: PMC4770718 DOI: 10.18632/oncotarget.5956] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2015] [Accepted: 09/12/2015] [Indexed: 12/27/2022] Open
Abstract
The pathophysiological functions and the underlying molecular basis of PE /PPE proteins of M. tuberculosis remain largely unknown. In this study, we focused on the link between PPE26 and host response. We demonstrated that PPE26 can induce extensive inflammatory responses in macrophages through triggering the cross-talk of multiple pathways involved in the host response, as revealed by iTRAQ-based subcellular quantitative proteomics. We observed that PPE26 is able to specifically bind to TLR2 leading to the subsequent activation of MAPKs and NF-κB signaling. PPE26 functionally stimulates macrophage activation by augmenting pro-inflammatory cytokine production (TNF-α, IL-6 and IL-12 p40) and the expression of cell surface markers (CD80, CD86, MHC class I and II). We observed that PPE26-treated macrophages effectively polarizes naïve CD4+ T cells to up-regulate CXCR3 expression, and to secrete IFN-γ and IL-2, indicating PPE26 contributes to the Th1 polarization during the immune response. Importantly, rBCG::PPE26 induces stronger antigen-specific TNF-α and IFN-γ activity, and higher levels of the Th1 cytokines TNF-α and IFN-γ comparable to BCG. Moreover, PPE26 effectively induces the reciprocal expansion of effector/memory CD4+/CD8+ CD44highCD62Llow T cells in the spleens of mice immunized with this strain. These results suggest that PPE26 may be a TLR2 agonist that stimulates innate immunity and adaptive immunity, indicating that PPE26 is a potential antigen for the rational design of an efficient vaccine against M. tuberculosis.
Collapse
Affiliation(s)
- Haibo Su
- State Key Laboratory of Genetic Engineering, Institute of Genetics, School of Life Science, Fudan University, Shanghai, China
| | - Cong Kong
- State Key Laboratory of Genetic Engineering, Institute of Genetics, School of Life Science, Fudan University, Shanghai, China
| | - Lin Zhu
- State Key Laboratory of Genetic Engineering, Institute of Genetics, School of Life Science, Fudan University, Shanghai, China
| | - Qi Huang
- State Key Laboratory of Genetic Engineering, Institute of Genetics, School of Life Science, Fudan University, Shanghai, China
| | - Liulin Luo
- State Key Laboratory of Genetic Engineering, Institute of Genetics, School of Life Science, Fudan University, Shanghai, China.,Department of Clinical Laboratory Medicine, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Honghai Wang
- State Key Laboratory of Genetic Engineering, Institute of Genetics, School of Life Science, Fudan University, Shanghai, China
| | - Ying Xu
- State Key Laboratory of Genetic Engineering, Institute of Genetics, School of Life Science, Fudan University, Shanghai, China
| |
Collapse
|
9
|
Zhao Y, Law HC, Zhang Z, Lam HC, Quan Q, Li G, Chu IK. Online coupling of hydrophilic interaction/strong cation exchange/reversed-phase liquid chromatography with porous graphitic carbon liquid chromatography for simultaneous proteomics and N-glycomics analysis. J Chromatogr A 2015; 1415:57-66. [DOI: 10.1016/j.chroma.2015.08.017] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2014] [Revised: 07/20/2015] [Accepted: 08/10/2015] [Indexed: 11/25/2022]
|
10
|
Sajic T, Varesio E, Szanto I, Hopfgartner G. Comparison of fractionation strategies for offline two-dimensional liquid chromatography tandem mass spectrometry analysis of proteins from mouse adipose tissue. Anal Biochem 2015; 484:122-32. [DOI: 10.1016/j.ab.2015.05.015] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2014] [Revised: 03/26/2015] [Accepted: 05/22/2015] [Indexed: 12/22/2022]
|
11
|
Zhang Z, Li G, Szeto SSW, Chong CM, Quan Q, Huang C, Cui W, Guo B, Wang Y, Han Y, Michael Siu KW, Yuen Lee SM, Chu IK. Examining the neuroprotective effects of protocatechuic acid and chrysin on in vitro and in vivo models of Parkinson disease. Free Radic Biol Med 2015; 84:331-343. [PMID: 25769424 DOI: 10.1016/j.freeradbiomed.2015.02.030] [Citation(s) in RCA: 113] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2014] [Revised: 02/18/2015] [Accepted: 02/23/2015] [Indexed: 12/22/2022]
Abstract
Polypharmacology-based strategies using drug combinations with different mechanisms of action are gaining increasing attention as a novel methodology to discover potentially innovative medicines for neurodegenerative disorders. We used this approach to examine the combined neuroprotective effects of two polyphenols, protocatechuic acid (PCA) and chrysin, identified from the fruits of Alpinia oxyphylla. Our results demonstrated synergistic neuroprotective effects, with chrysin enhancing the protective effects of PCA, resulting in greater cell viability and decreased lactate dehydrogenase release from 6-hydroxydopamine-treated PC12 cells. Their combination also significantly attenuated chemically induced dopaminergic neuron loss in both zebrafish and mice. We examined the molecular mechanisms underlying these collective cytoprotective effects through proteomic analysis of treated PC12 cells, resulting in the identification of 12 regulated proteins. Two were further characterized, leading to the determination that pretreatment with PCA and chrysin resulted in (i) increased nuclear factor-erythroid 2-related factor 2 protein expression and transcriptional activity; (ii) modulation of cellular redox status with the upregulated expression of hallmark antioxidant enzymes, including heme oxygenase-1, superoxide dismutase, and catalase; and (iii) decreased levels of malondialdehyde, a known lipid peroxidation product. Treatment with PCA and chrysin also inhibited activation of nuclear factor-κB and expression of inducible nitric oxide synthase. Our findings suggest that natural products, when used in combination, can be effective potential therapeutic agents for treating diseases such as Parkinson disease. A therapy involving both PCA and chrysin exhibits its enhanced neuroprotective effects through a combination of cellular mechanisms: antioxidant cytoprotection and anti-inflammation.
Collapse
Affiliation(s)
- Zaijun Zhang
- Institute of New Drug Research and Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine, College of Pharmacy, Jinan University, Guangdong, China; State Key Laboratory of Quality Research in Chinese Medicine and Institute of Chinese Medical Sciences, University of Macau, Taipa, Macao, China
| | - Guohui Li
- Department of Chemistry, The University of Hong Kong, Hong Kong, China
| | - Samuel S W Szeto
- Department of Chemistry, The University of Hong Kong, Hong Kong, China
| | - Cheong Meng Chong
- State Key Laboratory of Quality Research in Chinese Medicine and Institute of Chinese Medical Sciences, University of Macau, Taipa, Macao, China
| | - Quan Quan
- Department of Chemistry, The University of Hong Kong, Hong Kong, China
| | - Chen Huang
- State Key Laboratory of Quality Research in Chinese Medicine and Institute of Chinese Medical Sciences, University of Macau, Taipa, Macao, China
| | - Wei Cui
- Department of Applied Biology and Chemical Technology, Institute of Modern Medicine, The Hong Kong Polytechnic University, Hong Kong, China
| | - Baojian Guo
- Institute of New Drug Research and Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine, College of Pharmacy, Jinan University, Guangdong, China
| | - Yuqiang Wang
- Institute of New Drug Research and Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine, College of Pharmacy, Jinan University, Guangdong, China
| | - Yifan Han
- Department of Applied Biology and Chemical Technology, Institute of Modern Medicine, The Hong Kong Polytechnic University, Hong Kong, China
| | - K W Michael Siu
- Department of Chemistry and Biochemistry, University of Windsor, Windsor, ON, Canada
| | - Simon Ming Yuen Lee
- State Key Laboratory of Quality Research in Chinese Medicine and Institute of Chinese Medical Sciences, University of Macau, Taipa, Macao, China.
| | - Ivan K Chu
- Department of Chemistry, The University of Hong Kong, Hong Kong, China.
| |
Collapse
|
12
|
Vonk RJ, Gargano AFG, Davydova E, Dekker HL, Eeltink S, de Koning LJ, Schoenmakers PJ. Comprehensive Two-Dimensional Liquid Chromatography with Stationary-Phase-Assisted Modulation Coupled to High-Resolution Mass Spectrometry Applied to Proteome Analysis of Saccharomyces cerevisiae. Anal Chem 2015; 87:5387-94. [DOI: 10.1021/acs.analchem.5b00708] [Citation(s) in RCA: 73] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
| | | | | | | | - Sebastiaan Eeltink
- Vrije Universiteit Brussel, Department of Chemical
Engineering, Pleinlaan
2, B-1050 Brussels, Belgium
| | | | | |
Collapse
|
13
|
Law HCH, Kong RPW, Szeto SSW, Zhao Y, Zhang Z, Wang Y, Li G, Quan Q, Lee SMY, Lam HC, Chu IK. A versatile reversed phase-strong cation exchange-reversed phase (RP–SCX–RP) multidimensional liquid chromatography platform for qualitative and quantitative shotgun proteomics. Analyst 2015; 140:1237-52. [DOI: 10.1039/c4an01893a] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
We developed a novel online MDLC platform that integrates a dual-trap configuration and two separation technologies into a single automated commercial platform.
Collapse
Affiliation(s)
- Henry C. H. Law
- Department of Chemistry
- the University of Hong Kong
- Hong Kong
- China
| | - Ricky P. W. Kong
- Department of Chemistry
- the University of Hong Kong
- Hong Kong
- China
| | | | - Yun Zhao
- Department of Chemistry
- the University of Hong Kong
- Hong Kong
- China
| | - Zaijun Zhang
- Institute of New Drug Research
- Jinan University College of Pharmacy
- Guangzhou 510632
- China
| | - Yuqiang Wang
- Institute of New Drug Research
- Jinan University College of Pharmacy
- Guangzhou 510632
- China
| | - Guohui Li
- Department of Chemistry
- the University of Hong Kong
- Hong Kong
- China
- Institute of Chinese Medical Sciences
| | - Quan Quan
- Department of Chemistry
- the University of Hong Kong
- Hong Kong
- China
| | - Simon M. Y. Lee
- Institute of Chinese Medical Sciences
- University of Macau
- Macau
- China
| | - Herman C. Lam
- Department of Chemistry
- the University of Hong Kong
- Hong Kong
- China
| | - Ivan K. Chu
- Department of Chemistry
- the University of Hong Kong
- Hong Kong
- China
| |
Collapse
|
14
|
LeBlanc A, Shiao TC, Roy R, Sleno L. Absolute Quantitation of NAPQI-Modified Rat Serum Albumin by LC–MS/MS: Monitoring Acetaminophen Covalent Binding in Vivo. Chem Res Toxicol 2014; 27:1632-9. [DOI: 10.1021/tx500284g] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- André LeBlanc
- Pharmaqam, Chemistry Department, Université du Québec à Montréal, P.O. Box 8888, Downtown Station, Montréal, Québec H3C 3P8, Canada
| | - Tze Chieh Shiao
- Pharmaqam, Chemistry Department, Université du Québec à Montréal, P.O. Box 8888, Downtown Station, Montréal, Québec H3C 3P8, Canada
| | - René Roy
- Pharmaqam, Chemistry Department, Université du Québec à Montréal, P.O. Box 8888, Downtown Station, Montréal, Québec H3C 3P8, Canada
| | - Lekha Sleno
- Pharmaqam, Chemistry Department, Université du Québec à Montréal, P.O. Box 8888, Downtown Station, Montréal, Québec H3C 3P8, Canada
| |
Collapse
|
15
|
Gethings LA, Connolly JB. Simplifying the Proteome: Analytical Strategies for Improving Peak Capacity. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2014; 806:59-77. [DOI: 10.1007/978-3-319-06068-2_3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
|
16
|
Wu W, Zhu Y, Ma Z, Sun Y, Quan Q, Li P, Hu P, Shi T, Lo C, Chu IK, Huang J. Proteomic evidence for genetic epistasis: ClpR4 mutations switch leaf variegation to virescence in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2013; 76:943-956. [PMID: 24124904 DOI: 10.1111/tpj.12344] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2013] [Revised: 09/26/2013] [Accepted: 10/01/2013] [Indexed: 05/28/2023]
Abstract
Chloroplast development in plants is regulated by a series of coordinated biological processes. In this work, a genetic suppressor screen for the leaf variegation phenotype of the thylakoid formation 1 (thf1) mutant combined with a proteomic assay was employed to elucidate this complicated network. We identified a mutation in ClpR4, named clpR4-3, which leads to leaf virescence and also rescues the var2 variegation. Proteomic analysis showed that the chloroplast proteome of clpR4-3 thf1 is dominantly controlled by clpR4-3, providing molecular mechanisms that cause genetic epistasis of clpR4-3 to thf1. Classification of the proteins significantly mis-regulated in the mutants revealed that those functioning in the expression of plastid genes are oppositely regulated while proteins functioning in antioxidative stress, protein folding, and starch metabolism are changed in the same direction between thf1 and clpR4-3. The levels of FtsHs including FtsH2/VAR2, FtsH8, and FtsH5/VAR1 are greatly reduced in thf1 compared with those in the wild type, but are higher in clpR4-3 thf1 than in thf1. Quantitative PCR analysis revealed that FtsH expression in clpR4-3 thf1 is regulated post-transcriptionally. In addition, a number of ribosomal proteins are less expressed in the clpR4-3 proteome, which is in line with the reduced levels of rRNAs in clpR4-3. Furthermore, knocking out PRPL11, one of the most downregulated proteins in the clpR4-3 thf1 proteome, rescues the leaf variegation phenotype of the thf1 and var2 mutants. These results provide insights into molecular mechanisms by which the virescent clpR4-3 mutation suppresses leaf variegation of thf1 and var2.
Collapse
Affiliation(s)
- Wenjuan Wu
- National Key Laboratory of Plant Molecular Genetics, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Yin S, Xue J, Sun H, Wen B, Wang Q, Perkins G, Zhao HW, Ellisman MH, Hsiao YH, Yin L, Xie Y, Hou G, Zi J, Lin L, Haddad GG, Zhou D, Liu S. Quantitative evaluation of the mitochondrial proteomes of Drosophila melanogaster adapted to extreme oxygen conditions. PLoS One 2013; 8:e74011. [PMID: 24069262 PMCID: PMC3771901 DOI: 10.1371/journal.pone.0074011] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2013] [Accepted: 07/25/2013] [Indexed: 01/20/2023] Open
Abstract
Mitochondria are the primary organelles that consume oxygen and provide energy for cellular activities. To investigate the mitochondrial mechanisms underlying adaptation to extreme oxygen conditions, we generated Drosophila strains that could survive in low- or high-oxygen environments (LOF or HOF, respectively), examined their mitochondria at the ultrastructural level via transmission electron microscopy, studied the activity of their respiratory chain complexes, and quantitatively analyzed the protein abundance responses of the mitochondrial proteomes using Isobaric tag for relative and absolute quantitation (iTRAQ). A total of 718 proteins were identified with high confidence, and 55 and 75 mitochondrial proteins displayed significant differences in abundance in LOF and HOF, respectively, compared with the control flies. Importantly, these differentially expressed mitochondrial proteins are primarily involved in respiration, calcium regulation, the oxidative response, and mitochondrial protein translation. A correlation analysis of the changes in the levels of the mRNAs corresponding to differentially regulated mitochondrial proteins revealed two sets of proteins with different modes of regulation (transcriptional vs. post-transcriptional) in both LOF and HOF. We believe that these findings will not only enhance our understanding of the mechanisms underlying adaptation to extreme oxygen conditions in Drosophila but also provide a clue in studying human disease induced by altered oxygen tension in tissues and cells.
Collapse
Affiliation(s)
- Songyue Yin
- Chinese Academy of Sciences Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jin Xue
- Department of Pediatrics, Division of Respiratory Medicine, University of California San Diego, San Diego, California, United States of America
| | - Haidan Sun
- Chinese Academy of Sciences Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China
| | - Bo Wen
- Proteomic Platform, BGI-Shenzhen, Shenzhen, Guangdong, China
| | - Quanhui Wang
- Chinese Academy of Sciences Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China
- Proteomic Platform, BGI-Shenzhen, Shenzhen, Guangdong, China
| | - Guy Perkins
- National Center for Microscopy and Imaging Research, University of California San Diego, San Diego, California, United States of America
| | - Huiwen W. Zhao
- Department of Pediatrics, Division of Respiratory Medicine, University of California San Diego, San Diego, California, United States of America
| | - Mark H. Ellisman
- National Center for Microscopy and Imaging Research, University of California San Diego, San Diego, California, United States of America
| | - Yu-hsin Hsiao
- Department of Pediatrics, Division of Respiratory Medicine, University of California San Diego, San Diego, California, United States of America
| | - Liang Yin
- Chinese Academy of Sciences Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China
| | - Yingying Xie
- Chinese Academy of Sciences Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China
| | - Guixue Hou
- Chinese Academy of Sciences Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China
- Proteomic Platform, BGI-Shenzhen, Shenzhen, Guangdong, China
| | - Jin Zi
- Proteomic Platform, BGI-Shenzhen, Shenzhen, Guangdong, China
| | - Liang Lin
- Proteomic Platform, BGI-Shenzhen, Shenzhen, Guangdong, China
| | - Gabriel G. Haddad
- Department of Pediatrics, Division of Respiratory Medicine, University of California San Diego, San Diego, California, United States of America
- Department of Neurosciences, University of California San Diego, San Diego, California, United States of America
- Rady Children’s Hospital, San Diego, California, United States of America
| | - Dan Zhou
- Department of Pediatrics, Division of Respiratory Medicine, University of California San Diego, San Diego, California, United States of America
- * E-mail: (DZ); Siqi Liu: (SL)
| | - Siqi Liu
- Chinese Academy of Sciences Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
- Proteomic Platform, BGI-Shenzhen, Shenzhen, Guangdong, China
- * E-mail: (DZ); Siqi Liu: (SL)
| |
Collapse
|
18
|
Jeudy J, Salvador A, Simon R, Jaffuel A, Fonbonne C, Léonard JF, Gautier JC, Pasquier O, Lemoine J. Overcoming biofluid protein complexity during targeted mass spectrometry detection and quantification of protein biomarkers by MRM cubed (MRM3). Anal Bioanal Chem 2013; 406:1193-200. [DOI: 10.1007/s00216-013-7266-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2013] [Revised: 07/02/2013] [Accepted: 07/17/2013] [Indexed: 01/19/2023]
|
19
|
Rodríguez-Suárez E, Whetton AD. The application of quantification techniques in proteomics for biomedical research. MASS SPECTROMETRY REVIEWS 2013; 32:1-26. [PMID: 22847841 DOI: 10.1002/mas.21347] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2011] [Revised: 02/09/2012] [Accepted: 02/10/2012] [Indexed: 06/01/2023]
Abstract
The systematic analysis of biological processes requires an understanding of the quantitative expression patterns of proteins, their interacting partners and their subcellular localization. This information was formerly difficult to accrue as the relative quantification of proteins relied on antibody-based methods and other approaches with low throughput. The advent of soft ionization techniques in mass spectrometry plus advances in separation technologies has aligned protein systems biology with messenger RNA, DNA, and microarray technologies to provide data on systems as opposed to singular protein entities. Another aspect of quantitative proteomics that increases its importance for the coming few years is the significant technical developments underway both for high pressure liquid chromatography and mass spectrum devices. Hence, robustness, reproducibility and mass accuracy are still improving with every new generation of instruments. Nonetheless, the methods employed require validation and comparison to design fit for purpose experiments in advanced protein analyses. This review considers the newly developed systematic protein investigation methods and their value from the standpoint that relative or absolute protein quantification is required de rigueur in biomedical research.
Collapse
|
20
|
Zarei M, Sprenger A, Gretzmeier C, Dengjel J. Combinatorial Use of Electrostatic Repulsion-Hydrophilic Interaction Chromatography (ERLIC) and Strong Cation Exchange (SCX) Chromatography for In-Depth Phosphoproteome Analysis. J Proteome Res 2012; 11:4269-76. [DOI: 10.1021/pr300375d] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Mostafa Zarei
- ZBSA Center for Biological Systems
Analysis, University of Freiburg, Habsburgerstrasse
49, 79104 Freiburg, Germany
| | - Adrian Sprenger
- ZBSA Center for Biological Systems
Analysis, University of Freiburg, Habsburgerstrasse
49, 79104 Freiburg, Germany
- Department of Dermatology, University Freiburg Medical Center, Hauptstrasse 7,
79104 Freiburg, Germany
| | - Christine Gretzmeier
- ZBSA Center for Biological Systems
Analysis, University of Freiburg, Habsburgerstrasse
49, 79104 Freiburg, Germany
| | - Joern Dengjel
- ZBSA Center for Biological Systems
Analysis, University of Freiburg, Habsburgerstrasse
49, 79104 Freiburg, Germany
| |
Collapse
|
21
|
Yang F, Shen Y, Camp DG, Smith RD. High-pH reversed-phase chromatography with fraction concatenation for 2D proteomic analysis. Expert Rev Proteomics 2012; 9:129-34. [PMID: 22462785 DOI: 10.1586/epr.12.15] [Citation(s) in RCA: 215] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Orthogonal high-resolution separations are critical for attaining improved analytical dynamic range and protein coverage in proteomic measurements. High-pH reversed-phase liquid chromatography (RPLC), followed by fraction concatenation, affords better peptide analysis than conventional strong cation-exchange chromatography applied for 2D proteomic analysis. For example, concatenated high-pH RPLC increased identification of peptides (by 1.8-fold) and proteins (by 1.6-fold) in shotgun proteomics analyses of a digested human protein sample. Additional advantages of high-pH RPLC with fraction concatenation include improved protein sequence coverage, simplified sample processing and reduced sample losses, making this an attractive alternative to strong cation-exchange chromatography in conjunction with second-dimension low-pH RPLC for 2D proteomics analyses.
Collapse
Affiliation(s)
- Feng Yang
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99352, USA
| | | | | | | |
Collapse
|
22
|
Zinn N, Hopf C, Drewes G, Bantscheff M. Mass spectrometry approaches to monitor protein-drug interactions. Methods 2012; 57:430-40. [PMID: 22687620 DOI: 10.1016/j.ymeth.2012.05.008] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2012] [Revised: 05/16/2012] [Accepted: 05/28/2012] [Indexed: 12/16/2022] Open
Abstract
Recent advances in mass spectrometry-based approaches have enabled the investigation of drug-protein interactions in various ways including the direct detection of drug-target complexes, the examination of drug-induced changes in the target protein structure, and the monitoring of enzymatic target activity. Mass spectrometry-based proteomics methods also permit the unbiased analysis of changes in protein abundance and post-translational modifications induced by drug action. Finally, chemoproteomic affinity enrichment studies enable the deconvolution of drug targets under close to physiological conditions. This review provides an overview of current methods for the characterization of drug-target interactions by mass spectrometry and describes a protocol for chemoproteomic target binding studies using immobilized bioactive molecules.
Collapse
Affiliation(s)
- Nico Zinn
- Cellzome AG, Meyerhofstrasse 1, D-69117 Heidelberg, Germany
| | | | | | | |
Collapse
|
23
|
Yuan H, Zhou Y, Xia S, Zhang L, Zhang X, Wu Q, Liang Z, Zhang Y. Integrated Platform for Proteome Profiling with Combination of Microreversed Phase Based Protein and Peptide Separation via Online Solvent Exchange and Protein Digestion. Anal Chem 2012; 84:5124-32. [DOI: 10.1021/ac3006796] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
24
|
Tan YF, Millar AH, Taylor NL. Components of mitochondrial oxidative phosphorylation vary in abundance following exposure to cold and chemical stresses. J Proteome Res 2012; 11:3860-79. [PMID: 22574745 DOI: 10.1021/pr3003535] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Plant mitochondria are highly responsive organelles that vary their metabolism in response to a wide range of chemical and environmental conditions. Quantitative proteomics studies have begun to allow the analysis of these large-scale protein changes in mitochondria. However studies of the integral membrane proteome of plant mitochondria, arguably the site responsible for the most fundamental mitochondrial processes of oxidative phosphorylation, protein import and metabolite transport, remain a technical challenge. Here we have investigated the changes in protein abundance in response to a number of chemical stresses and cold. In addition to refining the subcellular localization of 66 proteins, we have been able to characterize 596 protein × treatment combinations following a range of stresses. To date it has been assumed that the main mitochondrial response to stress involved the induction of alternative respiratory proteins such as AOX, UCPs, and alternative NAD(P)H dehydrogenases; we now provide evidence for a number of very specific protein abundance changes that have not been highlighted previously by transcript studies. This includes both previously characterized stress responsive proteins as well as major components of oxidative phosphorylation, protein import/export, and metabolite transport.
Collapse
Affiliation(s)
- Yew-Foon Tan
- ARC Centre of Excellence in Plant Energy Biology, MCS Building M316, The University of Western Australia, 35 Stirling Highway, Crawley WA 6009, Western Australia, Australia
| | | | | |
Collapse
|
25
|
Isobaric tagging approaches in quantitative proteomics: the ups and downs. Anal Bioanal Chem 2012; 404:1029-37. [DOI: 10.1007/s00216-012-6012-9] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2012] [Revised: 03/24/2012] [Accepted: 04/02/2012] [Indexed: 12/27/2022]
|
26
|
Wu Q, Yuan H, Zhang L, Zhang Y. Recent advances on multidimensional liquid chromatography-mass spectrometry for proteomics: from qualitative to quantitative analysis--a review. Anal Chim Acta 2012; 731:1-10. [PMID: 22652259 DOI: 10.1016/j.aca.2012.04.010] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2012] [Revised: 04/09/2012] [Accepted: 04/09/2012] [Indexed: 02/08/2023]
Abstract
With the acceleration of proteome research, increasing attention has been paid to multidimensional liquid chromatography-mass spectrometry (MDLC-MS) due to its high peak capacity and separation efficiency. Recently, many efforts have been put to improve MDLC-based strategies including "top-down" and "bottom-up" to enable highly sensitive qualitative and quantitative analysis of proteins, as well as accelerate the whole analytical procedure. Integrated platforms with combination of sample pretreatment, multidimensional separations and identification were also developed to achieve high throughput and sensitive detection of proteomes, facilitating highly accurate and reproducible quantification. This review summarized the recent advances of such techniques and their applications in qualitative and quantitative analysis of proteomes.
Collapse
Affiliation(s)
- Qi Wu
- Key Laboratory of Separation Science for Analytical Chemistry, National Chromatographic Research and Analysis Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
| | | | | | | |
Collapse
|
27
|
Hao P, Qian J, Ren Y, Sze SK. Electrostatic repulsion-hydrophilic interaction chromatography (ERLIC) versus strong cation exchange (SCX) for fractionation of iTRAQ-labeled peptides. J Proteome Res 2011; 10:5568-74. [PMID: 22014306 DOI: 10.1021/pr2007686] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The iTRAQ technique is popular for the comparative analysis of proteins in different complex samples. To increase the dynamic range and sensitivity of peptide identification in shotgun proteomics, SCX chromatography is generally used for the fractionation of iTRAQ-labeled peptides before LC-MS/MS analysis. However, SCX suffers from clustering of similarly charged peptides and the need to desalt fractions. In this report, SCX is compared with the alternative ERLIC method for fractionating iTRAQ-labeled peptides. The simultaneous effect of electrostatic repulsion and hydrophilic interaction in ERLIC results in peptide elution in order of decreasing pI and GRAVY values (increasing polarity). Volatile solvents can be used. We applied ERLIC to iTRAQ-labeled peptides from rat liver tissue, and 2745 proteins and 30,016 unique peptides were identified with high confidence from three technical replicates. This was 12.9 and 49.4% higher, respectively, than was obtained using SCX. In addition, ERLIC is appreciably better at the identification of highly hydrophobic peptides. The results indicate that ERLIC is a more convenient and more effective alternative to SCX for the fractionation of iTRAQ-labeled peptides. Quantification data show that both SCX and ERLIC fractionation have no significant effect on protein quantification by iTRAQ.
Collapse
Affiliation(s)
- Piliang Hao
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, 637551 Singapore
| | | | | | | |
Collapse
|
28
|
Lam MPY, Lau E, Siu SO, Ng DCM, Kong RPW, Chiu PCN, Yeung WSB, Lo C, Chu IK. Online combination of reversed-phase/reversed-phase and porous graphitic carbon liquid chromatography for multicomponent separation of proteomics and glycoproteomics samples. Electrophoresis 2011; 32:2930-40. [PMID: 22009802 DOI: 10.1002/elps.201100092] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2011] [Revised: 04/21/2011] [Accepted: 05/17/2011] [Indexed: 12/12/2022]
Abstract
In this paper, we describe an online combination of reversed-phase/reversed-phase (RP-RP) and porous graphitic carbon (PGC) liquid chromatography (LC) for multicomponent analysis of proteomics and glycoproteomics samples. The online RP-RP portion of this system provides comprehensive 2-D peptide separation based on sequence hydrophobicity at pH 2 and 10. Hydrophilic components (e.g. glycans, glycopeptides) that are not retained by RP are automatically diverted downstream to a PGC column for further trapping and separation. Furthermore, the RP-RP/PGC system can provide simultaneous extension of the hydropathy range and peak capacity for analysis. Using an 11-protein mixture, we found that the system could efficiently separate native peptides and released N-glycans from a single sample. We evaluated the applicability of the system to the analysis of complex biological samples using 25 μg of the lysate of a human choriocarcinoma cell line (BeWo), confidently identifying a total of 1449 proteins from a single experiment and up to 1909 distinct proteins from technical triplicates. The PGC fraction increased the sequence coverage through the inclusion of additional hydrophilic sequences that accounted for up to 6.9% of the total identified peptides from the BeWo lysate, with apparent preference for the detection of hydrophilic motifs and proteins. In addition, RP-RP/PGC is applicable to the analysis of complex glycomics samples, as demonstrated by our analysis of a concanavalin A-extracted glycoproteome from human serum; in total, 134 potentially N-glycosylated serum proteins, 151 possible N-glycosylation sites, and more than 40 possible N-glycan structures recognized by concanavalin A were simultaneously detected.
Collapse
Affiliation(s)
- Maggie P Y Lam
- Department of Chemistry, The University of Hong Kong, Hong Kong, PR China
| | | | | | | | | | | | | | | | | |
Collapse
|